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Multiplicity theorems for nonlinear

nonhomogeneous Robin problems

Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu

Abstract. We study a nonlinear Robin boundary value driven by a non-
homogeneous differential operator with a Carathéodory reaction and we
look for multiple nontrivial solutions with sign information. We prove four
such multiplicity theorems producing three nontrivial solutions, for reso-
nant problems and for problems in which no global growth restriction is
assumed on the reaction. Also, in the semilinear case, we show that we
can have four nontrivial solutions, by producing a second nodal solution.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear nonhomogeneous Robin problem:⎧⎨
⎩

−div a(Du(z)) = f(z, u(z)) in Ω,
∂u

∂na
+ β(z)|u(z)|p−2u(z) = 0 on ∂Ω .

(1.1)

Here a : RN → R
N is a strictly monotone, continuous map, which satisfies cer-

tain regularity and growth hypotheses. The precise conditions on a(·) are listed in
hypotheses H(a) in Section 2. These conditions are general enough to incorporate
in our framework many differential operators of interest such as the p-Laplacian.
In the boundary condition, ∂u/∂na denotes the generalized normal derivative de-
fined by

∂u

∂na
= (a(Du), n)RN for all u ∈W 1,p(Ω)

(see Lieberman [14]). Here n(·) denotes the outward unit normal at ∂Ω. We should
point out that this type of normal derivative is dictated by the nonlinear Green’s
identity (see Gasinski and Papageorgiou [8], p. 210). The reaction f(z, x) is a
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Carathéodory function (that is, for all x ∈ R, the mapping z �→ f(z, x) is measur-
able and for almost all z ∈ Ω, x �→ f(z, x) is continuous).

Our aim is to prove multiplicity theorems for problem (1.1) providing pre-
cise sign information for all the solutions, under different growth conditions on
the reaction f(z, x). We prove four such multiplicity theorems producing three
nontrivial solutions. In the first multiplicity theorem, we assume that f(z, ·) is
(p− 1)-sublinear near ±∞ and in the particular case of the p-Laplacian, resonance
is allowed with respect to the principal eigenvalue of the negative Robin p-Laplacian
(see Papageorgiou and Rădulescu [21]). In the second and third multiplicity theo-
rems, no global growth restriction is imposed on f(z, ·). Instead it is assumed that
f(z, ·) has z-dependent zeros of constant sign and so the reaction f(z, ·) exhibits
a kind of oscillatory behavior near zero. In all three multiplicity theorems, the
geometry near the origin is similar and implies the presence of a “concave” term
(that is, a term which is (p − 1)-superlinear as x → 0). In the particular case of
equations driven by the p-Laplacian, we can change this condition near zero and
deal also with reactions that are (p−1)-sublinear as x→ 0. This is our fourth mul-
tiplicity theorem. Moreover, in the particular case of semilinear equations (driven
by the Laplace operator), we show that we can produce a second nodal solution
for a total of four nontrivial solutions.

This paper continues the recent works of Papageorgiou and Rădulescu ([21],
[22], [24]), where certain parametric equations driven by the p-Laplacian were
studied and multiplicity results were proved for certain values of the parameter.

We refer to the books by Ambrosetti and Arcoya [2] and Ambrosetti and Mal-
chiodi [3] for the basic abstract results used in this paper.

2. Mathematical preliminaries

In this section we review the main mathematical tools which will be used in this
work. Also, we introduce the hypotheses on the map y �→ a(y) and determine their
consequences.

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies
the Palais–Smale condition (PS-condition), if the following holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

ϕ′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence”.

This is a compactness type condition on the functional ϕ. We need such a
condition since the ambient space X need not be locally compact (being in general
infinite dimensional). Using the PS-condition, we can prove a deformation theorem
which is the key to the minimax theory for the critical values of ϕ. A main result
in that theory, is the so-called “mountain pass theorem” of Ambrosetti and Rabi-
nowitz [4].
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Theorem 2.1. Assume that ϕ ∈ C1(X) satisfies the PS-condition, u0, u1 ∈ X,
||u1−u0|| > ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = ρ] = ηρ

and

c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c � ηρ and c is a critical value of ϕ.

