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Nonlocal problems

with Neumann boundary conditions

Serena Dipierro, Xavier Ros-Oton and Enrico Valdinoci

Abstract. We introduce a new Neumann problem for the fractional
Laplacian arising from a simple probabilistic consideration, and we dis-
cuss the basic properties of this model. We can consider both elliptic and
parabolic equations in any domain. In addition, we formulate problems
with nonhomogeneous Neumann conditions, and also with mixed Dirichlet
and Neumann conditions, all of them having a clear probabilistic interpre-
tation.

We prove that solutions to the fractional heat equation with homoge-
neous Neumann conditions have the following natural properties: conser-
vation of mass inside Ω, decreasing energy, and convergence to a constant
as t → ∞. Moreover, for the elliptic case we give the variational formula-
tion of the problem, and establish existence of solutions.

We also study the limit properties and the boundary behavior induced
by this nonlocal Neumann condition.

For concreteness, one may think that our nonlocal analogue of the
classical Neumann condition ∂νu = 0 on ∂Ω consists in the nonlocal pre-
scription

∫
Ω

u(x)− u(y)

|x− y|n+2s
dy = 0 for x ∈ R

n \ Ω.

We made an effort to keep all the arguments at the simplest possible
technical level, in order to clarify the connections between the different
scientific fields that are naturally involved in the problem, and make the
paper accessible also to a wide, non-specialistic public (for this scope,
we also tried to use and compare different concepts and notations in a
somehow more unified way).
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1. Introduction and results

The aim of this paper is to introduce the following Neumann problem for the
fractional Laplacian:

(1.1)

{
(−Δ)su = f in Ω,

Nsu = 0 in R
n \ Ω.

Here, Ns is a new “nonlocal normal derivative”, given by

(1.2) Nsu(x) := cn,s

∫
Ω

u(x)− u(y)

|x− y|n+2s
dy, x ∈ R

n \ Ω.

The normalization constant cn,s is the one appearing in the definition of the frac-
tional Laplacian

(1.3) (−Δ)su(x) = cn,s PV

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy.

See [12] and [21] for the basic properties of this operator (and for further details
on the normalization constant cn,s, whose explicit value only plays a minor role in
this paper).

As we will see below, the corresponding heat equation with homogeneous Neu-
mann conditions

(1.4)

⎧⎨
⎩

ut + (−Δ)su = 0 in Ω, t > 0,
Nsu = 0 in R

n \ Ω, t > 0,
u(x, 0) = u0(x) in Ω, t = 0,

possesses natural properties like conservation of mass inside Ω or convergence to a
constant as t→ +∞ (see Section 4).

The probabilistic interpretation of the Neumann problem (1.4) may be sum-
marized as follows:

1. u(x, t) is the probability distribution of the position of a particle moving
randomly inside Ω.

2. When the particle exits Ω, it immediately comes back into Ω.

3. The way in which it comes back inside Ω is the following: If the particle has
gone to x ∈ R

n \ Ω, it may come back to any point y ∈ Ω, the probability
density of jumping from x to y being proportional to |x− y|−n−2s.

These three properties lead to the equation (1.4), being u0 the initial probability
distribution of the position of the particle.

A variation of formula (1.2) consists in renormalizing Nsu according to the
underlying probability law induced by the Lévy process. This leads to the definition

(1.5) Ñsu(x) :=
Nsu(x)

cn,s
∫
Ω

dy
|x−y|n+2s

.
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Other Neumann problems for the fractional Laplacian (or other nonlocal op-
erators) were introduced in [4, 9], [1, 3], [10, 11, 8], [15], and [18, 22]. All these
different Neumann problems for nonlocal operators recover the classical Neumann
problem as a limit case, and most of them has clear probabilistic interpretations
as well. We postpone to Section 7 a comparison between these different models
and ours.

An advantage of our approach is that the problem has a variational structure.
In particular, we show that the classical integration by parts formulae∫

Ω

Δu =

∫
∂Ω

∂νu and

∫
Ω

∇u · ∇v =

∫
Ω

v (−Δ)u+

∫
∂Ω

v∂νu

are replaced in our setting by∫
Ω

(−Δ)su dx = −
∫
Rn\Ω

Nsu dx

and

cn,s
2

∫
R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x) − v(y)

)
|x− y|n+2s

dx dy =

∫
Ω

v (−Δ)su+

∫
Rn\Ω

vNsu.

Also, the classical Neumann problem

(1.6)

{ −Δu = f in Ω,
∂νu = g on ∂Ω,

comes from critical points of the energy functional

1

2

∫
Ω

|∇u|2 −
∫
Ω

fu−
∫
∂Ω

g u,

without trace conditions. In analogy with this, we show that our nonlocal Neumann
condition

(1.7)

{
(−Δ)su = f in Ω,

Nsu = g in R
n \ Ω,

follows from free critical points of the energy functional

(1.8)
cn,s
4

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫
Ω

f u−
∫
Rn\Ω

g u,

see Proposition 3.7. Moreover, as is well known, the theory of existence and unique-
ness of solutions for the classical Neumann problem (1.6) relies on the compatibility
condition ∫

Ω

f = −
∫
∂Ω

g.

We provide the analogue of this compatibility condition in our framework, that is∫
Ω

f = −
∫
Rn\Ω

g,

see Theorem 3.9. Also, we give a description of the spectral properties of our
nonlocal problem, which are in analogy with the classical case.
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The Neumann-type problems studied in [4, 9] and [10, 11, 8], involving the
so-called regional fractional Laplacian, have a similar variational structure; see
Section 7 for more details.

The paper is organized in this way. In Section 2 we give a probabilistic inter-
pretation of our Neumann condition, as a random reflection of a particle inside
the domain, according to a Lévy flight. This also allows us to consider mixed
Dirichlet and Neumann conditions and to get a suitable heat equation from the
stochastic process.

In Section 3 we consider the variational structure of the associated nonlocal
elliptic problem, we show an existence and uniqueness result (namely Theorem 3.9),
as follows:

Let Ω ⊂ R
n be a bounded Lipschitz domain, f ∈ L2(Ω), and g ∈ L1(Rn \ Ω).

Suppose that there exists a C2 function ψ such that Nsψ = g in R
n \ Ω.

Then, problem (1.7) admits a weak solution if and only if

∫
Ω

f = −
∫
Rn\Ω

g.

Moreover, if such a compatibility condition holds, the solution is unique up to an
additive constant.

Also, we give a description of a sort of generalized eigenvalues of (−Δ)s with
zero Neumann boundary conditions (see Theorem 3.11):

Let Ω ⊂ R
n be a bounded Lipschitz domain. Then, there exist a sequence of

nonnegative values

0 = λ1 < λ2 ≤ λ3 ≤ · · · ,
and a sequence of functions ui : R

n → R such that

{
(−Δ)sui(x) = λiui(x) for any x ∈ Ω,

Nsui(x) = 0 for any x ∈ R
n \ Ω.

Also, the functions ui (when restricted to Ω) provide a complete orthogonal system
in L2(Ω).

By similarity with the classical case, we are tempted to consider the above λi
and ui as generalized eigenvalues and eigenfunctions. Though the word “general-
ized” will be omitted from now on for the sake of shortness, we remark that this
spectral notion is not completely standard, since our eigenfunctions ui are defined
in the whole of Rn but satisfy the equation (−Δ)sui = λiui only in the domain Ω
(indeed, outside Ω they verify our nonlocal Neumann condition). Moreover, the
orthogonality and density properties of ui also refer to their restriction in Ω.

In Section 4 we discuss the associated heat equation. As it happens in the
classical case, we show that such equation preserves the mass, it has decreasing
energy, and the solutions approach a constant as t → +∞. In particular, by the
results in Propositions 4.1, 4.2 and 4.3 we have:
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Assume that u(x, t) is a classical solution to⎧⎨
⎩

ut + (−Δ)su = 0 in Ω, t > 0,
Nsu = 0 in R

n \ Ω, t > 0,
u(x, 0) = u0(x) in Ω, t = 0.

Then the total mass is conserved, i.e., for all t > 0,∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx.

Moreover, the energy

E(t) =

∫
R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

is decreasing in time t > 0.
Finally, the solution approaches a constant for large times: more precisely,

u −→ 1

|Ω|
∫
Ω

u0 in L2(Ω) as t→ +∞.

In Section 5 we compute some limits when s→ 1, showing that we can recover
the classical case, in the sense that we show in Proposition 5.1:

Let Ω ⊂ R
n be any bounded Lipschitz domain. Let u and v be C2

0 (R
n) functions.

Then,

lim
s→1

∫
Rn\Ω

Nsu v =

∫
∂Ω

∂u

∂ν
v.

Also, we prove that nice functions can be extended continuously outside Ω in
order to satisfy a homogeneous nonlocal Neumann condition, and we characterize
the boundary behavior of the nonlocal Neumann function. More precisely, in
Proposition 5.2 we show that:

Let Ω ⊂ R
n be a domain with C1 boundary. Let u be continuous in Ω,

with Nsu = 0 in R
n \ Ω. Then u is continuous in the whole of R

n.

The boundary behavior of the nonolcal Neumann condition is also addressed
in Proposition 5.4:

Let Ω ⊂ R
n be a C1 domain, and u ∈ C(Rn). Then, for all s ∈ (0, 1),

lim
x→∂Ω

x∈Rn\Ω
Ñsu(x) = 0,

where Ñ is defined by (1.5).

Also, if s > 1/2 and u ∈ C1,α(Rn) for some α > 0, then

∂νÑsu(x) := lim
ε→0+

Ñsu(x+ εν)

ε
= κ ∂νu for any x ∈ ∂Ω,

for some constant κ > 0.
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Later on, in Section 6 we deal with an overdetermined problem and we show
that, in general, it is not possible to prescribe both nonlocal Neumann and Dirichlet
conditions for a continuous function.

Finally, in Section 7 we recall the various nonlocal Neumann conditions already
appeared in the literature, and we compare them with our model.

All the arguments presented are of elementary1 nature.

2. Heuristic probabilistic interpretation

In this section we will give a simple probabilistic interpretation of the nonlocal
Neumann condition that we consider in terms of the so-called Lévy flights. Though
the possible behavior of a general Lévy process can be more sophisticated than the
one we consider, for the sake of clarity we will try to restrict ourselves to the
simplest possible scenario and to use the simplest possible language. For this
scope, we will not go into all the very rich details of the related probability theory
and we will not aim to review all the important, recent results on the topic, but
we will rather present an elementary, self-contained exposition, which we hope can
serve as an introduction also to a non-specialistic public.

