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Complex structures of splitting type

Daniele Angella, Antonio Otal, Luis Ugarte, and Raquel Villacampa

Abstract. We study the six-dimensional solvmanifolds that admit com-
plex structures of splitting type classifying the underlying solvable Lie
algebras. In particular, many complex structures of this type exist on the
Nakamura manifold X, and they allow us to construct a countable family
of compact complex non-∂∂̄ manifolds Xk, k ∈ Z, that admit a small holo-
morphic deformation {(Xk)t}t∈Δk satisfying the ∂∂̄-lemma for any t ∈ Δk

except for the central fibre. Moreover, a study of the existence of spe-
cial Hermitian metrics is also carried out on six-dimensional solvmanifolds
with splitting-type complex structures.

Introduction

Let g be a real Lie algebra of even dimension. A complex structure on g is an
endomorphism J : g → g satisfying J2 = −Idg and the Nijenhuis condition

(0.1) NijJ(X,Y ) := [JX, JY ]−J [JX, Y ]−J [X, JY ]−[X,Y ] = 0, for all X,Y ∈g.

An important problem is to find the Lie algebras that admit such a structure.
They allow to construct many interesting examples of compact complex manifolds
whenever the simply-connected Lie group G of g has a lattice Γ of maximal rank.
Indeed, by extending J to the group G and then passing J to the quotient G/Γ
one obtains nilmanifolds, resp. solvmanifolds, when G is nilpotent, resp. solv-
able, endowed with G-left-invariant complex structures. In real dimension four,
the solvable Lie algebras admitting a complex structure have been classified by
Ovando in [28], however no general result is known in higher dimension. Focused
in six dimensions, Salamon [33] classifies the nilpotent Lie algebras that admit
a complex structure, finding eighteen non-isomorphic Lie algebras (see also [6]).
In [1] Andrada, Barberis and Dotti obtain the Lie algebras endowed with a com-
plex structure J of abelian type, i.e., J satisfies [JX, JY ] = [X,Y ] for all X,Y ∈ g.
More recently, Fino and the second and third authors [11] classify the 6-dimensional
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unimodular solvable Lie algebras admitting a complex structure J with non-zero
closed (3, 0)-form Ψ.

The existence of a closed nowhere vanishing (n, 0)-form Ψ on a 2n-dimensional
almost complex manifold automatically implies the Nijenhuis condition (0.1), and
such complex manifolds have holomorphically trivial canonical bundle. Nilmani-
folds with G-left-invariant complex structures are examples of this kind; in fact,
by Theorem 1.3 in [33], for any basis {ωj}nj=1 of (1,0)-forms on the underlying

nilpotent Lie algebra, the (n, 0)-form Ψ = ω1 ∧ · · · ∧ ωn is closed. However, this
is no longer true for general G-left-invariant complex structures on solvmanifolds.
In [11], Proposition 2.1, it is proved that for solvmanifolds, the existence of a
G-left-invariant complex structure with holomorphically trivial canonical bundle
is equivalent to the existence of a non-zero closed (n, 0)-form on the Lie algebra
underlying the solvmanifold. The second author finds in [27], Chapter 4, that
several of the complex structures with holomorphically trivial canonical bundle on
6-dimensional solvmanifolds are also of splitting type, i.e., they satisfy Assump-
tion 1.1 in [18] (see Definition 1.1 for details), but that there are other complex
structures that are not of splitting type.

In addition to providing an important source of examples of compact com-
plex manifolds with unusual and interesting properties, the complex structures of
splitting type have also interest because they constitute a natural solvable exten-
sion of complex nilmanifolds, as they are certain semi-direct products of the latter
by Cn. In this sense, they allow to investigate to what extent geometric properties
of nilmanifolds still survive in this larger class of homogeneous spaces. See, e.g.,
the deformation limits constructed in [4]; compare also the observation [19] that
Oeljeklaus–Toma manifolds are solvmanifolds of real splitting type endowed with
a left-invariant complex structure, and as such they do not admit Vaisman met-
rics. Furthermore, some complex cohomological invariants of the manifold can be
obtained explicitly, which allows to study several aspects of their complex ([21],
[18], [22], [3]) and Hermitian ([19], [20], [10]) geometry.

One of these invariants are the Dolbeault cohomology groups. For nilmanifolds,
several steps have been done in [7], [9], [31], [32] towards the (still open) conjec-
ture that the Dolbeault cohomology of a nilmanifold with G-left-invariant complex
structure J can be computed in terms of invariant forms on G, i.e., in terms of the
pair (g, J). Concerned with the calculus of the Dolbeault cohomology of solvman-
ifolds, Kasuya [18] provides a technique to compute such complex invariants when
the complex structure is of splitting type. The Dolbeault cohomology groups are
obtained by means of a certain finite-dimensional subalgebra of the de Rham com-
plex and, more recently, the first author and Kasuya develop in [3] a technique to
compute the Bott–Chern cohomology by means of another finite-dimensional sub-
algebra. These techniques have allowed to study the deformation limits of compact
complex ∂∂̄-manifolds [4] and of compact balanced manifolds [11].

Our objective in this paper is the complex geometry of 6-dimensional solvman-
ifolds endowed with a (G-left-invariant) complex structure of splitting type. The
paper is structured as follows. In Section 1, we obtain the solvable Lie algebras
that may support a splitting-type complex structure. More concretely, in The-
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orem 1.7 we prove that if G/Γ is a 6-dimensional solvmanifold endowed with a
complex structure J of splitting type, then the Lie algebra g of G is isomorphic
to sk for some 1 ≤ k ≤ 12 (see the list in Theorem 1.7 for a description of the
Lie algebras sk). Since six of the Lie algebras sk have parameters in their de-
scription, the number of non-isomorphic Lie algebras underlying the solvmanifolds
with splitting-type complex structure is not finite. In Remark 1.17 we discuss the
existence of lattices.

In Section 2, we investigate the existence of Hermitian metrics, with special
attention to strong Kähler with torsion (SKT) and balanced metrics. In particu-
lar, we obtain SKT structures on solvmanifolds corresponding to s1 and we show
the existence of balanced structures on the other Lie algebras sk for 2 ≤ k ≤ 12
(see Table 6). A conjecture of Fino and Vezzoni [13] states that in the compact
non-Kähler case it is never possible to find an SKT metric and also a balanced one.
In [14] they prove the conjecture for nilmanifolds and in [13] for 6-dimensional solv-
manifolds having holomorphically trivial canonical bundle. As a consequence of our
study in Section 2, it turns out that the conjecture also holds for any splitting-type
complex structure on a 6-dimensional solvmanifold. On the other hand, Popovici
proposes in [30] a conjecture relating the balanced and the Gauduchon cones of
∂∂̄-manifolds, and he observes that, if proved to hold, the conjecture would im-
ply the existence of a balanced metric on any ∂∂̄-manifold. Since solvmanifolds
corresponding to s1 do not satisfy the ∂∂̄-lemma, as another consequence of our
study in Section 2, one has that balanced metrics exist on any ∂∂̄-solvmanifold of
dimension 6 endowed with a splitting-type complex structure (see Corollary 2.8).

Finally, Section 3 is devoted to the complex geometry of the Nakamura manifold
and to the construction of some analytic families of compact complex structures
on it. The Lie algebra underlying the Nakamura manifold is s12, and the complex-
parallelizable structure given in [26] and the abelian complex structure found in [1]
are particular examples of splitting-type complex structures. After classifying, up
to equivalence, the splitting-type complex structures on the Nakamura manifold
(see Proposition 3.1), we prove in Theorem 3.3, by an appropriate deformation of
its abelian complex structure, that the property of having holomorphically trivial
canonical bundle and the property of being of splitting type are not stable under
holomorphic deformations.

Moreover, in Theorem 3.8 we construct, for each k ∈ Z, a compact complex
manifold Xk that does not satisfy the ∂∂̄-lemma, and we prove that Xk admits a
small holomorphic deformation {(Xk)t}t∈Δk

, Δk being an open disc in C around 0,
such that (Xk)t is a compact complex ∂∂̄-manifold for any t �= 0. For the proof
of this result we make use of the complex geometry on s12, since the compact
complex manifolds Xk, k ∈ Z, and all of their small holomorphic deformations
(Xk)t, t ∈ Δk, are solvmanifolds corresponding to s12 endowed with complex
structures of splitting type. Furthermore, they all have holomorphically trivial
canonical bundle and admit a balanced metric.

When we consider the case k = −1, then we recover the main result in [4]
because it corresponds precisely to the complex-parallelizable structure. So our
Theorem 3.8 shows that the result extends to a countable family of complex struc-
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tures. Since one of the complex structures (concretely k = 0) is the abelian one [1],
we have in particular that the abelian complex structure can be deformed to com-
plex structures satisfying the ∂∂̄-lemma. In other words, the abelian complex
structure on the Nakamura manifold (which does not satisfy the ∂∂̄-lemma) is the
central limit of an analytic family of compact complex ∂∂̄-manifolds.

1. The Lie algebras underlying the solvmanifolds with com-
plex structures of splitting type

We are concerned with solvmanifolds X = G/Γ endowed with a complex structure
of splitting type in the following sense:

Definition 1.1. ([18], Assumption 1.1) A solvmanifold X = G/Γ endowed with
a G-left-invariant complex structure J is said to be of splitting type if G is a semi-
direct product G = Cn �ϕ N such that:

1. N is a connected simply-connected 2k-dimensional nilpotent Lie group en-
dowed with an N -left-invariant complex structure JN ;

2. for any z ∈ Cn, it holds that ϕ(z) ∈ Aut(N) is a holomorphic automorphism
of N with respect to JN ;

3. ϕ induces a semi-simple action on the Lie algebra n associated to N ;

4. G has a lattice Γ (then Γ can be written as Γ = ΓCn �ϕ ΓN such that ΓCn

and ΓN are lattices of Cn and N , respectively, and, for any z ∈ ΓCn , it holds
ϕ(z) (ΓN ) ⊆ ΓN );

5. the inclusion ∧•,• (n⊗R C)
∗
↪→ ∧•,• (N/ΓN) induces the isomorphism in co-

homology

H•,•
∂̄

(∧•,• (n⊗R C)
∗) ∼=→ H•,•

∂̄
(N/ΓN ) .

We recall the construction of the complex structure (for further details see [18]).
Let G = Cn �ϕ N ; taking z = (z1, . . . , zn) ∈ Cn, we consider the standard (1, 0)-
basis {dz1, . . . , dzn} of Cn. Consider {ϕ1, . . . , ϕk} the N -invariant (1, 0)-basis such
that the induced action is given by the diagonal matrix

ϕ(z) =

⎛
⎜⎝
α1

. . .

αk

⎞
⎟⎠ ,

where αj ∈ Hom(Cn;C∗) are characters of Cn, j = 1, . . . , k. Then {dz1, . . . , dzn,
α−1
1 ϕ1, . . . , α−1

k ϕk} is a G-invariant (1, 0)-basis for the complex structure on G =
Cn �ϕ N .

1.1. Reduced equations of splitting-type complex structures in dimen-
sion 6

If the complex dimension of the solvmanifold is n + k = 3, then we have the
following cases: G = C2 �ϕC or G = C�ϕN , where the nilpotent factor N in the
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semi-direct product has real dimension 4 and it is endowed with a left-invariant
complex structure. There are only two possibilities for N , namely the complex
surface C2 or the real 4-dimensional nilpotent Lie group KT with Lie algebra
Kt = h3 ⊕ R (we denote by h3 the real 3-dimensional Heisenberg Lie algebra)
endowed with the left-invariant complex structure defined by a basis of (1, 0)-forms
{τ, σ} satisfying

(1.1)

{
dτ = 0,

dσ = τ ∧ τ̄ .

The nilmanifold KT/Γ endowed with the complex structure (1.1) is the well-known
Kodaira–Thurston manifold.

For the case C �ϕ N , either for N = C2 or KT , the action ϕ : C → Aut(N)
will be represented for every z3 ∈ C by a diagonal matrix of the form

(1.2) ϕ(z3) =

(
eAz3+Bz̄3 0

0 eCz3+Dz̄3

)
,

where A,B,C,D ∈ C. For the case C2�ϕC, the action is given for every (z2, z3) ∈
C2 by

ϕ(z2, z3) = eAz2+Bz̄2+Cz3+Dz̄3 ,

where A,B,C,D ∈ C.

Proposition 1.2. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a
complex structure of splitting type, and suppose that G = C2�ϕC or G = C�ϕC

2.
If g is the Lie algebra of G, then there is a basis {ω1, ω2, ω3} for (g1,0)∗ satisfying
the complex structure equations⎧⎨

⎩
dω1 = Aω13 +Bω13̄,

dω2 = −(A+ B̄ + ε)ω23 + ε ω23̄,
dω3 = 0,

for some A,B ∈ C and ε ∈ {0, 1}. (Here, and in what follows, ωk̄ stands for ωk.)