The analysis of problem (1.1) will involve the Sobolev space W 1,p(Ω), for 1 <
p <∞, the Banach space C1(Ω) and the “boundary” spaces Lr(∂Ω) (1 � r � ∞).

In what follows, by | · | we denote the norm of RN , by (·, ·)RN we denote the
inner product of RN and by || · || we denote the norm of the Sobolev spaceW 1,p(Ω)
defined by

||u|| = [ ||u||pp + ||Du||pp ]1/p for all u ∈W 1,p(Ω).

The space C1(Ω) is an ordered Banach space, with order cone

C+ = {u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
On ∂Ω we use the (N−1)-dimensional Hausdorff (surface) measure σ(·). Using

this measure, we can define the Lebesgue spaces Lr(∂Ω) (1 � r � ∞). We denote
the norm of these spaces by || · ||r,∂Ω. We know that there exists a unique linear
continuous map γ0 : W

1,p(Ω) → Lp(∂Ω), known as the “trace map”, such that
γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω). The trace map is compact into Lr(∂Ω)

for all r ∈ [
1, p(N−1)

N−p
)
if 1 < p < N , and into Lr(∂Ω) for all r ∈ [1,∞) if p � N .

We know that

im γ0 =W 1/p′,p(∂Ω) and ker γ0 =W 1,p
0 (Ω)

with 1/p+ 1/p′ = 1.
In the sequel, for notational simplicity, we drop the use of the trace map γ0. The

restrictions of all Sobolev functions on ∂Ω are understood in the sense of traces.

Let η ∈ C1(0,∞) with η(t) > 0 for all t > 0 and assume that

(2.1) 0 < ĉ � tη′(t)
η(t)

� c0 and c1 t
p−1 � η(t) � c2 (1 + tp−1)

for all t > 0, some c1, c2 > 0.
Now we are ready to introduce our hypotheses on the map a(·) involved in the

differential operator of (1.1):

(H(a)) a(y) = a0(|y|)y for all y ∈ R
N , with a0(t) > 0 for all t > 0, and

(i) a0 ∈ C1(0,∞), the function t �→ ta0(t) is strictly increasing in (0,∞),

t a0(t) → 0+ as t→ 0+ and lim
t→0+

ta′0(t)
a0(t)

> −1;
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(ii) there exists c3 > 0 such that |∇a(y)| � c3
η(|y|)
|y| for all y ∈ R

N\{0};
(iii) (∇a(y)ξ, ξ)RN � η(|y|)

|y| |ξ|2 for all y ∈ R
N\{0}, all ξ ∈ R

N ;

(iv) if G0(t) =
∫ t
0
sa0(s) ds for all t > 0, then there exists q ∈ (1, p] such that

t �→ G0(t
1/q) is convex in (0,∞) and lim

t→0+

q G0(t)

tq
= c̃ > 0.

Remark 2.2. Conditions H(a) (i), (ii), (iii) are motivated from the regularity the-
ory of Lieberman [14] and from the nonlinear maximum principle of Pucci and
Serrin [27]. Condition H(a) (iv) is particular for our problem, but as we will see
below is satisfied in many cases of interest. Hypotheses H(a) imply that the
primitive G0(·) is strictly convex and strictly increasing. Let us see how these
hypotheses are satisfied in the case of the p-Laplacian. Additional examples are
given below. In the case of the p-Laplace operator, a(y) = |y|p−2y for all y ∈ R

N ,
with 1 < p < ∞. Then G0(t) = 1

p t
p for all t � 0. So G0(·) is strictly convex

and strictly increasing. Also in this case q = p (see hypothesis H(a) (iv)). So, the
function

t �→ G0(t
1/p) =

1

p
(t1/p)p =

1

p
t

is linear and of course c̃ = 1.

