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Polynomials of degree 4 defining units

Osnel Broche and Ángel del Rı́o

Abstract. If x is the generator of a cyclic group of order n then every
element of the group ring Z〈x〉 is the result of evaluating x at a polyno-
mial of degree smaller than n with integral coefficients. When such an
evaluation result into a unit we say that the polynomial defines a unit on
order n. Marciniak and Sehgal have classified the polynomials of degree at
most 3 defining units. The number of such polynomials is finite. However
the number of polynomials of degree 4 defining units on order 5 is infinite
and we give the full list of such polynomials. We prove that (up to a sign)
every irreducible polynomial of degree 4 defining a unit on an order greater
than 5 is of the form a(X4 +1)+ b(X3 +X)+ (1− 2a− 2b)X2 and obtain
conditions for a polynomial of this form to define a unit. As an application
we prove that if n is greater than 5 then the number of polynomials of de-
gree 4 defining units on order n is finite and for n ≤ 10 we give explicitly
all the polynomials of degree 4 defining units on order n. We also include a
conjecture on what we expect to be the full list of polynomials of degree 4
defining units, which is based on computer aided calculations.

1. Introduction

The study of the group of units U(ZG) of an integral group ring of a finite group G
was initiated by Higman in the 1940’s [6], [7] and was continued in the 1960’s by
Bass and Milnor [1] among others. During the last twenty years quite a number
of results have been obtained in the subject (see e.g. [16], [19], [15], [10], [17], [13],
[4], [5], [11], [12], [8], and [9]).

A fundamental question is how to produce units in ZG. Marciniak and Sehgal
introduced a new point of view in [14] consisting on searching for polynomials in
one variable with integral coefficients which yield a unit in ZG when evaluated
at a group element. Actually, if Cn = 〈x〉, the cyclic group of order n generated
by x, then all the elements of ZCn are the result of evaluating at x polynomials
in Z[X ], that is, the elements of ZCn are of the form P (x) with P ∈ Z[X ]. Note
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that that P (x) is a unit in ZCn only depends on P and n. In such a case we
say that P defines a unit on order n. Marciniak and Sehgal showed that if Φm

denotes the m-th cyclotomic polynomial then Φm defines a unit on order n if and
only if m/gcd(m,n) is not a prime power [14]. They also introduced the notion of
polynomials defining generic units as the monic polynomials in Z[X ] defining units
on all the orders coprime with a given integer. For example, Φm defines generic
units if and only if m is not a prime power and more generally a polynomial Φ of
the form XmΦm1 · · ·Φmk

, with m ≥ 0 and m1, . . . ,mk positive integers which are
not prime powers, defines generic units. Marciniak and Sehgal proved that these
polynomials Φ are the only monic polynomials defining generic units [14]. Recently,
the authors have shown that these polynomials Φ and their opposites, −Φ, are the
only polynomials defining units on infinitely many orders [2].

Marciniak and Sehgal also classified the polynomials of degree at most 3 defin-
ing units and the goal of this paper is to continue this work by aiming for the
classification of polynomials of degree 4 defining units. Before explaining this we
give a “convenient” meaning to “polynomial defining units”. Recall that every
unit of ZG has augmentation 1 or −1 and observe that P (1) is the augmentation
of P (x). Therefore, if P defines a unit on some order then P (1) = ±1. Of course the
converse is true because if P (1) = ±1 then P defines a unit on order 1. Hence, to
avoid trivialities the “convenient” meaning of “polynomial defining units” should
not be “defining unit on some order”. On the other hand, P defines a unit on
order n if and only if the remainder of P modulo Xn− 1 defines a unit on order n.
Therefore, we may consider without loss of generality orders greater than the de-
gree of P . More precisely, we say that P ∈ Z[X ] defines units if P defines a unit
on some order greater than the degree of P .

Clearly, P defines a unit on order n if and only if so does −P . Thus we may
only consider polynomials P with P (1) = 1. In such a case we say that P is
normalized. Observe also that P defines a unit on order n if and only if each
irreducible factor of f defines a unit on order n. Therefore we may restrict our
attention to irreducible polynomials. So the general problem consists in classifying
the normalized irreducible polynomials defining units (on some order greater than
its degree). Marciniak and Sehgal proved that the only normalized irreducible
polynomial of degree 1 defining units is X (which defines units on all orders) and
the only one of degree 2 is Φ6 = X2 −X + 1 (which defines units on every order
coprime with 6) [14]. In the same paper a theorem states that there do not exist
irreducible polynomials of degree 3 defining units, but the result is false. This was
fixed by Marciniak who proved that there are exactly two normalized irreducible
polynomials of degree 3 defining units, namely X3 + X2 − 1 and −X3 + X + 1
(both define units on order 5, [8], Proposition 8.5.11).