Proof. Let G = C �ϕ N be the semi-direct product where the action ϕ : C →
Aut(N) is given by the matrix (1.2), once fixed a (1, 0)-coframe for N . We are
considering the case N = C2. Hence, ϕ(z3) is automatically an automorphism
of C2 and the complex structure on G is determined by the global G-invariant
(1, 0)-basis {ω1 = e−Az3−Bz̄3dz1, ω

2 = e−Cz3−Dz̄3dz2, ω
3 = dz3}. The complex

structure equations in the basis {ω1, ω2, ω3} are

dω1 = Aω13 +Bω13̄, dω2 = Cω23 +Dω23̄, dω3 = 0.

The unimodularity of G is equivalent to the condition d(∧3,2g∗ ⊕ ∧2,3g∗) = {0},
which forces A + B̄ + C + D̄ = 0. Clearly, if D = 0, then C = −A − B̄. Now,
if D �= 0 then, up to scaling ω3, we can suppose that D is equal to 1 and so
C = −A− B̄ − 1, arriving at the desired structure equations.
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Consider next the case G = C2 �ϕ C. In this case we have a (1, 0)-coframe
{η1, η2, η3} given by {η1 = e−Az2−Bz̄2−Cz3−Dz̄3dz1, η

2 = dz2, η
3 = dz3}. Hence,

the structure equations are

dη1 = Aη12 +Bη12̄ + Cη13 +Dη13̄, dη2 = dη3 = 0.

The unimodularity condition is equivalent to A + B̄ = 0 and C + D̄ = 0. Thus,
we can consider (A,C) �= (0, 0), because otherwise ϕ is trivial. Now, if A �= 0
(similarly for C �= 0 when A = 0) then the change of basis {ω1 = η1, ω2 =
η3, ω3 = Aη2 + Cη3} provides the structure equations dω1 = ω13 − ω13̄ and
dω2 = dω3 = 0. �

Proposition 1.3. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a
complex structure of splitting type, and suppose that G = C �ϕ KT . Then, there
is a (1, 0)-basis {ω1, ω2, ω3} satisfying the complex structure equations

⎧⎪⎨
⎪⎩

dω1 = ε (ω13 − ω13̄),

dω2 = ω11̄,

dω3 = 0,

where ε ∈ {0, 1}.

Proof. The semisimple action induced by ϕ on Kt assures the existence of a basis
for Kt such that the action is diagonal. So, we can take a basis of the form

P ·
(
τ
σ

)
, where P =

(
p11 p12
p21 p22

)
∈ GL(2,C)

and {τ, σ} is the preferred basis of (1, 0)-forms with structure equations (1.1).

Denote also

Q := P−1 =

(
q11 q12
q21 q22

)
=

1

p11p22 − p12p21

(
p22 −p12
−p21 p11

)
.

With respect to this basis, we can assume that the action ϕ is diagonal and
given by the inverse of the matrix (1.2), which we will denote simply by α. So, the
invariant basis we choose is

{
ω1, ω2, ω3 := dz3

}
, where

(
ω1

ω2

)
= α · P ·

(
τ
σ

)
.

Since

dα = −α · E , where E :=

(
Aω3 +B ω3̄ 0

0 C ω3 +Dω3̄

)
.
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whence we get the structure equations (here ∧ is intended componentwise):

d

(
ω1

ω2

)
= dα ∧ P ·

(
τ
σ

)
+ α · P · d

(
τ
σ

)
= −α · E ∧ α−1 ·

(
ω1

ω2

)
+ α · P ·

(
0

τ ∧ τ̄

)

= −
((

Aω3 +Bω3̄
) ∧ ω1(

Cω3 +Dω3̄
) ∧ ω2

)
+ α · P ·

((
0
τ

)
∧
(
0
τ̄

))

=

(
ω1 ∧ (

Aω3 +Bω3̄
)

ω2 ∧ (
Cω3 +Dω3̄

))+ α · P ·
((

0
τ

)
∧
(
0
τ̄

))
.

Since there is no dependence on α in the first term, it is well-defined for any
value of the parameters A,B,C,D ∈ C.

As for the second term,

α · P ·
((

0
τ

)
∧
(
0
τ̄

))

= α ·
(
P ·

(
0

q11α
−1
1 ω1 + q12α

−1
2 ω2

))
∧
(
P̄ ·

(
0

q̄11ᾱ
−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

))

= α ·
((

p12 ·
(
q11α

−1
1 ω1 + q12α

−1
2 ω2

)
p22 ·

(
q11α

−1
1 ω1 + q12α

−1
2 ω2

)) ∧
(
p̄12 ·

(
q̄11ᾱ

−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

)
p̄22 ·

(
q̄11ᾱ

−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

)))

=
1

|p11p22 − p12p21|2
(
α1 · |p12|2
α2 · |p22|2

)
· ω ,

where

ω = α−1
1 ᾱ−1

1 |p22|2ω11̄ − α−1
1 ᾱ−1

2 p22p̄12ω
12̄ − ᾱ−1

1 α−1
2 p12p̄22ω

21̄ + α−1
2 ᾱ−1

2 |p12|2ω22̄.

So,

d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

) ∧ ω1(
Cω3 +Dω3̄

) ∧ ω2

)
+

1

|p11p22 − p12p21|2
(
α1 · |p12|2
α2 · |p22|2

)
· ω .

Now, we have to take care about the dependence on z3 of the terms in the
expression above. Note that the case (A,B,C,D) = (0, 0, 0, 0) is trivial, that is, it
yields just the product. Let us assume (A,B) �= (0, 0). The term

α1 · |p12|2
|p11p22 − p12p21|2

· α−1
1 ᾱ−1

1 |p22|2ω11̄ = ᾱ−1
1 · |p12|2|p22|2

|p11p22 − p12p21|2
ω11̄

contains ᾱ−1
1 that depends on z3. So either p12 = 0 or p22 = 0. If p22 = 0, then

ω = α−1
2 ᾱ−1

2 |p12|2ω22̄ and therefore we have to assume α1α
−1
2 ᾱ−1

2 to be constant.
Up to rescale p12, we may assume

α1α
−1
2 ᾱ−1

2 · |p12|
2

|p21|2
= 1 ,
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getting in this case the structure equations

(1.3) d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

) ∧ ω1(
Cω3 +Dω3̄

) ∧ ω2

)
+

(
ω22̄

0

)
.

On the other hand, if p12 = 0, then ω = α−1
1 ᾱ−1

1 |p22|2ω11̄ and we get the
necessary assumption that α2α

−1
1 ᾱ−1

1 is constant. Moreover, up to rescaling, we
may assume

α2α
−1
1 ᾱ−1

1 · |p22|
2

|p11|2
= 1 ,

which reduces the structure equations to

(1.4) d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

) ∧ ω1(
Cω3 +Dω3̄

) ∧ ω2

)
+

(
0

ω11̄

)
.

In case (C,D) �= (0, 0), we look at the term

α2 · |p22|2
|p11p22 − p12p21|2

· α−1
2 ᾱ−1

2 |p12|2ω22̄ = ᾱ−1
2 · |p12|2|p22|2

|p11p22 − p12p21|2
ω22̄

and we argue in the same way as before. If p22 = 0, then we are reduced to the
structure equations (1.3), whereas if p12 = 0, then we are reduced to the structure
equations (1.4).

Note that, with reference, e.g., to the second case (1.4), the Jacobi condition
yields the equations

A+ B̄ − C = D − C̄ = 0 .

Now the unimodularity condition is then equivalent to the equation Ā + B = 0.
Finally, if A �= 0 then we can suppose that it is equal to 1 after rescaling ω3. �

For the sake of clearness, we summarize Proposition 1.2 and Proposition 1.3 in
the following statement.

Theorem 1.4. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a
complex structure of splitting type. Then, there is a co-frame {ω1, ω2, ω3} of in-
variant (1, 0)-forms satisfying the complex structure equations

(1.5)

⎧⎪⎨
⎪⎩

dω1 = Aω13 +B ω13̄,

dω2 = −(A+ B̄ + ε)ω23 + ε ω23̄,

dω3 = 0,

or

(1.6)

⎧⎪⎨
⎪⎩

dω1 = ε (ω13 − ω13̄),

dω2 = ω11̄,

dω3 = 0,

where A,B ∈ C and ε ∈ {0, 1}.
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Remark 1.5. We note that for a complex structure in (1.5), the canonical bundle
is holomorphically trivial if and only if B = −ε. Indeed, by Proposition 2.1 in [11],
since the complex structure is left-invariant, a nowhere vanishing holomorphic
(3, 0)-form on X = G/Γ is necessarily invariant, but a direct calculation shows
that dω123 = (B+ε)ω1233̄. Similarly, for a complex structure in (1.6), one has that
dω123 = −ε ω1233̄, so the canonical bundle is holomorphically trivial if and only
if ε = 0. We show below which are the Lie algebras underlying such solvmanifolds.

1.2. Six-dimensional solvable Lie algebras with complex structures of
splitting type

In this section we determine the 6-dimensional real Lie algebras underlying the
reduced equations of splitting-type complex structures obtained in the previous
section. For simplicity, we introduce the following definition.

Definition 1.6. We will say that g admits a complex structure of splitting type if g
is a real Lie algebra underlying the complex equations (1.5) or (1.6) in Theorem 1.4.

Recall that those Lie algebras underlying the complex equations (1.6) corre-
spond to Lie groups of the form C�ϕKT , whereas the Lie algebras underlying (1.5)
correspond to C2 �ϕ C or C �ϕ C2.

The main result in this section is the following theorem.

Theorem 1.7. Let g be a unimodular (non-nilpotent) solvable Lie algebra of di-
mension 6. Then, g admits a complex structure of splitting type if and only if it is
isomorphic to one in the following list:

s1 = (e23, e34,−e24, 0, 0, 0),

s2 = (0,−e13, e12, 0, 0, 0),

s3 = (0,−e13, e12, 0,−e46, e45),

s4 = (e15,−e25,−e35, e45, 0, 0),

sα5 = (e15, e25,−e35 + α e45,−αe35 − e45, 0, 0), α > 0,

sα,β6 = (α e15 + e25,−e15 + α e25,−α e35 + β e45,−β e35 − α e45, 0, 0),

α > 0, 0 < β < 1,

sα7 = (e25,−e15, α e45,−α e35, 0, 0), 0 < α ≤ 1,

sα8 = (α e15 + e25,−e15 + α e25,−αe35 + e45,−e35 − α e45, 0, 0), α > 0,

s9 = (−e16,−e26, e36 − e45, e35 + e46, 0, 0),

sα,β10 = (e15 + β e16 − e26, e16 + e25 + β e26,−e35 − β e36 − α e45,

α e35 − e45 − β e46, 0, 0), α �= 0, β ∈ R,

sα11 = (e16 − e25, e15 + e26,−e36 − α e45, α e35 − e46, 0, 0), α ∈ (0, 1),

s12 = (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0).
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Here we follow the notation in [33]. For example, by writing (e23, e34,−e24,
0, 0, 0) we mean that there exists a basis {e1, . . . , e6} of the dual of the Lie algebra
satisfying de1 = e2 ∧ e3, de2 = e3 ∧ e4, de3 = −e2 ∧ e4, and de4 = de5 = de6 = 0.

Remark 1.8. For detailed explanations on the values of the parameters in the list
above, see Appendix A.

Let us start by determining the Lie algebras underlying the equations (1.6).

Proposition 1.9. The Lie algebras g that admit a complex structure of splitting
type corresponding to C�ϕ KT are (0, 0, 0, 0, 0, e12) if g is nilpotent, and s1 if g is
solvable but non-nilpotent.

Proof. It is clear that one obtains (0, 0, 0, 0, 0, e12) if ε = 0 in (1.6). For ε = 1, if
we consider the basis {e1, . . . , e6} given by ω1 = e3 − i e2, ω2 = 2(e5 − i e1) and
ω3 = 1

2 (e
6 − i e4), then it is immediate to see that the real Lie algebra is s1. �

We divide the study of equations (1.5) according to the vanishing of coefficient ε.
As a result we present several tables (see Tables 1, 2, 3, 4 and 5). There, the real
basis {e1, . . . , e6} is the one that corresponds to the real structure equations in
Theorem 1.7.

Proposition 1.10. The Lie algebras underlying equations (1.5) with ε = 0 are s2,

s9, s
α,β
10 , sα11, and s12.