We set G(y) = G0(|y|) for all y ∈ R
N . Clearly G(·) is convex and G(0) = 0.

Also, we have

∇G(y) = G′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}, ∇G(0) = 0.

Hence, G(·) is the primitive of the map a(·). The convexity of G(·) and the
fact that G(0) = 0, imply

(2.2) G(y) � (a(y), y)RN for all y ∈ R
N .

Hypotheses H(a) (i), (ii), (iii), and (2.1), (2.2), lead to the following lemma
summarizing the main properties of the map a(·).

Lemma 2.3. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) the map y �→ a(y) is continuous, strictly monotone, hence maximal monotone
too;

(b) |a(y)| � c4(1 + |y|p−1) for all y ∈ R
N and some c4 > 0;

(c) (a(y), y)RN � c1
p−1 |y|p for all y ∈ R

N .

This lemma and (2.2) lead to the following growth estimates for the primi-
tive G(·).
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Corollary 2.4. If hypotheses H(a) (i), (ii), (iii) hold, then

c1
p(p− 1)

|y|p � G(y) � c5 (1 + |y|p) for all y ∈ R
N and some c5 > 0.

Example 2.5. The following maps satisfy hypotheses H(a):

(a) a(y) = |y|p−2y with 1 < p <∞.

This map corresponds to the p-Laplace differential operator

Δpu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω) .

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p <∞.

This map corresponds to the (p, q)-differential operator defined by

Δpu+Δqu for all u ∈ W 1,p(Ω).

Such operator arise in problems of mathematical physics (Papageorgiou and
Rădulescu [23]) and were studied in the context of Dirichlet problems by
Mugnai and Papageorgiou [18], Papageorgiou and Rădulescu [20], [25] and
Papageorgiou and Winkert [26].

(c) a(y) = (1 + |y|2)(p−2)/2y, with 1 < p <∞.

This map corresponds to the generalized p-mean curvature differential oper-
ator defined by

div
[
(1 + |Du|2)(p−2)/2Du

]
for all u ∈W 1,p(Ω).

(d) a(y) = |y|p−2y + |y|p−2y
1+|y|p with 1 < p <∞.

The hypotheses on the boundary term β(·) are the following:

(H(β)) β ∈ C1,α(∂Ω), with α ∈ (0, 1), β(z) � 0 for all z ∈ ∂Ω.

Consider a Carathéodory function f0 : Ω × R → R which exhibits subcritical
growth in the x ∈ R variable, that is,

|f0(z, x)| � â(z)(1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R,

with â ∈ L∞(Ω)+ and

1 < r < p∗ =

{ Np
N−p if p < N,

+∞ if N � p.

Let F0(z, x) =
∫ x
0
f0(z, s) ds and consider the C1-functional ϕ0 : W

1,p(Ω) → R

defined by

ϕ0(u) =

∫
Ω

G(Du) dz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫
Ω

F0(z, u) dz for all u ∈W 1,p(Ω).

The next theorem can be proved as the corresponding result of Papageorgiou
and Rădulescu [21], using the regularity results of Lieberman [14].
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Theorem 2.6. Assume that u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, that
is, there exists ρ0 > 0 such that

ϕ0(u0) � ϕ(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) � ρ0 .

Then u0 ∈ C1,s(Ω) with s ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ||h|| � ρ1 .

We will also need some facts concerning the spectrum of −Δq (1 < q <∞) with
Robin boundary condition (see Le [12] and Papageorgiou and Rădulescu [21]). So,
we consider the following nonlinear eigenvalue problem:

(2.3)

{ −Δqu(z) = λ̂ |u(z)|q−2 u(z) in Ω ,
∂u
∂nq

+ β(z) |u(z)|q−2 u(z) on ∂Ω .

