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Controlled rough paths on manifolds I

Bruce K. Driver and Jeremy S. Semko

Abstract. In this paper, we build the foundation for a theory of con-
trolled rough paths on manifolds. A number of natural candidates for the
definition of manifold valued controlled rough paths are developed and
shown to be equivalent. The theory of controlled rough one-forms along
such a controlled path and their resulting integrals are then defined. This
general integration theory does require the introduction of an additional
geometric structure on the manifold which we refer to as a “parallelism”.
A choice of parallelism allows us to compare nearby tangent spaces on the
manifold which is necessary to fully discuss controlled rough one-forms.
The transformation properties of the theory under change of parallelisms
is explored. Although the integration of a general controlled one-form
along a rough path does depend on the choice of parallelism, we show
for a special class of controlled one-forms – those which are the restric-
tion of smooth one-forms on the manifold – the resulting path integral is
in fact independent of any choice of parallelism. We present a theory of
push-forwards and show how it is compatible with our integration theory.
Lastly, we give a number of characterizations for solving a rough differen-
tial equation when the solution is interpreted as a controlled rough path
on a manifold and then show such solutions exist and are unique.

1. Introduction

In a series of papers [24], [25], [26], Terry Lyons introduced and developed the
far reaching theory of rough path analysis. This theory allows one to solve (de-
terministically) differential equations driven by rough signals at the expense of
“enhancing” the rough signal with some additional information. Lyons’ theory
has found numerous applications to stochastic calculus and stochastic differential
equations, for example see [4], [5], [6], [8], and the references therein. For some
more recent applications, see [1], [21], [20], [9] , and [2].

The rough path theory mentioned above has been almost exclusively developed
in the context of state spaces being either finite or infinite dimensional Banach
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spaces with the two exceptions of [7] and [3]. In [7], a version of manifold valued
rough paths is developed in the context of “currents”. Although the definition
in [7] is global and intrinsic, it does rely on the non-trivial restriction that the
underlying manifold is a “Lip-γ manifold” in order to obtain uniform estimates.
In [3], the authors avoid the Lip-γ restriction at the expense of considering em-
bedded submanifolds and introducing the notion of weakly geometric rough paths
“constrained” to lie in the submanifold. It is eventually shown in [3] that the the-
ory is independent of a choice of embedding. This embedded theory follows very
closely Terry Lyons’ original development of the theory.

The purpose of this paper is to define and develop a third interpretation of
rough paths on manifolds based on Gubinelli’s [16] notions of “controlled” rough
paths. As Gubinelli’s perspective has proved extremely useful in the flat case (most
notably see Hairer [17]), it is expected such a theory of controlled rough paths on
manifolds can give new insights as well as applications to the existing literature.
We now will present a brief summary of the results contained in this paper. The
geometrical notation will follow closely that found in [11]. The reader may also
refer to well-known works such as [10], [23], [22], and [27] for basic but essential
geometric background.

1.1. Summary of results

Let Md be a d-dimensional manifold, Xs,t := 1 + xs,t + Xs,t be a weak-geometric
rough path in W := Rk with 1 ≤ p < 3, see Definition 2.2. In order to define
controlled rough paths on M it is necessary to make sense of the “increments” of
paths in M and TM. This leads us to add two extra structures to M, namely a
“logarithm” and a “parallelism”. A logarithm is a smooth assignment, ψ(m,n) ∈
TmM, for (m,n) near the diagonal of M which, in local coordinates, has the form
ψ(m,n) = n − m + O(|n − m|2). Similarly a parallelism is an assignment of a
linear transformation, U(n,m) : TmM → TnM for each (n,m) ∈M ×M near the
diagonal which in local coordinates has the form U(n,m) = I + O(|n −m|). See
Definition 2.15 and Definition 2.16 for the precise definitions of a logarithm and
a parallelism respectively, and Theorem 2.24 which asserts the description given
above matches these definitions (when M = Rd, one identifies all tangent spaces
in which case one typically takes U(m,n) = I and ψ(m,n) = n −m). The pair
G := (ψ,U) is called a gauge.

A rough path controlled by X on M (see Definition 2.35) is a pair of contin-
uous functions y : [0, T ] → M, and y† : [0, T ] → L (W,TM) such that (somewhat
imprecisely speaking), for all 0 ≤ s ≤ t ≤ T ,

1) y†s :W → TysM,

2) ψ(ys, yt) = y†s xs,t +O(|xs,t|2), and
3) U(ys, yt) y

†
t − y†s = O(|xs,t|),

where ψ is a logarithm on M and U is a parallelism on M. Alternatively one can
define controlled rough paths locally via a chart φ by requiring (see Definition 2.40)

φ(yt)− φ(ys)− dφ ◦ y†sxs,t = O(|xs,t|2) and dφ ◦ y†t − dφ ◦ y†s = O(|xs,t|).
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It is shown in Theorem 2.45 that these two notions of controlled rough paths
agree. Moreover, these manifold-valued rough paths may also be characterized as
pairs y = (y, y†) whose “push-forwards” under smooth real-valued functions are
controlled rough paths on R (See Theorem 2.57).

Two natural examples of manifold valued controlled rough paths are as follows.
1) If Md is an embedded submanifold (see subsection 2.6) and the path xs ∈ W
happens to lie inM (i.e., xs ∈M for all s in [0, T ]), then (xs, P (xs)) is anM -valued
rough path controlled by X where P (m) is orthogonal projection onto TmM (see

Example 2.55). 2) If f : W →Md ⊆ Rk̃ is smooth, then (f(xs), f
′(xs)) is a rough

path controlled by X (see Example 2.56).
Now let G = (ψ,U) be a gauge, V be a Banach space, and y = (y, y†) be anM -

valued controlled rough path as above. A pair of continuous functions α : [0, T ] →
L(TM, V ) and α† : [0, T ] → L (W ⊗ TM, V ) is a U -controlled (rough) one-form
along y with values in a Banach space V provided (see Definition 3.1 for details);

1. αs : TysM → V for all s,

2. α†
s :W ⊗ TysM → V for all s,

3. αt ◦ U(yt, ys)− αs − α†
s(xs,t ⊗ (·)) = O(|xs,t|2), and

4. α†
t ◦ (I ⊗ U(yt, ys))− α†

s = O(|xs,t|).
To abbreviate notation we write αs =

(
αs, α

†
s

)
. As an example, if α is a smooth

one-form on M with values in V (denoted Ω1(M,V )) and U is a parallelism, it is
shown in Proposition 4.2 how to construct α†U

s so that αUs = (αs := α|TysM , α†U
s )

is the associated U -controlled (rough) one-form along y.
Theorem 3.21 below constructs the integral,

∫ 〈α,dyG〉, of α along y = (y, y†)
such that

∫ t
s
〈α,dyG〉 is well approximated by 〈αs,yG

s,t〉. Here yG
s,t is a “second”

order increment of y whose first order contribution is ψ(ys, yt) and higher order
contributions are determined by the gauge, G, in combination with y† and X (see
Definition 3.20 for details). This integral is a standard flat V -valued controlled
rough path along X which, as the notation suggests, a priori depends on both
the choice of logarithm ψ and parallelism U in the gauge, G = (ψ,U). However,
it is shown in Corollary 3.30 that the resulting integral is in fact independent
of the choice of logarithm and thus, in the end, only depends on the choice of
parallelism, U. (The logarithm appears in both the first and second order contri-
butions of yG

s,t; ultimately there is a cancellation among these two contributions in
such a way that the dependence of the integral on ψ cancels out in the limit; see
Subsection 6.1 in the Appendix for intuition as to why this might be expected.)

In Theorem 3.32, it is shown that there are “natural” transformations relating
all of the above structures under change of parallelism, U → Ũ , in such a way that
the integral,

∫ 〈α,dyG〉, is preserved. Although the integration of a general con-
trolled one-form along a rough path does depend on the choice of parallelism, this
dependence drops out in the special case that the controlled one-form is “induced”
from a globally defined smooth one-form on M. In more detail if U is a parallelism
and α ∈ Ω1(M,V ), we let αUs = (αs := α|TysM , α†U

s := ∇U
y†s(·)α) be the associated

U -controlled (rough) one-form along y. It is then shown in Theorem 4.3 that the
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resulting integral,
∫ 〈αU ,dyG〉, is in fact independent of both the parallelism, U,

and the logarithm, ψ, used in the construction. A gauge independent formula for
this integral is then given in Corollary 4.7. Because of these results, we are justified
in writing

∫
α(dy) for the path integral of α against y whenever α ∈ Ω1(M,V )

and y is a controlled rough path on M. In Theorem 4.9 (also see Proposition 3.6),
we show that, whether we are using a smooth one-form α ∈ Ω1(M,V ) or rough
one-form α along y, the integrals

∫
α(dy) and

∫ 〈α,dyG〉 satisfy a basic but useful
associativity property.

It is shown in Theorem 4.15 that if α ∈ Ω1(M̃, V ) is a smooth one-form on M
and f : M → M̃ is a smooth map between two manifolds, then∫

(f∗α) (dy) =
∫
α (d (f∗y)) ,

where f∗y : =
(
f ◦ y, f∗ ◦ y†s

)
is the “push-forward” of y by f (see Definition 4.11)

and f∗α ∈ Ω1 (M,V ) is the pull-back of α.
In Section 5.1, we discuss the notion of a controlled rough path y = (y, y†)

solving the rough differential equation (RDE)

dyt = FdX(yt) with y0 = ȳ0

when F : W → Γ(TM) where Γ(TM) denotes the smooth sections on TM . Es-
sentially y will solve such an equation if the path y, when pushed forward by any
smooth function f , has the correct “Taylor expansion” and y† is the correct deriva-
tive, i.e., y†s = F(·)(ys) (see Definition 5.2). Theorem 5.3 then compiles a list of
alternative characterizations for solving an RDE both by approximating solutions
and by relating them to familiar flat space rough integrals. Next, the existence
and uniqueness of solutions are proved in Theorem 5.4 and Theorem 5.5. Lastly,
in Theorem 5.9, we record what it means to solve an RDE when one takes the
gauge perspective.

In a sequel to this paper, we will develop notions of parallel translation along
a controlled rough path along with rough version of Cartan’s rolling and unrolling
maps in order to characterize all controlled rough paths on M.

Acknowledgments. The authors are very thankful to the two anonymous referees
for their careful readings and many corrections and suggestions to this paper. Their
input has substantially reduced the number of typos and (more importantly) has
greatly improved the clarity of the paper.

2. Definitions of controlled rough paths with examples

2.1. Review of Euclidean space rough paths

The presentation here will be brief. For a more thorough development, the reader
can refer to many sources, for example [14] or [15].

Throughout this paper, we denote W = Rk. Let 1 ≤ p < 3 and let

(2.1) Δ[S,T ] = {(s, t) : S ≤ s ≤ t ≤ T }.
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Definition 2.1. A control ω is a continuous function ω : Δ[0,T ] → R+ which is
superadditive1 and such that ω (s, s) = 0 for all s ∈ [0, T ].

Definition 2.2. Let X = (x,X) where

x : [0, T ] → W and X : Δ[0,T ] →W ⊗W

and are continuous. Then X is a p-rough path with control ω if

1. The Chen identity holds:

(2.2) Xs,u = Xs,t + Xt,u + xs,t ⊗ xt,u

for all 0 ≤ s ≤ t ≤ u ≤ T , where xs,t := xt − xs.

2. For all 0 ≤ s ≤ t ≤ T ,

(2.3) |xs,t| ≤ ω(s, t)1/p and |Xs,t| ≤ ω(s, t)2/p.

Further, we say that X is weak-geometric if the symmetric part of Xs,t
(sym (Xs,t)) satisfies the relation

sym(Xs,t) =
1

2
xs,t ⊗ xs,t.

Notation 2.3. Let Fs,t and Gs,t be a pair of functions into a normed space. When
it is not important to keep careful track of constants we will often write Fs,t ≈

i
Gs,t

(for any i ∈ N) to indicate that there exists C <∞ and δ > 0 such that

|Fs,t −Gs,t| ≤ C ω(s, t)i/p for all 0 ≤ s ≤ t ≤ T with |t− s| ≤ δ.

In this paper, V ,Ṽ , and V̂ will denote Banach spaces, and L(V, Ṽ ) will denote
the bounded linear transformations from V to Ṽ .

Example 2.4. If x(t) ∈ C∞ ([0, T ], V ) is a smooth curve in V and

(2.4) Xs,t =

∫
s≤u≤v≤t

dxu ⊗ dxv =

∫ t

s

xs,v ⊗ dxv,

then X = (x,X) is a weak-geometric rough path controlled by ω(s, t) = |t− s| . In
this example we could take even take p = 1.

Definition 2.5. Let X be a p-rough path on W ⊕ W⊗2 with control ω. The
continuous pair y := (y, y†) ∈ C([a, b], V )×C([a, b], L(W,V )) is a V -valued rough
path controlled by X (denoted y ∈CRPX([a, b], V )) if there exists a C such that

1. |yt − ys − y†s xs,t| ≤ C ω(s, t)2/p, and

2. |y†t − y†s| ≤ C ω(s, t)1/p for all s ≤ t in [0, T ].

We denote CRPX(V ) := CRPX([0, T ], V ) for some fixed T <∞.

1To say ω is superadditive means ω(s, t) + ω (t, u) ≤ ω(s, u) for all 0 ≤ s ≤ t ≤ u ≤ T.
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The approximations in Definition 2.5 are statements which only need to hold
locally because of the following (easy) sewing lemma.

Lemma 2.6 (Sewing lemma). Let

y := (y, y†) ∈ C([0, T ], V )× C([0, T ], L(W,V ))

and let 0 = t0 < t1 < . . . < tl = T be a partition of [0, T ] such that y|[ti,ti+i] is a
rough path controlled by X|[ti,ti+1] := (x|[ti,ti+1],X|Δ[ti,ti+1]

) for all 0 ≤ i ≤ l − 1.

Then y is a rough path controlled by X.

Proof. Let Ci with 0 ≤ i ≤ l − 1 be such that

∣∣yt − ys − y†s xs,t
∣∣ ≤ Ci ω(s, t)

2/p and |y†t − y†s| ≤ Ci ω(s, t)
1/p

whenever (s, t) ∈ Δ[ti,ti+1]. Let C̃ :=
∑l−1

i=0 Ci. Then by a telescoping series
argument and the fact that ω is increasing (because it is superadditive), it is clear
that

|y†t − y†s| ≤ C̃ ω(s, t)1/p ∀ (s, t) ∈ Δ[0,T ].

Now let C = (2l− 1) C̃. If (s, t) ∈ Δ[0,T ] then there exists j and j∗ such that
s ∈ [tj , tj+1] and t ∈ [tj∗ , tj∗+1] with j ≤ j∗. If j = j∗, then

∣∣yt − ys − y†s xs,t
∣∣ ≤ C ω(s, t)2/p

trivially. Otherwise, we have

yt − ys − y†s xs,t = (yt − ytj∗ ) + (ytj+1 − ys) +

j∗−1∑
i=j+1

(yti+1 − yti)

− y†s xs,tj+1 − y†s xtj∗ ,t −
j∗−1∑
i=j+1

y†s xti,ti+1

= (yt − ytj∗ − y†tj∗xtj∗ ,t) + (ytj+1 − ys − y†s xs,tj+1 )

+ [y†tj∗ − y†s]xtj∗ ,t +
j∗−1∑
i=j+1

(yti+1 − yti − y†tixti,ti+1)

+

j∗−1∑
i=j+1

[y†s − y†ti ]xti,ti+1 .

Taking absolute values and using the fact that ω is superadditive, we have
that the absolute value of each term on the right (including those within the
summations) is bounded by C̃ ω(s, t)2/p. Thus

∣∣yt − ys − y†s xs,t
∣∣ ≤ (2l− 1) C̃ ω(s, t)2/p = C ω(s, t)2/p. �
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Utilizing the results of Theorem 1 in [16], Theorem 3.3.1 of [26] can be gener-
alized to apply to the class of controlled rough paths. This generalization (after
restricting to the case p < 3 and matching our notation) results in the following
theorem.

Theorem 2.7. Let X be a p-rough path on W ⊕ W⊗2 with control ω and let
(y, y†) be an L (W,V )-valued rough path controlled by X. Then there exists a
z ∈ C ([0, T ], V ) with z0 = 0 and a C ≥ 0 such that

(2.5)
∣∣zt − zs − ys xs,t − y†s Xs,t

∣∣ ≤ C ω(s, t)3/p

for all s ≤ t in [0, T ].

We will more commonly refer to the path zt as
∫ t
0 〈yτ , dXτ 〉 and its increment,

zs,t := zt − zs, as
∫ t
s
〈yτ , dXτ 〉. Theorem 2.9 below is a generalization of Theo-

rem 2.7, but before we state it, we will make a remark about certain identifications
of spaces.

Remark 2.8. If V, Ṽ , and V̂ are vector spaces, we can make the identification

L(V, L(Ṽ , V̂ )) ∼= L(V ⊗ Ṽ , V̂ )

via the map Ξ : L(V, L(Ṽ , V̂ )) → L(V ⊗ Ṽ , V̂ ) given by

Ξ(α)[v ⊗ ṽ] = α〈v〉〈ṽ〉.
if α ∈ L(V, L(Ṽ , V̂ )).

The proof of the following theorem (modulo a reparameterization) may be
found in [16] or in [14], Remark 4.11.

Theorem 2.9. Let X be a p-rough path on W ⊕W⊗2 with control ω, let (y, y†) be
an V -valued rough path controlled by X and let α = (α, α†) be an L(V, Ṽ )-valued
rough path controlled by X, where α†

s ∈ L(W,L(V, Ṽ )) ∼= L(W ⊗V, Ṽ ). Then there
exists a z ∈ C([0, T ], V ) with z0 = 0 and a C > 0 such that

(2.6)
∣∣zt − zs − αs (yt − ys)− α†

s

(
I ⊗ y†s

)
Xs,t

∣∣ ≤ C ω(s, t)3/p

for all s ≤ t in [0, T ]. Moreover, if we let z†s := αs ◦ y†s, then zs := (zs, z
†
s) is a

Ṽ -valued controlled rough path.

The path zt in this case will be denoted
∫ t
0
〈ατ , dyτ 〉 and we will typically

summarize inequality (2.6) by writing

(2.7)

∫ t

s

〈ατ , dyτ 〉 ≈
3

〈
αs,y

X

s,t

〉
:= αs ys,t + α†

s

(
I ⊗ y†s

)
Xs,t

wherein we let yX
s,t be the increment process defined by,

(2.8) yX

s,t :=
(
ys,t,

(
I ⊗ y†s

)
Xs,t

)
.

Notice that Theorem 2.7 does indeed follow from Theorem 2.9 upon replacing(
α, α†) by (y, y†) and (y, y†) by (x, IW ) in inequality (2.6).
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Remark 2.10 (Motivations). In order to develop some intuition for the expres-
sion appearing on the right side of equation (2.7), suppose for the moment that all
functions X, (y, y†), and (α, α†) are smooth and let X be given by equation (2.4).

In this case we want zs,t to be the usual integral
∫ t
s
ατ ẏτ dτ and to arrive at the ex-

pression in inequality (2.6) we look for an appropriate second order approximation
to the integral. Since p = 1 now we may conclude

αs,τ = α†
s xs,τ +O((τ − s)2)

and
yt − yτ = y†τ (xt − xτ ) +O((t− τ)2) =⇒ ẏτ = y†τ ẋτ .

We have the identity

(2.9)

∫ t

s

ατ dyτ =

∫ t

s

[αs + αs,τ ] ẏτ dτ = αs ys,t +

∫ t

s

αs,τ ẏτ dτ.

The last term on the right-hand side is approximated up to an error of size
O((t − s)3) as follows:∫ t

s

αs,τ ẏτ dτ =

∫ t

s

αs,τ y
†
τ ẋτ dτ =

∫ t

s

α†
s xs,τ y

†
τ ẋτ dτ +O((t − s)3)(2.10)

=

∫ t

s

α†
s xs,τ y

†
s ẋτ dτ +O((t − s)3)

= α†
s(I ⊗ y†s)

∫ t

s

xs,τ ⊗ ẋτdτ +O((t − s)3)

= α†
s(I ⊗ y†s)Xs,t +O((t − s)3).

Combining (2.9) and (2.10) gives the approximate equality∫ t

s

ατ dyτ = αs ys,t + α†
s

(
I ⊗ y†s

)
Xs,t +O((t − s)3).

Controlled rough paths are also useful in interpreting solutions to rough dif-
ferential equations. Let F : V → L (W,V ) be smooth where we will write F (a)w
as Fw(a). We can then make sense of the rough differential equation

(2.11) dyt = FdXt(yt)

with initial condition y0 = ȳ0. We will need a bit of notation regarding tensor
products before we say what it means to solve such an equation.