Let us consider the Lévy process in R
n whose infinitesimal generator is the

fractional Laplacian (−Δ)s. Heuristically, we may think that this process repre-
sents the (random) movement of a particle along time t > 0. As it is well known,
the probability density u(x, t) of the position of the particle solves the fractional
heat equation ut +(−Δ)su = 0 in R

n; see [23] for a simple illustration of this fact.

Recall that when the particle is situated at x ∈ R
n, it may jump to any

other point y ∈ R
n, the probability density of jumping to y being proportional

to |x− y|−n−2s.

In a similar way, one may consider the random movement of a particle inside
a bounded domain Ω ⊂ R

n, but in this case one has to decide what happens when
the particle leaves Ω.

In the classical case s = 1 (when the Lévy process is the Brownian motion), we
have the following:

(1) If the particle is killed when it reaches the boundary ∂Ω, then the probability
distribution solves the heat equation with homogeneous Dirichlet conditions.

(2) If, instead, when the particle reaches the boundary ∂Ω it immediately comes
back into Ω (i.e., it bounces on ∂Ω), then the probability distribution solves
the heat equation with homogeneous Neumann conditions.

1To keep the notation as simple as possible, given functions f and g and an operator T , we will
often write idendities like “f = g in Ω” or “Tf = g in Ω” to mean “f(x) = g(x) for every x ∈ Ω”
or “Tf = g for every x ∈ Ω”, respectively. Also, if u : Rn → R, we often denote the restriction
of u to Ω again by u. We hope that this slight abuse of notation creates no problem to the
reader, but for the sake of clarity we also include an appendix at the end of the paper in which
Theorems 3.9 and 3.11 are proved using a functional analysis notation that distinguishes between
a function and its restriction.
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In the nonlocal case s ∈ (0, 1), in which the process has jumps, case (1) cor-
responds to the following: the particle is killed when it exits Ω. In this case, the
probability distribution u of the process solves the heat equation with homoge-
neous Dirichlet conditions u = 0 in R

n \ Ω, and solutions to this problem are well
understood; see for example [19], [14], [13], and [2].

The analogue of case (2) is the following: when the particle exits Ω, it imme-
diately comes back into Ω. Of course, one has to decide how the particle comes
back into the domain.

In [1] and [3], the idea was to find a deterministic “reflection” or “projection”
which describes the way in which the particle comes back into Ω.

The alternative that we propose here is the following: if the particle has gone
to x ∈ R

n \ Ω, then it may come back to any point y ∈ Ω, the probability density
of jumping from x to y being proportional to |x− y|−n−2s.

Notice that this is exactly the (random) way as the particle is moving all the
time, here we just add the restriction that it has to immediately come back into Ω
every time it goes outside.

Let us finally illustrate how this random process leads to problems (1.1) or (1.4).
In fact, to make the exposition easier, we will explain the case of mixed Neumann
and Dirichlet conditions, which, we think, is very natural.

2.1. Mixed Dirichlet and Neumann conditions

Assume that we have some domain Ω ⊂ R
n, and that its complement Rn\Ω is split

into two parts: N (with Neumann conditions), and D (with Dirichlet conditions).
Consider a particle moving randomly, starting inside Ω. When the particle

reaches D, it obtains a payoff φ(x), which depends on the point x ∈ D where the
particle arrived. Instead, when the particle reaches N it immediately comes back
to Ω as described before.

If we denote u(x) the expected payoff, then we clearly have

(−Δ)su = 0 in Ω, and u = φ in D,

where φ : D → R is a given function.
Moreover, recall that when the particle is in x ∈ N then it goes back to some

point y ∈ Ω, with probability proportional to |x− y|−n−2s. Hence, we have that

u(x) = κ

∫
Ω

u(y)

|x− y|n+2s
dy for x ∈ N,

for some constant κ, possibly depending on the point x ∈ N , that has been fixed.
In order to normalize the probability measure, the value of the constant κ is so
that

κ

∫
Ω

dy

|x− y|n+2s
= 1.

Finally, the previous identity can be written as

Nsu(x) = cn,s

∫
Ω

u(x)− u(y)

|x− y|n+2s
dy = 0 for x ∈ N,
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and therefore u solves ⎧⎨
⎩

(−Δ)su = 0 in Ω,
Nsu = 0 in N,
u = φ in D,

which is a nonlocal problem with mixed Neumann and Dirichlet conditions.
Note that the previous problem is the nonlocal analogue of

⎧⎨
⎩

−Δu = 0 in Ω,
∂νu = 0 in ΓN ,
u = φ in ΓD,

being ΓD and ΓN two disjoint subsets of ∂Ω, in which classical Dirichlet and
Neumann boundary conditions are prescribed.

More generally, the classical Robin condition a∂νu+ bu = c on some ΓR ⊆ ∂Ω
may be replaced in our nonlocal framework by aNsu+ bu = c on some R ⊆ R

n \Ω.
Nonlinear boundary conditions may be considered in a similar way.

2.2. Fractional heat equation, nonhomogeneous Neumann conditions

Let us consider now the random movement of the particle inside Ω, with our new
Neumann conditions in R

n \ Ω.
Denoting u(x, t) the probability density of the position of the particle at time

t > 0, with a similar discretization argument as in [23], one can see that u solves
the fractional heat equation

ut + (−Δ)su = 0 in Ω for t > 0,

with

Nsu = 0 in R
n \ Ω for t > 0.

Thus, if u0 is the initial probability density, then u solves problem (1.4).
Of course, one can now see that with this probabilistic interpretation there

is no problem in considering a right hand side f or nonhomogeneous Neumann
conditions {

ut + (−Δ)su = f(x, t, u) in Ω,
Nsu = g(x, t) in R

n \ Ω.
In this case, g represents a “nonlocal flux” of new particles coming from outside Ω,
and f would represent a reaction term.

3. The elliptic problem

Given g ∈ L1(Rn \ Ω) and measurable functions u, v : Rn → R, we set

(3.1) ‖u‖Hs
Ω,g

:=
(
‖u‖2L2(Ω)+‖|g|1/2 u‖2L2(Rn\Ω)+

∫
R2n\(CΩ)2

|u(x)−u(y)|2
|x− y|n+2s

dx dy
)1/2
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and

(u, v)Hs
Ω,g

:=

∫
Ω

u v dx+

∫
Rn\Ω

|g|u v dx

+

∫
R2n\(CΩ)2

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dx dy.

(3.2)

Then, we define the space

Hs
Ω,g := {u : Rn → R measurable : ‖u‖Hs

Ω,g
< +∞}.

We will also write Hs
Ω,0 to mean Hs

Ω,g with g ≡ 0.

Proposition 3.1. Hs
Ω,g is a Hilbert space with the scalar product defined in (3.2).

Proof. We point out that (3.2) is a bilinear form and ‖u‖Hs
Ω,g

= ((u, u)Hs
Ω,g

)1/2.

Also, if ‖u‖Hs
Ω,g

= 0, it follows that ‖u‖L2(Ω) = 0, hence u = 0 a.e. in Ω, and that

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0,

which in turn implies that |u(x) − u(y)| = 0 for any (x, y) ∈ R
2n \ (CΩ)2. In

particular, a.e. x ∈ CΩ and y ∈ Ω we have that

u(x) = u(x)− u(y) = 0.

This shows that u = 0 a.e. in R
n, so it remains to prove that Hs

Ω,g is complete.
For this, we take a Cauchy sequence uk with respect to the norm in (3.1).

In particular, uk is a Cauchy sequence in L2(Ω) and therefore, up to a subse-
quence, we suppose that uk converges to some u in L2(Ω) and a.e. in Ω. More
explicitly, there exists Z1 ⊂ R

n such that

(3.3) |Z1| = 0 and uk(x) → u(x) for every x ∈ Ω \ Z1.

Also, given any U : Rn → R, for any (x, y) ∈ R
2n we define

(3.4) EU (x, y) :=
(U(x) − U(y))χR2n\(CΩ)2(x, y)

|x− y|(n+2s)/2
.

Notice that

Euk
(x, y)− Euh

(x, y) =

(
uk(x) − uh(x) − uk(y) + uh(y)

)
χR2n\(CΩ)2(x, y)

|x− y|(n+2s)/2
.

Accordingly, since uk is a Cauchy sequence in Hs
Ω,g, for any ε > 0 there ex-

ists Nε ∈ N such that, if h, k ≥ Nε, then

ε2 ≥
∫
R2n\(CΩ)2

|(uk − uh)(x)− (uk − uh)(y)|2
|x− y|n+2s

dx dy = ‖Euk
− Euh

‖2L2(R2n).
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That is, Euk
is a Cauchy sequence in L2(R2n) and thus, up to a subsequence, we

assume that Euk
converges to some E in L2(R2n) and a.e. in R

2n. More explicitly,
there exists Z2 ⊂ R

2n such that

(3.5) |Z2| = 0 and Euk
(x, y) → E(x, y) for every (x, y) ∈ R

2n \ Z2.

Now, for any x ∈ Ω, we set

Sx := {y ∈ R
n : (x, y) ∈ R

2n \ Z2},
W := {(x, y) ∈ R

2n : x ∈ Ω and y ∈ R
n \ Sx}

and V := {x ∈ Ω : |Rn \ Sx| = 0}.
We remark that

(3.6) W ⊆ Z2.

Indeed, if (x, y) ∈W , then y ∈ R
n \Sx, hence (x, y) �∈ R

2n \Z2, and so (x, y) ∈ Z2,
which gives (3.6).

Using (3.5) and (3.6), we obtain that |W | = 0, hence by the Fubini theorem we
have that

0 = |W | =
∫
Ω

|Rn \ Sx| dx,

which implies that |Rn \ Sx| = 0 for a.e. x ∈ Ω.
As a consequence, we conclude that |Ω \ V | = 0. This and (3.3) imply that

|Ω \ (V \ Z1)| = |(Ω \ V ) ∪ Z1| ≤ |Ω \ V |+ |Z1| = 0.

In particular V \ Z1 �= ∅, so we can fix x0 ∈ V \ Z1.
Since x0 ∈ Ω \ Z1, equation (3.3) implies

lim
k→+∞

uk(x0) = u(x0).