Here,

∂u

∂nq
= |Du|q−2(Du, n)RN = |Du|q−2 ∂u

∂n
for all u ∈W 1,p(Ω).

We say that λ̂ ∈ R is an eigenvalue of the negative Robin q-Laplacian (denoted
for notational economy by −ΔR

q ), if problem (2.3) admits a nontrivial solution

û ∈ W 1,p(Ω) known as an eigenfunction corresponding to λ̂. We know that there

is a smallest eigenvalue λ̂1(q, β) having the following properties:

• λ̂1(q, β) � 0 and λ̂1(q, β) > 0 if β �≡ 0.

• λ̂1(q, β) is isolated in the spectrum σ̂(q, β) of −ΔR
q .

and

(2.4) λ̂1(q, β) = inf
[ ||Du||qq + ∫

∂Ω
β(z) |u|q dσ

||u||qq : u ∈W 1,p(Ω), u �= 0
]
.

Note that the infimum is realized on the corresponding one dimensional eigen-
space. Moreover, from (2.4) it is clear that the elements of this eigenspace do not
change sign. In the sequel by û1(q, β) we denote the positive Lq-normalized (that

is, ||û1(q, β)||q = 1) eigenfunction corresponding to λ̂1(q, β). From the nonlinear
regularity theory of Lieberman [14] we have that û1(q, β) ∈ C+\{0}. In fact, using
also the nonlinear maximum principle of Pucci and Serrin [27], pp. 111, 120, we
conclude that û1(q, β) ∈ intC+.

The Ljusternik–Schnirelmann minimax scheme gives, in addition to λ̂1(q, β), a

whole strictly increasing sequence {λ̂k(q, β)}k�1 of eigenvalues such that λ̂k(q, β) →
+∞ as k → ∞. These are known as the “LS-eigenvalues” of −ΔR

q .

Since λ̂1(q, β) � 0 is isolated and the spectrum σ̂(q, β) is closed, the second
eigenvalue of −ΔR

q is defined by

λ̂∗2(q, β) = inf[λ̂ ∈ σ̂(q, β) : λ̂ > λ̂1(q, β)].
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We have that λ̂∗2(q, β) = λ̂2(q, β), that is, the second eigenvalue of −ΔR
q and

the second LS-eigenvalue of −ΔR
q coincide.

Let ∂BL
q

1 = {u ∈ Lq(Ω) : ||u||q = 1}, M =W 1,q(Ω) ∩ ∂BLq

1 and

ϑ(u) = ||Du||qq +
∫
∂Ω

β(z)|u|qdσ for all u ∈ W 1,q(Ω) .

From Papageorgiou and Rădulescu [21], we have the following minimax char-

acterization of λ̂2(q, β).

Proposition 2.7. We have λ̂2(q, β) = inf γ̂∈Γ̂ max−1�t�1 ϑ(γ̂(t)), where

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1(q, β), γ̂(1) = û1(q, β)}.
Let A : W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

(2.5) 〈A(u), v〉 =
∫
Ω

(a(Du), Dv)RN dz for all u, v ∈W 1,p(Ω).

From Gasinski and Papageorgiou [9], we have the following property.

Proposition 2.8. Assume that hypotheses H(a) (i), (ii), (iii) hold. Then the map
A : W 1,p(Ω) → W 1,p(Ω)∗ defined by (2.5) is demicontinuous, monotone, hence
maximal monotone too and of type (S)+, that is,

if un
w→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 � 0, then un → u in W 1,p(Ω).

Our approach will also use tools from Morse theory (critical groups). So, let
us recall some basic definitions and facts from this theory.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc={u∈X : ϕ(u) � c}, Kϕ={u∈X : ϕ′(u) = 0} and Kc
ϕ={u∈Kϕ : ϕ(u) = c}.