Notation 2.11. If Ξ : W × W → V is a bilinear form into a vector space V ,
by the universal property of tensor products, Ξ factors through a unique linear
function Ξ⊗ on W ⊗W such that Ξ⊗(w⊗ w̃) = Ξ(w, w̃) for a simple tensor w⊗ w̃.
If W ∈ W ⊗W we will abuse notation and write

Ξ (w, w̃) |w⊗w̃=W = Ξ(w ⊗ w̃) |w⊗w̃=W = Ξ⊗ (W) ,

where, to be precise, if W =
∑
wi ⊗ w̃i then

Ξ⊗ (W) =
∑

Ξ (wi, w̃i) .
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We say the controlled rough path y = (y, y†) defined on2 I0 = [0, T ) or I0 =
[0, T ] solves equation (2.11) if for every [0, b] ⊆ I0, we have

ys,t ≈
3
Fxs,t(ys) +

(
∂Fw(ys)Fw̃

)
(ys)|w⊗w̃=Xs,t

y†s = F·(ys)

for all s, t ∈ [0, b] . If in addition y0 = ȳ0, we say y solves equation (2.11) with
initial condition y0 = ȳ0.

The existence and uniqueness of solutions (at least of the path ys) to these dif-
ferential equations (provided F is sufficiently regular) is due to Lyons [26]. Clearly
if ys is given, then y†s exists and is uniquely determined by y†s = F·(ys). One may
refer to Subsection 6.5 in the Appendix for more results regarding rough differential
equations on Euclidean space.

2.2. Manifold-valued controlled rough paths

Let M = Md be a d-dimensional manifold, TM be its tangent space, and π :=
πTM : TM → M be the natural projection map. Throughout, let X =(x,X) be a
weak-geometric p-rough path on [0, T ] with values in W ⊕W⊗2 and control ω.

The letters x and y will appear in this paper generally as paths, but occasionally
they will refer to arbitrary points in Euclidean space. The context will allow the
reader to identify their proper usage.

Notation 2.12. When M = Rd we will identify TRd with Rd × Rd via

Rd × Rd � (m, v) → vm :=
d

dt

∣∣
0
(m+ tv) ∈ TmR

d

and, by abuse of notation, we let |vm| = |v| when | · | is the standard Euclidean
norm.

Notation 2.13. Whenever φ is a map, let D(φ) and R(φ) denote the domain and
range of φ respectively. If φ ∈ C∞(M,Rd

′
) has open domain, let dφ : TD(φ) → Rd

′

be defined by

(2.12) dφ(vm) :=
d

dt

∣∣
0
φ (σ (t)) ∈ Rd

′
,

where σ is such that σ(0) = m ∈ D(φ) and σ̇(0) = vm ∈ TmM . Denote dφm :=
dφ|TmM . If f ∈ C∞(M, M̃) where M̃ is another manifold, we let f∗ be the push-
forward of f so that f∗ : TD(f) → TM̃ is defined by

f∗(vm) :=
d

dt

∣∣
0
f (σ (t)) ∈ Tf(m)M̃,

where again σ̇(0) = vm. Analogously we let f∗m = f∗|TmM . Note that φ∗(vm) =
(φ(m), dφ(vm)) = [dφ(vm)]φ(m).

2Here we allow that y ∈ CRPX(I0, V ) if it is an element of CRPX(K,V ) for every compact
interval K ∈ I0.
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2.3. Gauges

Definition 2.14. Let U be an open set on M . An open set DU ⊆ M ×M is a
U-diagonal domain if it contains the diagonal of U , that is, ΔU :=

⋃
m∈U (m,m)

⊆ DU . A local diagonal domain is a V-diagonal domain for some nonempty
open V ⊆M .

If U =M we write D := DM and refer to D simply as a diagonal domain.

Throughout the paper, D will always denote a diagonal domain.

Definition 2.15. A smooth function ψ : D → TM is called a logarithm if:

1. ψ(m,n) ∈ TmM ,

2. ψ (m,m) = 0m,

3. ψ (m, ·)∗ |TmM = Im.

We also write ψm for ψ (m, ·).
If the above holds for ψ defined on a local diagonal domain, we may refer to ψ

as a local logarithm.

If E is a vector bundle, we will denote the smooth sections of E by Γ(E). We
define L(TM, TM) as the vector bundle Ẽ over the manifold M ×M such that
Ẽ(n,m) = L(TmM,TnM) and

Ẽ =
⋃

{Ẽ(n,m) : n,m ∈M}.

Definition 2.16. A smooth section U ∈ Γ (L(TM, TM)) with domain D (i.e.,
U(n,m) ∈ L (TmM,TnM) for all (n,m) ∈ D) is called a parallelism if

U (m,m) = Im.

If U is only defined on a local diagonal domain, we refer to U as a local paral-
lelism.

Definition 2.17. We call the pair G := (ψ,U) (where ψ and U have common
domain D) a gauge on the manifold M. If D is replaced by a local diagonal
domain, we call G a local gauge.

Example 2.18. If M = Rd, the maps ψ(x, y) = [y − x]x and U(x, y)vy = vx form
the standard gauge on Rd.

Example 2.19. One natural example of a gauge comes from any covariant deriva-
tive ∇ on TM. The construction is as follows. Choose an arbitrary Rieman-
nian metric g on M. If m,n ∈ M are “close enough”, there is a unique vec-
tor vm with minimum length such that n = exp∇m(vm). We denote this vector
by ψ∇(m,n) := (exp∇m)−1(n) or by exp−1

m (n) if ∇ is clear from the context. We
further let

U∇(n,m) := //1
(
t→ expm

(
t exp−1

m (n)
))
,
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where, for any smooth curve σ : [0, 1] → M, we let //s (σ) = //∇s (σ) : Tσ(0)M →
Tσ(s)M denote parallel translation along σ up to time s ∈ [0, 1] . It is shown in

Corollary 2.33 that there is a diagonal domain D ⊆ M ×M such that
(
ψ∇, U∇)

so defined is a gauge on D.
Remark 2.20. We can also get a covariant derivative from a parallelism. If U is
a parallelism, then we can define covariant derivative ∇U on TM by

∇U
vm (Y ) :=

d

dt

∣∣
0
U (m,σt)Y (σt),

where σ̇(0) = vm and Y is a vector field on M.

Remark 2.21. Although the definition of a gauge includes stipulating a U , if we
have just ψ, we can define Uψ(n,m) := ψ (n, ·)∗m and set Gψ :=

(
ψ,Uψ

)
.

Remark 2.22. We may make a local gauge out of a chart φ. Indeed, we pull back
the flat gauge in Example 2.18 to M to define

ψφ(m,n) := (dφm)
−1

[φ(n)− φ(m)] ,

Uφ(n,m) := (dφn)
−1
dφm.

This is a gauge which is also consistent with Remark 2.21 and D(ψφ) = D
(
Uφ

)
=

D(φ) ×D(φ).

Before moving on to controlled rough paths on manifolds, let us record the
structure of the general gauge on Rd.

Notation 2.23. If (ψ,U) is a local gauge on Rd, then we write
(
ψ̄, Ū

)
to mean

the functions determined by the relations

ψ(x, y) =
[
ψ̄(x, y)

]
x

and U(x, y) (vy) =
[
Ū(x, y)v

]
x

so that ψ̄(x, y) ∈ Rd and Ū(x, y) ∈ End
(
Rd

)
.

Theorem 2.24. If G = (ψ,U) is a local gauge on Rd, for every open convex
subset V ⊆ Rd such that V × V ⊆ D(G), there exists smoothly varying functions
A(x, y) ∈ L

(
(Rd)⊗2,Rd

)
and B(x, y) ∈ L(Rd,End(Rd)) defined for (x, y) ∈ V × V

such that

Ū(x, y) = I +B(x, y)(y − x),(2.13)

ψ̄(x, y) = y − x+A(x, y)(y − x)⊗2,(2.14)

B (x, x) = D2Ū (x, x) , and A (x, x) =
1

2

(
D2

2ψ̄
)
(x, x) .(2.15)

The converse holds as well.
Furthermore, we can find a smoothly varying function

C(x, y) ∈ L
(
(Rd)⊗3,Rd

)
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defined on V × V such that

C (x, x) =
1

6

(
D3

2ψ̄
)
(x, x) , and(2.16)

ψ̄(x, y) = y − x+
1

2

(
D2

2ψ̄
)
(x, x) (y − x)⊗2 + C(x, y)(y − x)⊗3.(2.17)

Proof. Let x, y be points in V . Taylor’s theorem with integral remainder applied
to the second variable with x fixed gives,

Ū(x, y) = I +

∫ 1

0

(
D2Ū

)
(x, x + t(y − x)) (y − x) dt

and

ψ̄(x, y) = 0 + (D2ψ̄)(x, x)(y − x) +

∫ 1

0

(D2
2ψ̄)(x, x + t(y − x))(y − x)⊗2(1− t) dt,

from which equations (2.13)–(2.15) follow with

B(x, y) =

∫ 1

0

(
D2Ū

)
(x, x + t(y − x)) dt and

A(x, y) =

∫ 1

0

(
D2

2ψ̄
)
(x, x+ t(y − x)) (1− t) dt.

The converse statement is easy to verify. The proof of equations (2.16) and (2.17)
also follow by Taylor’s theorem (now to third order), in which case

C(x, y) =
1

2

∫ 1

0

(
D3

2ψ̄
)
(x, x+ t(y − x)) (1− t)2dt. �

Let Br(x) ⊆ Rd be the open ball of radius r centered at x.

Remark 2.25. If ψ and ψ̃ are local logarithms on Rd, it is easy to check using
Theorem 2.24 that for all x̃ ∈ Rd, there exists an r > 0 and C > 0 such that
|ψ(x, y)| ≤ C|ψ̃(x, y)| for all x, y ∈ Br(x̃).

We now wish to transfer these local results to the manifold setting. In order to
do this we need to develop some notation for stating that two objects on a manifold
are “close” up to some order. Let g be any smooth Riemannian metric on M .

Notation 2.26. We write dg for the metric associated to g and define |vm|g :=√
gm(vm, vm) ∀ vm ∈ TM . Further, we let | · |g,op be the operator “norm” induced

by | · |g on L(TM, V ), i.e., if fm ∈ L(TmM,V ), then

|fm|g,op := sup{|fm〈vm〉| : |vm|g = 1}.



Controlled rough paths on manifolds I 897

Definition 2.27. Let F,G be smooth TM (respectively, L(TM, TM)) valued
functions with W-diagonal domains. The expression

(2.18) F (m,n) =k G(m,n) on W
indicates that for every point in w ∈ W , there exists an openOw ⊆M containing w
such that Ow ×Ow ⊆ D (F ) ∩D (G) and a C > 0 such that

(2.19) |F (m,n)−G(m,n)|g,[g,op] ≤ C (dg(m,n))
k

for all m,n ∈ Ow.
Occasionally we will omit the reference to W in which case we mean the con-

dition (2.19) holds where it makes sense to hold.

Note that in (2.18), the reference to g is not explicit. In fact, the definition
does not depend on the choice of g as all Riemannian metrics are locally equivalent.
(See Corollary 6.6 in the Appendix for precise statement and proof of this standard
fact.)

We may also use the =k notation to make statements in regards to other mea-
sures of distance.

Corollary 2.28. Let W be an open subset of M and g and g̃ be any two Rie-
mannian metrics on M. If F (m,n) =k G(m,n) on W (so that F and G have
W-diagonal domains), then for every local logarithm ψ and w ∈ W such that
(w,w) ∈ D (ψ), there exists an open Ow ⊆ W containing w and C > 0 such that

|F (m,n)−G(m,n)|g,[g,op] ≤ C |ψ(m,n)|kg̃ ∀m,n ∈ Ow.

In particular, using the local logarithm ψ(m,n) = (dφm)
−1

[φ(n)− φ(m)], we have
that if w ∈ D(φ)∩W, then there exists an Ow ⊆ D(φ)∩W and a C > 0 such that

|F (m,n)−G(m,n)|g,[g,op] ≤ C |φ(n) − φ (m)|k ∀m,n ∈ Ow.

Proof. The proof of the corollary will use Remark 2.25 and the local equivalence
of any two Riemannian metrics, Corollary 6.6 in the Appendix. First we simplify
matters by assuming that we are working in Euclidean space which may be accom-
plished by pushing the metric and functions forward using charts. Assuming this,
we now derive a local inequality that holds for any two logarithms ψ and ψ̃ when
(w,w) ∈ D(ψ) ∩D(ψ̃). Namely, there exist an open neighborhood, Ow, of w such
that

|ψ̃(m,n)|g ≤ C1 |ψ̃(m,n)| ≤ C2 C1 |ψ(m,n)| ≤ C3 C2 C1 |ψ(m,n)|g̃
for all (m,n) ∈ Ow × Ow where the first and third inequality follow from Corol-
lary 6.6 with one metric being the standard Euclidean metric and the other metric
being g or g̃ respectively, and the second inequality is true by Remark 2.25. Thus,
there exists a C̃ such that ∣∣ψ̃(m,n)∣∣

g
≤ C̃ |ψ(m,n)|g̃ .
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Now let ∇g be the Levi-Civita covariant derivative associated to g. By setting
ψ̃(m,n) = (exp∇

g

m )−1(n) and shrinking Ow if necessary to ensure that the function(
exp∇

g

(·)
)−1

(·) is defined and injective on Ow ×Ow, we have that

∣∣( exp∇gm )−1
(n)

∣∣
g
≤ C̃ |ψ(m,n)|g̃ .

In this setting, dg(m,n) =
∣∣(exp∇gm )−1(n)

∣∣
g
, and since F (m,n) =k G(m,n) on W

(by shrinking Ow if necessary), we have

|F (m,n)−G(m,n)|g,[g,op] ≤ Ĉ (dg(m,n))
k ∀m,n ∈ Ow

for some Ĉ. Thus, we have

|F (m,n)−G(m,n)|g,[g,op] ≤ Ĉ(C̃)k |ψ(m,n)|kg̃ .

which is the statement of the Corollary with C := Ĉ(C̃)k. �

In the sequel, Corollary 2.28 will typically be used without further reference in
order reduce the proof of showing F (m,n) =k G(m,n) in the manifold setting to a
local statement about functions on convex neighborhoods in Rd equipped with the
standard Euclidean flat metric structures. The first example of this strategy will
already occur in the proof of Corollary 2.29 below. For a general parallelism it is not
true that U(n,m)−1 = U(m,n), yet U(m,n) is always a very good approximation
to U(n,m)−1.

Corollary 2.29. If U is a parallelism on a manifold M, then

U(n,m)−1 =2 U(m,n).

Proof. This is a local statement so we may use Corollary 2.28 to reduce to the case
that M is a convex open subset of Rd. We then may use Theorem 2.24 to learn

Ū(n,m)−1 = (I + [B(n,m)(m− n)])−1 = I + [B(n,m)(n−m)] +O(|n−m|2)

while

Ū(m,n) = (I + [B(m,n) (n−m)]) .

Subtracting these two equations shows

Ū(n,m)−1− Ū(m,n) = [B(n,m)−B(m,n)](n−m) +O(|n−m|2) = O(|n −m|2)

wherein we have used B(n,m) − B(m,n) vanishes for m = n and therefore is of
order |m− n| . �
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2.3.1. A Covariant derivative gives rise to a gauge. Let ∇ be a covariant
derivative on TM, and g be any fixed Riemannian metric on M. Let G : TM →
M ×M be the function on TM defined by

(2.20) G(vm) :=
(
m, exp∇m(vm)

)
for all vm ∈ D (G) ,

where D (G) is the domain of G defined by

D (G) :=
{
vm ∈ TM : t→ exp∇m (tvm) exists for 0 ≤ t ≤ 1

}
.

We will now develop a subset ofD (G) for whichG is injective. For eachm ∈M,
let Λm denote the set of r > 0 so that Br (0m) ⊆ D (G) , exp∇m (Br (0m)) is an open
neighborhood of m in M, and exp∇m : Br (0m) → exp∇m (Br (0m)) is a diffeomor-
phism (here Br (0m) is the open ball in TmM centered at 0m with radius r). The
fact that Λm is not empty is a consequence of the inverse function theorem and
the fact that (exp∇m)∗0m = ITmM is invertible. We now define rm := supΛm where
rm = ∞ is possible and allowed. A little thought shows that exp∇m (Brm (0m)) is
open and exp∇m : Brm (0m) → exp∇m (Brm (0m)) is a diffeomorphism, i.e., either
rm = ∞ or rm ∈ Λm.

Let us now set C∗ := ∪m∈MBrm (0m) ⊆ TM and let G∗ : C∗ →M ×M be the
map defined by

G∗(vm) :=
(
m, exp∇m (vm)

)
for all vm ∈ C∗.

It is easy to verify that G∗ is injective.

We will now build our domain C for which G|C is diffeomorphic onto its range.
First we need a simple local invertibility proposition.

Proposition 2.30. Let G be the function defined in equation (2.20). Then for
each m ∈ M, there exists open subsets Vm ⊆ TM and Wm ⊆ M such that 0m ∈
Vm, m ∈ Wm, and G|Vm : Vm → Wm ×Wm is a diffeomorphism.

Proof. As this a local result we may assume that M = Rd and identify TM with
M × M. The function G : TM → M × M then takes on the form G (x, v) =(
x, Ḡ (x, v)

)
where Ḡ (x, 0) = x and

(
D2Ḡ

)
(x, 0) = IM for all x ∈ M. A simple

computation then shows

G′ (x, 0) =
[
I 0
I I

]
for all x ∈M.

The result now follows by an application of the inverse function theorem. �

Notation 2.31. If W is an open subset of M and ε > 0, let U(W , ε) be the open
subset of TM defined by

U(W , ε) := {v ∈ π−1(W) ⊆ TM : |v|g < ε}.
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Theorem 2.32. Let C :=
⋃U(W , ε) where the union is taken over all open sub-

sets W ⊆ M and ε > 0 such that U(W , ε) ⊆ D(G) and G|U(W,ε) : U(W , ε) →
G(U(W , ε)) is a diffeomorphism. Then C is an open subset of TM such that
D := G(C) is open in M ×M, G : C → D is a diffeomorphism,

{0m : m ∈M} ⊆ C ⊆ C∗ and ΔM = {(m,m) : m ∈M} ⊆ D.
Proof. According to Proposition 2.30, for each m ∈M there exists an open neigh-
borhood W of m ∈ M and ε > 0 so that U (W , ε) ⊆ D (G) and G : U (W , ε) →
G (U (W , ε)) is a diffeomorphism. From this it follows that {0m : m ∈ W} ⊆ C and
U (W , ε) ⊆ C∗. Asm ∈M was arbitrary we may conclude {0m : m ∈M} ⊆ C ⊆ C∗.
It is now easily verified that G (C) = ∪G (U (W , ε)) is open, G : C → G (C) is a
surjective local diffeomorphism and hence is a diffeomorphism as G|C is injective
(since G|C∗ is injective). �

Corollary 2.33. Continuing the notation used in Theorem 2.32, we have D is a
diagonal domain and ψ := G|−1

C : D → C ⊆ TM is a logarithm. Moreover, if we
define

U(m,n) := //1
(
t→ exp∇ (tψ(m,n))

)−1
: TnM → TmM

for all (m,n) ∈ D, then U is a parallelism on M.

Proof. The only thing that remains to be proven is that U(m,n) is smoothly
varying. This is a consequence of the fact that solutions to ordinary differential
equations depend smoothly on their starting points and parameter in the vector
fields. To be more explicit in this case, for a ∈ Rd let B∇

a (μ) = u̇(0) where
u(t) = //t

(
exp∇ ((·)μa))μ for μ in the frame bundle GL(M) over M , so that B∇

a

are the ∇-horizontal vector fields. Now suppose that w ∈ M is given and O(m) :
Rd → TmM is a local frame defined for m in an open neighborhood W of w. For
v ∈ π−1 (W) ∩ C let γ (t) = exp∇ (tv) and u(t) := //t (γ)O (π (v)) . We then have

γ̇(t) = //t (γ) v = u (t)O (π (v))−1 v and

∇u
dt

= 0 with u(0) = O (π (v)) .

These equations are equivalent to solving

(2.21) u̇(t) = B∇
O(π(v))−1v

(u(t)) with u(0) = O (π (v)) ,

in which case γ(t) = πO(M) (u(t)) where πO(M) is the projection map from O(M)
to M. We now define F (v) := u (1) provided v ∈ π−1 (W) ∩ C. It then follows
that F : π−1 (W) ∩ C → GL(M) is smooth as the solutions to equation (2.21)
depend smoothly on its starting point and parameter. From this we learn for
(m,n) ∈ G

(
π−1 (W) ∩ C) that

U(n,m) = F (ψ(m,n))O (m)
−1

is a smooth function of (m,n). �
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2.4. Controlled rough paths

Notation 2.34. Throughout the remainder of this paper, y :=(y, y†) denotes a
pair of continuous functions, y ∈ C([0, T ],M) and y† ∈ C([0, T ], L(W,TM)), such
that y†s ∈ L(W,TysM) for all s.

Definition 2.35. Let (ψ,U) be a gauge. The pair (ys, y
†
s) is (ψ,U)-rough path

controlled by X if there exists a C > 0 and δ > 0 such that

(2.22) |ψ(ys, yt)− y†s xs,t|g ≤ C ω(s, t)2/p

and

(2.23) |U(ys, yt) y
†
t − y†s|g ≤ C ω(s, t)1/p

hold whenever 0 ≤ s ≤ t ≤ T and |t − s| ≤ δ. Occasionally we will refer to ys as
the path and y†s as the derivative process (or Gubinelli derivative).

Remark 2.36. In Definition 2.35 and in the definitions that follow, we use the
convention that the δ is small enough to ensure that all of the expressions are well
defined (in particular here it is small enough to ensure (ys, yt) ∈ D).