A simple observation shows that the picture of the normalized irreducible poly-
nomials of degree 4 defining units should be richer than the somehow disappointing
case of degrees 1, 2 and 3. Indeed, it is well known that U(ZC5) is infinite and ev-
ery element here is the result of evaluating the generator of C5 on a polynomial of
degree at most 4. So, there are infinitely many normalized irreducible polynomials
of degree 4 defining units.
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In order to present our results we need to introduce the following polynomials:

Ua,b = aX4 + bX3 + (1− 2(a+ b))X2 + bX + a,

with a, b ∈ Z, and the following terminology: let P be a polynomial of degree
smaller than n. An n-shift of P is a polynomial obtained by permuting cyclicly
the coefficients of P of degree smaller than n. In other words, if P = an−1X

n−1 +
· · · + a1X + a0 ∈ Z[X ] then the n-shifts of P are the polynomials of the form
σi
n(P ) = an−1−iX

n−1 + an−2−iX
n−2 + · · · + a0X

i + an−1X
i−1 + · · · + an−i for

i = 0, . . . , n− 1.
Our first result gives a class of polynomials which contains all the normalized

irreducible polynomials P of degree 4 defining units.

Theorem 1.1. If P is an normalized irreducible polynomial of degree 4 of Z[X ]
defining a unit on order n ≥ 5, then one of the following conditions holds:

(1) n = 5 and P is a 5-shift of Ua,b with a, b ∈ Z;

(2) n = 7 and P is either X4 +X3 − 1 or −X4 +X + 1;

(3) n ≥ 7 and P = Ua,b with a, b ∈ Z.

It is easy to see that X4 +X3 − 1 and −X4 +X + 1 define units on order 7
(see Section 3). Moreover, if P defines a unit on order n and n is greater than the
degree of P then all the n-shifts of P define units on order n. So, to complete the
desired goal of classifying the polynomials of degree 4 defining units it remains to
give a criterion to decide when Ua,b defines a unit on some order greater than 4.
Lemma 2.1 gives such a criterion in terms of the norm of some algebraic integers.
This reduces the question to solve a system of Diophantine equations in two vari-
ables. This is not completely satisfactory because we would like to give explicitly
the integers a and b and n ≥ 0 for which Ua,b defines a unit on order n. However
this can be used, together with the results by Marciniak and Sehgal mentioned
above, to prove that the following polynomials of degree 4 define units:

1. The 5-shifts of Ua,b with a2 + b2 + 3ab = a + b. These polynomials define
units on order 5. Moreover U1,0 = Φ12 defines a unit on every order which is
not multiple of neither 3 nor 4.

2. Φ10 = U1,−1. It defines a unit on every order coprime with 10.

3. X4 +X3 − 1, −X4 +X +1 and U−1,2 = −X4 + 2X3 −X2 +2X − 1. These
polynomials define units on order 7.

4. U−1,1 = −X4 +X3 +X2 +X − 1 and U2,−3 = 2X4 − 3X4 + 3X2 − 3X + 2.
These polynomials define units on order 11.

After a computer assisted calculation, using Lemma 2.1 and Corollary 1.2 below,
we have not discovered any other normalized irreducible polynomial of degree 4
defining units. So it seems that the polynomials of the previous list exhausts the
list of normalized irreducible polynomials of degree 4 defining units. We have
obtained some partial results supporting this. First of all we have classified all the
normalized polynomials of degree 4 defining units on some order smaller than 11.
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Unfortunately, the Diophantine equation that should be solved to obtain all the
normalized irreducible polynomials defining units on order 11 is too complicated.
Therefore, other ideas are needed to complete the classification.

On the other hand, we prove the following results.

Corollary 1.2. Let P be a polynomial of degree 4 defining units and let n be the
minimal positive integer greater than 4 such that P defines a unit on order n.
Then n is prime.

Corollary 1.3. Let n be a positive integer. Then the number of polynomials of
degree 4 defining a unit on order n is infinite if and only if n = 1, 2, 3, 4 or 5.

2. Polynomials of degree 4 defining units

The aim of this section is proving Theorem 1.1, Corollary 1.2 and Corollary 1.3.