Furthermore, since x0 ∈ V we have that |Rn \ Sx0 | = 0. As a consequence, a.e.
y ∈ R

n (namely, for every y ∈ Sx0), we have that (x0, y) ∈ R
2n \ Z2 and so

lim
k→+∞

Euk
(x0, y) = E(x0, y),

thanks to (3.5). Notice also that Ω × (CΩ) ⊆ R
2n \ (CΩ)2 and so, recalling (3.4),

we get

Euk
(x0, y) :=

uk(x0)− uk(y)

|x0 − y|(n+2s)/2
,

for a.e. y ∈ CΩ. Thus, we obtain

lim
k→+∞

uk(y) = lim
k→+∞

{uk(x0)− |x0 − y|(n+2s)/2Euk
(x0, y)}

= u(x0)− |x0 − y|(n+2s)/2E(x0, y),

a.e. y ∈ CΩ.
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This and (3.3) say that uk converges a.e. in R
n. Up to a change of notation,

we will say that uk converges a.e. in R
n to some u. So, using that uk is a Cauchy

sequence in Hs
Ω,g, fixed any ε > 0 there exists Nε ∈ N such that, for any h ≥ Nε,

ε2 ≥ lim inf
k→+∞

‖uh − uk‖2Hs
Ω,g

≥ lim inf
k→+∞

∫
Ω

(uh − uk)
2 + lim inf

k→+∞

∫
CΩ

|g|(uh − uk)
2

+ lim inf
k→+∞

∫
R2n\(CΩ)2

|(uh − uk)(x)− (uh − uk)(y)|2
|x− y|n+2s

dx dy

≥
∫
Ω

(uh − u)2 +

∫
CΩ

|g|(uh − u)2

+

∫
R2n\(CΩ)2

|(uh − u)(x) − (uh − u)(y)|2
|x− y|n+2s

dx dy

= ‖uh − u‖2Hs
Ω,g
,

where Fatou’s lemma was used. This says that uh converges to u in Hs
Ω,g, showing

that Hs
Ω,g is complete. �

3.1. Some integration by parts formulas

The following is a nonlocal analogue of the divergence theorem.

Lemma 3.2. Let u be any bounded C2 function in R
n. Then,∫

Ω

(−Δ)su = −
∫
Rn\Ω

Nsu.

Proof. Note that∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
dx dy =

∫
Ω

∫
Ω

u(y)− u(x)

|x− y|n+2s
dx dy = 0,

since the role of x and y in the integrals above is symmetric. Hence, we have that∫
Ω

(−Δ)su dx = cn,s

∫
Ω

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy dx = cn,s

∫
Ω

∫
Rn\Ω

u(x)− u(y)

|x− y|n+2s
dy dx

= cn,s

∫
Rn\Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
dx dy = −

∫
Rn\Ω

Nsu(y) dy,

as desired. �

More generally, we have the following integration by parts formula.

Lemma 3.3. Let u and v be bounded C2 functions in R
n. Then,

cn,s
2

∫
R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x) − v(y)

)
|x− y|n+2s

dx dy =

∫
Ω

v (−Δ)su+

∫
Rn\Ω

vNsu ,

where cn,s is the constant in (1.3).
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Proof. Notice that

1

2

∫
R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x) − v(y)

)
|x− y|n+2s

dx dy

=

∫
Ω

∫
Rn

v(x)
u(x)− u(y)

|x− y|n+2s
dy dx+

∫
Rn\Ω

∫
Ω

v(x)
u(x)− u(y)

|x− y|n+2s
dy dx.

Thus, using (1.3) and (1.2), the identity follows. �

Remark 3.4. We recall that if one takes ∂νu = 1, then one can obtain the
perimeter of Ω by integrating this Neumann condition over ∂Ω. Indeed,

(3.7) |∂Ω| =
∫
∂Ω

dx =

∫
∂Ω

∂νu dx.

Analogously, we can define Ñsu, by renormalizing Nsu by a factor

ws,Ω(x) := cn,s

∫
Ω

dy

|x− y|n+2s
,

that is

(3.8) Ñsu(x) :=
Nsu(x)

ws,Ω(x)
for x ∈ R

n \ Ω.

Now, we observe that if Ñsu(x) = 1 for any x ∈ R
n \Ω, then we find the fractional

perimeter (see [6] where this object was introduced) by integrating such nonlocal
Neumann condition over Rn \ Ω, that is,

Pers(Ω) := cn,s

∫
Ω

∫
Rn\Ω

dx dy

|x− y|n+2s
=

∫
Rn\Ω

ws,Ω(x) dx

=

∫
Rn\Ω

ws,Ω(x) Ñsu(x) dx =

∫
Rn\Ω

Nsu(x) dx,

that can be seen as the nonlocal counterpart of (3.7).

Remark 3.5. The renormalized Neumann condition in (3.8) can also be framed
into the probabilistic interpretation of Section 2.

Indeed suppose that CΩ is partitioned into a Dirichlet part D and a Neumann
part N and that:

• our Lévy process receives a final payoff φ(x) when it leaves the domain Ω by
landing at the point x in D,

• if the Lévy process leaves Ω by landing at the point x in N , then it receives
an additional payoff ψ(x) and is forced to come back to Ω and keep running
by following the same probability law (the case discussed in Section 2 is the
model situation in which ψ ≡ 0).
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In this setting, the expected payoff u(x) obtained by starting the process at the
point x ∈ Ω satisfies (−Δ)su = 0 in Ω and u = φ in D. Also, for any x ∈ N , the
expected payoff landing at x must be equal to the additional payoff ψ(x) plus the
average payoff u(y) obtained by jumping from x to y ∈ Ω, that is,

for any x ∈ N , u(x) = ψ(x) +

∫
Ω

u(y)

|x− y|n+2s
dy

∫
Ω

dy

|x− y|n+2s

,

which corresponds to Ñsu(x) = ψ(x).

3.2. Weak solutions with Neumann conditions

The integration by parts formula from Lemma 3.3 leads to the following.

Definition 3.6. Let f ∈ L2(Ω) and g ∈ L1(Rn \Ω). Let u ∈ Hs
Ω,0. We say that u

is a weak solution of

(3.9)

{
(−Δ)su = f in Ω,

Nsu = g in R
n \ Ω,

whenever

(3.10)
cn,s
2

∫
R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dx dy =

∫
Ω

f v +

∫
Rn\Ω

g v

for all test functions v ∈ Hs
Ω,g.

With this definition, we can prove the following.

Proposition 3.7. Let f ∈ L2(Ω) and g ∈ L1(Rn \ Ω). Let I : Hs
Ω,g → R be the

functional defined, for every u ∈ Hs
Ω,g, as

I[u] :=
cn,s
4

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫
Ω

f u−
∫
Rn\Ω

g u.

Then any critical point of I is a weak solution of (3.9).

Proof. First of all, we observe that the functional I is well defined on Hs
Ω,g. Indeed,

if u ∈ Hs
Ω,g then

∣∣∣
∫
Ω

f u
∣∣∣ ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ C ‖u‖Hs

Ω,g
,

and∣∣∣
∫
Rn\Ω

g u
∣∣∣ ≤

∫
Rn\Ω

|g|1/2 |g|1/2 |u| ≤ ‖g‖1/2L1(Rn\Ω) ‖|g|1/2u‖L2(Rn\Ω) ≤ C ‖u‖Hs
Ω,g
.

Therefore, if u ∈ Hs
Ω,g we have that

|I[u]| ≤ C‖u‖Hs
Ω,g

< +∞.
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Now, we compute the first variation of I. For this, we take |ε| < 1 and v ∈ Hs
Ω,g.

Then the function u+ εv ∈ Hs
Ω,g, and so we can compute

I[u+ εv]

=
cn,s
4

∫
R2n\(CΩ)2

|(u + εv)(x)− (u+ εv)(y)|2
|x− y|n+2s

dx dy

−
∫
Ω

f(u+ εv)−
∫
Rn\Ω

g(u+ εv)

= I(u)

+ ε
(cn,s

2

∫
R2n\(CΩ)2

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dx dy −

∫
Ω

f v −
∫
Rn\Ω

g v
)

+
cn,s
4
ε2

∫
R2n\(CΩ)2

|v(x) − v(y)|2
|x− y|n+2s

dx dy.

Hence,

lim
ε→0

I[u+ εv]− I[u]

ε

=
cn,s
2

∫
R2n\(CΩ)2

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dx dy −

∫
Ω

f v −
∫
Rn\Ω

g v,

which means that

I ′[u](v) =
cn,s
2

∫
R2n\(CΩ)2

(u(x) − u(y))(v(x) − v(y))

|x− y|n+2s
dx dy −

∫
Ω

f v −
∫
Rn\Ω

g v.

Therefore, if u is a critical point of I, then u is a weak solution to (3.9), according
to Definition 3.6. �

Next result is a sort of maximum principle and it is auxiliary towards the
existence and uniqueness theory provided in the subsequent Theorem 3.9.

Lemma 3.8. Let f ∈ L2(Ω) and g ∈ L1(Rn \ Ω). Let u be any Hs
Ω,0 function

satisfying, in the weak sense,{
(−Δ)su = f in Ω,

Nsu = g in R
n \ Ω,

with f ≥ 0 and g ≥ 0.
Then, u is constant.

Proof. First, we observe that the function v ≡ 1 belongs to Hs
Ω,g, and therefore we

can use it as a test function in (3.10), obtaining that

0 ≤
∫
Ω

f = −
∫
Rn\Ω

g ≤ 0.

This implies that

f = 0 a.e. in Ω, and g = 0 a.e. in R
n \ Ω.
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Therefore, taking v = u as a test function in (3.10), we deduce that

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0,

and hence u must be constant. �

We can now give the following existence and uniqueness result (we observe that
its statement is in complete analogy2 with the classical case, see e.g. [16], p. 294).

Theorem 3.9. Let Ω ⊂ R
n be a bounded Lipschitz domain, let f ∈ L2(Ω), and

let g ∈ L1(Rn \ Ω). Suppose that there exists a C2 function ψ such that Nsψ = g
in R

n \Ω.
Then, problem (3.9) admits a weak solution in Hs

Ω,0 if and only if

(3.11)

∫
Ω

f = −
∫
Rn\Ω

g.

Moreover, in case that (3.11) holds, the solution is unique up to an additive con-
stant.

Proof. Case 1. We do first the case g ≡ 0, i.e., with homogeneous nonlocal Neu-
mann conditions. We also assume that f �≡ 0, otherwise there is nothing to prove.