Remark 2.37. Any path zs in Euclidean space naturally gives rise to a two-
parameter “increment process”, namely zs,t = zt − zs. If ϕ is any function such
that ϕ (z, z̃) ≈ z̃ − z, then it makes sense to define zϕs,t := ϕ(zs, zt). This serves as
motivation for the following notation.

Notation 2.38. Given a gauge, G = (ψ,U), let yψs,t := ψ(ys,yt) and (y†)Us,t :=

U(ys, yt) y
†
t − y†s. These will be referred to as the G-local increment processes

of (y, y†).

Remark 2.39. With Notation 2.38, (2.22) becomes |yψs,t − y†s xs,t| ≤ C ω(s, t)2/p

and (2.23) becomes |(y†)Us,t| ≤ C ω(s, t)1/p.

Definition 2.35 gives one possible notion of a controlled rough path on a man-
ifold. We can also define such an object without having to provide a metric or
gauge by using charts on the manifold.

Definition 2.40. The pair ys = (ys, y
†
s) is a chart-rough path controlled by X

if for every chart φ on M and every [a, b] such that y([a, b]) ⊆ D(φ) we have the
existence of a Cφ,a,b ≥ 0 such that, for all a ≤ s ≤ t ≤ b,

(2.24) |φ(yt)− φ(ys)− dφ ◦ y†s xs,t| ≤ Cφ,a,b ω(s, t)
2/p

and

(2.25) |dφ ◦ y†t − dφ ◦ y†s| ≤ Cφ,a,b ω(s, t)
1/p.

We will denote Cφ,a,b by Cφ when no confusion is likely to arise.
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Notation 2.41. If (ys, y
†
s) is a chart rough path and φ is a chart as in Defini-

tion 2.40, we will write φ∗ys to mean

φ∗ys: = φ∗(ys, y†s) := (φ ◦ ys, dφ ◦ y†s).
Note that as long as y remains away from the boundary of D(φ), then φ∗ys is a

controlled rough path on Rd. Another way to think of this is that a chart controlled
rough path is one which pushes forward to a controlled rough path in Rd.

Before moving on, we will make a few remarks.

Remark 2.42. If y† is any function satisfying the conditions in either of Defi-
nitions 2.35 or 2.40, then s → y†s is automatically continuous. For example, if(
ys, y

†
s

)
satisfies the conditions of a (ψ,U)-rough path in Definition 2.35, then the

function t → U(ys, yt) y
†
t is continuous at s and therefore the function t → y†t =

U(ys, yt)
−1U(ys, yt) y

†
t is continuous at s.

Remark 2.43. If M = Rd and φ = I then the chart Definition 2.40 reduces to
the usual Definition 2.5 of controlled rough paths. In this case, we identify all the
tangent spaces with Rd and forget the base point in the derivative process.

Remark 2.44. A natural question is how the notions of controlled rough paths
generalize in the case p ≥ 3. While we do not attempt develop the theory in this
paper, it is not difficult to reconcile the theory of higher order controlled rough
paths (for example, see [14] for a definition) with Definition 2.40 for chart rough
paths. However, the generalization of Definition 2.35 of gauge rough paths and
what geometric structures are necessary for such a generalization is not immedi-
ately obvious; more work will be required to understand these concepts in addition
to how results below will extend in this environment.

2.5. Chart and gauge CRP definitions are equivalent

Theorem 2.45. Let y :=(y, y†) be a pair of continuous functions as in Nota-
tion 2.34, let M be a manifold, and let G =(ψ,U) be any gauge on M . Then y is
a chart controlled rough path (Definition 2.40) if and only if it is a (ψ,U)-controlled
rough path (Definition 2.35).

Corollary 2.46. We have the equality of sets

{(ψ,U)-rough paths} =
{
(ψ̃, Ũ)-rough paths

}
for any gauges (ψ,U) and (ψ̃, Ũ) on M .

Notation 2.47. Let CRPX(M) be the collection of controlled rough paths
in M, i.e., pairs of functions y = (y, y†) as in Notation 2.34 which satisfy either
(and hence both) of Definitions 2.35 or 2.40.

We will prove Theorem 2.45 after assembling a number of preliminary results
that will be needed in the proof and in the rest of the paper.
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2.5.1. Results used in proof of Theorem 2.45. Our first result is a local
version of Theorem 2.45.

Theorem 2.48. Let G =(ψ,U) be a gauge on Rd, z = (z, z†) ∈ C([a, b],Rd) ×
C([a, b], L(W,Rd)), and W be an open convex set such that z([a, b]) ⊆ W and
W ×W ⊆ D(G). Then z ∈ CRPX(Rd) if and only if z is a (ψ,U)-rough path
controlled by X with the choice δ := b− a.

Proof. Suppose z ∈CRPX(Rd). By Theorem 2.24,

ψ̄(x, y) = y − x+A(x, y)(y − x)⊗2 ∀x, y ∈ W .

Clearly A is bounded if it is restricted to x, y in the convex hull of z([a, b]) (which
is compact and contained in W). Thus, for all such points, we have there exists
a C1 such that

(2.26) |ψ̄(x, y)− (y − x)| ≤ C1 |y − x|2.
Taking y = zt and x = zs in this inequality shows

(2.27) |ψ̄(zs, zt)− zs,t| ≤ C1 |zt − zs|2.
Since z ∈CRPX(Rd), there exists a C2 such that

|zs,t − z†s xs,t| ≤ C2 ω(s, t)
2/p(2.28)

|z†s,t| ≤ C2 ω(s, t)
1/p.(2.29)

By enlarging C2 if necessary we may further conclude

(2.30) |zs,t| ≤ C2 ω(s, t)
1/p.

Using equations (2.28) and (2.30) in equation (2.27) gives the existence of a C3 <∞
such that

|ψ̄(zs, zt)− z†s xs,t| ≤ C3 ω(s, t)
2/p.

By Theorem 2.24 once more, we have

(2.31) Ū(x, y) = I +B(x, y)(y − x).

As was the case for A, B is bounded on the convex hull of z([a, b]) so that there
exists a C4 such that∣∣Ū(zs, zt) z

†
t − z†s

∣∣ ≤ ∣∣z†s,t∣∣+ C4 |zs,t| ≤ (C2 + C4C2)ω(s, t)
1/p.

Thus z is a (ψ,U)-rough path controlled by X with the choice δ := b − a where
our C := max{C1, C2(1 + C4)}.

For the converse direction, suppose z is a (ψ,U)-rough path controlled by X
with the choice δ := b − a as in Definition 2.35. From equation (2.26) and the
triangle inequality we have

|y − x| ≤ C1 |y − x|2 + |ψ̄(x, y)|.
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Taking x = zs and y = zt in this inequality and using Definition 2.35 we may find
C2 <∞ such that

|zs,t| ≤ C1 |zs,t|2 + |ψ(zs, zt)| ≤ C1 |zs,t|2 + C2 ω(s, t)
1/p

for all s ≤ t in [a, b]. By the uniform continuity of z on [a, b], there exists ε > 0 such
that C1|zs,t| ≤ 1

2 when |t − s| ≤ ε which combined with the previous inequality
implies

|zs,t| ≤ 2C2 ω(s, t)
1/p when |t− s| ≤ ε.

For general a ≤ s ≤ t ≤ b we may write zs,t as a sum of at most n ≤ (b − a)/ε
increments whose norms are bounded by 2C2 ω(s, t)

1/p wherein we have repeat-
edly used the estimate above along with the monotonicity of ω resulting from
superadditivity. Thus we conclude, with C3 := 2C2(b − a)/ε <∞, that

|zs,t| ≤ C3 ω(s, t)
1/p ∀ s, t ∈ [a, b].

This estimate along with the inequality in equation (2.26) gives

|ψ̄(zs, zt)− zs,t| ≤ C1 |zs,t|2 ≤ C1 C
2
3 ω(s, t)

2/p ∀ s, t ∈ [a, b].

The previous inequality along with the assumption that z is a (ψ,U)-rough path
shows there exists C4 <∞ such that∣∣zs,t − z†s xs,t

∣∣ ≤ ∣∣zs,t − ψ̄(zs, zt)
∣∣ + |ψ̄(zs, zt)− z†s xs,t| ≤ C4 ω(s, t)

2/p.

From equation (2.31), there exists a C5 such that

|z†s,t| ≤
∣∣U(zs, zt)z

†
t − z†s

∣∣+ C5 |zs,t|.

This inequality along with the assumption that z is a (ψ,U)-rough path shows

there exists C6 < ∞ such that |z†s,t| ≤ C6 ω(s, t)
1/p for all a ≤ s ≤ t ≤ b. Thus we

have shown z ∈ CRPX(Rd). �

The rest of this section is now devoted to a number of “stitching” arguments
which will be used to piece together a number of local versions of Theorem 2.45
over subintervals as described in Theorem 2.48 into the full global version as stated
in Theorem 2.45. For the rest of this section let X be a topological space and
0 ≤ S < T <∞.

Lemma 2.49. If y : [S, T ] → X is continuous and y([S, T ]) ⊆ ⋃
α∈AOα, where

{Oα}α∈A is a collection of open subsets of X , then there exists a partition of [S, T ],
S = t0 < t1 < . . . < tl = T, and αi ∈ A such that for all i less than l, we have

y([ti, ti+1]) ⊆ Oαi

Proof. Define

T ∗ := sup{t : S ≤ t ≤ T, the conclusion of the lemma holds for [S, t]}.
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Note that trivially T ∗ > S. For sake of contradiction, suppose T ∗ < T. Then there
exists an ε > 0 such that T ∗ + ε < T, T ∗ − ε > S and y(T ∗ − ε, T ∗ + ε) ⊂ Oα∗ for
some α∗. But the condition of the theorem holds for T ∗ − ε for some partition P .
By appending P with T ∗ + λε with λ ∈ (−1, 1] we have that T ∗ ≥ T ∗ + ε which is
absurd. Thus, we must have that T ∗ = T. �

Definition 2.50. The set {ai, bi}li=0 ⊂ [S, T ] is an interlaced cover of [S, T ]
if S = a0 < a1 < b0 < a2 < b1 < a3 < b2 < · · · < al < bl−1 < bl = T . Let
y : [S, T ] → X . The set {ai, bi}li=0 is an interlaced cover for y if {ai, bi}li=0 is
an interlaced cover of [S, T ] and y(ai+1) �= y(bi) for all i less than l.

a0

a1

a2

a3

a4b0

b1

b2

b3

b4

S T

Figure 1. An interlaced cover of [S, T ].

Corollary 2.51. Suppose y : [S, T ] → X is continuous and y([S, T ]) ⊆ ⋃
α∈AOα,

where {Oα}α∈A is a collection of open sets Oα. There exists an interlaced cover

for y, {ai, bi}li=0, such that y ([ai, bi]) ⊆ Oαi . Note that for such a setup, this
implies y ([ai+1,bi]) ⊆ Oαi ∩ Oαi+1

Proof. The first step will be a technical one to get rid of unnecessary endpoints.
Let t′i and α

′
i be as given in Lemma 2.49. Then clearly y (t′i) ∈ Oα′

i−1
∩Oα′

i
for all

1 ≤ i < l′. Starting with t′1, we check if y ([t′0, t
′
1]) ⊆ Oα1 . In the case it is, we may

renumber our partition after removing t′1 and Oα′
0
to get a new set of t′j and α′

j

which still satisfy the result of the lemma. Continuing this process inductively,
we may assume that we have such a set {ti, αi}li=0 such that y([ti, ti+1]) is not
contained in Oαi+1 .

To construct the desired interlaced cover, we define bi := ti+1 for all i ≤ l :=
l′ − 1 and a0 := S. Note for now that this means y ([bi−1, bi]) ⊆ Oαi . Then we
define the “lower end” stopping time Ti for all i > 0 by the formula

Ti := inf
{
t < bi : y ([t, bi]) ⊆ Oαi+1

}
.

By construction and because we refined our partition, bi−1 ≤ Ti < bi. It is clear
that y (Ti) �= y (bi) by the continuity of y. Thus, there exists a time T ∗

i such that
Ti < T ∗

i and y (T ∗
i ) �= y (bi). Define

ai+1 := T ∗
i for all 0 < i < n.

Since y ([bi−1, bi]) ⊆ Oαi and ai > bi−1, we have that y ([ai, bi]) ⊆ Oαi . �
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Since the following patching trick will be used multiple times in later proofs,
we will prove it here in more generality to avoid too much indexing notation later.

Lemma 2.52. Let ω be a control and {ai, bi}li=0 be an interlaced cover of [S, T ]
such that ω (ai+1, bi) > 0 for all i < n. Let θ > 0 and F : D → [0,∞) be a bounded
function such that D ⊆ Δ[S,T ] and for each 1 ≤ i ≤ l there exists Ci < ∞ such
that

F (s, t) ≤ Ci ω(s, t)
θ for all (s, t) ∈ Δ[ai,bi] ∩D.

Then there exists a C̃ <∞ such that

(2.32) F (s, t) ≤ C̃ ω(s, t)θ ∀ (s, t) ∈ D.

Proof. Let

m := min{ω(ai+1, bi)
θ : 0 ≤ i < n},

C := max{Ci : 0 ≤ i ≤ n}, and
M := sup{F (s, t) : (s, t) ∈ D} <∞,

and then define C̃ := max{M/m,C}. We claim that inequality (2.32) holds.
If there exists an i such that s, t ∈ [ai, bi] ∩ D, then (2.32) holds trivially.

Otherwise, let i∗ be the largest i such that s ∈ [ai, bi]. Then s < ai∗+1 and t > bi∗ .
However this says that [s, t] ⊃ [ai∗+1, bi∗ ] so that

F (s, t) ≤M =
M

m
m ≤ C̃ ω (ai∗+1, bi∗)

θ ≤ C̃ ω(s, t)θ. �

2.5.2. Proof of Theorem 2.45. The recurring strategy here will be to localize
appropriately to work in the Rd case so that we may apply Theorem 2.48. We must
choose these localizations carefully so that we may patch the estimates together
(with two different strategies) using the lemmas above. One method of patching
is a bit more involved than the other; therefore we will present it more formally.

Remark 2.53 (Proof strategy). Let y : [a, b] →M be the first component of (y, y†)
where

(
y, y†

)
is either a (ψ,U)-controlled rough path or chart controlled rough

path. Also suppose for each m ∈ y([a, b]), we are given an open neighborhood,

Wm ⊆M, ofm. By Corollary 2.51, there exists an interlaced cover for y, {ai, bi}li=1

and {mi}li=1 such that y ([ai, bi]) ⊆ Wmi and ω (ai+1, bi) > 0. Thus, if F : D →
[0,∞) is a bounded function such that D ⊆ Δ[a,b], then in order to prove that

(2.33) F (s, t) ≤ C ω(s, t)θ ∀ (s, t) ∈ D,

it suffices to prove that for each 1 ≤ i ≤ l, there exists Ci <∞ such that

F (s, t) ≤ Ci ω(s, t)
θ for all (s, t) ∈ Δ[ai,bi] ∩D.

Therefore in attempting to prove an assertion in the form of inequality (2.33), we
may assume, without loss of generality, that y ([a, b]) ⊆ W where the W will have
nice properties dependent on our setting.
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The proof of Theorem 2.45 will consist of two steps:

1. If gauge conditions of (2.22) and (2.23) hold for some C > 0 and δ > 0, then
the chart conditions of (2.24) and (2.25) hold. We will reduce this to the Rd

case immediately, then use Lemma 2.6 to patch the estimates together.

2. If the chart condition of (2.24) and (2.25) hold, then gauge condition of (2.22)
and (2.23) hold for an appropriately chosen δ. Here we will first show which
local estimates we need to satisfy to use Remark 2.53 and then reduce to
the Rd case.

In simple terms, step 1 is “localize then patch” and step 2 is “cut nicely, localize,
then patch”.

Proof of Theorem 2.45.

Step 1. Definition 2.35 =⇒ Definition 2.40.

We will first assume that the gauge definition holds, i.e., that there exists a
δ > 0 and a C1 > 0 such that

(2.34)
∣∣ψ(ys, yt)− y†s xs,t

∣∣
g
≤ C1 ω(s, t)

2/p

and
|U(ys, yt) y

†
t − y†s|g ≤ C1 ω(s, t)

1/p

hold for all 0 ≤ s ≤ t ≤ T such that |t− s| ≤ δ. Let φ be a chart on M and let
[a, b] be such that y([a, b]) ⊆ D(φ). If we define

ψφ(x, y) := φ∗ψ
(
φ−1(x), φ−1(y)

)
,

Uφ(x, y) := φ∗U
(
φ−1(x), φ−1(y)

) ◦ (φ−1
∗

)
φ(y)

,(
zs, z

†
s

)
:= φ∗ (ys) =

(
φ(ys), dφ ◦ y†s

)
,

then it is clear that there exists a C2 = C2 (φ∗) such that

|ψ̄φ(zs, zt)− z†s xs,t| ≤ C2 ω(s, t)
2/p(2.35)

|Ūφ(zs, zt)z†t − z†s| ≤ C2 ω(s, t)
1/p(2.36)

for all a ≤ s ≤ t ≤ b such that t − s ≤ δ where
(
ψφ, Uφ

)
is a local gauge on Rd

and
(
ψ̄φ, Ūφ

)
is consistent with Notation 2.23. Thus (z, z†) is a

(
ψφ, Uφ

)
-rough

path controlled by X. Finally we need to use this information to show there exists
a Cφ,a,b such that

(2.37) |zt − zs − z†s xs,t| ≤ Cφ,a,b ω(s, t)
2/p.

and

(2.38) |z†t − z†s| ≤ Cφ,a,b ω(s, t)
1/p

for all s, t such that a ≤ s ≤ t ≤ b.
In light of the sewing Lemma 2.6 and Lemma 2.49, we only need to show that

for each u ∈ [a, b], the inequalities (2.37) and (2.38) hold with Cφ,a,b replaced
with Cu for all s, t ∈ (u− δu, u+ δu) ∩ [a, b] such that s ≤ t for some δu > 0.
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For any u ∈ [a, b], let Wu be an open convex set of zu such that Wu ×Wu ⊆
D(ψφ). We then choose δu > 0 to be such that z ([u− δu, u+ δu] ∩ [a, b]) ⊆ Wu

and 2δu ≤ δ. However, now we are in the setting of Theorem 2.48 and are therefore
finished with this step.

Step 2. Definition 2.40 =⇒ Definition 2.35.

Suppose that the chart item (2.24) holds. We must prove that there exists a
δ, C > 0 such that∣∣ψ(ys, yt)− y†s xs,t

∣∣
g
≤ C ω(s, t)2/p and

∣∣U(ys, yt) y
†
t − y†s

∣∣
g
≤ C ω(s, t)1/p

for all s ≤ t such that |t− s| ≤ δ.
We choose δ such that |t− s| ≤ δ for 0 ≤ s ≤ t ≤ T implies that both

|ψ(ys, yt)|g and |U(ys, yt)|g make sense and are bounded. Around every point m
of y([0, T ]), there exists an open Om containing m and such that Om ×Om ⊆ D.
Additionally there exists a chart φm such that m ∈ D (φm). By considering an
open ball around φm(m) in R (φm) and shrinking the radius, we may assume that
Vm := D (φm) ⊆ Om and the range, Wm := φ (Vm) , of φm is convex. Since
{Vm}m∈y([0,T ]) is an open cover of y ([0, T ]), we may use this cover along with

D = {(s, t) : 0 ≤ s ≤ t ≤ T and |t− s| ≤ δ} to employ the proof strategy in Re-
mark 2.53. We will do this twice, with F (s, t) = |ψ(ys, yt) − y†s xs,t|g in the first

iteration and F (s, t) = |U(ys, yt) y
†
t − y†s|g in the second; this will reduce us to

considering the case where there exists a single chart φ such that y([0, T ]) ⊆ D(φ),
D(φ) ×D(φ)⊆ D and W = R(φ) is convex.

Now that we have reduced to a single chart φ, we may define (ψφ, Uφ) and
the path (z, z†) as in Step 1. Then z([0, T ]) ⊆ W and W ×W ⊆D(ψφ) = D(Uφ).
However, by Theorem 2.48 we have that the proper estimates hold because z is a
(ψφ, Uφ)-rough path controlled by X. Therefore, we are finished by patching using
Remark 2.53. �

In situations in which we are given a covariant derivative ∇ on a manifold, by
Example 2.19, we have an equivalent definition:

Example 2.54. The pair
(
ys, y

†
s

)
is an element of CRPX(M) if and only if there

exists a C such that

(2.39) |(exp∇
ys)

−1(yt)− y†s xs,t|g ≤ C ω(s, t)2/p

and

(2.40) |U∇(ys, yt)y
†
t − y†s|g ≤ C ω(s, t)1/p,

where (exp∇m)−1 and U∇(n,m) are defined as in Example 2.19 and the inequalities
hold when (ys, yt) are in the domain D as given in Theorem 2.32. In particular, on
a Riemannian manifold we can use this definition with the Levi-Civita covariant
derivative.

Before providing yet another equivalent definition of controlled rough paths on
manifolds, we will present some examples.
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2.6. Examples of controlled rough paths

Recall X = (x,X) is a weak-geometric rough path with values in W ⊕W⊗2 where
W = Rk. The results here will rely on basic approximations found in the Appendix,
Section 6.