Proof of Theorem 1.1. Suppose that P = aX4+bX3+cX2+dX+e is a normalized
irreducible polynomial of degree 4 in Z[X ]. Assume that P defines a unit on order
n > 4 and let x be a generator of Cn and u = P (x). As the degree of P is 4, a �= 0
and as P is irreducible e �= 0. This implies that u �∈ Cn and hence n �= 6, because
all the units of ZC6 are trivial. Let ∗ denote the classical involution of ZG, i.e., ∗

is the linear extension to ZG of the map g �→ g−1, for g ∈ G. By Proposition 7.1.8
in [8], u∗u−1 is a trivial unit and hence

ax−4 + bx−3 + cx−2 + dx−1 + e = axj+4 + bxj+3 + cxj+2 + dxj+1 + exj ,

for some integer j with 1 − n ≤ j ≤ 0. As e �= 0 and n ≥ 5, we deduce that
j ∈ {−4,−3. − 2,−1, 0}, and as a �= 0, we have that n divides j + k for some
4 ≤ k ≤ 8.

If j = −4 then a = e and b = d. Moreover 2(a + b) + c = P (1) = 1. Thus
P = Ua,b and hence either (1) or (3) holds.

If j = −3 then e = b, d = c, a = 1− 2(b+ c) and n divides either 1, 2, 3, 4 or 5.
Therefore n = 5, P = σ2

5(Uc,b) and condition (1) holds.
Similarly, if j = −2 then c = e and n divides 2, 3, 4, 5 or 6. Thus n = 5, a = b

and d = 1− 2(a+ c) Hence P = σ4
5(Ua,c) and condition (1) holds.

Suppose j = −1. Then d = e and n divides 3, 4, 5, 6 or 7. Thus either n = 5,
a = c, and P = σ5(Ud,a); or n = 7 and b = c = 0. In the former case condition (1)
holds. Otherwise P = aX4 + d(X + 1). Then u = ax−3 + d(x + 1) ∈ U(ZC7) and
hence x−1u = (1− 2d)x3 + d(1 + x6) = Q(x3) for Q = dX2 +(1− 2d)X + d. Since
u �∈ Cn, Q is a polynomial of degree 2 defining a unit with Q(1) = 1 and Q �= X2.
Thus Q = X2 −X + 1, or equivalently P = −X4 +X + 1.

Finally, suppose that j = 0. Arguing as before we deduce that n = 5, n = 7 or
n = 8. However, if n = 8 then aX4+ e defines a unit on order 8 and hence aX + e
defines a unit on order 2 with a �= 0 �= e. This contradicts with the fact that all
the units of ZC2 are trivial. Thus n = 5 or n = 7. If n = 5 then P = σ3

5(Ub,a).
If n = 7 then a = b and c = d = 0. Then u = P (x) = a(x4 + x3) + (1 − 2a) is a
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non-trivial unit of ZC7. Then x3u = a(1 + x6) + (1− 2a)x3 = Q(x3) is also a unit
of ZC7 with Q = aX2 + (1 − 2a)X + a. The same argument as in the previous
paragraph shows that P = X4 +X3 − 1. �

For every positive integer n let ζn denote a complex primitive n-th root of unity
and let x be a generator of Cn. Let Q+

n = Q(ζn + ζ−1
n ) and Z+

n = Z[ζn + ζ−1
n ].

Then the map x → (ζd)d|n defines an isomorphism Q〈x〉 → ∏
d|nQ(ζd), mapping

Z〈x〉 into
∏

d|n Z[ζd]. As Z〈x〉 is an order in Q〈x〉 and
∏

d|n Z[ζd] is an order in∏
d|n Q(ζd), a polynomial P defines a unit on order n if and only if P (ζd) is a unit

in Z[ζd] for every d | n. Using this it is easy to see that if P defines a unit on
order n and d divides n then P also defines a unit on order d. Actually this can
be also proved using the ring homomorphism ZCn → ZCd mapping a generator x
of Cn to xn/d.

Let

Sa,b(ζd) = ζ−2
d Ua,b(ζd) = 1 + a(ζ2d + ζ−2

d − 2) + b(ζd + ζ−1
d − 2).

Then Ua,b(ζd) is a unit of Z[ζd] if and only if Sa,b(ζd) is a unit of Z+
d if and only if

N
Q

+
d /Q(Sa,b(ζd)) = ±1 (see Lemma 4.6 in [17] or Lemma 4.6.9 in [8]). This proves

the following.

Lemma 2.1. The following are equivalent for integers a, b and n with n ≥ 1:

1. Ua,b defines a unit on order n.

2. Sa,b(ζd) = 1 + a(ζ2d + ζ−2
d ) + b(ζd + ζ−1

d ) is a unit of Z[ζd + ζ−1
d ] for every

d | n.
3. N

Q
+
d /Q(Sa,b(ζd)) = ±1 for every d | n.