Proof. Suppose first thatB = −Ā in (1.5), so we can assume thatA �= 0. Moreover,
taking {ω′1 = ω1, ω′2 = ω2, ω′3 = Aω3} we can suppose that A = −B = 1. If
we set ω1 = e3 + ie2, ω2 = e4 + ie5, ω3 = e6 + i

2e
1, then we obtain the structure

equations of s2.
On the other hand, if B �= −Ā, observe that we can normalize the coefficient

in ω23 just by taking a new basis {ω′1 = ω1, ω′2 = ω2, ω′3 = −(A+ B̄)ω3}.
If we denote ω′1 = α1 + iα2, ω′2 = α3 + iα4, ω′3 = α5 + iα6, then the real

structure equations become dα5 = dα6 = 0 and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dα1 =−α15 − 2 ImBα25 + (1 + 2ReB)α26,

dα2 =2 ImBα15 − (1 + 2ReB)α16 − α25,

dα3 =α35 − α46,

dα4 =α36 + α45.

It is straightforward to see that if B = −1/2, the Lie algebra is isomorphic
to s9 (take ei = αi, i = 1, 2, 3, 4, e5 = α6, e6 = α5). If we consider the real basis
e1 = α3, e2 = α4, e3 = α1, e4 = α2, e5 = α6, e6 = α5, then the Lie algebra is
isomorphic to s12 if B = 0 and sα

′
11, for α′ = −1 − 2B, if B ∈ R \ {−1/2, 0}.

Notice that α′ ∈ R \ {−1, 0} and hence the Lie algebra sα
′

11 is isomorphic to the
Lie algebra sα11 for some α ∈ (0, 1), as it appears in Theorem 1.7 (see Appendix A
for details). If B = −1, taking e1 = −α3, e2 = −α4, e3 = α2, e4 = α1, e5 = α6,
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and e6 = α5, we obtain the Lie algebra s12. Finally, if ImB �= 0, then with respect
to the real basis e1 = α3, e2 = α4, e3 = α1, e4 = α2, e5 = α5− 1+2ReB

2ImB α6, e6 = α6,

we obtain sα,β10 , where α = 2 ImB �= 0 and β = 1+2ReB
2 ImB . �

In Table 1 we summarize the results obtained in the previous proposition.

A,B ∈ C Real basis {e1, . . . , e6} Lie algebra

A = −B̄ �= 0
ω1 = e3 + ie2, ω2 = e4 + ie5,

s2
ω3 = e6 + i

2e
1

A = −1− B̄
B ∈ R

B = −1
ω1 = e4 + ie3, ω2 = −e1 − ie2,

s12
ω3 = e6 + ie5

B = − 1
2

ω1 = e1 + ie2, ω2 = e3 + ie4,
s9

ω3 = e6 + ie5

B = 0
ω1 = e3 + ie4, ω2 = e1 + ie2,

s12
ω3 = e6 + ie5

B �= −1,− 1
2 , 0

ω1 = e3 + ie4, ω2 = e1 + ie2, sα
′

11

ω3 = e6 + ie5 α′ = −1− 2B

ImB �= 0 ω1 = e3 + ie4, ω2 = e1 + ie2, sα,β10

ω3 =
(
e5 + 1+2ReB

2ImB e6
)
+ ie6 α = 2 ImB, β = 1+2ReB

2 ImB

Table 1: Lie algebras underlying equations (1.5) with ε = 0 (Proposition 1.10).

From now on, we focus on the equations (1.5) with ε = 1. Let us consider the
basis of real 1-forms {α1, . . . , α6} given by

(1.7) ω1 = α1 + iα2, ω2 = α3 + iα4, ω3 = α5 + iα6.

Hence, in terms of this basis the real structure equations become dα5 = dα6 = 0
and

(1.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα1 =(ReA+ReB)α15 − (ImA− ImB)α16

−(ImA+ ImB)α25 − (ReA−ReB)α26,

dα2 =(ImA+ ImB)α15 + (ReA−ReB)α16

+(ReA+ReB)α25 − (ImA− ImB)α26,

dα3 =−(ReA+ReB)α35 + (ImA− ImB)α36

+(ImA− ImB)α45 + (2 +ReA+ReB)α46,

dα4 =−(ImA− ImB)α35 − (2 +ReA+ReB)α36

−(ReA+ReB)α45 + (ImA− ImB)α46.

We need to consider different cases in order to identify all the possible real
Lie algebras underlying these equations. Concretely, we focus our attention at
the expression ImA − ImB in (1.8) distinguishing three cases, namely: ImA =
ImB = 0, ImA = ImB �= 0, or ImA �= ImB.
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1.2.1. Case ε = 1, ImA = ImB = 0.

Lemma 1.11.The Lie algebras underlying equations (1.5) with ε=1 and A,B∈R

are s2, s4, s
α
7 , s9, s

α
11, and s12.

Proof. Imposing condition ImA = ImB = 0 in (1.8), the equations simplify as

dα1 = (A+B)α15 − (A−B)α26, dα3 = −(A+B)α35 + (2 +A+B)α46,

dα2 = (A−B)α16 + (A+B)α25, dα4 = −(2 +A+B)α36 − (A+B)α45.

Now, it suffices to consider different cases depending on the vanishing of the
coefficients in the previous structure equations. Concretely, we divide our analy-
sis in the subcases A = −B, A = B �= 0 and A �= ±B. The results appear in
Table 2. Notice that in the case of the Lie algebra sα

′
7 , if α′ = |A| > 1 then it

is isomorphic to sα7 with α = 1/α′, so that 0 < α ≤ 1 according to Theorem 1.7.
Similarly, sα

′
11 is isomorphic to the Lie algebra sα11 for some α ∈ (0, 1), as it appears

in Theorem 1.7.
For each case in Table 2, we need to apply a change of real basis between the

initial one {α1, . . . , α6} and the final one {e1, . . . , e6}. These changes are given
simply by equalling the expression of ωi’s given in (1.7) and their corresponding
expressions given in Table 2. �

1.2.2. Case ε = 1, ImA = ImB �= 0.

Lemma 1.12. The Lie algebras underlying equations (1.5) with ε = 1 and ImA =

ImB �= 0 are s3, s
α
5 , s9, and sα,β10 .

Proof. Taking ImA = ImB �= 0, the equations (1.8) transform into⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dα1 =(ReA+ReB)α15 − 2 ImAα25 − (ReA−ReB)α26,

dα2 =2 ImAα15 + (ReA−ReB)α16 + (ReA+ReB)α25,

dα3 =−(ReA+ReB)α35 + (2 +ReA+ReB)α46,

dα4 =−(2 +ReA+ReB)α36 − (ReA+ReB)α45.

We consider the following cases according to the vanishing of some coefficients in
the equations above, namelyReA = −ReB, ReA = ReB �= 0 andReA �= ±ReB,
obtaining the results that appear in Table 3. The changes of basis between {αi}6i=1

and {ei}6i=1 follow directly from Table 3, taking into account (1.7). �

1.2.3. Case ε = 1, ImA �= ImB. Starting from (1.8), let us consider the new
basis {β1, . . . , β6} given by

βi = αi, i = 1, 2, 3, 4, β5 = (ImA− ImB)α5, β6 = (ImA− ImB)α6.
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A,B ∈ R Real basis {e1, . . . , e6} Lie algebra

A = −B

A = 0
ω1 = e4 + ie5, ω2 = e3 + ie2,

s2
ω3 = −e6 − i

2
e1

A �= 0
ω1 = − A

|A| e
3 + ie4, sα

′
7

ω2 = e1 + ie2, ω3 = e6 + i
2
e5 α′ = |A|

A = B

A = −1
ω1 = e1 + ie4, ω2 = e3 + ie2,

s4
ω3 = − 1

2
e5 + ie6

A �= 0,−1
ω1 = e1 + ie2, ω2 = e3 + ie4,

s9
ω3 = − 1

2A
e6 − i

2(A+1)
e5

A �= ±B

A = −1
ω1 = e1 + ie2, ω2 = e4 + ie3,

s12
ω3 = 1

B−1
e6 − i

B+1
e5

B = −1
ω1 = e1 + ie2, ω2 = e3 + ie4,

s12
ω3 = 1

A−1
e6 + i

A+1
e5

A+B = −2
ω1 = e3 + ie4, ω2 = e1 + ie2,

s9
ω3 = − 1

2
e6 + i

2(A+1)
e5

A+B �= −2 ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

11

A,B �= −1 ω3 = 1
A+B

e6 + i
A−B

e5 α′ = 2+A+B
B−A

Table 2: Lie algebras underlying equations (1.5) with ε = 1 and ImA = ImB = 0
(Lemma 1.11).

In terms of this basis, the structure equations (1.8) are

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dβ1 =−β1 ∧
(
β6 − ReA+ReB

ImA−ImB β5
)
− β2∧

(
ImA+ImB
ImA−ImB β5 + ReA−ReB

ImA−ImB β6
)
,

dβ2 =−β2∧
(
β6 − ReA+ReB

ImA−ImB β5
)
+ β1 ∧

(
ImA+ImB
ImA−ImB β5 + ReA−ReB

ImA−ImB β6
)
,

dβ3 =β3 ∧
(
β6 − ReA+ReB

ImA−ImB β5
)
+ β4 ∧

(
β5 + 2+ReA+ReB

ImA−ImB β6
)
,

dβ4 =−β3 ∧
(
β5 + 2+ReA+ReB

ImA−ImB β6
)
+ β4 ∧

(
β6 − ReA+ReB

ImA−ImB β5
)
.

We define the 1-forms

ν5 = β5 +
2 +ReA+ReB

ImA− ImB
β6, ν6 = β6 − ReA+ReB

ImA− ImB
β5.

The linear dependence of ν5 and ν6 will play a key role in our study of the under-
lying Lie algebras. Let us define

Δ = Δ(A,B) = (ImA− ImB)2 + (2 +ReA+ReB)(ReA+ReB)

= |A|2 + |B|2 + 2(ReA+ReB +ReAReB − ImAImB) .
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ImA = ImB �= 0 Real basis {e1, . . . , e6} Lie algebra

ReA = −ReB

ω1 = e2 − ie3, ω2 = e5 + ie6,

s3ω3 = 1
2 ImA (e1 −ReAe4) + i

2e
4

ReA = ReB = −1

ω1 = − ImA
|ImA|e

3 + ie4, sα5

ω2 = e1 + ie2, ω3 = 1
2 e

5 + ie6 α = |ImA|

ReA = ReB �= 0,−1

ω1 = e3 + ie4, ω2 = e1 + ie2, sα,010

ω3 = − 1
2ReA e5 − i

2(ReA+1) e
6 α = −ImA

ReA

ReA �= ±ReB ω1 = e3 + ie4, ω2 = e1 + ie2,

s9ReA+ReB = −2 ω3 = − 1
2 e

6 + i
2(ReA+1) (e

5 + ImAe6)

ReA �= ±ReB

ω1 = e1 + ie2, sα,β10

ReA+ReB �= −2

ω2 = e3 + ie4, α = 2ImA(2+ReA+ReB)
Re 2A−Re 2B

ω3 = 1
ReA+ReB e5 + 1

2 ImAe6 − i 2ImA
Re 2A−Re 2B e5 β = ReA+ReB

2ImA

Table 3: Lie algebras underlying equations (1.5) with ε = 1 and ImA = ImB �= 0
(Lemma 1.12).

It is straightforward to check that ν5 and ν6 are linearly independent if and
only if Δ �= 0. In the following lemmata we study the cases Δ = 0 and Δ �= 0.

Lemma 1.13. The Lie algebras underlying equations (1.5) with ε = 1, ImA �=
ImB and Δ(A,B) = 0 are sα5 , s

α,β
6 , sα8 , s

α,0
10 .

Proof. Notice first that the condition Δ = 0 implies that ReA + ReB �= 0,−2.
Since ν5 and ν6 are linearly dependent, we have that

ν5 = θ ν6, where θ =
2 +ReA+ReB

ImA− ImB
= −ImA− ImB

ReA+ReB
�= 0 .

Let us consider the new basis {γ1, . . . , γ6} given by γi = βi, 1 ≤ i ≤ 5, and
γ6 = ν6 = β6 + 1

θ β
5. With respect to this basis, the structure equations (1.9) are

(1.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dγ1 =−γ16 + γ2 ∧
[(

|B|2−|A|2
(ImA−ImB)2

)
γ5 −

(
ReA−ReB
ImA−ImB

)
γ6

]
,

dγ2 =−γ26 − γ1 ∧
[(

|B|2−|A|2
(ImA−ImB)2

)
γ5 −

(
ReA−ReB
ImA−ImB

)
γ6

]
,

dγ3 = γ36 + θ γ46,

dγ4 = γ46 − θ γ36.