Given h ∈ L2(Ω), we look for a solution v ∈ Hs
Ω,g of the problem

(3.12)

∫
Ω

v ϕ+

∫
R2n\(CΩ)2

(v(x) − v(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dx dy =

∫
Ω

hϕ,

for any ϕ ∈ Hs
Ω,g, with homogeneous Neumann conditions Nsv = 0 in R

n \ Ω.
We consider the functional F : Hs

Ω,g → R defined as

F(ϕ) :=

∫
Ω

hϕ for any ϕ ∈ Hs
Ω,g.

It is easy to see that F is linear. Moreover, it is continuous on Hs
Ω,g:

|F(ϕ)| ≤
∫
Ω

|h| |ϕ| ≤ ‖h‖L2(Ω) ‖ϕ‖L2(Ω) ≤ ‖h‖L2(Ω) ‖ϕ‖Hs
Ω,g
.

Therefore, from the Riesz representation theorem it follows that problem (3.12)
admits a unique solution v ∈ Hs

Ω,g for any given h ∈ L2(Ω).
Furthermore, taking ϕ := v in (3.12), one obtains that

(3.13) ‖v‖Hs(Ω) ≤ C ‖h‖L2(Ω).

2The only difference with the classical case is that in Theorem 3.9 it is not necessary to
suppose that the domain is connected in order to obtain the uniqueness result.
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Now, we define the operator To : L
2(Ω) −→ Hs

Ω,g as Toh = v. We also define
by T the restriction operator in Ω, that is,

Th = Toh
∣∣
Ω
.

That is, the function Toh is defined in the whole of Rn, then we take Th to be its
restriction in Ω. In this way, we see that T : L2(Ω) −→ L2(Ω).

We have that T is compact. Indeed, we take a sequence {hk}k∈N bounded
in L2(Ω). Hence, from (3.13) we deduce that the sequence of Thk is bounded
in Hs(Ω), which is compactly embedded in L2(Ω) (see e.g. [12]). Therefore, there
exists a subsequence that converges in L2(Ω).

Now, we show that T is self-adjoint. For this, to avoid any smoothness issue
on the test function, we will proceed by approximation. We take h1, h2 ∈ C∞

0 (Ω)
and we use the weak formulation in (3.12) to say that, for every ϕ, φ ∈ Hs

Ω,g, we
have

(3.14)

∫
Ω

Toh1 ϕ+

∫
R2n\(CΩ)2

(Toh1(x) − Toh1(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dx dy =

∫
Ω

h1 ϕ,

and

(3.15)

∫
Ω

Toh2 φ+

∫
R2n\(CΩ)2

(Toh2(x)− Toh2(y))(φ(x) − φ(y))

|x− y|n+2s
dx dy =

∫
Ω

h2 φ,

Now we take ϕ := Toh2 and φ := Toh1 in (3.14) and (3.15) respectively and we
obtain that ∫

Ω

h1 Toh2 =

∫
Ω

Toh1 h2

for any h1, h2 ∈ C∞
0 (Ω). Accordingly, since Toh1 = Th1 and Toh2 = Th2 in Ω, we

conclude that

(3.16)

∫
Ω

h1 Th2 =

∫
Ω

Th1 h2

for any h1, h2 ∈ C∞
0 (Ω). If h1, h2 ∈ L2(Ω), there exist sequences of functions

in C∞
0 (Ω), say h1,k and h2,k, such that h1,k → h1 and h2,k → h2 in L2(Ω)

as k → +∞. From (3.16) we have that

(3.17)

∫
Ω

h1,k Th2,k =

∫
Ω

Th1,k h2,k.

Moreover, from (3.13) we deduce that Th1,k → Th1 and Th2,k → Th2 in Hs(Ω)
as k → +∞, and so ∫

Ω

h1,k Th2,k →
∫
Ω

h1 Th2 as k → +∞

and ∫
Ω

Th1,k h2,k →
∫
Ω

Th1 h2 as k → +∞.
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The last two formulas and (3.17) imply that

(3.18)

∫
Ω

h1 Th2 =

∫
Ω

Th1 h2 for any h1, h2 ∈ L2(Ω),

which says that T is self-adjoint.
Now we prove that

(3.19) Ker(Id− T ) consists of constant functions.

First of all, we check that the constants are in Ker(Id − T ). We take a function
constantly equal to c and we observe that (−Δ)sc = 0 in Ω (hence (−Δ)sc+c = c)
and Nsc = 0 in R

n \Ω. This shows that Toc = c in R
n, and so Tc = c in Ω, which

implies that c ∈ Ker(Id − T ). Viceversa, now we show that if v ∈ Ker(Id − T )
⊆ L2(Ω), then v is constant. For this, we consider Tov ∈ Hs

Ω,g. By construction,

(3.20) (−Δ)s(Tov) + (Tov) = v in Ω,

in the weak sense, and

(3.21) Ns(Tov) = 0 in R
n \ Ω.

On the other hand, since v ∈ Ker(Id− T ), we have that

(3.22) v = Tv = Tov in Ω.

Hence, by (3.20), we have that

(−Δ)s(Tov) = 0 in Ω.

Using this, (3.21) and Lemma 3.8, we obtain that Tov is constant. Thus, by (3.22),
we obtain that v is constant in Ω and this completes the proof of (3.19).

From (3.19) and the Fredholm alternative, we conclude that

Im(Id− T ) = Ker(Id− T )⊥ = {constant functions}⊥,
where the orthogonality notion is in L2(Ω). More explicitly,

(3.23) Im(Id− T ) =
{
f ∈ L2(Ω) s.t.

∫
Ωf = 0

}
.

Now, let us take f such that
∫
Ω
f = 0. By (3.23), we know that there ex-

ists w ∈ L2(Ω) such that f = w − Tw. Let us define u := Tow. By construction,
we have that Nsu = 0 in R

n \ Ω, and that

(−Δ)s(Tow) + (Tow) = w in Ω.

Consequently, in Ω,

f = w − Tw = w − Tow = (−Δ)s(Tow) = (−Δ)su,

and we found the desired solution in this case.
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Viceversa, if we have a solution u ∈ Hs
Ω,g of (−Δ)su = f in Ω with Nsu = 0

in R
n \ Ω, we set w := f + u and we observe that

(−Δ)su+ u = f + u = w in Ω.

Accordingly, we have that u = Tow in R
n, hence u = Tw in Ω. This says that

(Id− T )w = w − u = f in Ω

and so f ∈ Im(Id− T ). Thus, by (3.23), we obtain that
∫
Ω
f = 0.

This establishes the validity of Theorem 3.9 when g ≡ 0.

Case 2. Let us now consider the nonhomogeneous case (3.9). By the hypothe-
ses, there exists a C2 function ψ satisfying Nsψ = g in R

n \ Ω.
Let ū = u− ψ. Then, ū solves

{
(−Δ)sū = f̄ in Ω,

Nsu = 0 in R
n \ Ω,

with
f̄ = f − (−Δ)sψ.

Then, as we already proved, this problem admits a solution if and only if
∫
Ω f̄ = 0,

i.e., if

(3.24) 0 =

∫
Ω

f̄ =

∫
Ω

f −
∫
Ω

(−Δ)sψ.

But, by Lemma 3.2, we have that

∫
Ω

(−Δ)sψ = −
∫
Rn\Ω

Nsψ = −
∫
Rn\Ω

g.

From this and (3.24) we conclude that a solution exists if and only if (3.11) holds.
Finally, the solution is unique up to an additive constant thanks to Lemma 3.8.

�

3.3. Eigenvalues and eigenfunctions

Here we discuss the spectral properties of problem (1.1). For it, we will need the
following classical tool.

Lemma 3.10 (Poincaré’s inequality). Let Ω ⊂ R
n be any bounded Lipschitz do-

main, and let s ∈ (0, 1). Then, for all functions u ∈ Hs(Ω), we have

∫
Ω

∣∣∣u−
∫
Ω

u
∣∣∣2dx ≤ CΩ

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy,

where the constant CΩ > 0 depends only on Ω and s.
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Proof. We give the details for the facility of the reader. We argue by contradiction
and we assume that the inequality does not hold. Then, there exists a sequence of
functions uk ∈ Hs(Ω) satisfying

(3.25)

∫
Ω

uk = 0, ‖uk‖L2(Ω) = 1,

and

(3.26)

∫
Ω

∫
Ω

|uk(x)− uk(y)|2
|x− y|n+2s

dx dy <
1

k
.

In particular, the functions {uk}k≥1 are bounded in Hs(Ω).
Using now that the embedding Hs(Ω) ⊂ L2(Ω) is compact (see e.g. [12]), it

follows that a subsequence {ukj}j≥1 converges to a function ū ∈ L2(Ω), i.e.,

ukj → ū in L2(Ω).

Moreover, we deduce from (3.25) that

(3.27)

∫
Ω

ū = 0, and ‖ū‖L2(Ω) = 1.

On the other hand, (3.26) implies that
∫
Ω

∫
Ω

|ū(x)− ū(y)|2
|x− y|n+2s

dx dy = 0.

Thus, ū is constant in Ω, and this contradicts (3.27). �

We finally give the description of the eigenvalues of (−Δ)s with zero Neumann
boundary conditions.

Theorem 3.11. Let Ω ⊂ R
n be a bounded Lipschitz domain. Then, there exist a

sequence of nonnegative values

0 = λ1 < λ2 ≤ λ3 ≤ · · · ,
and a sequence of functions ui : R

n → R such that{
(−Δ)sui(x) = λiui(x) for any x ∈ Ω,

Nsui(x) = 0 for any x ∈ R
n \ Ω.

Also, the functions ui (when restricted to Ω) provide a complete orthogonal system
in L2(Ω).

Proof. We define
L2
0(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω u = 0

}
.

Let the operator To be defined by Tof = u, where u is the unique solution of{
(−Δ)su = f in Ω,

Nsu = 0 in R
n \ Ω,
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according to Definition 3.6. We remark that the existence and uniqueness of such
solution is a consequence of the fact that f ∈ L2

0(Ω) and Theorem 3.9. We also
define T to be the restriction of To in Ω, that is

Tf = Tof
∣∣
Ω
.

In this way, T : L2
0(Ω) −→ L2

0(Ω).
Also, we claim that the operator T is compact and self-adjoint.
We first show that T is compact. Indeed, taking v = u = Tof in the weak

formulation of the problem (3.10), we obtain

(3.28)
cn,s
2

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy ≤ ‖f‖L2(Ω)‖u‖L2(Ω).

Now, using the Poincaré inequality in Lemma 3.10 (recall that
∫
Ω u = 0), we

deduce that

(3.29) ‖u‖L2(Ω) ≤ C
(∫

Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy
)1/2

.