Example 2.55. LetMd ⊆W be an embedded submanifold and for everym ∈Md,
let P (m) be the orthogonal projection onto the tangent space TmM . Suppose
xs ∈Md for all s in [0, T ]. Then (xs, P (xs)) ∈ CRPX(M).

Proof. We will use the gauge as given in Example 2.54 where the ∇ is the Levi-
Civita covariant derivative from the induced metric from Euclidean space. Verify-
ing that P (xs) lives in the correct space is trivial.

Next, to show inequality 2.39 is satisfied, we use item (1) of Lemma 6.4, which
says

exp−1
m (m̃) = P (m) (m̃−m) +O(|m̃−m|3) for all m ∈Md.

Letting m = xs and m̃ = xt, we are done.
Inequality (2.40) is also satisfied easily; the first equality in item (2) of Lemma 6.4

implies U∇ (m̃,m) = P (m) +O (|m̃−m|) . Thus
P (xt)− U∇ (xt, xs)P (xs) ≈

1
P (xt)− P (xs)P (xs) = P (xt)− P (xs) ≈

1
0. �

The next example will be proved in more generality in Section 4.2. However,
we find it instructive to prove it without charts and in the embedded context where
the reader may be more comfortable.

Example 2.56. Let f be a smooth function from W to an embedded manifold

M̃d ⊆ Rk̃. Then (f(xs), f
′(xs)) ∈ CRPX(M̃).

Proof. Again we will use the Levi-Civita covariant derivative ∇̃ from the embedded
metric. First we note that f ′(xs) lives in the correct space as R(f) ⊆ M̃d.

To show inequality (2.39) holds one can use the fact that (f((xs), f
′(xs)) is a

controlled rough path in the embedded space or Taylor’s theorem to see that

f (xt)− f(xs)− f ′(xs) (xt − xs) ≈
2
0

which easily implies

P (f(xs)) [f (xt)− f(xs)− f ′(xs) (xt − xs)] ≈
2
0.

But again by Lemma 6.4,

P (f(xs))[f(xt) − f(xs)− f ′(xs)(xt − xs)]

= P (f(xs))[f(xt)− f(xs)]− f ′(xs)(xt − xs)

≈
2
(exp∇̃f(xs))

−1(f(xt))− f ′(xs)(xt − xs).

Thus (
exp∇̃f(xs)

)−1
(f(xt))− f ′(xs)(xt − xs) ≈

2
0.
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Lastly, to show inequality (2.40), we have

f ′ (xt)− f ′(xs) ≈
1
0

and therefore

0 ≈
1
P (f(xt))[f

′(xt)− f ′(xs)] = f ′(xt)− P (f(xt))f
′(xs)

≈
1
f ′(xt)− U ∇̃(f(xt), f(xs))f ′(xs),

wherein we have used P (f(xt))f
′(xt) = f ′(xt) in the second line and Lemma 6.4

in the last. Thus (f(xs), f
′(xs)) ∈ CRPX(M̃) �

2.7. Smooth function definition of CRP

In the spirit of semi-martingales on manifolds (see for example Chapter III of [13]
or [18], [12], [19]), we can define controlled rough paths on manifolds as elements
which, when composed with any smooth function, give rise to a one-dimensional
controlled rough path on flat space. More precisely we have the following theorem.

Theorem 2.57. y = (y, y†) ∈ CRPX(M) if and only if for every f ∈ C∞(M),

f∗y =
(
f(y), df ◦ y†) ∈ CRPX (R) .

Proof. The proof that y ∈ CRPX(M) implies that f∗y ∈ CRPX (R) for every
f ∈ C∞(M) will be deferred to the more general case proved in Proposition 4.10
(in which case we consider the codomain of f to be a manifold M̃).

To prove the converse, let φ be a chart and 0 ≤ a < b ≤ T be such that
y([a, b]) ⊆ D(φ) and let O ⊂M be an open set such that Ō is compact and

y([a, b]) ⊆ O ⊆ Ō ⊆ D(φ).

Then by using a cutoff function we can manufacture global functions f i ∈ C∞(M)
which agree with the coordinates φi on O. The assumption that

f i∗y ∈CRPX ([a, b],R)

is a controlled rough path for 1 ≤ i ≤ d then shows the inequalities in (2.24)
and (2.25) of Definition 2.40 hold. �

3. Integration of controlled one-forms

In the flat case, a controlled rough path with values in an appropriate Euclidean
spaces can be integrated against another controlled rough path (see Theorem 2.9)
provided their controlling rough path X is the same. The integral in this case is
another rough path controlled by X. We can do something similar on manifolds,
though it will be necessary to add some extra structure. As usual let ys = (ys, y

†
s)

be a controlled rough path on M controlled by X = (x,X) ∈ W⊕W⊗2. Let V be
a Banach space.
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3.1. Controlled one-forms along a rough path

Let U be a parallelism on M .

Definition 3.1. The pair (αs, α
†
s) is a V -valued U -controlled (rough) one-form

along ys if

(1) αs ∈ L (TysM,V ) ,

(2) α†
s ∈ L (W ⊗ TysM,V ) ,

(3) αt ◦ U(yt, ys)− αs − α†
s (xs,t ⊗ (·)) ≈

2
0,

(4) α†
t ◦ (I ⊗ U (yt, ys))− α†

s ≈1 0.

By items (3) and (4), we mean these hold if |t− s| < δ for some δ > 0 to ensure
the expressions make sense.

Remark 3.2. For the sake of clarity, by item (3) of Definition 3.1, we mean that
if s, t are close, then there exists a C such that∣∣αt ◦ U(yt, ys)− αs − α†

s (xs,t ⊗ (·))∣∣
g,op

≤ C ω(s, t)2/p.

For item (4), we mean for s, t close, there exists a C such that∣∣α†
t ◦ (w ⊗ U(yt, ys))− α†

s (w ⊗ (·)) ∣∣
g,op

≤ C |w|ω(s, t)1/p

for all w ∈ W . By Corollary 6.6, it does not matter which Riemannian metric g
we choose here.

Notation 3.3. Let CRPUy (M,V ) denote those αs := (αs, α
†
s) satisfying Defini-

tion 3.1. We refer to CRPUy (M,V ) as a space of U-controlled one-forms
along y.

Remark 3.4. If M = Rd and U = I and we identify TysM with Rd then Def-
inition 3.1 reduces to the flat case definition of a L

(
Rd, V

)
-valued rough path

controlled by X.

Remark 3.5. Note that (3) and (4) of Definition 3.1 force continuity of both αs
and α†

s.

We can take linear combinations of elements of CRPUy (M,V ) to form other

elements in CRPUy (M,V ). The following proposition, whose simple proof is left
to the reader, shows how to construct more non-trivial examples of elements in
CRPUy (M,V ).

Proposition 3.6. If V and Ṽ are Banach spaces, α ∈ CRPUy (M,V ) and

f = (f, f †) ∈ CRPX

(
Hom(V, Ṽ )

)
,

then
(fα)s :=

(
fsαs, f

†
sαs + fs α

†
s

) ∈ CRPUy (M, Ṽ ).

where by f †
sαs we mean f †

s ((·)⊗ αs(·)) .
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Our next goal is to define an integral of αs along ys. However, this integral
will depend on a choice of parallelism and for this reason we need to introduce the
“compatibility tensor” which measures the difference between two parallelisms.

3.2. The compatibility tensors

Definition 3.7. The compatibility tensor SŨ ,U ∈ Γ (L (TM ⊗ TM) , TM) of
two parallelisms Ũ and U on M is the defined by

SŨ ,Um := d[U(·,m)−1Ũ(·,m)]m.

In more detail if vm, wm ∈ TmM, then

SŨ,Um [vm ⊗ wm] = vm[x→ U(x,m)−1Ũ(x,m)wm].

Remark 3.8. There are actually multiple ways to define SŨ,Um . For example, we
have on simple tensors

SŨ,Um (vm ⊗ wm) = d[U(m, ·)Ũ(m, ·)−1wm]mvm

= (∇vm [Ũ(·,m)− U(·,m)])wm = (∇vm [U(m, ·)− Ũ(m, ·)])wm,(3.1)

where ∇ is any covariant derivative on M (the last line can be interpreted as ∇vm

acting on [U(m, ·)−Ũ (m, ·)]W, where W is any smooth section such that W(m) =
wm). Similar to the proofs of Corollary 2.29 above and Theorem 3.15 below, the
identities in (3.1) are straightforward to prove by employing charts to reduce them
to Euclidean space identities.

Example 3.9. If∇ and ∇̃ are two covariant derivatives on TM, U = U∇, Ũ = U ∇̃,
and A ∈ Ω1 (End(TM)) such that ∇ = ∇̃+A, then

SŨ,Um (vm ⊗ wm) = A(vm)wm ∈ TmM.

Indeed,

vm[U(·,m)−1Ũ(·,m)wm] = ∇vm [Ũ(·,m)wm]

= ∇̃vm [Ũ(·,m)wm] +A(vm)Ũ(m,m)wm = 0 +A(vm)wm = A(vm)wm.

Example 3.10 (Converse of Example 3.9). If U and Ũ are two parallelisms on M

and ∇ = ∇U and ∇̃ = ∇Ũ are the corresponding covariant derivatives on TM (as
in Remark 2.20), then

∇vm = ∇̃vm + SŨ,Um (vm ⊗ (·)) ∀ vm ∈ TmM.

The verification is as follows. If Y is a vector-field on M and σt is such that
σ̇0 = vm, we have

∇vmY − ∇̃vmY :=
d

dt

∣∣
0
[U(m,σt)− Ũ(m,σt)]Y (σt)

= (∇vm [U(m, ·)− Ũ(m, ·)])Y (m) + 0 · ∇vmY = SŨ,Um (vm ⊗ Y (m)),

wherein we have used equation (3.1) for the last equality.
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Lemma 3.11. If U , Ũ and Û are three parallelisms, then

SÛ,U = SÛ,Ũ + SŨ,U and SŨ ,U = −SU,Ũ .

Proof. For vm, wm ∈ TmM, an application of the product rules shows

SÛ,Um (vm ⊗ wm) = vm [U(·,m)−1Û(·,m)wm]

= vm [[U(·,m)−1Ũ(·,m)] [Ũ(·,m)−1Û(·,m)]wm]

= SÛ,Ũm (vm ⊗ wm) + SŨ,Um (vm ⊗ wm).

The second statement follows from the first by letting Û = U. �

Notation 3.12. If G := (ψ,U) is a gauge, we let SG := Sψ∗,U be the compatibility
tensor between Uψ and U, where Uψ(m,n) := ψ (m, ·)∗n as in Remark 2.21.

If we have a covariant derivative ∇ on M , then as in Example 2.19 we have
the choice of gauge G =(ψ,U) =

(
(exp∇)−1, U∇). In this case, the tensor SG

m is a
more familiar object.

Lemma 3.13. If ψ = (exp∇)−1 and U = U∇, then

SG
m =

1

2
T∇
m ,

where T∇ is the torsion tensor of ∇.

Proof. By transferring the covariant derivative and functions using charts, we may
assume we are working on Euclidean space. In this case, by equation (6.15) and
Corollary 6.8, we have

SG
m((m, v)⊗ (m,w)) = (∇(m,v)[U

∇(m, ·)− (exp∇m)−1
∗· ])w

= [∂(m,v) +Am〈v〉][U∇(m, ·)− (exp∇m)−1
∗· ]w

= (U∇(m, ·))′(m)[v ⊗ w]− ((exp∇
m)−1)

′′
(m)[v ⊗ w]

+Am〈v〉〈w〉 −Am〈v〉〈w〉
= Am〈v〉〈w〉 − 1

2
Am〈v〉〈w〉 − 1

2
Am〈w〉〈v〉

=
1

2
[Am〈v〉〈w〉 −Am〈w〉〈v〉] = 1

2
T∇
m ((m, v) ⊗ (m,w)).�

Here is one last example of a gauge and its compatibility tensor.

Proposition 3.14. Let G be a Lie group and ∇ be the left covariant derivative on
TG uniquely determined by requiring the left invariant vector fields to be covariantly
constant, i.e., ∇Ã = 0 for all A ∈ g. Then for g near k,

(3.2) U∇ (g, k) = // (k → g) = Lgk−1∗,
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and

(3.3) ψ∇ (k, g) =
(
exp∇k

)−1
(g) = k · log (k−1g

)
,

where Lg : G→ G is left multiplication by g ∈ G and log is the local inverse of the
map A→ eA. Moreover the compatibility tensor for this gauge is given by

(3.4) S (ξg, ηg) = −1

2
Lg∗ [θ (ξg) , θ (ηg)] for all ξg, ηg ∈ TgG,

where θ is the Maurer–Cartan form on G defined by θ (ξ) := Lg−1∗ξ ∈ g := TeG
for all ξ ∈ TgG.

Proof. The torsion of ∇ is given by

T (Ã, B̃) = ∇ÃB̃ −∇B̃Ã− [Ã, B̃] = −[̃A,B]

or equivalently as

T (ξg, ηg) = −Lg∗[θ(ξg), θ(ηg)] for all ξg, ηg ∈ TgG.

Equation (3.4) follows from the above formula along with the result in Lemma 3.13.
If ξ(t) is a path TG above σ(t) ∈ G it may be written as ξ(t) = Lσ(t)∗θ (ξ(t)) .

Since Lσ(t)∗ is parallel translation, it follows that

∇ξ(t)
dt

= Lσ(t)∗
d

dt
θ (ξ(t)) .

Thus ξ(t) ∈ TG is parallel if and only if θ (ξ (t)) is constant for all t. If σ is a
general curve in G, we may conclude

//
(
σ|[s,t]

)
= Lσ(t)∗Lσ(s)−1∗ = Lσ(t)σ(s)−1∗

and therefore U∇ is given as in equation (3.2).

By definition, a curve σ(t) ∈ G is a geodesic if and only if σ̇ (t) is parallel, i.e.,
if and only if θ (σ̇(t)) = A for some A ∈ g. That is σ̇ (t) = Ã (σ(t)) with σ(0) =
k ∈ G. The solution to this equation is σ(t) = ketA and hence we have shown that
exp∇k (k ·A) = keA. So setting g = keA and solving for A gives A = log(k−1g),
and the formula for ψ∇ in equation (3.3) now follows. �

The last three results of this subsection show how the compatibility tensor
allows us to compare two different parallelisms and two different logarithms on M.

Theorem 3.15. Suppose that U and Ũ are two parallelisms on M and ψ is a
logarithm on M, then

(3.5) U(m,n) Ũ(m,n)−1 =2 I + SŨ,Um (ψ(m,n)⊗ (·)) .
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Proof. By using charts it suffices to prove the theorem when M = Rd. By Taylor’s
theorem (see Theorem 2.24),

U(m,n) =2 I + [(D2U)(m,m)(n−m)] and

Ũ(m,n) =2 I + [(D2Ũ)(m,m)(n−m)],

and therefore

U(m,n) Ũ(m,n)−1

=2 (I + [(D2U)(m,m)(n−m)]) (I − [(D2Ũ)(m,m)(n−m)])

=2 I + [((D2U)(m,m)− (D2Ũ)(m,m))(n−m)].(3.6)

However, by equation (3.1) we have

(3.7) SŨ,Um = (D2U)(m,m)− (D2Ũ)(m,m).

Using this identity back in (3.6) shows

U(m,n) Ũ(m,n)−1 =2 I + SŨ,Um ([n−m]m ⊗ (·))
from which (3.5) follows because ψ(m,n) =2 [n−m]m . �

Corollary 3.16. If G =(ψ,U) is a gauge on M, then

(3.8) ψ (n, ·)∗m =2 U(n,m)
[
I + SG

m (ψ(m,n)⊗ (·))] .
In particular,

(3.9) ψ (yt, ·)∗ys ≈2 U (yt, ys)
[
I + SG

ys (ψ(ys, yt)⊗ (·))] .
Proof. Theorem 3.15 implies

U(m,n)ψ (m, ·)−1
∗n =2 I + SG

m (ψ(m,n)⊗ (·)) ,
while Corollary 2.29 shows

U(m,n)−1 =2 U(n,m) and ψ (m, ·)−1
∗n =2 ψ (n, ·)∗m .

Equation (3.8) now easily follows from the last two displayed equations. The second
statement follows by patching. �

Lastly we may use the compatibility tensor to compare two logarithms.

Proposition 3.17. Suppose that ψ and ψ̃ are two logarithms on a manifold M.

Then the compatibility tensor, Sψ∗,ψ̃∗ is symmetric and

(3.10) ψ(m,n)− ψ̃(m,n) =3
1

2
Sψ̃∗,ψ∗,
m (ψ(m,n)⊗ ψ(m,n)) .
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Proof. As usual it suffices to prove this result when M = Rd in which case we
omit the base points of tangent vectors. From (3.7) with U(x, y) = ψ′

x(y) and
Ũ(x, y) = ψ̃′

x(y), we see that

(3.11) Sψ̃∗,ψ∗
x = ψ′′

x(x) − ψ̃′′
x(x)

which is symmetric since mixed partial derivatives commute. Then by Taylor’s
theorem and (3.11),

ψ(x, y)− ψ̃(x, y) =
1

2
[ψ′′
x(x)− ψ̃′′

x(x)](y − x)⊗2 +O(|y − x|3)

=
1

2
Sψ̃∗,ψ∗
x (ψ(x, y)⊗2) +O(|y − x|3),

wherein we have also used (y − x)⊗2 =3 ψ(x, y)
⊗2. �

Remark 3.18. If ∇ is any covariant derivative on TM, then

Sψ̃∗,ψ∗
m =

[∇d(ψ(m, ·)− ψ̃(m, ·))]
m

= Hess∇m(ψm − ψ̃m),

where Hess∇mf := [∇df ]m. By choosing ∇ to be torsion free we again see that

Sψ̃∗,ψ∗
m is a symmetric tensor.

3.3. U-controlled rough integration

Our next goal is to construct “the” integral,
∫ 〈α, dy〉 , where y ∈ CRPX(M)

and α ∈ CRPUy (M,V ). We begin with the following proposition in the smooth
category which is meant to motivate the definitions to come.

Proposition 3.19. Assume (in this proposition only) that all functions, ys, αs,
and xs are smooth, p = 1, and ω(s, t) = |t− s| . Further assume y (respectively α)
still satisfy the estimates of being controlled rough path (along y). Then

(3.12)

∫ t

s

ατ ẏτ dτ = αs[ψ(ys, yt)+S
G
ys(y

†
s⊗y†s Xs,t)]+α†

s(I⊗y†s)Xs,t+O((t−s)3).

Proof. Our assumptions give

ψ(ys, yt) = y†s xs,t +O((t− s)2) =⇒ ẏs = y†s ẋs,

αt U(yt, ys) = αs + α†
sxs,t +O((t − s)2),

U(ys, yt) y
†
t = y†s +O(t− s), and

α†
t (I ⊗ U(yt, ys)) = α†

s +O(t − s).
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We start with the identity

∫ t

s

ατ ẏτ dτ =

∫ t

s

ατ U(yτ , ys)U(yτ , ys)
−1 ẏτ dτ

=

∫ t

s

[αs + α†
s xs,τ +O((τ − s)2)]U(yτ , ys)

−1 ẏτ dτ

=

∫ t

s

αs U(yτ , ys)
−1 ẏτdτ +

∫ t

s

α†
s xs,τ U(yτ , ys)

−1 ẏτ dτ +O((t − s)3)

=

∫ t

s

αs U(ys, yτ ) ẏτ dτ +

∫ t

s

α†
s xs,τ U(ys, yτ ) ẏτ dτ +O((t − s)3)

=: A+B +O((t − s)3),

wherein we have used Corollary 2.29 in order to show it is permissible to replace
U(yτ , ys)

−1 by U(ys, yτ ) above. The B term is then easily estimated as

B =

∫ t

s

α†
s xs,τ U(ys, yτ ) ẏτ dτ =

∫ t

s

α†
s xs,τ U(ys, yτ )y

†
τ ẋτ dτ

=

∫ t

s

α†
s xs,τ y

†
s ẋτ dτ +O((t− s)3) = α†

s(I ⊗ y†s)Xs,t +O((t − s)3).

The estimate of the A term to order O((t− s)3) requires more care. For this term
we use

d

dt
ψ(ys, yt) = ψ(ys, ·)∗yt ẏt =⇒ ẏt = ψ(ys, ·)−1

∗yt
d

dt
ψ(ys, yt)

and (from Theorem 3.15) that

U (ys, yτ )ψ(ys, ·)−1
∗yτ =2 I + SG

ys (ψ (ys, yτ )⊗ (·))

in order to conclude

A :=

∫ t

s

αs U(ys, yτ ) ẏτ dτ =

∫ t

s

αs U(ys, yτ )ψ(ys, ·)−1
∗yτ

d

dτ
ψ(ys, yτ ) dτ

=

∫ t

s

αs [I + SG
ys(ψ(ys, yτ )⊗ (·))] d

dτ
ψ(ys, yτ ) dτ +O(|t− s|3)

= αs(ψ(ys, yt)) + αs

∫ t

s

SG
ys

(
ψ(ys, yτ )⊗ d

dτ
ψ(ys, yτ )

)
dτ +O(|t− s|3)

= αs(ψ(ys, yt)) + αs

∫ t

s

SG
ys(y

†
s xs,τ ⊗ y†s ẋτ ) dτ +O(|t − s|3)

= αs(ψ(ys, yt)) + αs S
G
ys(y

†
s ⊗ y†s Xs,t) +O(|t − s|3).