In order to determine the Lie algebras underlying the equations (1.10), we
distinguish the cases when |A| = |B| or |A| �= |B| (see Table 4 for details). Notice

that the Lie algebras sα
′

5 , sα
′,β′

6 and sα
′

8 in Table 4 are isomorphic to the Lie

algebras sα5 , s
α,β
6 and sα8 with the values of the parameters α and β that appear in

Theorem 1.7.
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Observe that the relation between the bases {γi}6i=1 and {ei}6i=1 can be deduced
from the following diagram:

�

ImA �= ImB, Δ(A,B) = 0 Real basis {e1, . . . , e6} Lie algebra

|A| = |B|

B = Ā

ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

5

ω3 = 1
2ImA

[
e6 − i

(
e5 + ImA

1+ReA e6
)]

α′ = − 1+ReA
ImA

B �= Ā

B = −1 ω1 = e1 + ie2, ω2 = e4 + ie3, sα
′

8

ImA �= 0 ω3 = 1
ImAe6 − i

1+ReA (e5 + e6) α′ = ImA
1+ReA

A = −1 ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

8

ImB �= 0 ω3 = −1
ImB e6 + i

1+ReB (e5 − e6) α′ = ImB
1+ReB

ReA �= ReB ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′,β′

6

ReA,ReB �= −1 ω3 = 1
ImA−ImB e6 − i 1

ReA−ReB e5 α′ = ImA−ImB
ReA−ReB

(ImA)(ImB) �= 0 +i ReA+ReB
(ImA−ImB)2 e

6 β′ = −(2+ReA+ReB)
ReA−ReB

|A| �= |B|

ω1 = e1 + ie2, ω2 = e3 + ie4,
sα,010

ω3 = ReA−ReB
|A|2−|B|2 e5 + ImA−ImB

|A|2−|B|2 e6

− iImA+ImB
|A|2−|B|2 e5 + iReA+ReB

|A|2−|B|2 e6 α = 2+ReA+ReB
ImA−ImB

Table 4: Lie algebras underlying equations (1.5) with ε = 1, ImA �= ImB and
Δ(A,B) = 0 (Lemma 1.13).

Lemma 1.14. The Lie algebras underlying equations (1.5) with ε = 1, ImA �=
ImB and Δ(A,B) �= 0 are s9, s

α,β
10 , sα11, s12.

Proof. Since Δ �= 0, the 1-forms ν5 and ν6 are linearly independent. Hence, we
consider the basis {ν1, . . . , ν6} given by

νi = βi, i = 1, 2, 3, 4, ν5 = β5+
2 +ReA+ReB

ImA− ImB
β6, ν6 = β6−ReA+ReB

ImA− ImB
β5.

The structure equations (1.9) transform into⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dν1 =−ν16 − ImA−ImB
Δ

(
X ν25 − Y ν26

)
,

dν2 =−ν26 + ImA−ImB
Δ

(
X ν15 − Y ν16

)
,

dν3 = ν36 + ν45,

dν4 =−ν35 + ν46,
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where

X =
|A|2 − |B|2
ImA− ImB

, Y = 2
ImA(1 +ReB) + ImB(1 +ReA)

ImA− ImB
.

Now, the study is divided according to the vanishing of coefficientsX and Y (see
Table 5 for details). For the sake of clarity, we see what happens when X = Y = 0:
let us define p = ImA+ImB

ImA−ImB and q = ReA−ReB
ImA−ImB , and consider the following system

of equations in variables p and q:{
X = p(ImA− ImB) + q(ReA+ReB),

Y = p(2 +ReA+ReB)− q(ImA− ImB).

Observe that the determinant associated to the system is −Δ. Since Δ �= 0, if
X = Y = 0, the system has trivial solution and therefore B = Ā and, in particular,
Δ = 4(|A|2 +ReA) �= 0.

Finally, the relation between the bases {νi}6i=1 and {ei}6i=1 can be deduced
from

�

The previous lemmata provide the following.

Proposition 1.15. The unimodular solvable 6-dimensional Lie algebras underly-
ing equations (1.5) with ε = 1 are s2, s3, s4, s

α
5 , s

α,β
6 , sα7 , s

α
8 , s9, s

α,β
10 , sα11, s12.

As a consequence of the previous propositions, we prove the main result of this
section.

Proof of Theorem 1.7. The “only if” part of the theorem follows from Proposi-
tions 1.9, 1.10 and 1.15.

For the proof of the “if” part, we must show that all the Lie algebras in the
list admit a splitting-type complex structure. This is clear for the Lie algebras s1,
s2, s3, s4, s9 and s12 from Proposition 1.9 and Tables 1, 2 and 3. The remaining
Lie algebras in the list depend on parameters, so we will show next particular
appropriate values of A and B that define a complex structure of splitting type on
each one of the Lie algebras sα5 , s

α,β
6 , sα7 , s

α
8 , s

α,β
10 and sα11 in the list.

For the Lie algebra sα5 , α > 0, we consider A and B given by A = B = −1+ i α.
These values of the parameters A and B lie in Table 3, since ImA = ImB = α �= 0
and ReA = ReB = −1. Hence, the (1,0)-forms ω1 = − ImA

|ImA|e
3 + ie4 = −e3 + ie4,

ω2 = e1 + ie2, ω3 = 1
2 e

5 + ie6 define a splitting-type complex structure on sα5
according to Table 3.

For the other Lie algebras the argument is similar. We show below particular
appropriate values of A,B and the table where the corresponding basis of (1,0)-
forms is given:
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ImA �= ImB, Δ(A,B) �= 0 Real basis {e1, . . . , e6} Lie algebra

|A| = |B|

Y = 0

ω1 = e1 + ie2, ω2 = e3 + ie4,

s9ω3 = −ImA
2(|A|2+ReA)

(
e5 + 1+ReA

ImA e6
)

− i ImA
2(|A|2+ReA)

(
ReA
ImA e5 − e6

)

Y �= 0

ω1 = e3 + ie4, ω2 = e1 − ie2,

sα,010ω3 = ImA−ImB
Δ

(
e6 − 2+ReA+ReB

ImA−ImB e5
)

α = −Y (ImA−ImB)
Δ+ i(ImA−ImB)

Δ

(
e5 + ReA+ReB

ImA−ImB e6
)

|A| �= |B|

Y = 0

Δ = ±(|A|2 − |B|2)

ω1 = e3 + ie4, ω2 = e1 − ie2,

s12ω3 = ImA−ImB
Δ

(
e5 − 2+ReA+ReB

ImA−ImB e6
)

+ i(ImA−ImB)
Δ

(
ReA+ReB
ImA−ImB e5 + e6

)

Δ �= ±(|A|2 − |B|2)

ω1 = e3 + ie4, ω2 = e1 − ie2,

sα
′

11ω3 = ImA−ImB
Δ

(
e5 − 2+ReA+ReB

ImA−ImB e6
)

α′ = −X(ImA−ImB)
Δ+ i(ImA−ImB)

Δ

(
ReA+ReB
ImA−ImB e5 + e6

)

Y �= 0

ω1 = e1 − ie2, ω2 = e3 + ie4,

sα,β10ω3 = X(2+ReA+ReB)−Y (ImA−ImB)
X Δ e5

α = Y
X+ 2+ReA+ReB

Y (ImA−ImB) e
6 − i

Y e6

β = Δ
Y (ImA−ImB)−i X(ImA−ImB)+Y (ReA+ReB)

X Δ e5

Table 5: Lie algebras underlying equations (1.5) with ε = 1, ImA �= ImB and
Δ(A,B) �= 0 (Lemma 1.14).

- For sα,β6 , α > 0 with α �= 1, 0 < β < 1, it suffices to take A = −2
1+β + i 1−α2

α(1+β)

and B = i 1+α2

α(1+β) in Table 4.

- For s1,β6 , 0 < β < 1, we can take A = − 1+β
1+β2 + i 1−β

1+β2 and B = − 1−β
1+β2 + i 1+β

1+β2

in Table 4.

- For sα7 , 0 < α ≤ 1, we take A = −B = α in Table 2.

- For sα8 , α > 0, we take A = 1
1+α2 (1− α2 + 2iα) and B = −1 in Table 4.

- For sα,β10 , α �= 0, β ∈ R, we can take A = −1− B̄ with B = 1
2 (αβ − 1 + iβ) in

Table 1.

- Finally, for the Lie algebra sα11, α ∈ (0, 1), we take A = −1 − B with B =
− 1

2 (1 + α) in Table 1. �

Remark 1.16. In view of Remark 1.5, a 6-dimensional unimodular (non-nilpotent)
solvable Lie algebra admits a complex structure of splitting type with a non-zero
closed (3, 0)-form if and only if B = −ε in the structure equations (1.5). Looking at
the tables above, it is easy to check that this condition is satisfied if and only if the
Lie algebra is isomorphic to s4, s

1
7, s

α
8 or s12, which is in accord with Theorem 2.8

in [11] (notice that these Lie algebras correspond, respectively, to the Lie algebras
labeled as g1, g

α
2 and g8 in [11]).
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On the other hand, the Lie algebras obtained in Theorem 1.7 appear with
different notations in previous papers. Next, we make explicit the correspondence
with [5], [35]:

s1 = g04,9 ⊕ R2, s2 = g03,5 ⊕ R3, s3 = g03,5 ⊕ g03,5,

s4 = g−1,−1,1
5,7 ⊕ R, sα5 = g1,−1,α

5,13 ⊕ R, sα,β6 = gα,−α,β
5,17 ⊕ R,

sα7 = g0,0,α5,17 ⊕ R, sα8 = gα,−α,1
5,17 ⊕ R, s9 = N0,−1,0,−1

6,13 ,

sα,β10 = N−1,α,β,−β
6,15 , sα11 = N0,α,−1

6,18 , s12 = N0,−1,−1
6,18 .

It turns out that the only Lie algebra that is completely solvable is s4.

Remark 1.17. As regards solvmanifolds of splitting type, we notice that the con-
dition (5) in Definition 1.1 is satisfied by the Kodaira–Thurston manifold; see [7],
[9], [31], [32] for general results on the Dolbeault cohomology of nilmanifolds.
Therefore, we need to study the existence of lattices in the connected and simply-
connected solvable Lie groups Gk corresponding to the Lie algebras sk in Theo-
rem 1.7. The Lie groups G1, G2 and G3 admit lattices (see [5], Table A.1). Also
G4 admits lattices by [11], [27]. Moreover, by [8], page 13, we have:

• Gα,β
6 admits lattices if and only if β = r1

r2
∈ Q and α satisfies exp(2πα−1r2)+

exp(−2πα−1r2) ∈ Z, that is, α is the form αn := 2πr2
log( 1

2 (n±
√
n2−4))

with n ∈ N;

• Gα
7 admits lattices if and only if α ∈ Q;

• Gα
8 admits lattices if and only if exp(2πα−1) + exp(−2πpα−1) ∈ Z, that is,

for any α of the form αn := 2π

log( 1
2 (n±

√
n2−4))

with n ∈ N.

In Proposition 1.18 below we show the existence of lattices for a countable
family of Gα

5 . Note that the results on the existence of lattices are consistent
with Proposition 8.7 in [36], where it is shown that only countably many non-
isomorphic simply-connected solvable Lie groups admit a lattice. Therefore, one
cannot expect a lattice to exist on Gα

5 , G
α,β
6 , Gα

7 or Gα
8 for every value of α, β, and

so, in this sense, our proposition below completes the cases when the Lie algebra
is decomposable.

The indecomposable case is more difficult to treat, but in Section 3 we will
provide explicit lattices on the Lie group associated to s12 (which is the Lie algebra
underlying the Nakamura manifold [26], see also [37]) with interesting properties
with respect to the ∂∂̄-lemma.

Proposition 1.18. There is a countable family {αs,n} ⊂ R+ such that the con-
nected and simply-connected Lie group G

αs,n

5 admits a lattice.

Proof. The Lie algebra of Gα
5 , α > 0, can be written as sα5 = g1,−1,α

5,13 ⊕ R with

g1,−1,α
5,13 = R �ade5

R4. Since the simply-connected Lie group Hα corresponding to

g1,−1,α
5,13 is almost-nilpotent [5], it admits a lattice if and only if there exists τ �= 0
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such that the matrix exp(τ ade5) belongs to the conjugation class of an integer
matrix. We have (see [5], p. 222) that exp(t ade5) is given by

(1.11) exp(t ade5) =

⎛
⎜⎜⎜⎜⎝
e−t 0 0 0

0 e−t 0 0

0 0 et cosαt −et sinαt

0 0 et sinαt et cosαt

⎞
⎟⎟⎟⎟⎠ .