The following lemma will be used in the proof of Corollary 1.2 and in Section 3.

Lemma 2.2. Let a and b be integers:

(1) Ua,b defines a unit on order 3 if and only if a+ b = 0.

(2) Ua,b defines a unit on order 9 if and only if a = −b ∈ {0, 1}.
(3) Ua,b defines a unit on order 5 if and only if a+ b = a2 + b2 + 3ab.

(4) Ua,b defines a unit on order 10 if and only if b = 0 and a ∈ {0, 1}.
(5) Ua,b defines a unit on order 4, 6 or 15 if and only if a = b = 0.

Proof. (1) and the statement (5) for orders 4 or 6 follows easily from the fact that
all the units of ZC3, ZC4 and ZC6 are trivial.

By Lemma 2.1, Ua,b defines a unit on order 9 if and only if it defines a unit on
order 3 and N

Q
+
9 /Q(Sa,b(ζ9)) = ±1. A straightforward calculation shows that

(2.1) N
Q

+
9 /Q(Sa,b(ζ9)) = 1+3(−a3− 9a2b− 6ab2− b3+3a2+9ab+3b2− 2a− 2b).

Hence, using (1) and (2.1), we deduce that Ua,b defines a unit on order 9 if and
only if a = −b ∈ {0, 1}. This proves (2).
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(3) is a consequence of Lemma 2.1 and the following equality, that can be
checked by straightforward calculations:

(2.2) N
Q

+
5 /Q(Sa,b(ζ5)) = 1 + 5(a2 + 3ab+ b2 − a− b).

By (1) and (3), if Ua,b defines a unit on order 15 then a = −b and a2+b2+3ab =
a+ b. This implies a = b = 0. This finishes the proof of (5).

(4) Using N
Q

+
2 /Q(Sa,b(ζ2)) = 1− 4b,

N
Q

+
10/Q

(Sa,b(ζ10)) = 1 + 5(a2 + ab− a) + b2 − 3b,

and the expression of N
Q

+
5 /Q(Sa,b(ζ5)) in (2.2), we deduce that Ua,b defines a unit

on order 10 if and only if b = 0 and a ∈ {0, 1}. �

Proof of Corollary 1.2. Let P be a polynomial in Z[X ] of degree 4 defining units
and let n be the smallest integer greater than 4 on which P defines a unit. We may
assume without loss of generality that P (1) = 1. If P is reducible then, by the
classification of the irreducible polynomials of degree at most 3 defining units, P is
either X4, X2Φ6, Φ

2
6, X(X3+X2− 1) or X(−X3+X +1). All these polynomials

define units on order 5 and hence n = 5.
Suppose that P is irreducible and by means of contradiction assume that n

is not prime. Then P is one of the polynomials of Theorem 1.1, and as n is not
prime, P = Ua,b, with a �= 0. If n is divisible by a prime p then Ua,b defines
a unit on order p and hence the result is obvious if n is divisible by a prime
greater than 3. Therefore, we may assume that n is not divisible by any prime
greater than 3. By statement (5) of Lemma 2.2, n is not divisible by neither 4
nor 6. Therefore n = 9. By statement (2) of Lemma 2.2, (a, b) = (1,−1) i.e.,
Ua,b = U1,−1 = X4 −X3 +X2 −X +1 = Φ10. Then U1,−1 defines a unit on order
m if and only if gcd(10,m) = 1 and hence n = 7, a contradiction. �

Let Pd(a, b) = N
Q

+
d /Q(Sa,b(ζd)). Observe that Sa,b(ζd) belongs to the principal

ideal of Z[ζd] generated by 1 − ζd. This implies that Pd(a, b) belongs to the ideal
of Z generated by NQ(ζd)/Q(1 − ζd). In case d is a power of a prime p, we have

NQ(ζd)/Q(1 − ζd) = p and therefore, in this case, Sa,b(ζd) is a unit in Z+
d if and

only if Pd(a, b) = 1. In particular, if p is an odd integer then Ua,b defines a
unit on order p if and only if Pp(a, b) = 1. This is a polynomial on a and b of
degree (p− 1)/2 with coefficients in Z. Thus, in principal one can calculate all the
integers a and b for which Ua,b defines a unit on order p by solving the Diophantine
equation Pp(a, b) = 1. This is what we have done to prove statement (3) of
Lemma 2.2. Observe that the relation a + b = a2 + b2 + 3ab is equivalent to
(5(a + b) − 2)2 − 5(a − b)2 = 4. Therefore the integers a and b satisfying this
condition are given by