This and (3.28) give that

(3.30)
(∫

Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy
)1/2

≤ C ‖f‖L2(Ω).

Now, we take a sequence {fk}k∈N bounded in L2(Ω). From (3.29) and (3.30)
we obtain that uk = Tfk is bounded in Hs(Ω). Hence, since the embedding
Hs(Ω) ⊂ L2(Ω) is compact, there exists a subsequence that converges in L2(Ω).
Therefore, T is compact.

Now we show that T is self-adjoint in L2
0(Ω). The proof is very similar to the

one in (3.14)–(3.18), but for the facility of the reader we give it in full detail (the
reader who is not interested can jump directly to (3.35)). To show self-adjointness,
we take f1 and f2 in C∞

0 (Ω), with
∫
Ω f1 =

∫
Ω f2 = 0. Then from the weak

formulation in (3.10) we have that, for every v, w ∈ Hs
Ω,g,

(3.31)
cn,s
2

∫
R2n\(CΩ)2

(Tof1(x) − Tof1(y))(v(x) − v(y))

|x− y|n+2s
dx dy =

∫
Ω

f1 v

and

(3.32)
cn,s
2

∫
R2n\(CΩ)2

(Tof2(x) − Tof2(y))(w(x) − w(y))

|x− y|n+2s
dx dy =

∫
Ω

f2w.

We observe that we can take v := Tof2 in (3.31) and w := Tof1 in (3.32) (and
recall that Tofi = Tfi in Ω), obtaining that

(3.33)

∫
Ω

f1 Tf2 =

∫
Ω

f2 Tf1, for any f1, f2 ∈ C∞
0 (Ω).
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Now, if f1, f2 ∈ L2
0(Ω) we can find sequences of functions f1,k, f2,k ∈ C∞

0 (Ω) such
that f1,k → f1 and f2,k → f2 in L2(Ω) as k → +∞. Therefore, from (3.33), we
have

(3.34)

∫
Ω

f1,k Tf2,k =

∫
Ω

f2,k Tf1,k.

We notice that, thanks to (3.29) and (3.30), Tf1,k → Tf1 and Tf2,k → Tf2
in L2(Ω) as k → +∞, and therefore, from (3.34), we obtain that∫

Ω

f1 Tf2 =

∫
Ω

f2 Tf1,

thus proving that T is self-adjoint in L2
0(Ω).

Thus, by the spectral theorem there exists a sequence of eigenvalues {μi}i≥2

of T , and its corresponding eigenfunctions {ei}i≥2 are a complete orthogonal sys-
tem in L2

0(Ω).
We remark that

(3.35) μi �= 0.

Indeed, suppose by contradiction that μi = 0. Then

(3.36) 0 = μiei = Tei = Toei in Ω.

By construction, Ns(Toei) = 0 in R
n \ Ω. This and (3.36) give that

Toei(x) =

∫
Ω

Toei(y)

|x− y|n+2s
dy

∫
Ω

dy

|x− y|n+2s

= 0 in R
n \ Ω.

Using this and (3.36) once again we conclude that Toei ≡ 0 a.e. in R
n. Therefore

0 = (−Δ)s(Toei) = ei in Ω,

which gives that ei ≡ 0 in Ω, hence it is not an eigenfunction. This estab-
lishes (3.35).

From (3.35), we can define
λi := μ−1

i .

We also define ui := Toei and we claim that u2, u3, . . . is the desired system of
eigenfunctions, with corresponding eigenvalues λ2, λ3, . . .

Indeed,

(3.37) ui = Toei = Tei = μiei in Ω,

hence the orthogonality and completeness properties of u2, u3, . . . in L
2
0(Ω) follow

from those of e2, e3, . . .
Furthermore, in the domain Ω, we have that (−Δ)sui = (−Δ)s(Toei) = ei =

λiui, where (3.37) was used in the last step, and this proves the desired spectral
property.
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Now, we notice that

(3.38) λi > 0 for any i ≥ 2.

Indeed, its corresponding eigenfunction ui solves

(3.39)

{
(−Δ)sui = λiui in Ω,

Nsui = 0 in R
n \ Ω.

Then, if we take ui as a test function in the weak formulation of (3.39), we obtain
that

cn,s
2

∫
R2n\(CΩ)2

|ui(x)− ui(y)|2
|x− y|n+2s

dx dy = λi

∫
Ω

u2i ,

which implies that λi ≥ 0. Now, suppose by contradiction that λi = 0. Then,
from Lemma 3.8 we have that ui is constant. On the other hand, we know
that ui ∈ L2

0(Ω), and this implies that ui ≡ 0, which is a contradiction since ui is
an eigenfunction. This establishes (3.38).

From (3.38), up to reordering them, we can suppose that 0 < λ2 ≤ λ3 ≤ · · · ;
now, we notice that λ1 := 0 is an eigenvalue, with eigenfunction u1 := 1, thanks to
Lemma 3.8. Therefore, we have a sequence of eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ · · · ,
and its corresponding eigenfunctions are a complete orthogonal system in L2(Ω).
To check the latter statement, we argue as follows: first of all, the system {ei}i≥1 is
orthogonal in L2(Ω), since we already know that the system {ei}i≥2 is orthogonal,
and each ei is orthogonal to e1 for any i ≥ 2, because ei ∈ L2

0(Ω) and e1 ≡ 1. To
check that the system {ei}i≥1 is complete in L2(Ω), given any γ ∈ L2(Ω), we set

γ1 :=

∫
Ω

γ and γ̃ := γ − γ1.

Then, γ̃ ∈ L2
0(Ω), and so, since {ei}i≥2 is a complete orthogonal system in L2

0(Ω),
there exists a sequence of real numbers {γi}i≥2 such that

lim
N→+∞

∥∥∥γ̃ −
N∑
i=2

γiei

∥∥∥
L2(Ω)

= 0.

Accordingly, since γ̃ = γ − γ1e1, we get

lim
N→+∞

∥∥∥γ −
N∑
i=1

γiei

∥∥∥
L2(Ω)

= 0.

Since γ is an arbitrary function of L2(Ω), we have shown that the system {ei}i≥1

is complete in L2(Ω), as desired. This concludes the proof of Theorem 3.11. �

Remark 3.12. We point out that the notion of eigenfunctions in Theorem 3.11
is not completely standard. Indeed, the eigenfunctions ui corresponding to the
eigenvalues λi are defined in the whole of Rn, but they satisfy an orthogonality
conditions only in L2(Ω).
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Alternatively, one can think that the “natural” domain of definition for ui is Ω
itself, since there the eigenvalue equation (−Δ)sui = λiui takes place, together
with the orthogonality condition, and then ui is “naturally” extended outside Ω
via the nonlocal Neumann condition. Notice indeed that the condition Nsui = 0
in R

n\Ω is equivalent to prescribing ui outside Ω from the values inside Ω according
to the formula

ui(x) =

∫
Ω

ui(y)

|x− y|n+2s
dy

∫
Ω

dy

|x− y|n+2s

for any x ∈ R
n \ Ω.

In the following proposition we deal with the behavior of the solution of (1.1)
at infinity.

Proposition 3.13. Let Ω ⊂ R
n be a bounded domain and let u ∈ Hs

Ω,g be a weak
solution (according to Definition 3.6) of{

(−Δ)su = f in Ω,
Nsu = 0 in R

n \ Ω.
Then

lim
|x|→∞

u(x) =
1

|Ω|
∫
Ω

u uniformly in x.

Proof. First we observe that, since Ω is bounded, there exists R > 0 such that Ω ⊂
BR. Hence, if y ∈ Ω, we have that

|x| −R ≤ |x− y| ≤ |x|+R,

and so

1− R

|x| ≤
|x− y|
|x| ≤ 1 +

R

|x| .

Therefore, given ε > 0, there exists R̄ > R such that, for any |x| ≥ R̄, we have

|x|n+2s

|x− y|n+2s
= 1 + γ(x, y),

where |γ(x, y)| ≤ ε.
Recalling the definition of Nsu given in (1.2) and using the fact that Nsu = 0

in R
n \ Ω, we have that for any x ∈ R

n \ Ω,

u(x) =

∫
Ω

u(y)

|x− y|n+2s
dy

∫
Ω

dy

|x− y|n+2s

=

∫
Ω

|x|n+2su(y)

|x− y|n+2s
dy

∫
Ω

|x|n+2s

|x− y|n+2s
dy

=

∫
Ω

(1 + γ(x, y))u(y) dy∫
Ω

(1 + γ(x, y)) dy

=

∫
Ω

u(y) dy +

∫
Ω

γ(x, y)u(y) dy

|Ω|+
∫
Ω

γ(x, y) dy

.
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We set

γ1(x) :=

∫
Ω

γ(x, y)u(y) dy and γ2(x) :=

∫
Ω

γ(x, y) dy,

and we notice that |γ1(x)| ≤ Cε and |γ2(x)| ≤ ε, for some C > 0.
Hence, we have that for any x ∈ R

n \ Ω
∣∣∣u(x)−

∫
Ω

u(y) dy
∣∣∣ =

∣∣∣
∫
Ω u(y) dy + γ1(x)

1 + γ2(x)
−

∫
Ω

u(y) dy
∣∣∣

=

∣∣γ1(x)− γ2(x)
∫
Ω
u(y) dy

∣∣
1 + γ2(x)

≤ C ε

1− ε
.

Therefore, sending ε→ 0 (that is, |x| → +∞), we obtain the desired result. �

Remark 3.14 (Interior regularity of solutions). We notice that, in particular,
Proposition 3.13 implies that u is bounded at infinity. Thus, if solutions are lo-
cally bounded, then one could apply interior regularity results for solutions to
(−Δ)su = f in Ω (see e.g. [17], [21], [7], and [20]).

4. The heat equation

Here we show that solutions of the nonlocal heat equation with zero Neumann
datum preserve their mass and have energy that decreases in time.

To avoid technicalities, we assume that u is a classical solution of problem (1.4),
so that we can differentiate under the integral sign.

Proposition 4.1. Assume that u(x, t) is a classical solution to (1.4), in the sense
that u is bounded and |ut|+ |(−Δ)su| ≤ K for all t > 0. Then, for all t > 0,

∫
Ω

u(x, t) dx =

∫
Ω

u0(x)dx.

In other words, the total mass is conserved.

Proof. By the dominated convergence theorem, and using Lemma 3.2, we have

d

dt

∫
Ω

u =

∫
Ω

ut = −
∫
Ω

(−Δ)su =

∫
Rn\Ω

Nsu = 0.