Putting this all together proves (3.12). �

The following definition is motivated by the right-hand side of equation (3.12).
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Definition 3.20 ((G,y)-integrator). Given a gauge G := (ψ,U) and a path y ∈
CRPX(M), the (G,y)-integrator is the increment process

yG
s,t :=

(
ψ(ys, yt) + SG

ys

(
y†⊗2
s Xs,t

)
,
(
I ⊗ y†s

)
Xs,t

) ∈ TysM × [W ⊗ TysM ] .

Moreover, for α ∈ CRPUy (M,V ) (see Notation 3.3), let

(3.13) z̃s,t :=
〈
αs,y

G
s,t

〉
= αs

(
ψ (ys, yt) + SG

ys

(
y†⊗2
s Xs,t

))
+ α†

s

(
I ⊗ y†s

)
Xs,t,

which is defined for (s, t) ∈ Δ[0,T ] with |t− s| < δ for some sufficiently small δ > 0.

Recall that a two-parameter function F : Δ[0,T ] → V is an almost additive
functional if there exists a θ > 1, a control ω̃(s, t) and a C > 0 such that

(3.14) |Fs,u − Fs,t − Ft,u| ≤ C ω̃(s, t)θ

for all 0 ≤ s ≤ t ≤ u ≤ T .

Theorem 3.21. Let G := (ψ,U) be a gauge, α ∈ CRPUy (M,V ), and z̃s,t be as

in Definition 3.20. Then there exists a unique z =(z, z†)∈CRPX (V ) such that
z0 = 0, zs,t ≈

3
z̃s,t, and z

†
s = αs ◦ y†s. We denote this unique controlled rough path

by
∫ 〈α,dyG〉, i.e.,
∫ t

s

〈
α,dyG〉 := [ ∫

〈α,dyG〉
]1
s,t

≈
3

〈
αs,y

G
s,t

〉
and

[ ∫ 〈
α,dyG〉 ]†

s
= αs ◦ y†s.

Proof. By Theorem 3.25 below, z̃s,t :=
〈
αs,y

G
s,t

〉
is an almost additive functional

and therefore by Theorem 3.3.1 of [26] there exists a unique additive functional zs,t
such that zs,t ≈

3
z̃s,t. Moreover,

zs,t ≈
3
z̃s,t ≈

2
αs (ψ(ys, yt)) ≈

2
αs

(
y†s xs,t

)
,

which shows that zs :=
(
zs, αs ◦ y†s

)
is indeed a controlled rough path with values

in V. �

Example 3.22. In the case that U = Uψ, so that

αt ◦ (ψyt)∗ys − αs − α†
s (xs,t ⊗ (·)) ≈

2
0,

we have that yG
s,t :=

(
ψ (ys, yt) ,

(
I ⊗ y†s

)
Xs,t

)
and so

∫ t

s

〈
α, dyGψ〉 ≈

3
αs (ψ(ys, yt)) + α†

s

(
I ⊗ y†s

)
Xs,t.

Example 3.23. If G∇ =
(
(exp∇)−1, U∇), then by Lemma 3.13, we have that

∫ t

s

〈
α, dyG∇〉 ≈

3
αs

(
exp−1

ys (yt)
)
+ α†

s

(
I ⊗ y†s

)
Xs,t + αs

(1
2
T∇
ys ◦ y†⊗2

s Xs,t

)
.
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Remark 3.24. The (G,y)-integrator yG
s,t is helpful in easing notation so that the

integral is simply written
∫ t
s
〈α, dyG〉. A more honest notation for this integral

would be ∫ t

s

〈(
α, α†) , d (yψ,X)〉SG

y†
,

where SG
y†(s) is the block matrix defined by

SG
y†(s) :=

(
I SG

ys ◦
(
y†s
)⊗2

0 I ⊗ y†s

)

and 〈·, ·〉SG
y†

is the “inner product” given by the matrix SG
y† . When s is close to t,

we have∫ t

s

〈(
α, α†) , d (yψ,X)〉SG

y†
≈ (αs, α

†
s)

(
I SG

ys ◦
(
y†s
)⊗2

0 I ⊗ y†s

)(
yψs,t
Xs,t

)

= αs
(
ψ(ys, yt) + SG

ys

(
y†⊗2
s Xs,t

))
+ α†

s

(
I ⊗ y†s

)
Xs,t.

3.4. Almost additivity result

The following theorem was the key ingredient in the proof of Theorem 3.21 on the
existence of rough path integration in the manifold setting.

Theorem 3.25 (Almost additivity). Let G := (ψ,U) be any gauge. If α ∈
CRPUy (M,V ), then z̃s,t ∈ V defined as in Definition 3.20 is an almost additive
functional.

The proof of Theorem 3.25 will be given after Corollary 3.28 which states that
logarithms are “almost additive”. We first need a couple of lemmas. Recall from
Definition 2.15 that ψx = ψ (x, ·).

Lemma 3.26. If U and Ũ are two parallelisms on M , then

SŨ ,Uyt ◦ U(yt, ys)
⊗2 ≈

1
U(yt, ys) ◦ SŨ,Uys .

Proof. By the usual patching arguments it suffices to prove this lemma forM = Rd.
In the Euclidean space setting the identity is trivial to prove since U(n,m) =1 I

and SŨ,Un =1 S
Ũ,U
m . �

Lemma 3.27. Let K be a compact, convex set in Rd. If ψ is a logarithm with
domain D and K ×K ⊆ D, then there exists a CK such that, for all x, y, z ∈ K,

|ψ′
y(x)ψ(x, y) + ψ(y, z)− ψ′

y(x)ψ(x, z)| ≤ CK max{|ψ(x, y)|, |ψ(y, z)|, |ψ(x, z)|}3.

Proof. We will use the notation |x, y, z| := max {|y − x| , |z − y| , |z − x|} and write
f(x, y, z) =k g (x, y, z) if and only if f(x, y, z) = g(x, y, z) + O(|x, y, z|k). Since ψ
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is zero on the diagonal and ψ′
y(y) = id for all y, it follow from Taylor’s theorem

(or see Theorem 2.24) that

ψ′
y(x) =2 id + ψ′′

y (y) (x− y) and

ψ(x, y) =3 (y − x) +
1

2
ψ′′
x(x)(y − x)⊗2 =3 (y − x) +

1

2
ψ′′
y (y)(y − x)⊗2.(3.15)

From these approximations we learn

ψ(x, y) − ψ(x, z) =3 y − z +
1

2
ψ′′
y (y)

[
(y − x)⊗2 − (z − x)⊗2

]
and

ψ′
y(x)ψ(x, y) − ψ′

y(x)ψ(x, z)

=3

[
id + ψ′′

y (y) (x− y)⊗ (·)] (ψ(x, y)− ψ(x, z))

=3 y − z +
1

2
ψ′′
y (y)

[
(y − x)⊗2 − (z − x)⊗2

]
+ ψ′′

y (y) [(x− y)⊗ (y − z)] .

As simple calculation now shows, with a = y − x and b = y − z, that

1

2

[
(y − x)⊗2 − (z − x)⊗2

]
+ (x− y)⊗ (y − z) = −1

2

[
b⊗2 + b⊗ a− a⊗ b

]
.

Since ψ′′
y (y)a ⊗ b = ψ′′

y (y)b ⊗ a (mixed partial derivatives commute), the last two
displayed equations give

ψ′
y(x)ψ(x, y) − ψ′

y(x)ψ(x, z) =3 y − z − 1

2
ψ′′
y (y)b

⊗2

= −[
(z − y) +

1

2
ψ′′
y (y)(z − y)⊗2

]
=3 −ψ (y, z) .

The bounds derived above are uniform over a compact set K. Due to (3.15), we
may replace O

(|x, y, z|3) with O
(
max{|ψ(x, y)|, |ψ(y, z)|, |ψ(x, z)|}3). �

Corollary 3.28. If
(
ys, y

†
s

)
is a controlled rough path and ψ is a logarithm, there

exists Cψ , δψ > 0 such that if 0 ≤ s ≤ t ≤ u ≤ T and u− s ≤ δψ, then∣∣ψ(yt, yu)− ψ (yt, ·)∗ys [ψ (ys, yu)− ψ (ys, yt)]
∣∣
g
≤ Cψ ω(s, u)

3/p.

Proof. Around every point in y([0, T ]), using our usual techniques, we can find a
neighborhood W such that W×W ⊆ D and maps to a convex open set by a chart.
We can then use Remark 2.53 with a slightly modified version (which includes
three variables instead of two) of Lemma 2.52 to create a global estimate. We can
then choose a δ such that u − s ≤ δ forces the path to lie within one of these
sets W . Therefore, it suffices to prove the estimate locally. However, we can push
forward the metric and ψ to a convex set on Euclidean space. The rest follows
from the Lemma 3.27 and the fact that |ψ(ys, yt)| ≤ C ω(s, t)1/p for all |t− s| ≤ δ
for some C <∞ and δ > 0. �
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3.5. Proof of Theorem 3.25

Proof of Theorem 3.25. Let 0 ≤ s ≤ t ≤ u ≤ T . Throughout this proof, we will
use the notation ≈

i
with respect to the times s and u. To prove the statement, we

need to show z̃s,t + z̃t,u ≈
3
z̃s,u. We begin by working on the three terms for z̃t,u in

the following equation:

(3.16) z̃t,u = αt (ψ(yt, yu)) + α†
t

(
I ⊗ y†t

)
Xt,u + αt

(
SG
yt ◦ y†⊗2

t Xt,u
)
.

Using Corollary 3.28 followed by Corollary 3.16 we find

αt (ψ(yt, yu))

≈
3
αtψ (yt, ·)∗ys [ψ (ys, yu)− ψ(ys, yt)]

≈
3
αt U(yt, ys)

[
I + SG

ys (ψ(ys, yt)⊗ (·))] [ψ (ys, yu)− ψ(ys, yt)]

≈
3

[
αs + α†

s xs,t ⊗ (·)] [I + SG
ys (ψ(ys, yt)⊗ (·))] [ψ (ys, yu)− ψ(ys, yt)]

≈
3
αs

[
I + SG

ys (ψ(ys, yt)⊗ (·))] [ψ (ys, yu)− ψ(ys, yt)]

+ α†
s xs,t ⊗ [ψ (ys, yu)− ψ(ys, yt)] .

Combining this equation with the estimates

ψ(ys, yt) ≈
2
y†sxs,t and ψ (ys, yu)− ψ (ys, yt) ≈

2
y†s [xs,u − xs,t] = y†s xt,u

then shows

αt (ψ(yt, yu)) ≈
3
αs [ψ (ys, yu)− ψ(ys, yt)]

+ αsS
G
ys

(
y†s
)⊗2

xs,t ⊗ xt,u + α†
s

(
I ⊗ y†s

)
xs,t ⊗ xt,u.(3.17)

By the definitions of CRPX(M) and CRPUy (M,V ) we have

α†
t (I ⊗ y†t )Xt,u ≈

3
α†
t

(
I ⊗ U (yt, ys) y

†
s

)
Xt,u

= α†
t (I ⊗ U(yt, ys))

(
I ⊗ y†s

)
Xt,u ≈

3
α†
s

(
I ⊗ y†s

)
Xt,u.(3.18)

Lastly, by the definitions of CRPX(M) and CRPUy (M,V ) along with Lemma 3.26

with Ũ(m,n) = (ψm)∗n, we have

αt
(
SG
yt ◦ y†⊗2

t Xt,u
) ≈

3
αt

(
SG
yt ◦ U(yt, ys)

⊗2 ◦ y†⊗2
s Xt,u

)
≈
3
αt

(
U(yt, ys) ◦ SG

ys ◦ y†⊗2
s Xt,u

) ≈
3
αs

(
SG
ys ◦ y†⊗2

s Xt,u
)
.(3.19)

Adding z̃t,u in equation (3.16) to

z̃s,t = αs (ψ (ys, yt)) + α†
s

(
I ⊗ y†s

)
Xs,t + αs

(
SG
ys ◦ y†⊗2

s Xs,t
)

while making use of equations (3.17)–(3.19) and Chen’s identity in (2.2) shows

z̃s,t + z̃t,u ≈
3
αs (ψ (ys, yu)) + α†

s

(
I ⊗ y†s

)
Xs,u + αs

(
SG
ys ◦ y†⊗2

s Xs,u
)
= z̃s,u. �
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3.6. A map from CRPU
y (M,V ) to CRP Ũ

y (M,V )

Suppose that G = (ψ,U) and G̃ = (ψ̃, Ũ) are two gauges on M. Generally, if
α:=

(
α, α†) ∈ CRPUy (M,V ), there is no reason to expect it also to be an element

of CRP Ũy (M,V ). However, the main theorem (Theorem 3.32) of this section shows

there is a “natural” bijection between CRPUy (M,V ) and CRP Ũy (M,V ) which pre-
serves the notions of integration. The following proposition is needed in the proof
of Theorem 3.32 and moreover motivates the statement of the theorem.

Proposition 3.29. If G = (ψ,U) and G̃ = (ψ̃, Ũ) are two gauges on M and
y = (y, y†) ∈ CRPX(M), then

(3.20) yG
s,t ≈

3
yG̃
s,t +

(
SŨ,Uys

(
(y†s)

⊗2 Xs,t
)
, 0
)
,

where yG
s,t and yG̃

s,t are as in Definition 3.20.

Proof. From Proposition 3.17,

ψ(ys, yt)− ψ̃(ys, yt) ≈
3

1

2
Sψ̃∗,ψ∗
ys (ψ(ys, yt)⊗ ψ (ys, yt))

≈
3

1

2
Sψ̃∗,ψ∗
ys

((
y†s ⊗ y†s

)
[xs,t ⊗ xs,t]

)
= Sψ̃∗,ψ∗

ys

(
(y†s)

⊗2 Xs,t
)
,

wherein we have used Sψ̃∗,ψ∗
ys is symmetric and X = (x,X) is a weak-geometric

rough path for the last equality. Making use of this estimate it now follows that

yG
s,t − yG̃

s,t =
(
ψ(ys, yt)− ψ̃(ys, yt) +

(
SG
ys − SG̃

ys

)(
(y†s)

⊗2 Xs,t
)
, 0
)

≈
3

((
Sψ̃∗,ψ∗
ys + SG

ys − SG̃
ys

)(
(y†s)

⊗2 Xs,t
)
, 0
)
.(3.21)

On the other hand, by Lemma 3.11,

Sψ̃∗,ψ∗ = Sψ̃∗,Ũ + SŨ,ψ∗ = Sψ̃∗,Ũ + SŨ,U + SU,ψ∗ = SG̃ − SG + SŨ,U ,

which combined with (3.21) gives (3.20). �

Corollary 3.30. The integral,
∫ 〈

α, dyG〉 only depends on the choice of paral-
lelism U , and not on the logarithm used to make the gauge G = (ψ,U).

Proof. From Proposition 3.29 with U = Ũ , it follows that

∫ t

s

〈
α, dyG〉 ≈

3

〈
αs,y

G
s,t

〉 ≈
3

〈
αs,y

G̃
s,t

〉 ≈
3

∫ t

s

〈
α, dyG̃〉,

from which it follows that the two additive functionals
∫ 〈α, dyG〉 and

∫ 〈α, dyG̃〉
must be equal. �



Controlled rough paths on manifolds I 923

Remark 3.31. Corollary 3.30 should not come as a surprise; the definition of
a controlled rough path y does not depend on the choice of gauge G while the
definition of α only depends only on a parallelism. Thus, if such an integral is to
exist uniquely for each α and y, it cannot depend on a choice of logarithm.

Although the integral is independent of logarithm, such a geometrical device
is necessary to write the integral approximation in (3.13); the reader may refer
to Subsection 6.1 in the Appendix to see why this is the case even in the smooth
category.

If α =
(
α, α†) ∈ CRPUy (M,V ) and U �= Ũ , then

(3.22)
〈
αs,y

G
s,t

〉 ≈
3

〈
αs,y

G̃
s,t +

(
SŨ,Uys

(
(y†s)

⊗2 Xs,t
)
, 0
)〉

= 〈α̃s,yG̃
s,t〉,

where α̃s is defined in (3.23) below. The identity in (3.22) suggests the following
theorem.

Theorem 3.32. The map

(3.23) αs = (αs, α
†
s) → α̃s :=

(
α̃s, α̃

†
s

)
:=

(
αs, α

†
s + αsS

Ũ,U
ys y†s ⊗ I

)
is a bijection from CRPUy (M,V ) to CRP Ũy (M,V ) such that

(3.24)

∫ 〈
α, dyG〉 =

∫ 〈
α̃, dyG̃〉.

Proof. The only thing that is really left to prove here is the assertion that α̃ ∈
CRP Ũy (M,V ). First we prove that item (3) of Definition 3.1 holds for α̃.

From Theorem 3.15 with m = ys and n = yt, we find

U(ys, yt) Ũ(ys, yt)
−1 ≈

2
I + SŨ,Uys (ψ(ys, yt)⊗ (·)) ,

and then combining this result with Corollary 2.29 shows

(3.25) Ũ(yt, ys) ≈
2
U (yt, ys)

[
I + SŨ,Uys (ψ(ys, yt)⊗ (·)) ].

From this equation and the fact that α∈CRPUy (M,V ), we learn

αtŨ(yt, ys)− αs ≈
2
αt U(yt, ys)

[
I + SŨ,Uys (ψ(ys, yt)⊗ (·)) ]− αs

≈
2

(
αs + α†

sxs,t
) [
I + SŨ,Uys (ψ(ys, yt)⊗ (·)) ]− αs

≈
2
α†
s xs,t + αsS

Ũ,U
ys

(
y†s xs,t ⊗ (·)) = α̃†

s (xs,t ⊗ (·)) ,

as desired.
Next we check item (4) of Definition 3.1. We are given

0 ≈
1
α†
t ◦ (I ⊗ U(yt, ys))− α†

s

= α̃†
t ◦ (I ⊗ Ũ(yt, ys))− α̃†

s − αt ◦ SŨ ,Uyt ◦ (y†t ⊗ U(yt, ys)) + αs ◦ SŨ ,Uys ◦ (y†s ⊗ I)
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wherein we have used that U(ys, yt) ≈
1
Ũ(ys, yt) (for example, see (3.25)). We

therefore must show the last line is approximately 0. However, by Lemma 3.26,

we have SŨ,Uyt ◦ U(yt, ys)
⊗2 ≈

1
U(yt, ys) ◦ SŨ,Uyt . Thus

αt ◦ SŨ,Uyt ◦ (y†t ⊗ U(yt, ys))− αs ◦ SŨ,Uys ◦ (y†s ⊗ I)

≈
1
αt ◦ SŨ,Uyt ◦ (U(yt, ys)y

†
s ⊗ U(yt, ys))− αs ◦ SŨ,Uys ◦ (y†s ⊗ I)

≈
1
[αt ◦ U(yt, ys)− αs][S

Ũ ,U
ys ◦ (y†s ⊗ I)] ≈

1
0. �

4. Integrating one-forms along a CRP

For the next result we extend (in the usual way) the covariant derivative ∇U ,
defined in Remark 2.20 acting on vector fields, to a covariant derivative acting on
one-forms which we continue to denote by ∇U . In more detail, if α ∈ Ω1(M,V ),
Y ∈ Γ(TM), and vm ∈ TmM, then ∇U

vmα is determined by the product rule, i.e.,

(4.1) vm [α (Y )] =
(∇U

vmα
)
(Y (m)) + αm

(∇U
vmY

)
.

Since

vm [α (Y )] =
d

dt

∣∣
0
α
(
U(m,σt)

−1U(m,σt)Y (σt)
)

=
d

dt

∣∣
0
α
(
U(m,σt)

−1Y (m)
)
+ αm

(∇U
vmY

)
,

where σt is a path in M such that σ̇0 = vm, it follows that ∇U
vmα may be com-

puted by

(4.2) ∇U
vmα =

d

dt

∣∣
0
[α ◦ U (m,σt)

−1].

Moreover, by Corollary 2.29, we may alternatively write (4.2) as

∇U
vmα =

d

dt

∣∣
0
[α ◦ U (σt,m)] .

Lemma 4.1. Let V be a Banach space and U be a parallelism on M. If α ∈
Ω1(M,V ) is a V -valued smooth one-form on M , then

αn ◦ U(n,m)− αm =2 ∇U
ψ(m,n)α,

where ∇U is the covariant derivative defined in Remark 2.20 and ψ is any loga-
rithm.

Proof. To prove the lemma, we note this is a local result and we therefore may
assume M = Rd. Then by Taylor’s theorem,

αn ◦ U(n,m) = αm +D[α(·) ◦ U(·,m)](m)(n −m) +O(|n−m|2)
= αm +∇U

(n−m)m
α+O(|n −m|2) = αm +∇U

ψ(m,n)α+O(|ψ(m,n)|2).
�
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Suppose that α ∈ Ω1(M,V ) is a V -valued one-form and U is a parallelism
on M. We wish to take αUs = αys := α|TysM . Making use of Lemma 4.1, we find

(4.3) αUt ◦ U(yt, ys)− αs ≈
2
∇U
ψ(ys,yt)

α ≈
2
∇U
y†s xs,t

α,

and this computation suggests the following proposition.