a =
x+ 2 + 5y

10
, b =

x+ 2− 5y

10

with (x, y) an integral solutions of the Pell equation X2 − 5Y 2 = 4 such that
x ≡ −2 mod 5.
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Proof of Corollary 1.3. All the polynomials of the form 1 + a − aX4 define units
on order 2 and 4, and all the polynomials of the form 1 + aX − aX4 define units
on order 3. Therefore there infinitely many polynomials of degree 4 defining units
on order 1, 2, 3 or 4. Moreover, ZC5 has infinitely many units and all the elements
in ZC5 are the result of evaluating a polynomial of degree at most 4 in one generator
of C5. Therefore there are also infinitely many polynomials of degree 4 defining
units on order 5.

By Theorem 1.1, to finish the proof it is enough to show that if n ≥ 6 then there
are only finitely many polynomials of the form Ua,b defining a unit on order n. We
first prove the result under the assumption that n is divisible by d with d a power
of an odd prime p such that ϕ(d) ≥ 6. If Ua,b defines a unit on order n then Ua,b

defines a unit on order d and hence one may assume without lost of generality
that n = d. Assume that Ua,b defines a unit on order n. Then Pn(a, b) = ±1.
Let Un = U(Z/nZ)/(−1) and for every i ∈ Un let αi = ζin + ζ−i

n − 2. Then
Pn(a, b) =

∏
i∈Ud

(1 + α2ia + αib). Since α2a + αb belongs to the ideal of Z[ζn]
generated by 1− ζn, we have that Pn(a, b) is an integer congruent with 1 modulo
N(1 − ζn) = p. Therefore Pn(a, b) = 1. We claim that Q(a, b) = Pn(a, b) − 1 is
irreducible in C[a, b]. Indeed, after a change of variable, the polynomial takes the
form X

∏n
i=1(Pi + biY )− 1 where each bi ∈ C and Pi ∈ C[X ] with Pi of degree 1

and not multiple of X . Then Eisenstein’s irreducibility criterion applies to prove
the irreducibility of Q(a, b). The projective curve defined by Q(a, b) = 0 contains
ϕ(d)/2 points at infinity (namely the points (αi,−α2i, 0)). If ϕ(d) ≥ 6 then, by
Siegel’s theorem ([3], Theorem 3.2), Q(a, b) has finitely many integral zeros and
hence the equation Pp(a, b) = ±1 has finitely many integral solutions. This gives
the desired conclusion.

So it remains to prove the result under the assumption that n is not divisible by
any odd prime power d with ϕ(d) ≥ 6. In particular n is not divisible by any prime
greater than 5 and it is not divisible by 9 nor 25. Moreover, the result follows if n
is multiple of 4, or multiple of 6 or multiple of 10 or multiple of 15, by Lemma 2.2.
Thus the results follows for every n ≥ 6. �

3. Polynomials of degree 4 defining units on order ≤ 10

In this section we give explicitly the polynomials of degree 4 defining units on
order n for every n ≤ 10.

If n = 1, 2, 3, 4 or 6 then all the units of ZCn are trivial. Using this it easy to
describe the polynomials of degree 4 defining units on these orders. For example,
the normalized polynomials P ∈ Z[X ] of degree 4 defining units on order 3 are those
of one of the following forms: a+bX+X2−aX3−bX4, a+(1+b)X−aX3−bX4,
1 + a+ bX − aX3 − bX4.

By Theorem 1.1 and statement (5) in Lemma 2.2, there are no irreducible
polynomials of degree 4 defining units on order 8. By Lemma 2.2, if P ∈ Z[X ] is
irreducible and normalized of degree 4 then

• P defines a unit on order 5 if and only if P is a 5-th shift of the polynomi-
als Ua,b with a2 + b2 + 3ab = a+ b;
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• P defines a unit on order 9 if and only if P = U1,−1 = Φ10; and

• P defines a unit on order 10 if and only if P = U1,0 = Φ6(X
2).

In order to classify the polynomials of degree 4 defining units on order 7 we
first prove that the two polynomials in statement (2) of Theorem 1.1 define units
on order 7. Indeed, if m is relatively prime with n then P defines a unit on order
n if and only if so does P (Xm). As Φ6 defines units on order 7 then so does
σ7(Φ6(X

3)) = −X4 + X + 1 and σ4
7(Φ6(X

3)) = X4 + X3 − 1. To consider the
polynomials of the form Ua,b we need the following lemma.

For a prime integer p and an integer n let vp(n) denote the multiplicity of p as
a divisor of n.