Thus, the quantity
∫
Ω u does not depend on t, and the result follows. �

Proposition 4.2. Assume that u(x, t) is a classical solution to (1.4), in the sense
that u is bounded and |ut|+ |(−Δ)su| ≤ K for all t > 0. Then, the energy

E(t) =

∫
R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

is decreasing in time t > 0.
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Proof. Let us compute E′(t), and we will see that it is negative. Indeed, using
Lemma 3.3,

E′(t) =
d

dt

∫
R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

=

∫
R2n\(CΩ)2

2
(
u(x, t)− u(y, t)

)(
ut(x, t) − ut(y, t)

)
|x− y|n+2s

dx dy =
4

cn,s

∫
Ω

ut (−Δ)su dx,

where we have used that Nsu = 0 in R
n \ Ω.

Thus, using now the equation ut + (−Δ)su = 0 in Ω, we find

E′(t) = − 4

cn,s

∫
Ω

|(−Δ)su|2dx ≤ 0,

with strict inequality unless u is constant. �

Next we prove that solutions of the nonlocal heat equation with Neumann
condition approach a constant as t→ +∞.

Proposition 4.3. Assume that u(x, t) is a classical solution to (1.4), in the sense
that u is bounded and |ut|+ |(−Δ)su| ≤ K for all t > 0. Then, as t→ +∞,

u → 1

|Ω|
∫
Ω

u0 in L2(Ω).

Proof. Let

m :=
1

|Ω|
∫
Ω

u0

be the total mass of u. Define also

A(t) :=

∫
Ω

|u−m|2 dx.

Notice that, by Proposition 4.1, we have

A(t) =

∫
Ω

(
u2 − 2mu+m2

)
dx =

∫
Ω

u2 dx− |Ω|m2.

Then, by Lemma 3.3,

A′(t) = 2

∫
Ω

utu dx = −2

∫
Ω

u(−Δ)su dx

= −cn,s
∫
R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy.

Hence, A is decreasing.
Moreover, using the Poincaré inequality in Lemma 3.10 and again Proposi-

tion 4.1, we deduce that

A′(t) ≤ −c
∫
Ω

|u−m|2 dx = −cA(t),
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for some c > 0. Thus, it follows that

A(t) ≤ e−ctA(0),

and thus

lim
t→+∞

∫
Ω

|u(x, t)−m|2dx = 0,

i.e., u converges to m in L2(Ω).
Notice that, in fact, we have proved that the convergence is exponentially

fast. �

5. Limits

In this section we study the limits as s→ 1 and the continuity properties induced
by the fractional Neumann condition.

5.1. Limit as s → 1

Proposition 5.1. Let Ω ⊂ R
n be any bounded Lipschitz domain. Let u and v be

C2
0 (R

n) functions. Then,

lim
s→1

∫
Rn\Ω

Nsu v =

∫
∂Ω

∂u

∂ν
v.

Proof. By Lemma 3.3, we have that

(5.1)

∫
Rn\Ω

Nsu v =
cn,s
2

∫
R2n\(CΩ)2

(u(x)−u(y)) (v(x)−v(y))
|x− y|n+2s

dx dy−
∫
Ω

v(−Δ)su.

Now, we claim that

(5.2) lim
s→1

cn,s
2

∫
R2n\(CΩ)2

(u(x)− u(y)) (v(x) − v(y))

|x− y|n+2s
dx dy =

∫
Ω

∇u · ∇v.

We observe that to show (5.2) it is enough to prove that, for any u ∈ C2
0 (R

n),

(5.3) lim
s→1

cn,s
2

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =

∫
Ω

|∇u|2.

Indeed,∫
R2n\(CΩ)2

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dx dy

=
1

2

∫
R2n\(CΩ)2

|(u+ v)(x) − (u+ v)(y)|2
|x− y|n+2s

dx dy

− 1

2

∫
R2n\(CΩ)2

|u(x) − u(y)|2
|x− y|n+2s

dx dy − 1

2

∫
R2n\(CΩ)2

|v(x) − v(y)|2
|x− y|n+2s

dx dy.
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Now, we recall that

lim
s→1

cn,s
1− s

=
4n

ωn−1
,

(see Corollary 4.2 in [12]), and so we have to show that

(5.4) lim
s→1

(1− s)

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =
ωn−1

2n

∫
Ω

|∇u|2.

For this, we first show that

(5.5) lim
s→1

(1− s)

∫
Ω×(CΩ)

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0.

Without loss of generality, we can suppose that Br ⊂ Ω ⊂ BR, for some 0 < r < R.
Since u ∈ C2

0 (R
n), then∫

Ω×(CΩ)

|u(x)− u(y)|2
|x− y|n+2s

dx dy ≤ 4‖u‖2L∞(Rn)

∫
Ω×(CΩ)

1

|x− y|n+2s
dx dy

≤ 4‖u‖2L∞(Rn)

∫
BR×(CBr)

1

|x− y|n+2s
dx dy

≤ 4‖u‖2L∞(Rn) ωn−1

∫
BR

dx

∫ +∞

r

ρn−1ρ−n−2s dρ

= 4‖u‖2L∞(Rn) ωn−1

∫
BR

dx

∫ +∞

r

ρ−1−2s dρ

= 4‖u‖2L∞(Rn)

ωn−1 r
−2s

2s

∫
BR

dx = 4‖u‖2L∞(Rn)

ω2
n−1R

n r−2s

2s
,

which implies (5.5). Hence,

lim
s→1

(1− s)

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

= lim
s→1

(1− s)

∫
Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy = Cn

∫
Ω

|∇u|2,
(5.6)

where Cn > 0 depends only on the dimension, see [5].
In order to determine the constant Cn, we take a C

2-function u supported in Ω.
In this case, we have

(5.7)

∫
Ω

|∇u|2 dx =

∫
Rn

|∇u|2 dx =

∫
Rn

|ξ|2 |û(ξ)|2 dξ,

where û is the Fourier transform of u. Moreover,∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =

∫
R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy

= 2 c−1
n,s

∫
Rn

|ξ|2s |û(ξ)|2 dx,
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thanks to Proposition 3.4 in [12]. Therefore, using Corollary 4.2 in [12] and (5.7),
we have

lim
s→1

(1 − s)

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy = lim
s→1

2(1− s)

cn,s

∫
Rn

|ξ|2s |û(ξ)|2 dx

=
ωn−1

2n

∫
Rn

|ξ|2 |û(ξ)|2 dx =
ωn−1

2n

∫
Ω

|∇u|2 dx.

Hence, the constant in (5.6) is Cn = ωn−1/(2n). This concludes the proof of (5.4),
and in turn of (5.2).

On the other hand,

−(−Δ)su→ Δu uniformly in R
n,

(see Proposition 4.4 in [12]). This, (5.1) and (5.2) give

lim
s→1

∫
Rn\Ω

Nsu v =

∫
Ω

∇u · ∇v +
∫
Ω

vΔu =

∫
∂Ω

∂u

∂ν
v,

as desired. �

We remark that the result in Proposition 5.1 holds for a fixed (and “nice”)
function and it can be seen as the counterpart of classical limit in the fractional
framework (see for instance Proposition 4.4 in [12]). If one aims to prove that so-
lutions of the corresponding elliptic equations of fractional parameter s correspond
to classical solutions as s → 1, an appropriate a-priori regularity theory needs to
be developed in the cases under consideration.

5.2. Continuity properties

Following is a continuity result for functions satisfying the nonlocal Neumann con-
dition:

Proposition 5.2. Let Ω ⊂ R
n be a domain with C1 boundary. Let u be continuous

in Ω, with Nsu = 0 in R
n \ Ω. Then u is continuous in the whole of Rn.

Proof. First, let us fix x0 ∈ R
n\Ω. Since the latter is an open set, there exists ρ > 0

such that |x0 − y| ≥ ρ for any y ∈ Ω. Thus, if x ∈ Bρ/2(x0), we have that |x− y| ≥
|x0 − y| − |x0 − x| ≥ ρ/2.

Moreover, if x ∈ Bρ/2(x0), we have that

|x− y| ≥ |y| − |x0| − |x0 − x| ≥ |y|
2

+
( |y|
4

− |x0|
)
+
( |y|

4
− ρ

2

)
≥ |y|

2
,

provided that |y| ≥ R := 4|x0| + 2ρ. As a consequence, for any x ∈ Bρ/2(x0), we
have that

|u(y)|+ 1

|x− y|n+2s
≤ 2n+2s (‖u‖L∞(Ω) + 1)

(χBR(y)

ρn+2s
+
χRn\BR

(y)

|y|n+2s

)
=: ψ(y)

and the function ψ belongs to L1(Rn).
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Thus, by the Neumann condition and the dominated convergence theorem, we
obtain that

lim
x→x0

u(x) = lim
x→x0

∫
Ω

u(y)

|x− y|n+2s
dy

∫
Ω

dy

|x− y|n+2s

=

∫
Ω

u(y)

|x0 − y|n+2s
dy

∫
Ω

dy

|x0 − y|n+2s

= u(x0).

This proves that u is continuous at any points of Rn \ Ω.
Now we show the continuity at a point p ∈ ∂Ω. We take a sequence pk → p

as k → +∞. We let qk be the projection of pk to Ω. Since p ∈ Ω, we have from
the minimizing property of the projection that

|pk − qk| = inf
ξ∈Ω

|pk − ξ| ≤ |pk − p|,

and so

|qk − p| ≤ |qk − pk|+ |pk − p| ≤ 2|pk − p| → 0

as k → +∞. Therefore, since we already know from the assumptions the continuity
of u at Ω, we obtain that

(5.8) lim
k→+∞

u(qk) = u(p).

Now we claim that

(5.9) lim
k→+∞

u(pk)− u(qk) = 0.

To prove it, it is enough to consider the points of the sequence pk that belong
to R

n \ Ω (since, of course, the points pk belonging to Ω satisfy pk = qk and
for them (5.9) is obvious). We define νk := (pk − qk)/|pk − qk|. Notice that νk
is the exterior normal of Ω at qk ∈ ∂Ω. We consider a rigid motion Rk such
that Rkqk = 0 and Rkνk = en = (0, . . . , 0, 1). Let also hk := |pk − qk|. Notice that

(5.10) h−1
k Rkpk = h−1

k Rk(pk − qk) = Rkνk = en.

Then, the domain

Ωk := h−1
k Rk Ω

has vertical exterior normal at 0 and approaches the halfspace Π := {xn < 0}
as k → +∞.