Let τ �= 0 be such that sinατ = 0, that is, τ = sπ/α with 0 �= s ∈ Z. In this case
the matrix (1.11) is diagonal and its characteristic polynomial is

(1.12) p(λ) =
(
λ2 − (e−τ + (−1)seτ )λ+ (−1)s

)2
.

Now, if exp(τ ade5) lies in the conjugation class of an integer matrix, then p(λ) ∈
Z[λ], that is, e−τ + (−1)seτ = n, for some n ∈ Z. Solving this equation, we get

τs,n = − log
(n+

√
n2 − 4(−1)s

2

)
, αs,n = − sπ

log
(n+

√
n2−4(−1)s

2

) , for n ≥ 3 .

Substituting these values in (1.12), we get p(λ) =
(
λ2 − nλ+ (−1)s

)2 ∈ Z[λ],
which is also the characteristic polynomial of the integer matrix

Bs =

⎛
⎜⎜⎜⎜⎝
0 (−1)s+1 0 0

1 n 0 0

0 0 0 (−1)s+1

0 0 1 n

⎞
⎟⎟⎟⎟⎠ ∈ Aut(4,Z).

In addition, it turns out that Q exp(τs,n ade5)Q
−1 = Bs, where

Q =

⎛
⎜⎜⎜⎜⎝

0 β+ 0 β−
0 1 0 1

β+ 0 β− 0

1 0 1 0

⎞
⎟⎟⎟⎟⎠ , β± =

1

2

(− n±
√
n2 − 4(−1)s

)
,

concluding the proof. �

2. Hermitian geometry of splitting-type complex structures

In this section we study the existence of special Hermitian metrics on solvmanifolds
endowed with a complex structure of splitting type. From now on, F denotes the
fundamental (1, 1)-form associated to a Hermitian metric g, and n is the complex
dimension of the complex manifold.

It is well known that the Kähler condition “dF = 0” can be weakened in the
“geometry with torsion” direction, and the main classes of Hermitian structures
that arise are:



1328 D. Angella, A. Otal, L. Ugarte, and R. Villacampa

• Hermitian-symplectic (or holomorphic-tamed), i.e., F is the (1, 1)-component
of a d-closed 2-form;

• SKT (strong Kähler with torsion or pluri-closed), that is, ∂∂̄F = 0;

• k-Gauduchon [15], that is, ∂∂̄F k ∧ Fn−k−1 = 0, where k = 1, . . . , n− 2.

The following implications are clear from the definitions:

Kähler ⇒ Hermitian-symplectic ⇒ SKT ⇒ 1-Gauduchon.

So far, no example of compact complex non-Kähler manifold admitting Hermitian-
symplectic structure is known, see [23], page 678, [34], Question 1.7.

Other interesting and well-known classes of Hermitian metrics on compact com-
plex manifolds are:

• balanced (in the sense of Michelsohn [25]), that is, dFn−1 = 0;

• strongly Gauduchon [29], that is, Fn−1 is the (n− 1, n− 1)-component of a
d-closed (2n− 2)-form; equivalently, the (n, n− 1)-form ∂Fn−1 is ∂̄-exact;

• Gauduchon [16], that is, ∂∂̄Fn−1 = 0.

It is clear that

Kähler ⇒ balanced ⇒ strongly Gauduchon ⇒ Gauduchon.

We recall also that any conformal class of Hermitian structures admits a Gaudu-
chon representative by the foundational theorem by Gauduchon [16], Théorème 1.
A recent conjecture of Fino and Vezzoni [13] states that in the compact non-Kähler
case it is never possible to find an SKT metric and also a balanced one, and they
prove the conjecture for nilmanifolds [14] and for 6-dimensional solvmanifolds hav-
ing holomorphically trivial canonical bundle [13]. On the other hand, Popovici [30]
proposes, for ∂∂̄-manifolds, a conjecture relating their balanced and Gauduchon
cones, and he observes that, if proved to hold, the conjecture would imply the ex-
istence of a balanced structure on any ∂∂̄-manifold. Recall that a ∂∂̄-manifold is a
compact complex manifold X satisfying the ∂∂̄-lemma, that is, if for any d-closed
form γ of pure type on X , the following exactness properties are equivalent:

γ is d-exact ⇐⇒ γ is ∂-exact ⇐⇒ γ is ∂̄-exact ⇐⇒ γ is ∂∂̄-exact.

We have the following general result.

Proposition 2.1. Let X = G/Γ be a solvmanifold endowed with a complex struc-
ture of splitting type, i.e., G = C �ϕ N , where N is nilpotent. Then, X admits a
balanced (respectively, strongly Gauduchon) Hermitian structure if and only if N
admits an invariant balanced (respectively, strongly Gauduchon) Hermitian struc-
ture.

Proof. First of all, by the well-known symmetrization process, X admits a bal-
anced (respectively, strongly Gauduchon) Hermitian structure if and only if the
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Lie group G admits an invariant balanced (respectively, strongly Gauduchon) Her-
mitian structure. Let n be the complex dimension of X , and denote by {ωn}
a co-frame of (1, 0)-forms for the factor C in G. First, notice that, if we have
an invariant Hermitian structure FG on G, (respectively, an invariant Hermitian
structure FN on N) then we can construct an invariant Hermitian structure FN

on N (respectively, an invariant Hermitian structure FG on G) such that

Fn−1
G = Fn−1

N + Fn−2
N ∧ ωnn̄,

with abuse of notations. Indeed, as a vector space, the Lie algebra g of G splits as
g = n⊕R2, where n is the Lie algebra of N . Invariant structures on G (respectively,
onN) are identified with linear structures on g (respectively, on n). If we start from

a Hermitian structure FN on N , then we can take FG := n−1

√
Fn−1
N + Fn−2

N ∧ ωnn̄,

which is a Hermitian structure on G. On the other hand, if we start from a
Hermitian structure FG on G, then it induces a Hermitian structure FN on N and
the Hermitian structure ωnn̄ on R2, up to multiplicative positive constants, such
that FG = FN + ωnn̄, which yields the above identity.

Since dωn = 0, we have

(2.1) dFn−1
G = dFn−1

N + dFn−2
N ∧ ωnn̄ = dFn−1

N + dNFn−2
N ∧ ωnn̄,

where dN denotes the differential over N .
We notice also that dFn−1

N = 0 by unimodularity. Otherwise, if dFn−1
N �= 0,

then either d
(
Fn−1
N ∧ ωn

)
or d

(
Fn−1
N ∧ ωn̄

)
would be non-trivial d-exact 2n-forms.

Then, (2.1) reduces to

dFn−1
G = dNFn−2

N ∧ ωnn̄.

It follows that dFn−1
G = 0 if and only if dNFn−2

N = 0. Analogously, it follows that
∂Fn−1

G is ∂̄-exact if and only if ∂Fn−2
N is ∂̄-exact. �

In [10] it is studied the existence of Hermitian-symplectic structures on complex
solvmanifolds (see Theorem 1.1 in [10] for case when G is not of type (I) and
Theorem 1.2 in [10] for other cases). We recall that a Lie group G is said to be
of type (I) if for any X ∈ g, all the eigenvalues of the adjoint operator adX are
pure imaginary. Some of the Lie algebras in the list of Theorem 1.7 are of type (I)
but other not, however for all of them (except s1) the Lie group is of the form
G = C�ϕC

n−1, so we give in the following result an alternative direct proof about
existence of special Hermitian metrics in this concrete case.

Proposition 2.2. Let X = G/Γ be a solvmanifold endowed with a complex struc-
ture of splitting type, such that G = C �ϕ Cn−1. Then, for X it is equivalent: to
admit SKT structures; to admit Hermitian-symplectic structures; to admit Kähler
structures.

Proof. By the symmetrization process, X admits SKT, Hermitian-symplectic or
Kähler structure if and only if the Lie group G admits an invariant SKT, invariant
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Hermitian-symplectic or invariant Kähler structure. Fix a co-frame {ω1, . . . , ωn−1}
of (1, 0)-forms on Cn−1 and a co-frame {ωn} of (1, 0)-forms on C, such that the
complex structure equations are of the form

{
dωj =Aj ωnj +Bj ωn̄j , j ∈ {1, . . . , n− 1},
dωn =0,

for suitable Aj , Bj ∈ C. Notice that the Jacobi identity is satisfied for any value
of the structure constants, while the unimodularity condition corresponds to the
requirement

n−1∑
j=1

(Aj + B̄j) = 0.

Consider the general invariant metric on G given by

F :=

n∑
h,k=1

αhk̄ ω
hk̄,

where (αhk̄)h,k is a Hermitian matrix with entries in C. By noticing that

∂∂̄ωhk̄ = (Bh + Āk)(Ah + B̄k)ωnn̄hk̄, dωhk̄ = (Ah + B̄k)ωnhk̄ + (Āk +Bh)ωn̄hk̄,

we get

∂∂̄F =

n−1∑
h,k=1

αhk̄(B
h + Āk)(Ah + B̄k)ωnn̄hk̄.

So, if F is SKT, then every coefficients must vanish. In particular, for any j ∈
{1, . . . , n− 1},

|Bj + Āj |2 = 0,

since αjj̄ �= 0. But this implies that the diagonal Hermitian form F̃ := i
2

∑n
h=1 ω

hh̄

is Kähler, since dF̃ = i
2

∑n−1
h=1

(
(Ah + B̄h)ωnhh̄ + (Āh +Bh)ωn̄hh̄

)
= 0. �

2.1. Hermitian structures in dimension 6

Next we consider the case when the (real) dimension of X is 6. As we reminded
in the proofs of Propositions 2.1 and 2.2, the existence of Kähler, Hermitian-
symplectic, SKT, balanced and strongly Gauduchon structures is reduced to their
existence at the Lie algebra level, so we will study the spaces of such Hermitian
structures on each sk, for 1 ≤ k ≤ 12. We also study the existence of 1-Gauduchon
structures on the Lie algebras sk, although as it is pointed out in [12], the sym-
metrization process does not hold for this kind of Hermitian structures on solvman-
ifolds, and so our study covers only the space of invariant 1-Gauduchon structures.
The existence results are summarized in Table 6.
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A generic Hermitian structure on sk is given, with respect to any coframe
{ω1, ω2, ω3} of (1, 0)-forms, by ⎛

⎜⎜⎝
ir2 u z

−ū is2 v

−z̄ −v̄ it2

⎞
⎟⎟⎠

or equivalently, by the expression

(2.2) 2F = ir2ω11̄ + is2ω22̄ + it2ω33̄ + uω12̄ − ūω21̄ + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄,

where r, s, t ∈ R \ {0} and u, v, z ∈ C satisfy the conditions that ensure that F is
positive-definite: r2s2 > |u|2, s2t2 > |v|2, r2t2 > |z|2 and r2s2t2 + 2Re (iūv̄z) >
t2|u|2 + r2|v|2 + s2|z|2.

Let us consider first the Lie algebra s1, which corresponds to the structure equa-
tions (1.6) for ε = 1, and for which we can apply Proposition 2.1 because the Lie
group G is of the form C �ϕ KT . By Observation 4.4 in [29], every strongly
Gauduchon compact complex surface is Kähler, so in particular the Kodaira–
Thurston manifold does not admit strongly Gauduchon structures. Hence, by
Proposition 2.1, we conclude that s1 does not admit either strongly Gauduchon or
balanced structures. A direct calculation shows that it does not admit Hermitian-
symplectic structures. However, there always exist SKT and 1-Gauduchon struc-
tures, since for a metric F given by (2.2) we have

2 ∂∂̄F = uω132̄3̄ − ū ω231̄3̄, 2 ∂∂̄F ∧ F = |u|2 ω1231̄2̄3̄.

More precisely, F is SKT if and only if F is 1-Gauduchon, if and only if u = 0.

The remaining Lie algebras sk, 2 ≤ k ≤ 12, correspond to the complex structure
equations (1.5), and we can apply Proposition 2.2 because the Lie group G is of
the form C�ϕ C2. As a matter of notation, let us denote such complex structures
simply as J = (A,B, ε) ∈ C2 × {0, 1}. Given a generic Hermitian structure (2.2),
we first note that one can always normalize the metric coefficients r and s, i.e.,
we can suppose r = s = 1. Therefore, we will identify the Hermitian structures
simply by a tuple F = (t2, u, v, z) ∈ R+ × C3, where 1 > |u|2, t2 > |v|2, t2 > |z|2
and t2 + 2Re (iūv̄z) > t2|u|2 + |v|2 + |z|2, in order for F to be positive-definite.