Lemma 3.1. If x, y and z are positive integers satisfying gcd(2x, y) = 1,

(3.1) 8x4 + 4y4 − 11x2y2 = z2

then x = y = z = 1.

Proof. Let x, y and z satisfy the hypothesis of the lemma. Then gcd(y, z) = 1 and
gcd(x, z)|4.

We claim that if x is odd then there are positive integers r and s satisfying
x = rs and 16y2 − 22r2s2 = r4 − 7s4. First of all, by the previous paragraph
gcd(x, z) = 1. Multiplying by 16 in (3.1) and completing squares we obtain

(8y2 − 11x2)2 + 7x4 = (4z)2

or equivalently
7x4 = (4z + 8y2 − 11x2)(4z − 8y2 + 11x2).

If p is a prime divisor of gcd(8y2 − 11x2, 4z) then p is an odd divisor of z and p2

divides 7x4. Then p | gcd(x, z) = 1, a contradiction. Thus gcd(8y2 − 11x2, 4z) = 1
and hence gcd(4z+8y2−11x2, 4z−8y2+11x2) = 1. Therefore {4z+8y2−11x2, 4z−
8y2 + 11x2} = ±{r4, 7s4} for some relatively odd prime positive integers r and s
such that x = rs. Moreover, 4z+8y2−11x2 ≡ r4 ≡ 1 mod 4 and 4z−8y2+11x2 ≡
7s4 ≡ −1 mod 4. Thus, either 4z+8y2− 11x2 = r4 and 4z− 8y2+11x2 = 7s4, or
4z+8y2− 11x2 = −7s4 and 4z− 8y2+11x2 = −r4. In both cases 16y2− 22r2s2 =
r4 − 7s4, as desired.

If x = 1 then r = s = 1 and the last equality implies that y = 1 and hence
z = 1, as desired. Hence it only remains to prove that x = 1 and for that we argue
by contradiction. Therefore, we suppose that x is the minimum integer greater
than 1 with x, y and z satisfying the hypothesis of the lemma.0

Suppose first that x is odd. By the claim x = rs for some positive integers r
and s satisfying 16y2 − 22r2s2 = r4 − 7s4. If r = 1 then s = x and, by the
previous paragraph, 0 < 16y2−1 = x2(22−7x2) < 0, a contradiction. Thus r > 1.
Rewriting the above equality we have (r2 + 11s2)2 − 128s4 = 16y2 and hence

8s4 = ( r
2+11s2

4 + y)( r
2+11s2

4 − y). Moreover, gcd
(
r2+11s2

4 + y, r
2+11s2

4 − y
)
= 2 and

thus there are positive integers x1 and y1 such that
{
r2+11s2

4 + y, r2+11s2

4 − y
}
=
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{4x4
1, 2y

4
1} with s = x1y1 and gcd(x1, y1) = 1. Then 8x4

1 + 4y41 − 11x2
1y

2
1 = r2.

Therefore (x1, y1, r) is a solution of the equation and x1 ≤ s < x. By the minimality
of x we deduce that x1 = 1, and hence (1, s, r) is a solution of the equation. By the
above paragraph, we deduce that r = 1, which yields the desired contradiction.

Secondly suppose that x is even. We claim that v2(x) ≥ 3 and v2(z) = 1.

Indeed, if v2(x) = 1 then y4 − 11
(
x
2

)2
y2 ≡ 2 mod 4. Then z2 = 8x4 + 4y4 −

11x2y2 ≡ 4
(
y4 − 11

(
x
2

)2
y2
) ≡ 8 mod 16, a contradiction. Therefore, v2(x) ≥ 2

and hence 2v2(z) = v2(8x
4 + 4y4 − 11x2y2) = 2. This proves that v2(z) = 1.

If v2(x) = 2 then −3 ≡ 29
(
x
4

)4
+ y4 − 44

(
x
4

)2
y2 =

(
z
2

)2 ≡ 1 mod 8, again a
contradiction. This proves the claim.

Let x = x/8 and z = z/2. These are odd coprime integers, by the last claim.
Moreover, 213x4+y4−24·11x2y2 = z2. Hence 7·26x4 = (z+y2−88x2)(z−y2+88x2).
If p is an odd common prime divisor of z + y2 − 88x2 and z − y2 + 88x2 then
p | gcd(x, z) = 1. Thus gcd(z + y2 − 88x2, z − y2 + 88x2) = 2. This implies that
there are positive integers r and s such that x = rs and {z+y2−88x2, z−y2+88x2}
is either ±{14r4, 25s4} or ±{2r4, 25 · 7s4}.