Now, we use the Neumann condition at pk and we obtain that

u(pk)− u(qk) =

∫
Ω

u(y)

|pk − y|n+2s
dy

∫
Ω

dy

|pk − y|n+2s

− u(qk) =

∫
Ω

u(y)− u(qk)

|pk − y|n+2s
dy

∫
Ω

dy

|pk − y|n+2s

= I1 + I2,
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with

I1 :=

∫
Ω∩B√

hk
(qk)

u(y)− u(qk)

|pk − y|n+2s
dy

∫
Ω

dy

|pk − y|n+2s

and I2 :=

∫
Ω\B√

hk
(qk)

u(y)− u(qk)

|pk − y|n+2s
dy

∫
Ω

dy

|pk − y|n+2s

.

We observe that the uniform continuity of u in Ω gives that

lim
k→+∞

sup
y∈Ω∩B√

hk
(qk)

|u(y)− u(qk)| = 0.

As a consequence,

(5.11) |I1| ≤ sup
y∈Ω∩B√

hk
(qk)

|u(y)− u(qk)| → 0

as k → +∞. Moreover, exploiting the change of variable η := h−1
k Rky and recall-

ing (5.10), we obtain that

|I2| ≤

∫
Ω\B√

hk
(qk)

|u(y)− u(qk)|
|pk − y|n+2s

dy

∫
Ω

dy

|pk − y|n+2s

≤ 2‖u‖L∞(Ω)

∫
Ω\B√

hk
(qk)

dy

|pk − y|n+2s

∫
Ω

dy

|pk − y|n+2s

= 2‖u‖L∞(Ω)

∫
Ωk\B1/

√
hk

dη

|en − η|n+2s

∫
Ωk

dη

|en − η|n+2s

.

Notice that, if η ∈ Ωk \B1/
√
hk

then

|en − η|n+2s = |en − η|n+s|en − η|s ≥ |en − η|n+s (|η| − 1)s

≥ |en − η|n+s (h
−1/2
k − 1)s ≥ |en − η|n+sh

−s/4
k

for large k. Therefore,

|I2| ≤ 2h
s/4
k ‖u‖L∞(Ω)

∫
Ωk

dη

|en − η|n+s∫
Ωk

dη

|en − η|n+2s

.

Since

lim
k→+∞

∫
Ωk

dη

|en − η|n+s∫
Ωk

dη

|en − η|n+2s

=

∫
Π

dη

|en − η|n+s∫
Π

dη

|en − η|n+2s

,

we conclude that |I2| → 0 as k → +∞. This and (5.11) imply (5.9).
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From (5.8) and (5.9), we conclude that

lim
k→+∞

u(pk) = u(p),

hence u is continuous at p. �

As a direct consequence of Proposition 5.2 we obtain:

Corollary 5.3. Let Ω ⊂ R
n be a domain with C1 boundary. Let v0 ∈ C(Rn). Let

v(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v0(x) if x ∈ Ω,∫
Ω

v0(y)

|x− y|n+2s
dy∫

Ω

dy

|x− y|n+2s

if x ∈ R
n \ Ω.

Then v ∈ C(Rn) and it satisfies v = v0 in Ω and Nsv = 0 in R
n \ Ω.

Proof. By construction, v = v0 in Ω and Nsv = 0 in R
n \ Ω. Then we can use

Proposition 5.2 and obtain that v ∈ C(Rn). �

Now we study the boundary behavior of the nonlocal Neumann function Ñsu.

Proposition 5.4. Let Ω ⊂ R
n be a C1 domain, and u ∈ C(Rn). Then, for

all s ∈ (0, 1),

(5.12) lim
x→∂Ω

x∈Rn\Ω
Ñsu(x) = 0.

Also, if s > 1/2 and u ∈ C1,α(Rn) for some α ∈ (0, 2s− 1), then

(5.13) ∂νÑsu(x) := lim
ε→0+

Ñsu(x+ εν)

ε
= κ ∂νu for any x ∈ ∂Ω,

for some constant κ > 0.

Proof. Let xk be a sequence in R
n \ Ω such that xk → x∞ ∈ ∂Ω as k → +∞.

By Corollary 5.3 (applied here with v0 := u), there exists v ∈ C(Rn) such
that v = u in Ω and Nsv = 0 in R

n \Ω. By the continuity of u and v we have that

(5.14) lim
k→+∞

u(xk)− v(xk) = u(x∞)− v(x∞) = 0.

Moreover,

Ñsu(xk) = Ñsu(xk)− Ñsv(xk) =

∫
Ω

u(xk)− u(y)

|xk − y|n+2s
dy −

∫
Ω

v(xk)− v(y)

|xk − y|n+2s
dy

∫
Ω

dy

|xk − y|n+2s

=

∫
Ω

u(xk)− v(xk)

|xk − y|n+2s
dy

∫
Ω

dy

|xk − y|n+2s

= u(xk)− v(xk).
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This and (5.14) imply that

lim
k→+∞

Ñsu(xk) = 0,

that is (5.12).

Now, we prove (5.13). For this, we suppose that s > 1/2, that 0 ∈ ∂Ω and that
the exterior normal ν coincides with en = (0, . . . , 0, 1); then we use (5.12) and the
change of variable η := ε−1y in the following computation:

ε−1
(Ñsu(εen)− Ñsu(0)

)
= ε−1Ñsu(εen) =

ε−1

∫
Ω

u(εen)− u(y)

|εen − y|n+2s
dy

∫
Ω

dy

|εen − y|n+2s

=

ε−1

∫
1
ε Ω

u(εen)− u(εη)

|en − η|n+2s
dη

∫
1
εΩ

dη

|en − η|n+2s

= I1 + I2,

where

I1 :=

∫
1
εΩ

∇u(εen) · (en − η)

|en − η|n+2s
dη

∫
1
εΩ

dη

|en − η|n+2s

and I2 :=

ε−1

∫
1
ε Ω

u(εen)− u(εη)− ε∇u(εen) · (en − η)

|en − η|n+2s
dη

∫
1
εΩ

dη

|en − η|n+2s

.

So, if Π := {xn < 0}, we have that

lim
ε→0+

I1 =

∫
Π

∇u(0) · (en − η)

|en − η|n+2s
dη

∫
Π

dη

|en − η|n+2s

=

∫
Π

∂nu(0)(1− ηn)

|en − η|n+2s
dη

∫
Π

dη

|en − η|n+2s

,

where we have used that, for any i ∈ {1, · · · , n− 1} the map η �→ ∂iu(0)·ηi

|en−η|n+2s is odd

and so its integral averages to zero. So, we can write

(5.15) lim
ε→0+

I1 = κ ∂nu(0) with κ :=

∫
Π

(1− ηn)

|en − η|n+2s
dη

∫
Π

dη

|en − η|n+2s

.
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We remark that κ is finite, since s > 1/2. Moreover,

ε−1
∣∣u(εen)− u(εη)− ε∇u(εen) · (en − η)

∣∣
=

∣∣∣
∫ 1

0

(∇u(tεen + (1− t)εη)−∇u(εen)
) · (en − η) dt

∣∣∣
≤ ‖u‖C1,α(Rn) |en − η|

∫ 1

0

|tεen + (1− t)εη − εen|α dt
≤ ‖u‖C1,α(Rn)εα |en − η|1+α.

As a consequence,

ε−α|I2| ≤
‖u‖C1,α(Rn)

∫
1
εΩ

dη

|en − η|n+2s−1−α∫
1
εΩ

dη

|en − η|n+2s

−→
‖u‖C1,α(Rn)

∫
Π

dη

|en − η|n+2s−1−α∫
Π

dη

|en − η|n+2s

as ε→ 0, which is finite, thanks to our assumptions on α. This shows that I2 → 0
as ε→ 0. Hence, recalling (5.15), we get that

lim
ε→0+

ε−1
(Ñsu(εen)− Ñsu(0)

)
= κ ∂nu(0),

which establishes (5.13). �

6. An overdetermined problem

In this section we consider an overdetermined problem. For this, we will use the
renormalized nonlocal Neumann condition that has been introduced in Remark 3.4.
Indeed, as we pointed out in Remark 3.5, this is natural if one considers nonho-
mogeneous Neumann conditions.

Theorem 6.1. Let Ω ⊂ R
n be a bounded and Lipschitz domain. Then there exists

no function u ∈ C(Rn) satisfying

(6.1)

{
u(x) = 0 for any x ∈ R

n \ Ω,
Ñsu(x) = 1 for any x ∈ R

n \ Ω.
Remark 6.2. We notice that u = χΩ satisfies (6.1), but it is a discontinuous
function.

Proof. Without loss of generality, we can suppose that 0 ∈ ∂Ω. We argue by
contradiction and we assume that there exists a continuous function u that satis-
fies (6.1). Therefore, there exists δ > 0 such that

(6.2) |u| ≤ 1/2 in Bδ.

Since Ω is Lipschitz, up to choosing δ small enough, we have that

Ω ∩Bδ = Ω̃ ∩Bδ, where 0Ω̃ := {x = (x′, xn) ∈ R
n−1 × R s.t. xn < γ(x′)}

for a suitable Lipschitz function γ : Rn−1 → R such that γ(0) = 0 and ∂x′γ(0) = 0.
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Now we let x := ε en ∈ R
n \Ω, for suitable ε > 0 sufficiently small. We observe

that

(6.3) u(ε en) = 0.

Moreover we consider the set

1

ε
Ω̃ =

{
y = (y′, yn) ∈ R

n−1 × R s.t. yn <
1
ε γ(εy

′)
}
.

We also define

K :=
{
y = (y′, yn) ∈ R

n−1 × R s.t. yn < −L |y′|} ,
where L is the Lipschitz constant of γ.

We claim that

(6.4) K ⊆ ε−1 Ω̃.

Indeed, since γ is Lipschitz and 0 ∈ ∂Ω, we have that

−γ(εy′) = −γ(εy′) + γ(0) ≤ L ε |y′|,

and so, if y ∈ K,

yn ≤ −L |y′| ≤ 1

ε
γ(εy′),

which implies that y ∈ ε−1Ω̃. This shows (6.4).
Now we define

Σε :=

∫
Bδ∩Ω

dy

|εen − y|n+2s
,

and we observe that

(6.5)

∫
Bδ∩Ω

u(y)− u(ε en)

|εen − y|n+2s
dy ≤ 1

2
Σε,

thanks to (6.3) and (6.2). Furthermore, if y ∈ R
n \Bδ and ε ≤ δ/2, we have

|y − εen| ≥ |y| − ε ≥ |y|
2
,

which implies that

∫
Ω\Bδ

u(y)− u(ε en)

|εen − y|n+2s
dy ≤ C

∫
Ω\Bδ

dy

|εen − y|n+2s

≤ C

∫
Rn\Bδ

dy

|y|n+2s
dy = C δ−2s,

(6.6)

up to renaming the constants.
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On the other hand, we have that

(6.7)

∫
Ω

dy

|εen − y|n+2s
≥

∫
Bδ∩Ω

dy

|εen − y|n+2s
= Σε.