Proposition 4.2. Suppose that α ∈ Ω1(M,V ) is a V -valued one-form and U is a
parallelism on M, then

α(y,U)
s :=

(
αys , α

†(y,U)
s

)
:=

(
α|TysM ,∇U

y†s(·)α
) ∈ CRPUy (M,V ).

Proof. In light of how αy,Us has been defined and of equation (4.3), we need only
verify item (4) in Definition 3.1 is satisfied. To this end, suppose that w ∈W, then

α
†(y,U)
t ◦ (I ⊗ U (yt, ys)) (w ⊗ (·)) = (∇U

y†tw
α
)
U (yt, ys)

≈
1

(∇U
U(yt,ys)y

†
sw
α
)
U(yt, ys),(4.4)

wherein we have used inequality (2.23) along with Corollary 2.29 in the last line.
Since for vm ∈ TmM the function F (n) := (∇U

U(n,m)vm
α)U(n,m) ∈ L(TmM,V ) is

smooth, it follows by Taylor’s theorem that F (n) =1 F (m) which translates to(∇U
U(n,m)vm

α
)
U (n,m) =1 ∇U

vmα.

Taking m = ys, n = yt, and vm = y†sw in this estimates shows(∇U
U(yt,ys)y

†
sw
α
)
U(yt, ys) ≈

1
∇U
y†sw

α

which combined with (4.4) completes the proof. �

Theorem 4.3. If α ∈ Ω1(M,V ) is a V -valued one-form, then
∫ 〈

α(y,U), dyG〉 is
independent of any choice of gauge G = (ψ,U) on M. In the future we denote this
integral more simply as

∫ 〈α,dy〉 .
Proof. Suppose that U and Ũ are two parallelisms. According to Theorem 3.32,
it suffices to show

(4.5) α
†(y,Ũ)
s = α†(y,U)

s + αysS
Ũ,U
ys

[
y†s ⊗ I

]
.

We will see that (4.5) is a fairly direct consequence of Example 3.10 which, when
translated to the language of forms (see (4.1)), states

(4.6) ∇vmα = ∇̃vmα− α ◦ SŨ,Um (vm ⊗ (·)) .
So for w ∈ W, we have

α†(y,Ũ)
s w = ∇̃y†sw

α = ∇y†sw
α+αysS

Ũ,U
m (y†sw ⊗ (·)) = α†(y,U)

s w+αysS
Ũ,U
m (y†sw ⊗ (·))

which proves (4.5). �
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Let us now record a number of possible different expressions for computing∫ t
s α(dy) depending on the choice of gauge we make.

Proposition 4.4. Let G =(ψ,U) be a gauge. There exists a δ > 0 such that for
s < t and t− s < δ, the approximation[ ∫

α(dy)
]1
s,t

≈
3
αys (ψ(ys, yt)) +

[(∇U
(·)α

)
ys

+ αys ◦ SG
ys

] ◦ y†⊗2
s Xs,t

holds.

In the case that we take U = Uψ, we get a slightly simpler formula.

Corollary 4.5. Let ψ be a logarithm. There exists a δ > 0 such that for s < t
and t− s < δ, the approximation[ ∫

α(dy)
]1
s,t

≈
3
αys (ψ(ys, yt)) + d

(
α(·) ◦

(
ψ(·)

)
∗ys

)
ys

◦ y†⊗2
s Xs,t

holds.

Example 4.6. Let ∇ be a covariant derivative on M. There exists a δ > 0 such
that for s < t and t− s < δ, the approximation[ ∫

α(dy)
]1
s,t

≈
3
αys

( (
exp∇ys

)−1
(yt)

)
+
[
(∇α)ys +

1

2
αys ◦ T∇

ys

]
◦ y†⊗2

s Xs,t

holds. Indeed this follows immediately from Proposition 4.4, Lemma 3.13, and the
fact that

(∇α)ys(vm, wm) := vm[α(W )] − α(∇vmW ) = d(α(·) ◦W (·))ys(vm)− α(∇vmW )

whereW is any vector field such thatW (m) = wm. ChoosingW = U∇ (·,m)wm,
we have

∇vmW = ∇vmU
∇ (·,m)wm = 0

by the definition of parallel translation.

4.1. Integration of a one-form using charts

It is easy to see that by independence of gauges, the integral of a one-form along(
ys, y

†
s

)
is an object which we only need to compute locally. As mentioned in

Remark 2.22 we have an example of a local gauge by using a chart. Plugging this
formula into the integral approximation from Corollary 4.5, we get the following.

Corollary 4.7. Let φ be a chart on M . For all a, b ∈ [0, T ] such that y[a, b] ⊂
D(φ), we have that the approximation[ ∫

α(dy)
]1
s,t

≈
3
αys

(
(dφys)

−1 [φ(yt)− φ(ys)]
)

+ d
(
α(·) ◦

(
dφ(·)

)−1
dφys

)
ys

◦ y†⊗2
s Xs,t(4.7)

holds for all s < t ∈ [a, b].
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Although this formula looks a bit complicated, it may be reduced to something
that makes more sense. First, note that

αm ◦ (dφm)
−1

=
[ (
φ−1

)∗
α
]
φ(m)

.

Thus we can reduce the right-hand side of (4.7) to[
(φ−1)∗α

]
φ(ys)

(φ(yt)− φ(ys)) + d
( [

(φ−1)∗α
]
φ(·) dφys

)
ys

◦ y†⊗2
s Xs,t

=
[
(φ−1)∗α

]
φ(ys)

(φ(yt)− φ(ys)) +
[
(φ−1)∗α

]′
φ(ys)

[
dφys ◦ y†s

]⊗2
Xs,t.

Now, if we recall Notation 2.41, we see that this is approximately equal to another
rough integral. More precisely,

[ ∫
α(dy)

]1
s,t

≈
3

[ ∫
(φ−1)∗ α (dφ∗y)

]1
s,t
.

However, additive functionals are unique up to this order, so in fact

[ ∫
α(dy)

]1
s,t

=
[ ∫

(φ−1)∗ α (dφ∗y)
]1
s,t
,

which is a relation which should hold under any reasonable integral. This is sum-
marized in the following theorem, which gives us an alternative way of defining
this integral.

Theorem 4.8. The integral,
∫
α(dy), is the unique V -valued rough path controlled

by X on [0, T ] starting at 0 determined by

(1)
[∫
α(dy)

]1
s,t

=
[∫ (

(φ−1)∗α
)
(dφ∗y)

]1
s,t

for any chart and s < t ∈ [0, T ] such

that y ([s, t]) ⊂ D(φ)

(2)
[∫
α(dy)

]†
s
= αys ◦ y†s.

(See Theorem 4.15 below for a more general version of this theorem.)

A notion of associativity for the developed integration theory holds:

Theorem 4.9 (Associativity theorem). Let y ∈ CRPX(M), α ∈ Ω1(M,V ), and let
K : M → L(V, Ṽ ) be a smooth function so that Kα ∈ Ω1(M, Ṽ ). If z =

∫
α(dy) ∈

CRP (V ) , then∫
(Kα)(dy) =

∫
〈K∗(y), dz〉

(
=:

∫ 〈
K∗(y), d

∫
α(dy)

〉)
,

where K∗(y) =
(
K(y),K∗yy†

) ∈ CRPX (Hom (V, V ′)) .

Moreover, if f and fα :=
(
fs αs, f

†
s (I ⊗ αs) + fsα

†
s

)
are as in Proposition 3.6

and z = (z, z†) =
∫ 〈

α, dyG〉 , then∫
〈f , dz〉 =

∫ 〈
fα, dyG〉 ,
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or in other words, ∫ 〈
f , d

∫ 〈
α, dyG〉 〉 =

∫ 〈
fα, dyG〉 .

Proof. We prove the second statement first; we have the approximations[ ∫ 〈
fα, dyG〉]1

s,t

≈
3
fs αs

(
ψ(ys,yt) + SG

ys

(
y†⊗2
s Xs,t

))
+
[(
f †
s (I ⊗ αs) + fsα

†
s

)] (
I ⊗ y†s

)
Xs,t

= fs
(
αs

(
ψ(ys,yt) + SG

ys

(
y†⊗2
s Xs,t

))
+ α†

s

(
I ⊗ y†s

)
Xs,t

)
+ f †

s

(
I ⊗ αsy

†
s

)
Xs,t

≈
3
fs (zs,t) + f †

s

(
I ⊗ z†s

)
Xs,t ≈

3

[ ∫
〈f , dz〉

]1
s,t
.

As the first and last terms of this equation are additive functionals, they must be
equal.

Additionally,

[ ∫ 〈
fα, dyG〉 ]†

s
= fs αs

(
y†s
)
= fsz

†
s =

[ ∫
〈f , dz〉

]†
s
.

Thus, the two controlled rough paths are equal.
The first statement of the theorem, with our current toolset, can be proved in

two different ways. We can reduce the result to a special case of the result proved
above, or, by using the chart definitions of integration along a one-form, we can
reduce it to its validity in the flat case. The first method is quick but may hide
the concept of what is happening. We therefore provide both proofs.

Method 1. Letting G = (ψ,U) be any gauge, we define f := (f, f †) ∈
CRPX(Hom(V, Ṽ )) by the formula

fs := K(ys) and f †
s := K∗ysy

†
s

and α(y,U) as in Proposition 4.2 (see Proposition 4.10 below to see why f ∈
CRPX(Hom(V, Ṽ ))). Then by the statement already proved, we have

(4.8)

∫ 〈
fα(y,U), dyG〉 =

∫
〈f , dz〉 ,

where z =
∫ 〈

α(y,U), dyG〉 =
∫
α (dy). The right-hand side in equation (4.8) is

simply
∫ 〈K∗(y), dz〉, while the fα(y,U) term on the left-hand side can be recognized

as (Kα)(y,U). Indeed, by the product rule with ∇U , we have

(Kα)(y,U)
s =

(
K(ys)α|TysM ,∇U

y†s(·) [K(·)α] ) = (
Kα|TysM ,K∗ysy

†
sα+K(ys)∇U

y†s(·)α
)

=
(
fs αs, f

†
sα+ fs α

†(y,U)
s

)
= fα(y,U).

Thus∫
(Kα)(dy) :=

∫ 〈
(Kα)(y,U)

s , dyG〉 =
∫ 〈

fα(y,U), dyG〉 =
∫

〈K∗(y), dz〉 .
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Method 2. By a simple patching argument, this is really a local result and
hence using the chart definitions of integration it suffices to check this result in the
case M is an open subset of Rd. First we check the derivative processes. From the
definitions we have

z†s = αys ◦ y†s and
[ ∫

(Kα)(dy)
]†
s
= (Kα)ys ◦ y†s = K(ys)αys ◦ y†s = K(ys) z

†
s.

Thus [ ∫
(Kα)(dy)

]†
s
= K(ys) z

†
s.

On the other hand,

[ ∫
〈K∗(y), dz〉

]†
s
= [K(y)]sz

†
s = K(ys) z

†
s

Similarly for the paths

zs,t ≈
3
α (ys,t) + α′

ysy
†⊗2
s Xs,t,

and so[ ∫
(Kα)(dy)

]1
s,t

≈
3
(Kα)ys ys,t + (Kα)′ys y

†⊗2
s Xs,t

= K(ys)αysys,t +K(ys)α
′
ysy

†⊗2
s Xs,t +

[
K ′
ys

(
y†s(·)⊗ αy†s(·)

)]
Xs,t

≈
3
K(ys) zs,t +K ′

ys

(
y†s ⊗ z†s

)
Xs,t.

On the other hand,

[ ∫ 〈
K∗(y), dz

〉]1
s,t

≈
3
K(ys)zs,t + [K∗(y)]†sz

†
sXs,t = K(ys)zs,t +K ′

ys(y
†
s ⊗ z†s)Xs,t.

Comparing these expressions completes the proof. �

4.2. Push-forwards of controlled rough paths

Let M = Md and M̃ = M̃ d̃′ be manifolds. Let f : M → M̃ be smooth and
suppose ys =

(
ys, y

†
s

) ∈ CRPX(M). In Definition 4.11 below, we are going to give
a definition of the push-forward of y by f which generalizes Example 2.56.

Proposition 4.10. The pair
(
f(ys), f∗ ◦ y†s

)
is an element of CRPX(M̃).

Proof. Suppose φ̃ is a chart on M̃ such that f ◦ y ([a, b]) ⊆ D(φ̃). We must show
that

(4.9)
∣∣φ̃ ◦ f(yt)− φ̃ ◦ f(ys)− dφ̃ ◦ f∗y†s xs,t

∣∣ ≤ Cφ̃,a,b ω(s, t)
2/p

and

(4.10)
∣∣dφ̃ ◦ f∗y†t − dφ̃ ◦ f∗y†s

∣∣ ≤ Cφ̃,a,b ω(s, t)
1/p
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hold for some Cφ̃,a,b for all s ≤ t in [a, b]. We can again use our proof strategy
outlined in Remark 2.53 to treat this problem in nice neighborhoods. We leave it to
the reader to follow the pattern of earlier proofs to see that we can assume without
loss of generality that there is a chart φ on M such that y([a, b]) ⊆ D(φ) and R(φ)
is convex. Which these simplifications, we note that (zs, z

†
s) := (φ(ys), dφ ◦ y†s) is a

controlled rough path on R(φ) and the function F : = φ̃◦f ◦φ−1 : R(φ) → R(φ̃) is
a map between Euclidean spaces. Therefore Inequalities (4.9) and (4.10) reduce to

the fact that the pair
(
F (zs), F

′(zs) ◦ z†s
)
is a controlled rough path in Rd̃ (which is

trivial by applying Taylor’s theorem after we check that we get the correct terms);
indeed, by a simple computation, we have

F ′(zs) ◦ z†s = dφ̃ ◦ f∗ ◦
(
dφ−1

)
zs

◦ dφys ◦ y†s
= dφ̃ ◦ f∗ ◦ (dφys)−1 ◦ dφys ◦ y†s = dφ̃ ◦ f∗y†s,

and clearly F (zs) = φ̃ ◦ f(ys). �

Definition 4.11. The push-forward of y denoted by f∗y or f∗(y, y†) is the rough
path controlled by X with path f(ys) and derivative process f∗ ◦ y†s. If M̃ = Rd̃,
we will abuse notation and write f∗ys to mean

(
f(ys), df ◦ y†s

)
(i.e., we forget the

base point on the derivative process).

Remark 4.12. The push-forward operation on elements in CRPX(M) is clearly
covariant, i.e., if f : M → N and g : N → P are two smooth maps between mani-
folds M , N, and P, then (g ◦ f)∗ (y) = g∗ (f∗(y)) .

This definition is consistent with how we defined the integral of a one-form
along a controlled rough path in the sense that we have a fundamental theorem of
calculus. Let V be a Banach space.

Theorem 4.13. Let ys =
(
ys, y

†
s

) ∈ CRPX(M) and f be a smooth function
from M to V . Then

f(ys)− f(y0) =
[ ∫

df [dy]
]1
0,s
,

where df is interpreted as a one-form. Since we have df ◦ y†s =
[∫
df [dy]

]†
s
, we

have the equality

f∗(y, y†)− (f(y0), 0) =

∫
df(dy).

Proof. Although there are ways to do this proof without much machinery, we find it
more instructive to work on a Riemannian manifold with the Levi-Civita covariant
derivative. Since we have proved that the integral is independent of choice of
metric, it does not matter which one we pick. With this in mind, we have the
approximation

[ ∫
df [dy]

]1
s,t

≈
3
dfys

(
exp−1

ys (yt)
)
+ (∇df)ys

[
y†⊗2
s Xs,t

]
,
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and as ∇df is symmetric, it follows that[ ∫
df [dy]

]1
s,t

≈
3
dfys

(
exp−1

ys (yt)
)
+

1

2
(∇df)ys

[
y†⊗2
s (xs,t ⊗ xs,t)

]

≈
3
dfys

(
exp−1

ys (yt)
)
+

1

2
(∇df)ys

[
exp−1

ys (yt)
⊗2

] ≈
3
f(yt)− f(ys).

The last approximation above follows from Taylor’s theorem on manifolds (Theo-
rem 6.3 in the Appendix). Note here that f (yt)− f(ys) is additive so that

[ ∫
df [dy]

]1
s,t

= f (yt)− f(ys). �

Remark 4.14. If M ⊆ is an embedded submanifold of W = Rk,
(
ys, y

†
s

) ∈
CRPX(M), I : M →W denotes the identity (or embedding) map, and

(
zs, z

†
s

)
:=

I∗
(
ys, y

†
s

)
, then we have

zs = ys and z†s = π2 ◦ y†s,
where π2 is the projection of the tangent vector component (i.e., it forgets the base
point). We can associate to it a unique rough path (y,Y) in W such that(

z†s ⊗ z†s
)
Xs,t ≈

3
Ys,t.

In this case, this is a rough path in the embedded sense (see [3]) since

[I(ys)⊗Q(ys)] [Y]s,t ≈3 [I(ys)⊗Q(ys)]
[
z†s ⊗ z†s

]
Xs,t = 0

as Q(ys) ◦ z†s = 0, where Q = I − P and P (x) is orthogonal projection onto the
tangent space at x.

Lastly, we have a relation between push-forwards of paths and pull-backs of
one-forms.

Theorem 4.15 (Push me-pull me). Let f : M → M̃ , let ys =
(
ys, y

†
s

) ∈ CRPX(M)

and let α ∈ Ω1(M̃, V ). Then

(4.11)
[ ∫

f∗α(dy)
]1

=
[ ∫

α (d (f∗y))
]1
.

Moreover, ∫
f∗α(dy) =

∫
α (d (f∗y)) .

Proof. This is a statement we only have to prove locally. Indeed for each s ∈ [0, T ],
there are charts φs and φ̃s on M and M̃ respectively such that ys ∈ D(φs) and
f(ys) ∈ D(φ̃s) which are open. We take Us := f−1(D(φ̃s))∩D(φs) and shrink it if
necessary so that Vs = φ(Us) is convex. Thus if we can prove that equation (4.11)
holds whenever y([a, b]) ⊆ U such that φ(U) is convex and such that f(y([a, b])) ⊆
D(φ̃), we will be done. We do this now.
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By Theorem 4.8, the fact that pull-backs are contravariant, and that push-
forwards are covariant, we have

[ ∫
f∗α(dy)

]1
s,t

=
[ ∫

(φ−1)∗f∗α(dφ∗y)
]1
s,t

=
[ ∫

(f ◦ φ−1)∗α(dφ∗y)
]1
s,t

=
[ ∫

(φ̃−1 ◦ φ̃ ◦ f ◦ φ−1)∗α(dφ∗y)
]1
s,t

=
[ ∫

(φ̃ ◦ f ◦ φ−1)∗((φ̃−1)∗α)(dφ∗y)
]1
s,t

=
[ ∫

(φ̃−1)∗α(d((φ̃ ◦ f ◦ φ−1)∗φ∗y))
]1
s,t
,

where the last step is just (4.11) on Euclidean space. This is a simple computation
(for example, see the appendix of [3]). Thus, we have

[ ∫
f∗α(dy)

]1
s,t

=
[ ∫

(φ̃−1)∗α(d((φ̃ ◦ f ◦ φ−1)∗φ∗y))
]1
s,t

=
[ ∫

(φ̃−1)∗α(d(φ̃∗(f∗y)))
]1
s,t

=
[ ∫

α(d(f∗y))
]1
s,t
.

The fact that [ ∫
f∗α(dy)

]†
=

[ ∫
α(d(f∗y))

]†
is trivial. �

5. Rough differential equations

Before discussing rough differential equations on a manifold, we will give an equiv-
alent condition for a controlled rough path z ∈ CRPX

(
Rd

)
to satisfy the RDE

approximation on a compact interval in the flat case using logarithms.
For the next proposition, let ψ be a logarithm on Rd such that ψ(x, y) =(

x, ψ̄(x, y)
)
.

Proposition 5.1. Let z : [a, b] → Rd be a path and let W ⊆ Rd be an open convex
set such that z([a, b]) ⊆ W and W ×W ⊆ D (ψ) . Then

(5.1) zs,t ≈
3
Fxs,t(zs) +

(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t

if and only if

(5.2) ψ̄(zs, zt) ≈
3
Fxs,t(zs) +

(
∂Fw(zs)

[
ψ̄′
zs(·)Fw̃(·)

])
(zs)|w⊗w̃=Xs,t .

Proof. If z· satisfies (5.1), then from (2.17) of Theorem 2.24 with y = zt and x = zs
we find

ψ̄(zs, zt) = zs,t +
1

2
ψ̄′′
x(x) (zs,t)

⊗2
+ C(zs, zt) (zs,t)

⊗3
(5.3)

≈
3
Fxs,t(zs) +

(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t +

1

2
ψ̄′′
zs(zs)

[
Fxs,t(zs)

]⊗2
,(5.4)
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wherein C is a smooth function and we have made use of the fact that zs,t ≈
1
0.