Assume that {z + y2 − 88x2, z − y2 + 88x2} = ±{25s4, 14r4}. Then 1 ≡ y2 −
88x2 = ±(24s4 − 7r4) ≡ ±1 mod 8 and therefore y2− 88r2s2 = 24s4− 7r4. Hence
128r4 = (4s2+11r2)2−y2. As gcd(y, rs) = 1 we deduce that gcd(4s2+11r2, y) = 1
and gcd(4s2+11r2+y, 4s2+11r2−y) = 2. Thus there are relatively prime positive
integers u, v such that r = uv and {4s2+11r2+y, 4s2+11r2−y} = {2u4, 26v4} and
gcd(2, uv) = 1. Then 3 ≡ 4s2 + 11u2v2 = u4 + 25v4 ≡ 1 mod 4, a contradiction.

Therefore {z+y2−88x2, z−y2+88x2} = ±{2r4, 25 ·7s4}. Then 1 ≡ y2−88x2 =
±(r4 − 24 · 7s4) ≡ ±1 mod 8, and hence 211s4 = (r2 + 44s2)2 − y2. As in the
previous case we deduce that {r2 + 44s2 + y, r2 + 44s2 − y} = {2u4, 210v4} and
s = uv for some relatively prime positive integers u and v with gcd(2, u) = 1.
Thus r2 + 44u2v2 = u4 + 29v4. Setting x1 = 4v, y1 = u and z1 = 2r we have
8x4

1 + 4y41 − 11x2
1y

2
1 = z21 and 1 < x1 ≤ 4s ≤ 4x < x, in contradiction with the

minimality of x. �

Proposition 3.2. The normalized irreducible polynomials P of degree 4 defining
units on order 7 are X4 + X3 − 1, −X4 + X + 1 and the polynomials Ua,b with
(a, b) ∈ {(1, 0), (1,−1), (−1, 2)}.
Proof. By straightforward calculations we have

P7(a, b) = 1− 7(b(b− 1 + 2a)(b− 1 + 3a) + a(a− 1)2).

Hence, by Lemma 2.1, we only have to prove that (0, 0), (0, 1), (1, 0), (1,−1),
(1,−2) and (−1, 2) are the only integral solutions (a, b) of the following equation:

(3.2) b(b− 1 + 2a)(b− 1 + 3a) + a(a− 1)2 = 0.

(Observe that the solutions (0, 0) and (0, 1) yield polynomials Ua,b of degree smaller
than 4 and the solution (1,−2) provides the polynomial U1,−2 = (X2 − X + 1)2

which is not irreducible.)
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Let a and b be integers satisfying (3.2). If a = 0 then b ∈ {0, 1}; if a = 1 then
b ∈ {0,−1,−2}; and if b = 0 then a ∈ {0, 1}. Thus we may assume that a �∈ {0, 1}
and b �= 0 and we have to show that (a, b) = (−1, 2). Furthermore, it is easy to see
that b �= 1 and ab < 0. Let d = gcd(a, b), chosen so that d and a have the same
sign.

Let p be a prime integer. If vp(a), vp(b) > 0 then vp(a) = vp(b). This implies

gcd
(a
d
, b
)
= gcd

( b

d
, a
)
= 1.

Suppose that p divides a but does not divide b. Then vp(a) = vp(b − 1 + 2a) +
vp(b − 1 + 3a) and therefore vp(b − 1) > 0. If vp(b − 1) ≥ vp(a) then vp(a) =
vp(b−1+2a)+vp(b−1+3a) ≥ vp(2a)+vp(3a) ≥ 2vp(a), a contradiction. Therefore
vp(b − 1) < vp(a) and thus vp(a) = vp(b − 1 + 2a) + vp(b − 1 + 3a) = 2vp(b − 1).
Thus

(3.3) a = dx2 and b− 1 = xb1,

for some integers x and b1 such that

(d, x) = (x, b1) = 1.

Suppose now that p divides b but does not divide a. Then vp(b) + vp(b − 1 +
2a) + vp(b− 1 + 3a) = 2vp(a− 1). In particular p | a− 1 and hence p � b− 1 + 2a.
Therefore vp(b) + vp(b − 1 + 3a) = 2vp(a − 1). If p �= 2 then p � b − 1 + 3a =
b+ a− 1 + 2a and therefore vp(b) = 2vp(a− 1). If v2(b) is even and positive then
v2(b − 1 + 3a) = v2(b + a − 1 + 2a) ≥ 2 and therefore v2(a − 1) = 1. This yields
a contradiction. Thus, if v2(b) > 1 then v2(b) ≥ 3 and hence v2(a − 1) ≥ 2 and
v2(b− 1 + 3a) = 1. Therefore v2(b) = 2v2(a− 1)− 1. This implies that one of the
following cases hold:

Case 1. b = −dy2, a− 1 = a1y, with gcd(x, y) = gcd(2d, y) = gcd(a1, y) = 1.