Finally, we observe that

ε2s Σε = ε2s
∫
Bδ∩Ω

dy

|εen − y|n+2s
=

∫
Bδ/ε∩(ε−1Ω)

dz

|en − z|n+2s

≥
∫
Bδ/ε∩K

dz

|en − z|n+2s
=: κ,(6.8)

where we have used the change of variable y = εz and (6.4).
Hence, using the second condition in (6.1) and putting together (6.5), (6.6),

(6.7) and (6.8), we obtain

0 =

∫
Ω

dy

|εen − y|n+2s
−
∫
Ω

u(εen)− u(x)

|εen − y|n+2s
dy

=

∫
Ω

dy

|εen − y|n+2s
−
∫
Ω∩Bδ

u(εen)− u(x)

|εen − y|n+2s
dy −

∫
Ω\Bδ

u(εen)− u(x)

|εen − y|n+2s
dy

≥ Σε − 1

2
Σε − C δ−2s =

1

2
Σε − C δ−2s

= ε−2s
( ε2s

2
Σε − C ε2s δ−2s

)
≥ ε−2s

(κ
2
− C ε2s δ−2s

)
> 0

if ε is sufficiently small. This gives a contradiction and concludes the proof. �

The reader may compare the result in Corollary 5.3 with the one in Theo-
rem 6.1. We stress that the two types of result are quite different in spirit, since
Corollary 5.3 only takes into account the homogeneous nonlocal condition, while
Theorem 6.1 considers the case in which both Dirichlet and nonhomogeneous Neu-
mann data are prescribed, and this explains why the regularity results obtained
are so different.

We also point out that both Corollary 5.3 and Theorem 6.1 only take into
account the data outside Ω, so they leave it open to study under which condition
it is possible to develop a regularity theory for the associated equations.

7. Comparison with previous works

In this last section we compare our new Neumann nonlocal conditions with the
previous works in the literature that also deal with Neumann-type conditions for
the fractional Laplacian (−Δ)s (or related operators).

The idea of [4] and [9] (and also [10], [11] and [8]) is to consider the regional
fractional Laplacian, associated to the Dirichlet form

(7.1) cn,s

∫
Ω

∫
Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dx dy.
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This operator corresponds to a censored process, i.e., a process whose jumps are
restricted to be in Ω. The operator can be defined in general domains Ω, and seems
to give a natural analogue of homogeneous Neumann condition. This problem has a
variational formulation and some properties similar to those obtained in the present
paper. However, no nonhomogeneous Neumann conditions can be considered with
this model.

Indeed, in analogy with (1.8) one may consider an even kernel J and a censored
energy functional of the form

1

4

∫
Ω

∫
Ω

J(x− y)
(
u(x)− u(y)

)2
dx dy −

∫
Ω

f(x)u(x) dx

−
∫
Ω

[ ∫
Rn\Ω

J(x − y)g(y)u(x) dy
]
dx,

which in turn produces free critical points which satisfy, for any x ∈ Ω,∫
Ω

J(x− y)
(
u(x)− u(y)

)
dy − f(x)−

∫
Rn\Ω

J(x− y)g(y) dy = 0.

By integrating over Ω, and using the odd symmetry in (x, y) of the first term, we
thus obtain that

(7.2)

∫
Ω

f(x) dx+

∫
Ω

[ ∫
Rn\Ω

J(x− y)g(y) dy
]
dx = 0.

We remark that such condition is, in the end, a homogeneous condition, since one
can define

f̃(x) := f(x) +

∫
Rn\Ω

J(x− y)g(y) dy

and so write (7.2) simply as ∫
Ω

f̃(x) dx = 0.

On the other hand, in [1] and [3] the usual diffusion associated to the fractional
Laplacian (1.3) was considered inside Ω, and thus the “particle” can jump out-
side Ω. When it jumps outside Ω, then it is “reflected” or “projected” inside Ω
in a deterministic way. Of course, different types of reflections or projections lead
to different Neumann conditions. To appropriately define these reflections, some
assumptions on the domain Ω (like smoothness or convexity) need to be done.
In contrast with the regional fractional Laplacian, this problem does not have a
variational formulation and everything is done in the context of viscosity solutions.

In [15] a different Neumann problem for the fractional Laplacian was considered.
Solutions to this type of Neumann problems are “large solutions”, in the sense that
they are not bounded in a neighborhood of ∂Ω. More precisely, it is proved in [15]
that the following problem is well-posed:⎧⎨

⎩
(−Δ)su = f in Ω,

u = 0 in R
n \ Ω,

∂ν
(
u/ds−1

)
= g on ∂Ω,

where d(x) is the distance to ∂Ω.
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Finally, in [18] and [22] homogeneous Neumann problems for the spectral frac-
tional Laplacian were studied. The operator in this case is defined via the eigen-
functions of the Laplacian −Δ in Ω with Neumann boundary condition ∂νu = 0
on ∂Ω.

With respect to the existing literature, the new Neumann problems (1.1) and
(1.4) that we present here have the following advantages:

• The equation satisfied inside Ω does not depend on anything (domain, right
hand side, etc). Notice that the operator in (1.3) does not depend3 on the
domain Ω, while for instance the regional fractional Laplacian defined in (7.1)
depends on Ω.

• The problem can be formulated in general domains, including nonsmooth or
even unbounded ones.

• The problem has a variational structure. For instance, solutions to the elliptic
problem (1.1) can be found as critical points of the functional

E(u) = cn,s
4

∫
R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫
Ω

fu.

We notice that the variational formulation of the problem is the analogue
of the case s = 1. Also, this allows us to easily prove existence of solutions
(whenever the compatibility condition

∫
Ω f = 0 is satisfied).

• Solutions to the fractional heat equation (1.4) possess natural properties like
conservation of mass inside Ω or convergence to a constant as t→ +∞.

• Our probabilistic interpretation allows us to formulate problems with nonho-
mogeneous Neumann conditions Nsu = g in R

n \Ω, or with mixed Dirichlet
and Neumann conditions.

• The formulation of nonlinear equations like (−Δ)su = f(u) in Ω with Neu-
mann conditions is also clear.

A. Proof of Theorems 3.9 and 3.11 with a functional analytic
notation

As anticipated in the footnote of page 382, we provide this appendix in order
to satisfy the reader who wish to prove Theorems 3.9 and 3.11 by keeping the
distinction between a function defined in the whole of Rn and its restriction to the
domain Ω. For this scope, we will use the notation of denoting r+u and r−u the
restriction of u to Ω and R

n \ Ω, respectively. Notice that, in this notation, we
have that u : Rn → R, but r+u : Ω → R and r−u : Rn \ Ω → R.

3That is, the equation satisfied in the domain Ω does not depend on Ω itself, in the sense that
the same equation is satisfied in any subdomain Ω′ ⊂ Ω. Of course, from the point of view of
operator theory, the operator has to be understood with the boundary conditions, as it happens
also for the usual Laplacian in a bounded domain, when it is complemented with either Dirichlet
or Neumann boundary conditions (which indeed produce different spectra).
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Proof of Theorem 3.9. One can reduce to the case g ≡ 0. By the Riesz repre-
sentation theorem, given h ∈ L2(Ω), one finds v := Toh ∈ Hs

Ω,g that is a weak
solution of

r+
(
(−Δ)sv + v

)
= h,

with r−Nsv = 0.
Notice that To : L

2(Ω) → Hs
Ω,g. We also define by T : L2(Ω) → L2(Ω) the

restriction operator of To, that is Th := r+Toh. One sees that T is compact and
self-adjoint. By construction r−NsToh = 0 and

h = r+
(
(−Δ)sToh+ Toh

)
= r+(−Δ)sToh+ Th,

that is,
r−NsTo = 0 and Id− T = r+(−Δ)sTo.

Therefore, by Lemma 3.8,

Ker(Id− T ) = {h ∈ L2(Ω) s.t. r+(−Δ)sToh = 0}
= {h ∈ L2(Ω) s.t. r+(−Δ)sToh = 0 and r−NsToh = 0}
= {h ∈ L2(Ω) s.t. Toh is constant}
= {h ∈ L2(Ω) s.t. h is constant}.

From the Fredholm alternative, we conclude that Im(Id− T ) is the space of func-
tions in L2(Ω) that are orthogonal to constants. �

Proof of Theorem 3.11. We define

L2
0(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω
u = 0

}
.

By Theorem 3.9, for any f ∈ L2
0(Ω) one finds v := Tof ∈ Hs

Ω,g that is a weak

solution of r+(−Δ)sv = f , with r−Nsv = 0 and zero average in Ω. We also
define T to be the restriction of To, that is Tf := r+Tof . The operator T is
compact and self-adjoint in L2

0(Ω). Thus, by the spectral theorem there exists a
sequence of eigenvalues {μi}i≥2 of T , and its corresponding eigenfunctions {ei}i≥2

are a complete orthogonal system in L2
0(Ω).

Notice that r−NsToei, which gives, for every x ∈ R
n \ Ω,

Toei(x)

∫
Ω

dy

|x− y|n+2s
=

∫
Ω

r+Toei(y)

|x− y|n+2s
dy

=

∫
Ω

Tei(y)

|x− y|n+2s
dy = μi

∫
Ω

ei(y)

|x− y|n+2s
dy.

This gives that
μi �= 0.

Indeed, otherwise we would have that r−Toei = 0. Since also

0 = μiei = Tei = r+Toei,

we would get that Toei = 0 and thus 0 = (−Δ)sToei = ei, which is impossible.
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As a consequence, we can define λi := μ−1
i , and ui := Toei.

Then
r+ui = r+Toei = Tei = μiei

thus {r+ui}i≥2 are a complete orthogonal system in L2
0(Ω), since so are {ei}i≥2.

Furthermore,

r+(−Δ)sui = r+(−Δ)sToei = ei = μ−1
i r+ui = r+λiui. �
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