For every topological pair (Y1, Y2) with Y2 ⊆ Y1 ⊆ X and every integer k � 0,
by Hk(Y1, Y2) we denote the kth relative singular homology group with integer
coefficients. Given an isolated u ∈ Kc

ϕ, the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U\{u}) for all integers k � 0 ,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u} (recall that u∈Kϕ

is isolated). The excision property of singular homology theory implies that this
definition of critical groups is independent of the particular choice of the neighbor-
hood U .

If ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞, then the critical
groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k � 0 ,

where c < inf ϕ(Kϕ). The second deformation theorem (see Gasinski and Papa-
georgiou [8], p. 628), implies that this definition is independent of the particular
choice of the level c < inf ϕ(Kϕ).
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Assuming that Kϕ is finite, we define

M(t, u) =
∑
k�0

rankCk(ϕ, u) t
k for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k�0

rankCk(ϕ,∞) tk for all t ∈ R .

Then the Morse relation says

(2.6)
∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R ,

where Q(t) =
∑

k�0 βk t
k is a formal series in t ∈ R, with nonnegative integer

coefficients βk.
Finally we fix our notation. So, given x ∈ R, we set x± = max{±x, 0}. Then for

u ∈W 1,p(Ω), we define u±(·) = u(·)±. We know that u± ∈W 1,p(Ω), u = u+−u−,
|u| = u++u−. For a Carathéodory function g(z, x), we define Ng(u)(·) = g(·, u(·))
for all u ∈W 1,p(Ω).

By | · |N we denote the Lebesgue measure on R
N . Also, recall that W 1,p(Ω) is

an ordered Banach space with order cone

W+ = {u ∈ W 1,p(Ω) : u(z) � 0 for almost all z ∈ Ω} .
Then given u, v ∈ W 1,p(Ω) with u � v (that is, v − u ∈ W+), by [u, v] we

denote the order interval defined by [u, v] = {y ∈ W 1,p(Ω): u(z) � y(z) � v(z)
for almost all z ∈ Ω}.

3. Resonant problems

In this section, we consider a reaction which exhibits (p − 1)-sublinear growth
near ±∞, and in the particular case of a p-Laplacian equation, it can be resonant
with respect to the principal eigenvalue λ̂1(p, β).

So, the hypotheses on the reaction f(z, x) are the following:

f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0(H1)

for almost all z ∈ Ω, and

(i) |f(z, x)| � ã(z)(1+ |x|p−1) for almost all z ∈ Ω, all x ∈ R with ã ∈ L∞(Ω)+;

(ii) For β̂ = p−1
c1
β ∈ L∞(Ω)+ (with c1 > 0 as in (3.14)),

lim sup
x→±∞

f(z, x)

|x|p−2 x
� c1
p− 1

λ̂1(p, β̂), uniformly for almost all z ∈ Ω;

(iii) if F (z, x) =
∫ x
0 f(z, s) ds, then limx→±∞[f(z, x)x − pF (z, x)] = +∞ uni-

formly for almost all z ∈ Ω;
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(iv) there exists η0 ∈ L∞(Ω)+ such that c̃ λ̂1(q, β̃) � η0(z) for almost all z ∈ Ω,

η0 �≡ c̃ λ̂1(q, β̃) and

η0(z) � lim inf
x→0

f(z, x)

|x|q−2x
uniformly for almost all z ∈ Ω,

with β̃ = 1
c̃β (here c̃ > 0 and q ∈ (1, p] are as in hypothesis H(a) (iv)).