Case 2. b = −2dy2, a − 1 = 2ka1y, with 2 � dya1, gcd(x, y) = gcd(d, y) =
gcd(a1, y) = 1 and k ≥ 1.

Case 3. b = −22k+1dy2, a−1 = 2k+1a1y, with gcd(x, y) = gcd(2d, y) = gcd(a1, 2y)
= 1 and k ≥ 1.

We deal with these three cases separately.

Case 1. Using (3.3) and the hypotheses of Case 1, we obtain

dx2 − a1y = 1 = −b1x− dy2.

Hence (dx + b1)x = (a1 − dy)y and, since gcd(x, y) = 1, there is an integer e such
that

b1 = −dx+ ye and a1 = xe + dy.

Thus

a = 1 + exy + dy2 = dx2 and

b = 1 + exy − dx2 = −dy2.
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Combining this with (3.2) we obtain

−(ey + dx)(ey + 2dx) + (ex+ dy)2 = 0,

or equivalently

(3.4) 2d2x2 + e2y2 + dexy = e2x2 + d2y2.

Considering this as a quadratic equation on d we obtain that

8x4 + 4y4 − 11x2y2 = z2

for some integer z. By Lemma 3.1, we deduce that x = y = 1. Replacing this in
1 + exy + dy2 = dx2 we deduce that e = −1. Replacing in (3.4) we deduce that
d = 1. Hence a = 1, in contradiction with the assumptions.

Case 2. Using (3.3) and the hypothesis of Case 2, we obtain

dx2 − 2ka1y = 1 = −b1x− 2dy2.

Then there is an integer e such that

b1 = −dx+ ey and 2ka1 = 2dy + ex.

Thus

a = 1 + exy + 2dy2 = dx2 and

b = 1 + exy − dx2 = −2dy2.

Combining this with (3.2) we obtain

(3.5) e2(2y2 − x2) + (2d)exy + (2d)2(x2 − y2) = 0.

Considering this as a quadratic equation on 2d or e we obtain that

4x4 + 8y4 − 11x2y2 = z2

for some integer z. By Lemma 3.1, we deduce that x = y = 1. Replacing this in
1 + exy + 2dy2 = dx2 we deduce that d = −1 − e. Replacing in (3.5) we deduce
that (d, e) = (−1, 0) or (d, e) = (1,−2). As a �= 1, we deduce that (a, b) = (−1, 2),
as desired.

Case 3. Using (3.3) and the hypothesis of Case 3, we obtain

dx2 − 2k+1a1y = 1 = −b1x− 22k+1dy2.

Therefore there is an integer e such that

b1 = −dx+ ey and 2k+1a1 = 22k+1dy + ex.

Thus

a = 1 + exy + 22k+1dy2 = dx2 and

b = 1 + exy − dx2 = −22k+1dy2.
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Combining this with (3.2) we obtain

22k+1(ey + dx)(ey + 2dx)− (ex+ 22k+1dy)2 = 0,

or equivalently

(3.6) e2(22k+1y2 − x2) + 2k(2k+1d)exy + (2k+1d)2(x2 − 22ky2) = 0.

Considering this as a quadratic equation on 2k+1d or e we obtain that

4x4 + 8(2ky)4 − 11x2(2ky)2 = z2

for some integer z. By Lemma 3.1, we deduce that x = 2ky = 1, in contradiction
with k ≥ 1. This finishes the proof of Proposition 3.2. �

The strategy followed to prove Proposition 3.2 could be repeated to classify
the polynomials of degree 4 defining units on order 11. This yields the following
Diophantine equation:

5a4 + 35a3b+ 56a2b2 + 30ab3 + 5b4 + 4a2 + 9ab+ 4b2

= a5 + 15a4b+ 35a3b2 + 28a2b3 + 9ab4 + b5 + 7a3 + 28a2b+ 27ab2 + 7b3 + a+ b,

which seems too difficult to be solved.

Acknowledgement. We thank Héctor Pasten for calling our attention to a strong
version of a theorem of Siegel [18], [3] which is the key ingredient in the proof of
Corollary 1.3.
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Ángel del Rı́o: Departamento de Matemáticas, Universidad de Murcia, Campus
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