Now, by Proposition 2.2, there exists a Kähler structure if and only if there
is a Hermitian-symplectic structure, if and only if there exists an SKT structure.
A direct calculation from (1.5) shows that the existence of one of these types of
structures implies

A+ B̄ = 0,

that is, the complex structure must be of the form J = (A,−Ā, ε), where A ∈ C

and ε ∈ {0, 1}. According to the classification given in Section 1.2, the Lie algebras
admitting such a complex structure are s2, s3, s

α
7 . Indeed,

- if ε = 0 then from Table 1 we get s2 (note that we can take A = 1 in this case);

- if ε = 1 and A ∈ R, then by Table 2 the possibilities are s2, s
α
7 ;

- if ε = 1 and ImA �= 0, then from Table 3 we get s3.
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Next we give a detailed description of the spaces of Kähler structures.

Proposition 2.3. Let g be a 6-dimensional solvable Lie algebra with a complex
structure J of splitting type. Then, g admits a Kähler structure if and only if g is
isomorphic to s2, s3 or sα7 , and the Kähler structures (J, F ) are the following:

(K.i) (s2, J, F ), where J = (1,−1, 0) and F = (t2, 0, v, 0).

(K.ii) (s3, J, F ), where J = (A,−Ā, 1), ImA �= 0, and F = (t2, 0, 0, 0).

(K.iii) (sα7 , J, F ), where J = (A,−A, 1), A ∈ R \ {0,−1}, and F = (t2, 0, 0, 0).
(Notice that α = |A| or α = |1/A|.)

(K.iv) (s17, J, F ), where J = (−1, 1, 1) and F = (t2, u, 0, 0).

Proof. A direct computation shows that

(2.3) 2 ∂̄F = (Ā+ ε) (uω12̄3̄ + ū ω21̄3̄)− εv̄ ω32̄3̄ + Āz̄ ω31̄3̄.

Hence the conditions to be satisfied for F being Kähler are

u(A+ ε) = 0. εv = 0. Az = 0.

If ε = 0, then we may assume that A = 1 (see the proof of Proposition 1.10
for details) and therefore u = z = 0. The Kähler structures are then given by
(t2, 0, v, 0) and we obtain case (K.i).

If ε = 1, then v = 0 and several cases appear:

• If A = 0, it is equivalent to the previous case (K.i).

• If A = −1, then z = 0. So, J = (−1, 1, 1) and F = (t2, u, 0, 0), which
corresponds to (K.iv).

• If A �= 0 and A �= −1, then u = v = z = 0. Depending on the values of A
(see Tables 2 and 3), we get the remaining cases (K.ii) or (K.iii). �

Remark 2.4. In [17], Example 4, it is shown that the complex structures cor-
responding to cases (K.i) and (K.iv) in Proposition 2.3 admit Kähler metrics. In
the recent paper [2] it is shown that s3 admits a Kähler structure and, moreover,
solvmanifolds constructed from the Lie algebra s17 give rise to new supersymmetric
vacua. Notice that s2, s3 and sα7 are the only (non abelian) solvable Lie algebras in
six dimensions admitting Ricci flat metrics (see [2] and the references therein). By
Proposition 2.3 all these Lie algebras admit a Kähler structure, although by [11]
only s17 with J = (1,−1, 1) admits a Calabi–Yau structure.

In the following proposition we compare the spaces of Hermitian-symplectic,
SKT and 1-Gauduchon structures with the space of Kähler structures.

Proposition 2.5. Let g be a 6-dimensional solvable Lie algebra with a complex
structure J of splitting type that admits Kähler structures. Any Hermitian structure
(J, F ) on g is 1-Gauduchon if and only if it is Hermitian-symplectic, if and only
if it is SKT. Moreover, any SKT structure (J, F ) on g is one of the following:

(SKT.i) (s2, J, F ), where J = (1,−1, 0) and F = (t2, 0, v, z).
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(SKT.ii) (s3, J, F ), where J = (A,−Ā, 1), ImA �= 0, and F = (t2, 0, v, z).

(SKT.iii) (sα7 , J, F ), where J = (A,−A, 1), A ∈ R\{0,−1}, and F = (t2, 0, v, z).

(SKT.iv) (s17, J, F ), where J = (−1, 1, 1) and F = (t2, u, v, z).

Proof. Using (2.3), we have

2 ∂∂̄F = |A+ ε|2(uω132̄3̄ − ū ω231̄3̄), 2 ∂∂̄F ∧ F = |u|2 |A+ ε|2 ω1231̄2̄3̄.

Therefore, the SKT condition is equivalent to the 1-Gauduchon condition, and
they are equivalent to u(A+ ε) = 0.

On the other hand, the structure F is Hermitian-symplectic if

∂̄F = ∂β, ∂̄β = 0, where β ∈ g0,2.

Since ∂β ∈ 〈Aω31̄3̄, ε ω32̄3̄〉, it follows from (2.3) that F is Hermitian-symplectic if
and only if there exist λ, μ ∈ C satisfying

u(A+ ε) = 0. v ε = λ ε. z A = μ Ā.

It is always possible to find λ, μ satisfying the last two equations. The first one is
precisely the SKT condition.

Now, depending on the vanishing of the metric coefficient u, the possibilities
for a Hermitian structure (J, F ) to satisfy the SKT condition are:

• u �= 0. Then, ε = 1 and A = −1, which corresponds to the case (SKT.iv).

• u = 0. If ε = 0, then we can suppose A = 1, which leads to the case (SKT.i).
The remaining cases (SKT.ii) and (SKT.iii) are obtained when ε = 1. �

Remark 2.6. A complex structure J as above admits SKT structures if and only if
it admits Kähler ones, however, for any fixed J , there exist SKT structures which
are not Kähler. Indeed, by Propositions 2.3 and 2.5, any SKT structure with
metric coefficient z �= 0 is not Kähler. Similarly, there exist Hermitian-symplectic
structures and 1-Gauduchon structures which are not Kähler.

Now, with respect to balanced and strongly Gauduchon Hermitian structures,
we can apply Proposition 2.1 for N = C2 and so any complex structure corre-
sponding to the equations (1.5) admits balanced structures. Indeed, for any value
of the tuple (A,B, ε) ∈ C2 × {0, 1}, the Hermitian structures given by (t2, u, 0, 0)
are balanced. Notice that there exist strongly Gauduchon Hermitian structures
that are not balanced, for instance, consider a complex structure J = (A,B, 1),
i.e., with ε = 1, and a Hermitian structure F given by (t2, 0, v, z) with v �= 0.

We summarize all the results about Hermitian structures in Table 6. Here, the
symbol “�” means that the corresponding kind of Hermitian metrics exists for any
complex structure of splitting type on the Lie algebra (see Tables 1–5), whereas “−”
means that none of the complex structures admits such kind of metrics. Here “H-
symplectic” means Hermitian-symplectic and “sG” refers to strongly Gauduchon
metrics.
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Kähler H-symplectic SKT invariant 1-G balanced sG

s1 − − � � − −
s2 � � � � � �
s3 � � � � � �
s4 − − − − � �
sα5 − − − − � �
sα,β6 − − − − � �
sα7 � � � � � �
sα8 − − − − � �
s9 − − − − � �
sα,β10 − − − − � �
sα11 − − − − � �
s12 − − − − � �

Table 6: Existence of Hermitian metrics for any complex structure of splitting type.

Remark 2.7. Note that the Lie algebra s1 = g04,9 ⊕R2 (see Remark 1.16) admits
SKT Hermitian structures because the 4-dimensional Lie algebra g04,9 admit them
by [24], and so the product complex structure on s1 admits SKT structures. How-
ever, the Hermitian structures that we have obtained on s1 are different because
the splitting-type complex structure is not a product, and in this sense, our study
above provides a new example of SKT metrics in dimension 6.

Finally, we notice also that our results provide (up to our knowledge) new
families of non-Kähler balanced solvmanifolds (see also Remark 1.17). The s12
case is especially rich, as Section 3 below shows.

In relation to the conjectures in [13] and in [30] mentioned above, as a conse-
quence of the results of this section one has the following result.

Corollary 2.8. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a
complex structure of splitting type. We have:

(i) If X has an SKT metric and also a balanced metric, then X is Kähler.

(ii) If X satisfies the ∂∂̄-lemma, then X is balanced.

Proof. IfX has an SKT metric and also a balanced metric, then by symmetrization,
there is an SKT structure and also a balanced structure on the Lie algebra g
underlying X . Now, by Table 6, the Lie algebra is isomorphic to s2, s3 or sα7 .
In any case, there is a Kähler structure on g and so X is Kähler, which completes
the proof of (i).

For the proof of (ii), in view of Table 6 it is enough to prove that for any
lattice Γ on the connected and simply-connected Lie group G1 corresponding to s1,
the solvmanifold G1/Γ does not satisfy the ∂∂̄-lemma with respect to any complex
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structure of splitting type J . In addition, by the symmetrization process, it suffices
to check that the ∂∂̄-lemma is not satisfied at the Lie algebra level. Now, for any
complex structure of splitting type J we have a basis {ω1, ω2, ω3} of (1,0)-forms
satisfying (1.6) with ε = 1, therefore the (1,1)-form

ω11̄ = dω2 = ∂(−ω2̄) = ∂̄ω2

is d-exact, ∂-exact and ∂̄-exact, but it is not ∂∂̄-exact. �

3. Complex structures on the Nakamura manifold

In this section we focus on the complex geometry of splitting type on the Nakamura
manifold [26], whose underlying Lie algebra is s12. Firstly, we classify the complex
structures of splitting type, which allows us to produce analytic families of complex
solvmanifolds with holomorphically trivial canonical bundle satisfying interesting
properties in relation to the ∂∂̄-lemma.

3.1. Moduli of complex structures of splitting type on the Nakamura
manifold

Next we study the space of complex structures of splitting type on the Lie alge-
bra s12 up to equivalence.

Proposition 3.1. On the Lie algebra s12, there exist the following non-equivalent
complex structures of splitting type:

(i) (s12, J̃) : dω
1 = −ω13, dω2 = ω23, dω3 = 0;

(ii) (s12, JA) :

⎧⎪⎨
⎪⎩

dω1 = Aω13 − ω13̄,

dω2 = −Aω23 + ω23̄, A ∈ C, |A| �= 1,

dω3 = 0;

(iii) (s12, JB) :

⎧⎪⎨
⎪⎩

dω1 = −ω13 +B ω13̄,

dω2 = −B̄ ω23 + ω23̄, B ∈ C, |B| < 1,

dω3 = 0.

Proof. Here the equivalence between the complex structures is in the usual sense:
two complex structures J and J ′ on a Lie algebra g are equivalent if there exists an
automorphism F : g → g such that J = F−1 ◦J ′ ◦F . We first observe the following
property of the complex structures defined by equations (1.5) with A = −1 and
ε = 1: if we denote by JB such a complex structure, then, for B �= 0, JB is
equivalent to J1/B (indeed, it suffices to multiply ω3 by B̄, and change ω1 with ω2).
This property explains the condition |B| < 1 in the equations (iii) above.

Now, according to our classification in Section 1 of complex structures of split-
ting type, the Lie algebra s12 appears only in some specific cases in the Tables 1, 2
and 5. First, from Table 1, in the case (A,B) = (−1, 0) we obtain equations (i),
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and in the case (A,B) = (0,−1) equations (iii) for B = 0, just considering a new
basis {τ1 = ω2, τ2 = ω1, τ3 = −ω3}. The case B = −1, A ∈ R− {±1}, of Table 2
lies in equations (ii), whereas the case A = −1, B ∈ R − {±1}, of Table 2 lies in
the equations (iii).

With respect to Table 5, the complex structures on s12 satisfy the conditions

ImA �= ImB, ImA(1 +ReB) = −ImB(1 +ReA), Δ = ±(|B|2 − |A|2) �= 0,

where Δ = |A|2+ |B|2+2(ReA+ReB+ReAReB−ImAImB). Next we study
the solutions of this set of equations:

- If ImA = 0, since ImB �= 0, then A = −1 and Δ = |B|2 − 1 �= 0. In this
case, the structures belong to case (iii). Similarly, if ImB = 0 then B = −1 and
Δ = 1− |A|2 �= 0, so we are in case (ii).

- Suppose now that (ImA)(ImB) �= 0 and ReA = ReB = −1. It is straight-
forward to verify that Δ = (ImA−ImB)2. But Δ = ±(|B|2−|A|2) = ±(Im 2B−
Im 2A) implies ImA = ImB, which is a contradiction to Δ �= 0.

- Finally, if (ImA)(ImB) �= 0 and (1 + ReA)(1 + ReB) �= 0, then we can
take ImB = −ImA

(
1+ReB
1+ReA

)
. Now, the condition Δ = |B|2 − |A|2 is equivalent to

B = −A
(
1+Ā
1+A

)
, which implies |B| = |A|. The case Δ = −(|B|2 − |A|2) is similar.