By the product rule and the fact that ψ is a logarithm it follows that(
∂Fw(zs)

[
ψ̄′
zs(·)Fw̃(·)

])
(zs)

= ψ̄′′
zs(zs)Fw(zs)⊗ Fw̃(zs) + ψ̄′

zs(zs)
(
∂Fw(zs)Fw̃

)
(zs)

= ψ̄′′
zs(zs)Fw(zs)⊗ Fw̃(zs) +

(
∂Fw(zs)Fw̃

)
(zs).(5.5)

Since X is a weak-geometric rough path and ψ̄′′
zs(zs) is symmetric, we also have

ψ̄′′
zs(zs)Fw(zs)⊗ Fw̃(zs)||w⊗w̃=Xs,t

=
1

2
ψ̄′′
zs(zs)

[
Fxs,t(zs)

]⊗2
,

which combined with (5.5) shows(
∂Fw(zs)

[
ψ̄′
zs(·)Fw̃(·)

])
(zs)|w⊗w̃=Xs,t

=
(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t +

1

2
ψ̄′′
zs(zs)

[
Fxs,t(zs)

]⊗2
.(5.6)

Equation (5.2) now follows directly from (5.4) and (5.6).
Conversely, now assume that (5.2) holds. From (5.2) and the fact that X is a

rough path there exists C1 < ∞ such that
∣∣ψ̄(zs, zt)∣∣ ≤ C1 ω(s, t)

1/p. Combining
this observation with (5.3) easily implies zs,t ≈

1
0. Indeed, by uniform continuity,

there exists a δ > 0 such that if |t− s| ≤ δ, we have

|zs,t| ≤ |ψ̄ (zs, zt) |+
∣∣∣1
2
ψ′′
zs(zs) (zs,t)

⊗2 + C(zs, zt) (zs,t)
⊗3

∣∣∣
≤ C1 ω(s, t)

1/p +
1

2
|zs,t| .

By using an argument similar to the proof of Theorem 2.48 we can bootstrap these
local inequalities to prove the existence of a C2 <∞ such that |zs,t| ≤ C2 ω(s, t)

1/p

for a ≤ s ≤ t ≤ b.
From equations (5.3) and (5.2),

zs,t = ψ̄(zs, zt)− 1

2
ψ̄′′
zs(zs) (ψ (zs, zt))

⊗2
+ C(zs, zt) (zs,t)

⊗3

≈
3
Fxs,t(zs) +

(
∂Fw(zs)

[
ψ̄′
zs(·)Fw̃(·)

])
(zs)|w⊗w̃=Xs,t −

1

2
ψ̄′′
zs(zs)

(
Fxs,t(zs)

)⊗2

= Fxs,t(zs) +
(
∂Fw(zs)Fw̃

)
(zs),

wherein we have used (5.6) for the last equality. �

5.1. RDEs on a manifold

We now move to the manifold case. Let F : M → L (W,TM) be smooth such that
F (m) ∈ L (W,TmM) . Alternatively we can think of F : W → Γ(TM) where the
map w → Fw(·) is linear. We wish to give meaning to the differential equation

(5.7) dyt = FdXt(yt)
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with initial condition y0 = ȳ0. To do this, first recall that any vector field can be
transferred to Euclidean space by using charts. If U ⊆ D(φ) where φ is a chart
and V := φ (U) then

Fφ := dφ ◦ (F ◦ φ−1
)

is a vector field on V (which does not carry the base point). If yt is to “solve” (5.7)
then zt := φ∗yt should solve the differential equation

(5.8) dzt = FφdXt
(zt) .

In the Euclidean case, equation (5.8) is satisfied if

zt ≈
3
zs + Fφxs,t(zs) +

(
∂Fφw(zs)

Fφw̃
)
(zs)|w⊗w̃=Xs,t ,(5.9)

z†s = Fφ(·)(zs).

By writing out equation (5.9) we have

φ(yt) ≈
3
φ(ys) + dφ ◦ Fxs,t(ys) +

(
∂dφ◦Fw(ys)dφ ◦ (Fw̃ ◦ φ−1

))
(φ(ys)) |w⊗w̃=Xs,t

= φ(ys) + dφ ◦ Fxs,t(ys) + Fw(ys) [dφ ◦ Fw̃] |w⊗w̃=Xs,t .(5.10)

We note that F is linear with its range in the algebra of differential operators, we
can extend it uniquely to F which acts on the tensor algebra T (Rn). In that case,
we may write (5.10) more concisely as

(5.11) φ(yt) ≈
3
φ(ys) +

(FXs,tφ
)
(ys).

This approximation will be satisfied for our solution to a rough differential equation
on a manifold. However, we will opt to define our solution in a coordinate-free but
equivalent way.

Definition 5.2. A controlled rough path y =(y, y†) on I0 = [0, T ] or [0, T )
solves (5.7) if y†s = F(·)(ys) and for every f ∈ C∞(M) and [a, b] ⊆ I0, the ap-
proximation

f(yt)− f(ys) ≈
3

(FXs,tf
)
(ys)

holds for a ≤ s ≤ t ≤ b.
If in addition y0 = ȳ0, we say y solves (5.7) with initial condition y0 = ȳ0.

While this is an intuitive definition, there are many workable characterizations
of solving a rough differential equation. Before presenting a few more, we note
that if α ∈ Ω1(M,V ) and F : M → L (W,TM) is smooth, then the composition
α ◦ F(·) is a smooth map from M to V . Given y ∈ CRPX(M), we can then define

the push-forward
[
α ◦ F(·)

]
∗ y ∈ CRPX (L (W,V )). Recall from Theorem 2.7 that

we can define the integral increment∫ t

s

〈
([α ◦ F(·)]∗y)τ , dXτ

〉
.

With this idea in mind, we now give other characterizations of solving (5.7).
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Theorem 5.3. Let y be a path in M on I0 with y†s = F·(ys). Let y = (y, y†) ∈
CRPX(M). The following are equivalent.

(1) For every chart φ with a, b ∈ I0 such that y([a, b]) ⊆ D(φ) the approximation

(5.12) φ(yt) ≈
3
φ(ys) + dφ ◦ Fxs,t(ys) + Fw(ys) [dφ ◦ Fw̃] |w⊗w̃=Xs,t

holds a ≤ s ≤ t ≤ b; that is,

φ(yt)− φ(ys) =

∫ t

s

〈 ([
dφ ◦ F(·)

]
∗ y

)
τ
, dXτ

〉
for a ≤ s ≤ t ≤ b.

(2) If V is a Banach space, α ∈ Ω1(M,V ), and [a, b] is such that [a, b] ⊆ I0 then∫ t

s

α(dy) ≈
3
α
(
Fxs,t(ys)

)
+ Fw(ys) [α ◦ Fw̃] |w⊗w̃=Xs,t

for a ≤ s ≤ t ≤ b; that is,∫ t

s

α(dy) =

∫ t

s

〈 ([
α ◦ F(·)

]
∗ y

)
τ
, dXτ

〉
for a ≤ s ≤ t ≤ b.

(3) y solves (5.7); that is,

f(yt)− f(ys) =

∫ t

s

〈 ([
df ◦ F(·)

]
∗ y

)
τ
, dXτ

〉
for every f ∈ C∞(M).

Proof. We will only prove the approximations in each case, that is the first state-
ment of each item. The second statements are immediate from the definitions.

(1) =⇒ (2). We assume that y satisfies the approximation in (5.12) for any
chart. Let [a, b] ⊆ I0 be given. For every m ∈ y ([a, b]), we have there exists a
chart φm with open domain Vm := D (φm) containing m whose range R (φm) is
convex. We may now use our patching strategy outlined in Remark 2.53 with the
cover {Vm}m∈y([a,b]) applied to the function

(s, t) −→
∫ t

s

α (dy) − α
(
Fxs,t(ys)

)− Fw(ys) [α ◦ Fw̃ ] |w⊗w̃=Xs,t

to reduce to the case where y([a, b]) is contained in the domain of a single chart.
With this reduction, we can further reduce to the flat case by defining zt :=

(φ(yt), F·(ys)) and Fφ := dφ
(
F ◦ φ−1

)
and showing∫ t

s

α(dy) − α
(
Fxs,t(ys)

)− Fw(ys) [α ◦ Fw̃] |w⊗w̃=Xs,t

=

∫ t

s

(
(φ−1)∗α

)
(dz) − (

(φ−1)∗α
)
zs

(
Fφxs,t(zs)

)
− (

∂Fφw(zs)

[ (
φ−1

)∗
α ◦ Fφw̃

])
(zs)|w⊗w̃=Xs,t .
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The above equality is true due to the following three identities:∫ t

s

α(dy) =

∫ t

s

( (
φ−1

)∗
α
)
(dz),(5.13)

α
(
Fxs,t(ys)

)
=

( (
φ−1

)∗
α
)
zs

(
Fφxs,t(zs)

)
, and(5.14)

Fw(ys) [α ◦ Fw̃] =
(
∂Fφw(zs)

[ (
φ−1

)∗
α ◦ Fφw̃

])
(zs).(5.15)

Equation (5.13) is true by Theorem 4.15. The differential geometric identities
in (5.14) and (5.15) are simply a matter of unwinding the definitions.

(2) =⇒ (3). By letting α = df and using Theorem 4.13, we have

f(yt)− f(ys) =

∫ t

s

df (dy)

≈
3
df

(
Fxs,t(ys)

)
+ Fw(ys) [df ◦ Fw̃] |w⊗w̃=Xs,t =

(FXs,tf
)
(ys).

(3) =⇒ (1). We leave it to the reader to work through the details of this
step which follow exactly as in the proof of Theorem 2.57 by letting f i be the
coordinates of φ. �

By Theorem 6.10 in the Appendix, we see that a solution to a rough differ-
ential equation in flat space does actually satisfy equation (5.7). Moreover, we
immediately get local existence of solutions:

Theorem 5.4. Let F : W → Γ(TM) be linear and let ȳ0 be a point in M . There
exists a local in time solution to the differential equation (5.7) with initial condi-
tion y0 = ȳ0.

Proof. Let φ be any chart such that ȳ0 ∈ D(φ). Then there exists a solution on
some time interval [0, τ ] in R(φ) to the differential equation

dzt = FφdXt
(zt)

with initial condition z0 = φ (ȳ0) . If φ̃ is any other chart such that [a, b] ⊆ [0, τ ]
and y([a, b]) ⊆ D(φ̃), then the transition map φ̃ ◦ φ−1 has a domain containing
z([a, b]). It is easy to check that

F φ̃ =
(
Fφ

)φ̃◦φ−1

,

and by Corollary 6.13, after unraveling the notation, we have

φ̃(yt) ≈
3
φ̃(ys) + dφ̃ ◦ Fxs,t(ys) + Fw(ys)

[
dφ̃ ◦ Fw̃

]|w⊗w̃=Xs,t .

Thus satisfying the rough differential equation approximation in one chart is suf-
ficient prove that it hold in all charts. �

Solutions to rough differential equations will be unique on the intersection of
their time domain up to some possible explosion time. This is stated more precisely
in the following theorem.
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Theorem 5.5. Let T > 0. There is unique solution yt ∈ CRPX(M) to dyt =
FdXt(yt) with initial condition y0 = ȳ0 existing either on all of [0, T ] or on [0, τ)
for some τ < T such that the closure of {yt : 0 ≤ t < τ} is not compact.

Proof. This proof follows the strategy of the proof of Theorem 4.2 in [3]. First we
will show that we can always concatenate a solution y provided it has not exploded
yet:

Suppose there exists a y solving dyt = FdXt(yt) with initial condition y0 = ȳ0
on [0, τ). If there exists a compact K ⊆ M such that {yt : 0 ≤ t < τ} ⊆ K,
then there is a sequence of increasing times tn ∈ [0, τ) such that tn → τ and
y∞ := limn→∞ y (tn) exists and is in K. We can now choose a chart φ such that
the closure of D(φ) is compact and such that y∞ ∈ D(φ). Let zt and a be such that
zt := φ∗y on some time interval [a, τ) such that y ([a, τ)) ⊆ D(φ). By appealing
to Lemma 6.9 in the Appendix, there exists an ε > 0 and a U ⊆ D(φ) containing
y∞ such that for any s ∈ [τ − ε, τ ] and z̄ ∈ U , there exists z̃ ∈CRPX

(
Rd

)
defined

on [s, τ + ε] which solves

dz̃t = Fφxs,t (z̃t) with z̃s = z̄.

Letting n be sufficiently large, we have that tn ∈ [τ − ε, τ ] and we let z̃ be the
solution to dz̃t = Fφxs,t (z̃t) with initial condition z̃s = z (tn) . Then we can con-
catenate z and z̃ in the sense of Lemma 2.6. By pulling these back to the manifold
by φ−1, we now have a solution ỹ on M which is defined on [0, τ + ε] .

With the preceding fact shown, we may now prove the theorem. We define

τ := sup {T0 ∈ (0, T ) : ∃y solving dyt = FdXt(yt) with y0 = ȳ0} .

We can then for any t < τ define yt := ŷt where ŷt is any solution to dyt = FdXt(yt)
with initial condition y0 = ȳ0. By the uniqueness of solutions to rough differential
equations on flat space and the fact that we can cover any portion of the path
with the domain of a chart, we know that yt is well defined, and in fact satisfies
dyt = FdXt(yt) on all of [0, τ). If the closure of {yt : 0 ≤ t < τ} is compact, then
from what we showed above, we can produce a solution ỹ which is defined on
[0, τ + ε] for some ε > 0. In this case, τ must be T and ỹ|[0,T ] is a solution defined

on all of [0, T ]. �

Definition 5.6. Let f : M → N be a smooth map between manifolds. Let
F : W → Γ(TM) and F̃ : W → Γ(TN) be linear. We say F and F̃ are f -related
dynamical systems if

f∗Fw = F̃w ◦ f for all w ∈ W.

As in the flat case and shown in the Appendix in Theorem 6.12, we have a
relation between dynamical systems. The proof is no different in the manifold
case, and so we omit it.
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Theorem 5.7. Suppose f : M → N is a smooth map between manifolds and let
F : W → Γ(TM) and F̃ : W → Γ(TN) be f -related dynamical systems. If y solves
the initial value problem equation (5.7), then ỹt :=

(
ỹt, ỹ

†
s

)
:= f∗ỹt solves

dỹt = F̃dXt (ỹt) with ỹ0 = f (ȳ0) .

5.1.1. RDEs from the gauge perspective. Following the theme of Theo-
rem 2.45, we also have a way to view a solution to a differential equation using the
gauge perspective. Let ψ be a logarithm on M with diagonal domain D.

Theorem 5.8. Let y be a path in M on I0 with y†s = F·(ys). Let y = (y, y†).
Then y solves (5.7) if and only if for every a, b such that [a, b] ⊆ I0, there exists a
δ > 0 such that

(5.16) ψ(ys, yt) ≈
3
Fxs,t(ys) + Fw(ys)

[
(ψys)∗ Fw̃

] |w⊗w̃=Xs,t ,

provided a ≤ s ≤ t ≤ b and t− s < δ.

Proof. This proof will be similar to the proof of Theorem 2.45.
First we show the condition of Theorem 5.8 implies that y solves (5.7). Let φ

be a chart and let [a, b] be such that y([a, b]) ⊆ D(φ). By defining

zs := φ(ys),

ψφ(x, y) := φ∗ψ
(
φ−1(x), φ−1(y)

)
,

Fφw(x) := dφ
(
Fw

(
φ−1(x)

))
,

and denoting ψφ(x, y) =
(
x, ψ̄φ(x, y)

)
, (5.16), once pushed forward by φ, can be

written as

ψ̄φ(zs, zt) ≈
3
Fφxs,t(zs) +

(
∂Fφw(zs)

[
ψ̄φ′zs(·)Fφw̃(·)

])
(zs)|w⊗w̃=Xs,t

provided a ≤ s ≤ t ≤ b and t − s < δ. We then must prove that z solves
equation (5.9) for all a ≤ s ≤ t ≤ b. However, by appealing to Lemma 2.49 and
Lemma 6.14 of the Appendix, we only need to prove (5.9) holds for every u in [a, b]
for s ≤ t in (u− δu, u+ δu) ∩ [a, b] for some δu. We do this now.

For any u ∈ [a, b], let Wu be an open convex set of zu such that Wu ×Wu ⊆
D(ψφ). We then choose δu > 0 such that z ([u− δu,u+ δu] ∩ [a, b]) ⊆ Wu and
2δu ≤ δ. We are now in the setting of Proposition 5.1 and have therefore shown y
solves equation (5.7).

For the reverse implication, let [a, b] ⊆ I0 be given. Choose δ > 0 such that
|t− s| ≤ δ for a ≤ s ≤ t ≤ b implies that |ψ(ys, yt)|g is bounded. Around every
pointm of y([a, b]), there exists an open Om containingm such that Om×Om ⊆ D.
Additionally for each m there exists a chart φm such that m ∈ D (φm), D (φm) ⊆
Om, and Wm := R (φm) is convex. We may now use Remark 2.53 with the cover
{Vm}m∈y([a,b]) and D = {(s, t) : a ≤ s ≤ t ≤ b and |t− s| ≤ δ} with the function

(s, t) −→ ψ(ys, yt)− Fxs,t(ys)− Fw(ys)
[
(ψys)∗ ◦ Fw̃

] |w⊗w̃=Xs,t .
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Doing this, we have reduced to considering the case of our path being contained
in the domain of a single chart φ such that D(φ)×D(φ) ⊆ D and R(φ) is convex.
By using the same definitions above for zs, F

φ, and ψφ, we reduce proving

ψ(ys, yt) ≈
3
Fxs,t(ys) + Fw(ys)

[
(ψys)∗ ◦ Fw̃

] |w⊗w̃=Xs,t

to the flat case

ψ̄φ(zs, zt) ≈
3
Fφxs,t(zs) +

(
∂Fφw(zs)

[
ψ̄φ′zs(·)Fφw̃(·)

])
(zs)|w⊗w̃=Xs,t .

This is now in the setting of Proposition 5.1 and hence we are finished. �

Akin to the integral formulas, there is also a characterization of solving a dif-
ferential equation which involves a gauge (ψ,U).

Theorem 5.9. y = (y, y†) on I0 solves (5.7) if and only if y†s = F(·)(ys) and for
all [a, b] ⊆ I0, there exists a δ > 0 such that |t− s| ≤ δ, and a ≤ s ≤ t ≤ b implies

ψ(ys, yt) ≈
3
Fxs,t(ys)

+
(−Sψ∗,U

ys [Fw(ys)⊗ Fw̃(ys)] + Fw(ys) [U(ys, ·)Fw̃]
) |w⊗w̃=Xs,t .

Proof. This follows immediately from the product rule:

Fw(ys)
[
(ψys)∗ Fw̃

]
= Fw(ys)

[
(ψys)∗(·) U(ys, ·)−1U(ys, ·)Fw̃

]
= −Sψ∗,U

ys [Fw(ys)⊗ Fw̃(ys)] + Fw(ys) [U(ys, ·)Fw̃ ]�

Example 5.10. If ∇ is a covariant derivative, then y on I0 solves (5.7) if and only
if y†s = F (ys) and

exp−1
ys (yt) ≈3 Fxs,t(ys) +

(∇Fw(ys)Fw̃
)− 1

2
T∇ [Fw(ys)⊗ Fw̃(ys)] |w⊗w̃=Xs,t

for s and t close.

6. Appendix

6.1. Why logarithms

By definition, a manifold M is a topological space which locally “looks” like Eu-
clidean space. The locally looks like statement means there are charts which allow
us to identify sufficiently small open subsets of M with open subsets of Rd. The
manifold is smooth means these charts are consistent in the sense that the identi-
fication of open sets of M with those of Rd by two different charts are smoothly
related to one another. Because of this very definition, at the end of the day, one
has to use charts to make definitions and perform calculations.
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Example 6.1. Suppose that α is a one-form on M and σ(s) is a smooth path
in M. One may think that no charts are involved in computing∫

σ

α =

∫ 1

0

α (σ′(s)) ds,

but this is not the case! In fact charts were used to define what it means for σ(s) to
be smooth, the notion of the tangent and cotangent bundles (hence the definition
of α), and the very meaning of σ′(s). When all is said and done,

(6.1) α (σ′(s)) := αφ(φ◦σ(s)) (φ ◦ σ)′ (s),
where

(6.2) αφxv := α
(
φ−1
∗ (vx)

)
is the one-form α “read” in this chart. It is then verified that the definitions have
been arranged so that the right side of (6.1) is independent of the choice of chart φ.
Thus (assuming σ ([0, 1]) is contained in the domain of φ for simplicity),

∫
σ

α :=

∫ 1

0

αφ(φ◦σ(s)) (φ ◦ σ)′ (s)ds

is in fact independent of the chart, φ.

Example 6.2. Let us now suppose that σ(s) is only α-Hölder continuous (as
tested in a chart) for some α > 1/2 (to keep it simple). In this case σ′(s) need not
exist. Nevertheless we would still like to define∫ 1

0

α (dσ(s)) .

It is natural (assuming σ ([0, 1]) is contained in the domain of φ), to define

(6.3)

∫ 1

0

α (dσ(s)) :=

∫ 1

0

αφ(φ◦σ(s)) d (φ ◦ σ) (s),

where the latter integral is now the Young’s integral. Of course we must now show
the above definition is independent of the chart φ used in its description. Let us
expand on this point a bit to see how logarithms enter.