In conclusion, we do not get complex structures in these cases.

Let us study now the equivalences of complex structures. Observe first that
all the complex structures in the cases (i) and (ii) satisfy dim H3,0

∂̄
(g) = 1, but

dim H3,0

∂̄
(g) = 0 for the complex structures in case (iii). Therefore, there are no

equivalences between the case (iii) and cases (i)–(ii). A direct calculation allows
to show that the complex structure (i) is not equivalent to any complex structure
in (ii), and moreover, two complex structures J and J ′ in (ii), respectively in (iii),
are equivalent if and only if A = A′, respectively B = B′. �

Remark 3.2. Observe that J̃ given by (i) is the complex-parallelizable structure
on the Nakamura manifold [26], and the complex structure given by A = 0 in the
family (ii) corresponds to the abelian complex structure, see [1]. In addition, a
complex structure of splitting type on s12 gives rise to a complex solvmanifold
with holomorphically trivial canonical bundle if and only if it belongs to (i) or (ii),
accordingly to Remark 1.5.

The following theorem reveals that the Nakamura manifold has a rich space
of complex structures. The result is based on an appropriate deformation of its
abelian complex structure.

Theorem 3.3. The property of having holomorphically trivial canonical bundle
and the property of being of splitting type are not stable under holomorphic defor-
mations.

Proof. Although the first part of the theorem was firstly shown in [26], we provide
other proof based on the invariant complex geometry described in Proposition 3.1.
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Let Γ be any lattice on the Lie group G12 corresponding to s12, and con-
sider the complex solvmanifold X0 = (G12/Γ, J0) endowed with its abelian com-
plex structure J0, which is given by taking A = 0 in the family (ii) of Propo-
sition 3.1. Consider an open disc Δ := Δ(0, ε) around 0 in C for ε > 0 small
enough, and the family {Xt}t∈Δ of complex solvmanifolds given by the solvman-
ifold G12/Γ endowed with the complex structure Jt defined by the (1,0)-co-frame
{ω1

t := ω1, ω2
t := ω2, ω3

t := ω3 − tω1̄}. Notice that the form ω1̄ defines a non-zero
Dolbeault cohomology class on X0, and so the previous family Xt provides a small
holomorphic deformation of X0. The complex structure equations of the invariant
complex structure Jt are

(3.1) dω1
t = −ω13̄

t , dω2
t = −t̄ ω12

t + ω23̄
t , dω3

t = −t ω31̄
t .

Now, since dω123
t = −t ω1231̄

t �= 0 for any t ∈ Δ∗, by Proposition 2.1 in [11]
the solvmanifold Xt does not have holomorphically trivial canonical bundle for
any t �= 0. Indeed, Jt does not belong to (i) or (ii) for t �= 0, see Remark 3.2.
Moreover, from the complex structure equations (3.1) one also has that Jt does
not belong to the family (iii), because there are not non-zero invariant holomorphic
(1,0)-form for t �= 0. In conclusion, Jt is not of splitting type for any t �= 0. �

Remark 3.4. All the complex structures Jt given in the proof of Theorem 3.3
admit balanced metrics.

3.2. The ∂∂̄-lemma on a family of splitting-type complex structures on
the Nakamura manifold

In Proposition 3.7 of [11] the complex structures on the Lie algebra s12 giving
rise to complex solvmanifolds with holomorphically trivial canonical bundle are
classified. There are two complex structures, denoted in the aforementioned paper
by J ′ and J ′′, and a family JC parametrized by C ∈ C with ImC �= 0 which can
be represented by a (1, 0)-co-frame

{
ω1
C , ω

2
C , ω

3
C

}
with structure equations:

(3.2) JC :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dω1
C = −(C − i)ω13

C − (C + i)ω13̄
C ,

dω2
C = (C − i)ω23

C + (C + i)ω23̄
C ,

dω3
C = 0.

Observe that all the structures JC are of splitting type, whereas J ′ and J ′′ are not.
Moreover, the family (3.2) unifies the complex structures (i) and (ii) of Propo-

sition 3.1. Concretely, if C = −i in (3.2) then we obtain the complex-parallelizable
structure J̃ in Proposition 3.1, whereas if C �= −i then the complex structure JC
corresponds to the complex structure JA in the family (ii) of Proposition 3.1 for
A = −(C − i)/(C̄ − i). Thus, the connected and simply-connected solvable Lie
groupG12 with Lie algebra s12, endowed with a left-invariant complex structure JC
given by (3.2), may be written as a semi-direct product (G12, JC) = C �ϕC C2,
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where the action ϕC is described by a diagonal matrix (1.2) and the characters
αC
1 , α

C
2 : C → C∗ are

(3.3) αC
1 (z3) = e−(C−i)z3−(C+i)z̄3 , αC

2 (z3) = αC
1 (z3)

−1.

Now, we are concerned with the construction of lattices Γ in (G12, JC) compat-
ible with the splitting. They are of the form Γ = Γ′ �ϕC Γ′′, where Γ′ and Γ′′ are
lattices of C and C2 respectively and Γ′ is compatible with the splitting, in other
words, ϕC(z) (Γ

′′) ⊆ Γ′′ for any z ∈ Γ′. The former condition implies that ϕC |Γ′

must be in the conjugation class of a matrix in GL(2,Z).

Lemma 3.5. For every C ∈ C with ImC �= 0, the lattice Γ′
C := π

2ImC (1 −
iReC)Z⊕ i

2 log(
3+

√
5

2 )Z of C is compatible with the splitting ϕC given by the char-
acters (3.3). Thus, the complex solvmanifold XC := (G12/ΓC , JC) is of splitting
type, where ΓC := Γ′

C �ϕC Γ′′ and Γ′′ is a lattice of C2.

Proof. After computing its characteristic polynomial, it turns out that the diagonal
matrix (1.2) with characters (3.3) is in the conjugation class of a matrix in GL(2,Z),

if the condition (C − i)z3 + (C + i)z̄3 = log(n+
√
n2−4
2 ) holds for some n ∈ Z.

In particular, fixed C ∈ C with ImC �= 0, we get z3 = π
2ImC (1 − iReC) for

n = −2 and z3 = i
2 log(

3+
√
5

2 ) for n = 3. Therefore, Γ′
C = π

2ImC (1 − iReC)Z ⊕
i
2 log(

3+
√
5

2 )Z is a lattice of C compatible with the splitting. �

As a consequence of the previous lemma, we have a family {XC}ImC �=0 of
complex solvmanifolds of splitting type with underlying real Lie algebra s12. We
are interested in knowing which of them satisfy the ∂∂̄-lemma. The following result
states a sufficient condition in order to satisfy the ∂∂̄-lemma. This condition is
stated and proved in terms of the differential complexes (B•,•

Γ , ∂̄) and (C•,•
Γ , ∂, ∂̄)

defined by Kasuya [18], respectively, by Kasuya and the first author [3]. Recall
that such complexes allow to compute the Dolbeault, respectively the Bott–Chern
cohomology of complex solvmanifolds of splitting type.

Lemma 3.6. Let X = (G/Γ, J) be a complex solvmanifold of splitting type. If

∂|B•,•
Γ

= ∂̄|B•,•
Γ

= 0 and Bq,p
Γ = Bp,q

Γ for all p, q ∈ N, then X satisfies the ∂∂̄-
lemma.

Proof. If the complex (B•,•
Γ , ∂, ∂̄) satisfies Bq,p

Γ = Bp,q
Γ for all p, q ∈ N then, since

C•,•
Γ := B•,•

Γ + B•,•
Γ , it holds C•,•

Γ = B•,•
Γ . Furthermore, the condition ∂|B•,•

Γ
=

∂̄|B•,•
Γ

= 0 forces the natural isomorphisms

H•,•
BC(X) ∼= H•,•

BC(CΓ) = C•,•
Γ = B•,•

Γ = H•,•
∂̄

(BΓ) ∼= H•,•
∂̄

(X).

Hence, X satisfies the ∂∂̄-lemma. �

Now we recall the construction of the differential complex (B•,•
ΓC

, ∂̄) defined in
Corollary 4.2 of [18] in order to compute the Dolbeault cohomology ofXC . For any
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complex solvmanifold in the family {XC}ImC �=0, consider a set {z1, z2} of local
coordinates on C2 and z3 a local coordinate on C. We have the following basis
{ω1

C , ω
2
C , ω

3
C} of left-invariant (1, 0)-forms, where ω3

C = dz3 and

ω1
C =

(
αC
1

)−1
dz1 = e(C−i)z3+(C+i)z̄3dz1,

ω2
C =

(
αC
2

)−1
dz2 = e−(C−i)z3−(C+i)z̄3dz2,

satisfying the complex structure equations (3.2). Now, the unitary characters

βC
1 , βC

2 , γC
1 , γC

2 : C → C∗ satisfying that αC
1

(
βC
1

)−1
, αC

2

(
βC
2

)−1
, ᾱC

1

(
γC
1

)−1
, and

ᾱC
2

(
γC
2

)−1
are holomorphic and required to construct the double complex (B•,•

ΓC
, ∂̄)

are:

(3.4)

βC
1 (z3) = e(C̄−i)z3−(C+i)z̄3 ,

βC
2 (z3) = βC

1 (z3)
−1 = e−(C̄−i)z3+(C+i)z̄3 ,

γC
1 (z3) = e(C−i)z3−(C̄+i)z̄3 ,

γC
2 (z3) = γC

1 (z3)
−1 = e−(C−i)z3+(C̄+i)z̄3 .

Following [18], Corollary 4.2, [3], Theorem 2.16, and defining for the sake of sim-
plicity that βC

3 = γC
3 ≡ 1, we have that for XC the complexes B•,•

ΓC
and C•,•

ΓC
are

generated by:

(3.5)
Bp,q

ΓC
=

〈
βC
I ωI

C ∧ γC
J ω̄J

C

∣∣∣∣ the restriction of βIγJ on ΓC is trivial

|I| = p, |J | = q

〉
,

Cp,q
ΓC

=Bp,q
ΓC

+ B̄p,q
ΓC

,

where (p, q) ∈ N2. Taking into account the expressions in (3.4), it turns out that
the restrictions induced by the characters on the generators in (3.5) reduce in our
case to satisfy one of the following conditions:

βC
1 |ΓC = 1, γC

1 |ΓC = 1,
(
βC
1 γC

1

)|ΓC = 1,
(
βC
1

(
γC
1

)−1)|ΓC = 1.

From now on, we will express the generators of the complexes B•,•
ΓC

and C•,•
ΓC

in
terms of the following:

(3.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1 := βC
1 ω1

C = e(C+C̄−2i)z3dz1,

ϕ2 := βC
2 ω2

C = e−(C+C̄−2i)z3dz2,

ϕ3 := dz3,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̃1 := γC
1 ω1̄

C = e(C+C̄−2i)z3dz̄1,

ϕ̃2 := γC
2 ω2̄

C = e−(C+C̄−2i)z3dz̄2,

ϕ̃3 := dz̄3,

where ϕ1, ϕ2, ϕ3 have bidegree (1, 0) and ϕ̃1, ϕ̃2, ϕ̃3 have bidegree (0, 1). The com-
plex structure equations expressed in the co-frame {ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3} are

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

dϕ1 = −(C + C̄ − 2i)ϕ13,

dϕ2 = (C + C̄ − 2i)ϕ23,

dϕ3 = 0,

⎧⎪⎪⎨
⎪⎪⎩

dϕ̃1 = (C + C̄ − 2i)ϕ31̃,

dϕ̃2 = −(C + C̄ − 2i)ϕ32̃,

dϕ̃3 = 0.

In the tables below, we shorten, e.g., ϕ12̃ := ϕ1 ∧ ϕ̃2.
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Proposition 3.7. Let XC = (G12/ΓC , JC) be a complex solvmanifold according
to Lemma 3.5. Then, XC satisfies the ∂∂̄-lemma if and only if C �= i

k ∈ C, for
0 �= k ∈ Z.

Proof. Let C ∈ C with ImC �= 0 and Γ′
C be the lattice of C provided in Lemma 3.5.

The triviality of the products of the characters restricted to Γ′
C behaves as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
βC
1 γC

1

)|Γ′
C
= 1, for any C,(

βC
1

(
γC
1

)−1)|Γ′
C
= 1, if and only if C = i

k with 0 �= k ∈ Z,

βC
1 |Γ′

C
= γC

1 |Γ′
C
= 1, if and only if C = i

2k+1 with k ∈ Z.

The computations of the double complex B•,•
ΓC

and of the Hodge and the Betti
numbers for the solvmanifolds XC can be found in Table 8. The computations of
these numbers reveal that if C = i/k for 0 �= k ∈ Z then h2,0

∂̄
(XC) + h1,1

∂̄
(XC) +

h0,2

∂̄
(XC) �= b2(XC), thus XC does not satisfy the ∂∂̄-lemma. However, when

C �= i/k it turns out that the hypothesis of Lemma 3.6 are satisfied by using the
relations

ϕ̃1 ∧ ϕ̃2 = ϕ̄1 ∧ ϕ̄2, ϕ2 ∧ ϕ̃1 = −ϕ̄1 ∧ ¯̃ϕ2, ϕ1 ∧ ϕ̃2 = −ϕ̄2 ∧ ¯̃ϕ1,

of the generators (3.6), and the complex structure equations (3.7). Hence, all the
corresponding complex solvmanifolds XC for C �= i/k satisfy the ∂∂̄-lemma. �

3.3. The ∂∂̄-lemma under holomorphic deformations

In this section we construct complex solvmanifolds of splitting type with holomor-
phically trivial canonical bundle that satisfy the ∂∂̄-lemma by deforming structures
that do not satisfy this last condition.

We consider the differential complexes (B•,•
Γ,t , ∂̄) and (C•,•

Γ,t , ∂, ∂̄) and the tech-
niques introduced in [4] to compute the Dolbeault and Bott–Chern cohomologies of
small deformations. In particular, by means of the computation of the cohomolo-
gies of the complex-parallelizable structure on the Nakamura manifold, the non-
closedness of the ∂∂̄-lemma property under holomorphic deformations is proved
in Corollary 6.1 of [4]. Using the splitting-type complex geometry on s12, we
extend this result to the following:

Theorem 3.8. There is an infinite family of complex solvmanifolds {Xk}k∈Z not
satisfying the ∂∂̄-lemma and admitting a small holomorphic family of deformations
{(Xk)t}t∈Δk

such that (Xk)t does satisfy the ∂∂̄-lemma for every t �= 0.
Moreover, the solvmanifolds {(Xk)t}t∈Δk

, k ∈ Z have holomorphically trivial
canonical bundle and are balanced.

Proof. Consider the infinite family {Xk}k∈Z where Xk := XCk
, Ck = i

2k+1 and XC

is the complex solvmanifold described in Lemma 3.5. By Proposition 3.7, Xk does
not satisfy the ∂∂̄-lemma for any k ∈ Z.
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We consider an open disc Δk := Δ(0, εk) ⊂ C for εk > 0 small enough, and the
family {(Xk)t}t∈Δk

, k ∈ Z, of holomorphic deformations of Xk given by the (1, 0)-

co-frame
{
ω1
Ck,t

:= ω1
Ck

, ω2
Ck,t

:= ω2
Ck

, ω3
Ck,t

:= ω3
Ck

+ t ω̄3
Ck

}
. For simplicity, we

will denote ωi
Ck,t

as ωi
k,t. The structure equations become:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dω1

k,t = − (Ck−i)+(Ck+i) t̄
1−|t|2 ω13

k,t − (Ck+i)+(Ck−i) t
1−|t|2 ω13̄

k,t,

dω2
k,t =

(Ck−i)+(Ck+i) t̄
1−|t|2 ω23

k,t +
(Ck+i)+(Ck−i) t

1−|t|2 ω23̄
k,t,

dω3
k,t = 0.

It is easy to see that the previous complex structures are of splitting type, and
therefore, there exist balanced metrics (see Table 6). Moreover, since dω123

k,t = 0,
the solvmanifolds have holomorphically trivial canonical bundle.

Taking into account the characters αC
1 , α

C
2 , β

C
1 , βC

2 , γC
1 , γC

2 described in (3.3)
and (3.4), we define the generators of the complex

B•,•
ΓCk

,t = ∧•,•〈ϕ1
t , ϕ

2
t , ϕ

3
t , ϕ̃

1
t , ϕ̃

2
t , ϕ̃

3
t 〉

associated to the complex solvmanifold (Xk)t:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1
t := βCk

1 ω1
k,t = exp (−2 i z3) dz1,

ϕ2
t := βCk

2 ω2
k,t = exp (2 i z3) dz2,

ϕ3
t := ω3

k,t = dz3 + t dz̄3,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̃1
t := γCk

1 ω1̄
k,t = exp (−2 i z3) dz̄1,

ϕ̃2
t := γCk

2 ω2̄
k,t = exp (2 i z3) dz̄2,

ϕ̃3
t := ω3̄

k,t = dz̄3 + t̄ dz3,

where ϕ1
t , ϕ2

t , and ϕ3
t have bi-degree (1, 0) and ϕ̃1

t , ϕ̃2
t , and ϕ̃3

t have bi-degree
(0, 1), as explicitly described in Table 9. Consider also the bi-differential bi-graded
double complex

C•,•
ΓCk

,t := B•,•
ΓCk

,t +B•,•
ΓCk

,t

of vector spaces, where

ϕ̄3
t = ϕ̃3

t , ϕ̃1
t ∧ ϕ̃2

t = ϕ̄1
t ∧ ϕ̄2

t ,

ϕ1
t ∧ ¯̃ϕ1

t = 0, ϕ2
t ∧ ¯̃ϕ2

t = 0,

ϕ1
t ∧ ϕ̃2

t = ¯̃ϕ1
t ∧ ϕ̄2

t , ϕ2
t ∧ ϕ̃1

t = ¯̃ϕ2
t ∧ ϕ̄1

t ,

ϕ1
t ∧ ϕ̄1

t = ¯̃ϕ1
t ∧ ϕ̃1

t , ϕ2
t ∧ ϕ̄2

t = ¯̃ϕ2
t ∧ ϕ̃2

t ,

as explicitly described in Table 9. We compute the structure equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dϕ1
t = 2 i

1−|t|2 ϕ
1
t ∧ ϕ3

t − 2 t i
1−|t|2 ϕ

1
t ∧ ϕ̄3

t ,

dϕ2
t = − 2 i

1−|t|2 ϕ
2
t ∧ ϕ3

t +
2 t i

1−|t|2 ϕ
2
t ∧ ϕ̄3

t ,

dϕ3
t = 0,

d ¯̃ϕ1
t = − 2 i

1−|t|2 ¯̃ϕ1
t ∧ ϕ̄3

t +
2 t̄ i

1−|t|2 ¯̃ϕ1
t ∧ ϕ3

t ,

d ¯̃ϕ2
Ak,t

= 2 i
1−|t|2 ¯̃ϕ2

t ∧ ϕ̄3
t − 2 t̄ i

1−|t|2 ¯̃ϕ2
t ∧ ϕ3

t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dϕ̃1
t = − 2 i

1−|t|2 ϕ
3
t ∧ ϕ̃1

t − 2 t i
1−|t|2 ϕ̃

1
t ∧ ϕ̄3

t ,

dϕ̃2
t = 2 i

1−|t|2 ϕ
3
t ∧ ϕ̃2

t +
2 t i
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2
t ∧ ϕ̄3

t ,
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t +
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3
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t .
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By Corollary 1.3 in [18], Theorem 2.16 in [3] and Theorems 1.1 and 1.2 in [4]
(with respect to the Hermitian metric g := ϕ1

t � ϕ̃1
t + ϕ2

t � ϕ̃2
t + ϕ3

t � ϕ̄3
t ), such

complexes allow to compute the Dolbeault cohomology and the Bott–Chern coho-
mology of (Xk)t.

Note that the differential bi-graded algebra
(
B•,•

ΓCk
,t, ∂̄

)
and the bi-differential

double complex
(
C•,•

ΓCk
,t, ∂, ∂̄

)
of vector spaces do not depend on Ck; in particular,

for any Ck = i
2k+1 varying k ∈ Z, they are isomorphic to the corresponding object

with k = −1, that is, C = −i. Hence, it follows that the computations and the
results in §4 of [4] still hold for any Ck. More precisely, we recall in Table 10 the
harmonic representatives in the Dolbeault cohomology, respectively Bott–Chern
cohomology, with respect to the metric g.

In Table 7, we summarize the results of the computations by giving the Betti,
Hodge, and Bott–Chern numbers of the complex solvmanifolds Xk and of its small
deformations (Xk)t. From the results summarized in Table 10, we get that (Xk)t
satisfies the ∂∂̄-lemma for any t �= 0. �

dimC H•,•
	 (Xk)t

t = 0 t �= 0

dR ∂̄ BC ∂̄ BC

(0,0) 1 1 1 1 1

(1,0)
2

3 1 1 1

(0,1) 3 1 1 1

(2,0)

5

3 3 1 1

(1,1) 9 7 3 3

(0,2) 3 3 1 1

(3,0)

8

1 1 1 1

(2,1) 9 9 3 3

(1,2) 9 9 3 3

(0,3) 1 1 1 1

(3,1)

5

3 3 1 1

(2,2) 9 11 3 3

(1,3) 3 3 1 1

(3,2)
2

3 5 1 1

(2,3) 3 5 1 1

(3,3) 1 1 1 1 1

Table 7: Summary of the dimensions of the de Rham, Dolbeault, and Bott–Chern
cohomologies of the complex solvmanifolds (Xk)t.
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A. Reduction of parameters

In this appendix we show how to reduce the value of the parameters in the algebras
sα5 , s

α, β
6 , sα7 , s

α
8 , s

α,β
10 , sα11 according to Theorem 1.7.

Let us consider the following changes from a basis {e1, . . . , e6} to another real
basis {f1, . . . , f6}, where λ is a non-zero real number:

ChA f i = ei, i = 1, 3, 5, 6, f2 = e4, f4 = e2.

ChB f i = ei, i = 1, 2, 5, 6, f3 = e4, f4 = e3.

ChC f i = ei, i = 1, 3, 6, f2 = −e2, f4 = −e4, f5 = −e5.

ChD f i = ei, i = 1, 2, 3, 5, 6, f4 = −e4.

ChE f1 = e3, f2 = −e4, f3 = e1, f4 = −e2, f5 = −λe5, f6 = e6.

ChF f i = ei, i = 2, 4, 6, f1 = −e5, f3 = e1, f5 = e3.

ChG f1 = e3, f2 = e4, f3 = e1, f4 = e2, f i = ei, i = 5, 6.

ChH f1 = e3, f2 = e4, f3 = e1, f4 = e2, f5 = λe5, f6 = −e6.

Case sα5 . Consider s
α
5 where α ∈ R, with structure equations

sα5 = (e15, e25,−e35 + α e45,−αe35 − e45, 0, 0), α ∈ R.

Then:

• If α = 0, change ChA gives the isomorphism s05
∼= s4.

• Change ChB gives the isomorphism sα5
∼= s−α

5 .

Therefore, we can suppose α > 0.

Case sα,β6 . Consider sα,β6 where α, β ∈ R, with structure equations

sα,β6 = (α e15 + e25,−e15 + α e25,−α e35 + β e45,−β e35 − α e45, 0, 0), α, β ∈ R.

Then:

• Change ChC gives the isomorphism sα,β6
∼= s−α,β

6 .

• Change ChD gives the isomorphism sα,β6
∼= sα,−β

6 .

• If α = 0, s0,β6
∼= sβ7 .

• If β=0 and α �=0, change ChE with λ = α gives the isomorphism sα,06
∼= s

1/α
5 .

• If β = 1, sα,16
∼= sα8 .

• If β �= 0, 1, change ChE with λ = β gives the isomorphism sα,β6
∼= s

α/β,1/β
6 .

Therefore, we can suppose α > 0 and β ∈ (0, 1).
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Case sα7 . Consider s
α
7 where α ∈ R, with structure equations

sα7 = (e25,−e15, α e45,−αe35, 0, 0), α ∈ R.

Then:

• If α = 0, change ChF gives the isomorphism s07
∼= s2.

• Change ChD gives the isomorphism sα7
∼= s−α

7 .

• Change ChE with λ = α gives the isomorphism sα7
∼= s

1/α
7 .

Therefore, we can suppose 0 < α ≤ 1.

Case sα8 . Consider s
α
8 where α ∈ R, with structure equations

sα8 = (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0), α ∈ R.

Then:

• Observe that s08
∼= s17.

• Change ChC gives the isomorphism sα8
∼= s−α

8 .

Therefore, we can suppose α > 0.

Case sα11: Consider s
α
11 where α ∈ R, with structure equations

sα11 = (e16 − e25, e15 + e26,−e36 − αe45, αe35 − e46, 0, 0), α ∈ R.

Then:

• If α = 0, change ChG gives the isomorphism s011
∼= s9.

• Change ChB gives the isomorphism sα11
∼= s−α

11 .

• Change ChH with λ = α gives the isomorphism sα11
∼= s

1/α
11 .

• Change ChB gives the isomorphism s111
∼= s12.

Therefore, we can suppose α ∈ (0, 1).
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