Using the definition of the Young’s integral, (6.3) may be written more explic-
itly as

(6.4)

∫ 1

0

α (dσ(s)) := lim
|Π|→0

∑
i

αφ(φ◦σ(si−1))
[φ ◦ σ (si)− φ ◦ σ (si−1)] ,

where Π = {0 = s0 < · · · < sn = 1} is a partition of [0, 1] and |Π| is the mesh size
of Π. From (6.2), we have

αφ(φ◦σ(si−1))
[φ ◦ σ (si)− φ ◦ σ (si−1)] = α

(
φ−1
∗ [φ ◦ σ (si)− φ ◦ σ (si−1)]φ◦σ(si−1)

)
.
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If we then define
ψφ(m,n) := φ−1

∗ [φ(n) − φ(m)]φ(m)

for all m,n in the domain of φ, we can rewrite (6.4) as∫ 1

0

α (dσ(s)) := lim
|Π|→0

∑
i

α
(
ψφ (σ (si−1) , σ (si))

)
.

The function ψφ(m,n) ∈ TmM is an example of a logarithm associated to a chart φ.
In this Young’s setting, the fact that the definition in (6.3) is well defined (i.e.,
chart independent) is equivalent to the statement that

(6.5) lim
|Π|→0

∑
i

α (ψ (σ (si−1) , σ (si)))

is independent of the choice of logarithm, ψ.

Conclusions:

1. Independent of whether σ is smooth or not, one must use charts or equiva-
lently logarithms to define

∫
σ α.

2. The fact that
∫
σ α is well defined (i.e., chart independent) can be related

to the assertion that an expression for
∫
σ
α as in (6.5) (or a more elaborate

counterpart such as the formula found in Corollary 4.5) is independent of the
choice of logarithm.

6.2. Taylor expansion on a Riemannian manifold

Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita covariant derivative,
exp (tv) be the geodesic flow, and //t (σ) denote parallel translation relative to ∇.
Recall that Taylor’s formula with integral remainder states for any smooth func-
tion g on [0, 1] , that

(6.6) G (1) =

n∑
k=0

1

k!
G(k)(0) +

1

n!

∫ 1

0

G(n+1)(t)(1 − t)ndt.

We now apply this result to G(t) := f (expm (tv)) where f ∈ C∞(M), v ∈ TmM
and m ∈M. To this end let σ(t) := exp (tv) so that ∇σ̇(t)/dt = 0. It then follows
that

Ġ(t) = df (σ̇(t)) = dfσ(t) (σ̇(t)) ,

G̈(t) =
d

dt
dfσ(t) (σ̇(t)) =

(∇σ̇(t)df
)
(σ̇(t)) + dfσ(t)

(∇
dt
σ̇ (t)

)
=

(∇σ̇(t)df
)
(σ̇(t)) = (∇df) (σ̇(t)⊗ σ̇(t))

...

G(k)(t) =
(∇k−1df

) (
σ̇(t)⊗k

)
=

(∇k−1df
) ( k times︷ ︸︸ ︷

σ̇(t)⊗ · · · ⊗ σ̇(t)
)
.(6.7)
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Therefore we may conclude that

f (expm (v)) = G (1) =
n∑
k=0

1

k!
G(k)(0)

= f(x) +

n∑
k=1

1

k!

(∇k−1df
) (
v⊗k

)
+

1

n!

∫ 1

0

(∇ndf)
(
σ̇(t)⊗(n+1)

)
(1 − t)ndt.(6.8)

Letting n = expm (v) in this formula then gives the following version of Taylor’s
theorem on a manifold.

Theorem 6.3. Let f ∈ C∞(M) and m,n ∈M with dg(m,n) sufficiently small so
that there exists a unique v ∈ TmM such that |v|gm ≤ d(m,n) and n = expm (v) .
Then we have

f(n) = f(m) +
n∑
k=1

1

k!

(∇k−1df
) (
v⊗k

)
+

1

n!

∫ 1

0

(∇ndf)
(
σ̇(t)⊗(n+1)

)
(1−t)ndt

(6.9)

= f(m) +

n∑
k=1

1

k!
(∇k−1df)

(
[exp−1

m (n)]⊗k
)
+

1

n!

∫ 1

0

(∇ndf)
(
σ̇(t)⊗(n+1)

)
(1− t)ndt,

where σ(t) = expm (tv) . In particular, since |σ̇(t)|g = |v|g = dg(m,n), it follows
that

(6.10) f(n) = f(m) +

n∑
k=1

1

k!

(∇k−1df
) ( [

exp−1
m (n)

]⊗k )
+ O

(
d(m,n)n+1

)
.

Lemma 6.4. Let M be an embedded submanifold of W = Rk and P (m) : W →
TmM be orthogonal projection onto the tangent space. If m,n ∈M are close, then

(1) P (m)[exp−1
m (n)− (n−m)] = O(|n −m|3).

Moreover, exp−1
m (n)− (n−m) = O(|n−m|2)

(2) U∇(n,m) = P (m) + dP (exp−1
m (n)) +O(|n−m|2) = P (n) +O(|n −m|2)

(3) P (n)− P (m) = dP (exp−1
m (n)) +O(|n−m|2).

Here U∇(n,m) refers to the parallelism defined in Example 2.19.

Proof. We will denote v := exp−1
m (n) ∈ TmM and σ(t) = expm (tv).

For (1), we have by Taylor expansion on manifolds (Theorem 6.3) that

G(n) = G(m) + dG (v) +
1

2
(∇dG) (v ⊗ v) +

1

2

∫ 1

0

(∇2dG
) (
σ̇(t)⊗3

)
(1 − t)2dt,

where G ∈ C∞(M,W ). Letting G(m) = m as a function into W , we have

n = m+ exp−1
m (n) +

1

2
(∇P ) (v ⊗ v) +O(|v|3g).
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Rearranging, we have

(6.11) exp−1
m (n)− (n−m) = −1

2
(∇P ) (v ⊗ v) +O(|v|3g),

so that

P (m)
[
exp−1

m (n)− (n−m)
]
= −1

2
P (m) (∇P ) (v ⊗ v) +O(|v|3g).

Note that (∇P ) (v ⊗ v) = dP (v) v = dP (v)P (m)v. Using the identities dPQ −
PdQ = 0 and dP = −dQ, where Q = I−P , we get that PdPP = 0. Thus we have

P (m)[ exp−1
m (n)− (n−m)] = O(|v|3).

Lastly, in a small neighborhood around m, |v|g = |m− n|+ o(|m− n|), so that

P (m)[ exp−1
m (n)− (n−m)] = O(|n −m|3).

The fact that exp−1
m (n)− (n−m) = O(|n−m|2) is immediate from (6.11).

For (3), we use Taylor’s theorem again this time with G : M → L(W,W ) defined
by G(n) := P (n) to see that

P (n)− P (m) = dP (exp−1
m (n)) +O(|v|2).

As before, this is equivalent to P (n)− P (m) = dP (exp−1
m (n)) + O(|m− n|2).

Lastly, for (2), Taylor applied to Gm :M → L(TmM,RN ) defined by Gm(n) =
U∇(n,m) gives

U∇(n,m)− P (m) = dGm(exp−1
m (n)) +O(|m− n|2).

But

dGm(exp−1
m (n)) =

d

dt
|0 U(σ(t),m) = −dQ(σ̇(t))|0

= −dQ(exp−1
m (n)) = dP (exp−1

m (n)).

Thus we have

U∇(n,m) = P (m) + dP (exp−1
m (n)) +O(|m − n|2)

which is the first equality of (2). The second equality follows trivially from this
and (3). �

6.3. Equivalence of Riemannian metrics on compact sets

Proposition 6.5. Let π : E → N be a real rank d < ∞ vector bundle over a
finite dimensional manifold N. Further suppose that E is equipped with smoothly
varying fiber inner product g and let Sg := {ξ ∈ E : g (ξ, ξ) = 1} be a sub-bundle
of E. Then for any compact K ⊆ N , π−1 (K) ∩ Sg is a compact sets.

Proof. We wish to show that every sequence {ξl}∞l=1 ⊂ π−1 (K)∩Sg has a conver-
gent subsequence. Since {π (ξl)}∞l=1 is a sequence inK, by passing to a subsequence
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if necessary we may assume that m := liml→∞ π (ξl) exists in K. By passing to
a further subsequence if necessary we may assume that {ξl}∞l=1∈π−1(K0) ∩ Sg,
where K0 is a compact neighborhood of m which is contained in an open neigh-
borhood U over which E is trivializable and hence we may now assume that
π−1 (U) = U × Rd and that ξl = (nl, vl) where liml→∞ nl = m ∈ K0.

Let Sd−1 denote the standard Euclidean unit sphere inside of Rd. The function,
F : U × Sd−1 → (0,∞) defined by F (n, v) = g ((n, v) , (n, v)) is smooth and hence
has a minimum c > 0 and a maximum, C < ∞ on the compact set, K × Sd−1.
Therefore by a simple scaling argument we conclude that

(6.12) c |v|2 ≤ g ((n, v) , (n, v)) ≤ C |v|2 ∀n ∈ K and v ∈ Rd.

From the lower bound in inequality (6.12) and the assumption that 1 = g (ξl, ξl)
it follows that |vl|Rd ≤ 1/

√
c for all l and therefore has a convergent sub-sequence

{vlk}∞k=1 . This completes the proof as {ξlk = (nlk , vlk)}∞k=1 is convergent as well.
�

Corollary 6.6. If g, g̃ are two Riemannian metrics on TM , K ⊆ M is compact,
then there exists 0 < cK , CK <∞ such that

(6.13) cK |v|g̃m ≤ |v|gm ≤ CK |v|g̃m ∀ v ∈ π−1 (K) .

In other words, all Riemannian metrics are equivalent when restricted to compact
subsets, K ⊂M.

Proof. The function, F : TM → [0,∞), defined by F (v) := g (v, v) is smooth and
positive when restricted to Sg̃ ∩ π−1 (K) which is compact by Proposition 6.5.
Therefore there exists 0 < cK < CK < ∞ such that c2K ≤ g (v, v) ≤ C2

K for
all v ∈ Sg̃ ∩ π−1 (K), from which inequality (6.13) follows by a simple scaling
argument. �

6.4. Covariant derivatives on Euclidean space

On Rd every covariant derivative takes the form ∇(x,v) = ∂v + Ax 〈v〉 where

A : Rd → L
(
Rd, L

(
Rd,Rd

))
. If σvx(t) = expx (tv) where exp = exp∇, we have,

by definition,

∂σ̇vx(t)σ̇
v
x = −Aσvx(t) 〈σ̇vx (t)〉 σ̇vx(t),

σ̇vx(0) = v,

σvx(0) = x.

In particular, if fx = expx(·) plugging in at t = 0 we get

f ′′
x (0) [v ⊗ v] = −Ax 〈v〉 v.

Now if we denote Gx := exp−1
x (·) and by differentiating fx ◦Gx twice, we get that

G′′
x(x) [v ⊗ v] = Ax 〈v〉 v.
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Indeed we have

0 = (fx ◦Gx)′′ (x) = [f ′
x (Gx(x))G

′
x(x)]

′

= f ′′
x (Gx(x)) [G

′
x(x) ⊗G′

x(x)] + f ′
x (Gx(x))G

′′
x(x).

Since Gx(x) = 0, G′
x(x) = I, and f ′

x(0) = I we have

f ′′
x (0) = −G′′

x(x).

Parallel translation U∇ (σvx(t), x) solves

d

dt
U∇ (σvx(t), x) = −Aσvx(t) 〈σ̇vx (t)〉U∇ (σvx(t), x) ,

U∇ (x, x) = I.

Again, using t = 0 we have that if G̃x = U∇ (·, x), then

G̃′
x(x)v = −Ax 〈v〉 .

To summarize, we have

(6.14)
(
exp−1

x

)′′
(x) [v ⊗ v] = Ax 〈v〉 v

and (
U∇ (·, x))′ (x)v = −Ax 〈v〉 .

Since
(
exp−1

x

)′′
(x) is symmetric, we have that

(
exp−1

x

)′′
(x) [v ⊗ w] =

1

2

(
exp−1

x

)′′
(x) (v ⊗ w + w ⊗ v)

+
1

2

(
exp−1

x

)′′
(x) (v ⊗ w − w ⊗ v)

=
1

2

(
exp−1

x

)′′
(x) (v ⊗ w + w ⊗ v)

=
1

2
Ax (v ⊗ w + w ⊗ v) =

1

2
(Ax 〈v〉w +Ax 〈w〉 v) .(6.15)

Another way of saying this is that
(
exp−1

x

)′′
(x) equals the symmetric part of Ax.

By using this fact and Taylor’s theorem, we get the following result.

Lemma 6.7. If ∇(x,v) = ∂v +Ax 〈v〉 is a covariant derivative on Rd, then

(
exp∇x

)−1
(y)− (y − x) − 1

2
Ax 〈y − x〉 〈y − x〉 = O

( |y − x|3 ),
U∇ (y, x)− I +Ax 〈y − x〉 = O

( |y − x|2 ),(6.16)

where |x− y| is small enough for these terms to make sense.
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Corollary 6.8. If ∇(x,v) = ∂v +Ax 〈v〉 is a covariant derivative on Rd, then

U∇ (y, x)− I −Ay 〈x− y〉 = O(|y − x|2),

where |x− y| is small enough for these terms to make sense. In particular, we
have

(U∇(x, ·))′(x) v = Ax〈v〉.

Proof. This is immediate after expanding A(·) about x in the direction y − x
in (6.16) with Taylor’s theorem. �

6.5. Rough differential equation results in Euclidean space

The following lemma (which is Corollary 2.17 in [3] and was proved using Theo-
rem 10.14 of [15]) proves useful in the manifold case.

Lemma 6.9. Let U ⊆ Rd be an open set and U1 be a precompact open set whose
closure is contained in U. There exists a δ > 0 such that for all (z̄0, t0) ∈ U1×[0, T ],
the rough differential equation

dzt = FdXt (zt) with zt0 = z̄0

has a unique solution z ∈CRPX(Rd) which is defined on [t0,t0+δ∧T ], with zt ∈ U
for all t ∈ [t0,t0 + δ ∧ T ].

We now state an equivalent condition for the path z to solve equation (2.11).

Theorem 6.10. Let U ⊆ Rd be open such and z = (z, z†) ∈ CRPX

(
Rd

)
defined

on I0 such that z (I0) ⊆ U . Then z solves (2.11) if and only if z†s = F·(zs) and for
every [a, b] ⊆ I0, Banach space V , and α ∈ Ω1 (U, V ), the approximation

∫ t

s

α(dz) ≈
3
αzs

(
Fxs,t(zs)

)
+
(
∂Fw(zs) [α ◦ Fw̃]

)
(zs)|w⊗w̃=Xs,t

holds.

Proof. This is proved in Theorem 4.5 in [3] by lettingM = U but included here for
completeness. To prove the “if” direction, it suffices to let α = d (IU ) and notice
that ∫ t

s

d (IU ) (dz) = zt − zs

by Theorem 4.13, and that d (IU )u (ũ) = ũ so that

d (IU )zs
(
Fxs,t(zs)

)
= Fxs,t(zs)

and (
∂Fw(zs) [d (IU ) ◦ Fw̃ ]

)
(zs) =

(
∂Fw(zs)Fw̃

)
(zs).
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To prove the “only if” direction, by definition we have

zs,t ≈
3
Fxs,t(zs) +

(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t

and ∫ t

s

α(dz) ≈
3
αzs (zs,t) + α′

zs (F·(zs)⊗ F·(zs)Xs,t) .

Combining these approximations, we have∫ t

s

α(dz) ≈
3
αzs (zs,t) + α′

zs (F·(zs)⊗ F·(zs)Xs,t)

≈
3
αzs

(
Fxs,t(zs) +

(
∂Fw(zs)Fw̃

)
(zs)

)
+ α′

zs (Fw(zs)⊗ Fw̃(zs)) |w⊗w̃=Xs,t

= αzs
(
Fxs,t(zs)

)
+
(
∂Fw(zs) [α ◦ Fw̃]

)
(zs)|w⊗w̃=Xs,t ,

where the last equality follows from the calculation(
∂Fw(zs) [α ◦ Fw̃]

)
(zs) =

(
∂Fw(zs) [αzs ◦ Fw̃(·)]

)
(zs) +

(
∂Fw(zs)α(·) ◦ Fw̃(zs)

)
(zs)

= αzs
((
∂Fw(zs)Fw̃

)
(zs)

)
+ α′

zs (Fw(zs)⊗ Fw̃(zs)) �

Theorem 6.12 below is useful in showing that a solution to an RDE in the
flat case satisfies our manifold Definition 5.2. Let U and Ũ be open sets for the
remainder of this subsection.

Definition 6.11. Let f : U ⊆ Rd → Ũ ⊆ Rd̃ be a smooth map. Let F : U →
L(W,Rd) and F̃ : Ũ → L(W,Rd̃) be smooth. We say F and F̃ are f -related
dynamical systems if

f ′(x)Fw(x) = F̃w ◦ f(x) for all w ∈W.

Theorem 6.12. Suppose f : U ⊆ Rd → Ũ ⊆ Rd̃ is a smooth map and let F : U →
L(W,Rd) and F̃ : Ũ → L(W,Rd̃) be f -related dynamical systems. If z solves

dzt = FdXt (zt)

with initial condition z0 = z̄0, then z̃t :=
(
z̃t, z̃

†
s

)
:= f∗zt solves

dz̃t = F̃dXt (z̃t)

with initial condition z̃0 = f(z̄0).

Proof. We have, by letting α := df in Theorem 6.10,

z̃s,t = f (zt)− f(zs)

≈
3
f ′(zs)Fxs,t(zs) + ∂Fw(zs) [f

′(·)Fw̃(·)] (zs)|w⊗w̃=Xs,t

≈
3
F̃xs,t(z̃s) +

(
∂Fw(zs)F̃w̃ ◦ f)(zs)|w⊗w̃=Xs,t

≈
3
F̃xs,t(z̃s) + F̃ ′

w̃ (f(zs)) f
′(zs)Fw(zs)|w⊗w̃=Xs,t

≈
3
F̃xs,t(z̃s) + F̃ ′

w̃ (f(zs)) F̃w ◦ f(zs)|w⊗w̃=Xs,t

≈
3
F̃xs,t(z̃s) +

(
∂F̃w(z̃s)

F̃w̃
)
(z̃s)|w⊗w̃=Xs,t .
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Additionally,
z̃†t = f ′ (zt) z

†
t = f ′ (zt)F(·) (zt) = F̃(·) (z̃t) . �

Corollary 6.13. Let φ : U⊆ Rd → Ũ⊆ Rd be a diffeomorphism with φ(z(I0)) ⊆ U .
Then z on I0 solves

dzt = FdXt (zt)

with initial condition z0 = z̄0 if and only if z̃ := φ∗z on I0 solves

dz̃t = FφdXt
(z̃t)

with initial condition z̃0 = φ(z̄0) where F
φ := dφ ◦ (F ◦ φ−1

)
.

Proof. This follows from Theorem 6.12 by seeing that F is φ-related to Fφ. �

This last lemma helps patch solutions in the manifold case.

Lemma 6.14. Let z ∈ C ([0, T ], V ) and let 0 = t0 < t1 < · · · < tl = T be a
partition of [0, T ]. If

(6.17) zs,t ≈
3
Fxs,t(zs) +

(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t

holds for all ti ≤ s ≤ t ≤ ti+1 and 0 ≤ i < l, then (6.17) holds for 0 ≤ s ≤ t ≤ T .

In particular, if zt solves dzt = FdXt (zt) with z0 = z̄0 on [0, τ ] and z̃t solves
dz̃t = FdXt (z̃t) with z̃τ = zτ on [τ, T ], then the concatenation of zt and z̃t in the
sense of Lemma 2.6 solves dzt = FdXt (zt) with z0 = z̄0 on [0, T ].

Proof. This proof is identical to the proof of Lemma A.2 in [3], adapted here with
different notation. We will only prove it in the case of two subintervals. First note
that

Fw(y) = Fw(x) + F ′
w(x)(y − x) +O(|w| |y − x|2)

and (
∂Fw(y)Fw̃

)
(y) =

(
∂Fw(x)Fw̃

)
(x) +O (|w| |w̃| |y − x|)

by Taylor’s theorem and the fact that w → Fw is linear. Using these facts, we have

zs,t = zs,τ + zτ,t

≈
3
Fxs,τ (zs) +

(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,τ + Fxτ,t(zτ )+(∂Fw(zτ )Fw̃)(zτ )|w⊗w̃=Xτ,t

≈
3
Fxs,t(zs) + F ′

xτ,t(zs)(zs,τ )+(∂Fw(zs)Fw̃)(zs)|w⊗w̃=Xs,τ+(∂Fw(zs)Fw̃)(zs)|w⊗w̃=Xτ,t

≈
3
Fxs,t(zs) + F ′

xτ,t(zs)
(
Fxs,τ (zs)

)
+
(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,τ+Xτ,t

= Fxs,t(zs) +
(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,τ+Xτ,t+xs,τ⊗xτ,t

= Fxs,t(zs) +
(
∂Fw(zs)Fw̃

)
(zs)|w⊗w̃=Xs,t .

�
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