Remark 3.1. Hypothesis H(a) (i) dictates a (p− 1)-sublinear growth for f(z, ·).
If a(y) = |y|p−2y for all y ∈ R

N , then the differential operator is the p-Laplacian

and c1 = p − 1 (see (2.1)). Hence β̂ = β (see hypothesis H1 (ii)). So, hypoth-
esis H1 (ii) says that the reaction can be resonant with respect to the principal
eigenvalue of −ΔR

p (resonance equation). This possibility of resonance at ±∞ dic-
tates hypothesis H1 (iii) which is needed in order for the energy functional of the
problem to satisfy the compactness condition. Hypothesis H1 (iv) which regulates
the behavior of f(z, ·) near zero, is quite general and allows also for the presence
of concave terms (terms which are (p− 1)-superlinear near zero). Some additional
remarks are motivated by several interesting observations of the referee. Note that
hypothesis H1 (iii) excludes some natural examples like the functions

f1(x) = |x|p−2x+ x for big |x| (q < p) or f2(x) = |x|q−2 with 1 < q < p.

However, our emphasis in the work is to treat the resonant problem. To make
things more transparent, consider the case of the p-Laplacian. Then hypoth-
esis H1 (ii) permits for resonance to occur at ±∞. Hypothesis H1 (iii) implies

that the resonance takes place from the “left” of λ̂1(p) (see the asymptotic condi-
tion (3.12) in the proof of Proposition 3.3 below). This makes the energy functional
of the problem coercive and permits the use of the direct method of the calculus
of variations. So, the use of hypothesis H1 (iv) leads to the existence of nontrivial
solutions of constant sign. Note that in general, since we want to incorporate also
the resonant case, an extra condition near ±∞ is necessary, in order to guarantee
that the energy functional of the problem satisfies the compactness condition used
in the minimax methods (Palais–Smale condition or Cerami condition). If instead
we assume that

f(z, x)x− pF (z, x) → −∞ as x→ ±∞ uniformly for a.a. z ∈ Ω

(this is satisfied by the functions f1 and f2 mentioned earlier), then we have reso-

nance from the “right” of λ̂1(p), and the coercivity of the energy functional fails.
So, we have to proceed in a different way. We use either the mountain pass theorem
(but then we need to change the condition near zero, see hypothesis H1 (iv), and
so we fail to have extremal constant sign solutions, and consequently we cannot
produce a nodal solution) or we use critical groups (Morse theory). This second
approach is more promising, but not at all straightforward, since the computation
of critical groups in that case (resonant case) is difficult. This can be an interesting
separate project.
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Example 3.2. The following function satisfies hypotheses H1. For the sake of
simplicity, we drop the z-dependence:

f(x) =

{
η xq−1 − c xr−1 if |x| � 1,
ϑ xp−1 − xq−1 if |x| > 1,

with 1 < q < p < r <∞, η > λ̂1(p, β̂) � ϑ > 0 and c = η + 1− ϑ > 0.

We introduce the following truncations-perturbations of the reaction:

(3.1)

f̂+(z, x) =

{
0 if x � 0,
f(z, x) + xp−1 if x > 0,

and f̂−(z, x) =
{
f(z, x) + |x|p−2x if x < 0,
0 if x � 0.

Both are Carathéodory functions. We set F̂±(z, x) =
∫ x
0 f̂±(z, s) ds and con-

sider the C1-functionals ϕ̂± :W 1,p(Ω) → R defined, for all u ∈W 1,p(Ω), by

ϕ̂±(u) =
∫
Ω

G(Du) dz +
1

p
||u||pp +

1

p

∫
∂Ω

β(z)(u±)p dσ −
∫
Ω

F̂±(z, u) dz.

Also, let ϕ : W 1,p(Ω) → R be the energy functional for problem (1.1) defined by

ϕ(u) =

∫
Ω

G(Du) dz +
1

p

∫
∂Ω

β(z) |u|p dσ −
∫
Ω

F (z, u) dz for all u ∈ W 1,p(Ω).

Evidently, ϕ ∈ C1(W 1,p(Ω)).

Proposition 3.3. Assume that hypotheses H(a) (i), (ii), (iii), H(β) and H1 hold.
Then the functionals ϕ and ϕ̂± are coercive.

Proof. We do the proof for the functional ϕ, the proofs for ϕ̂± being similar.
We argue indirectly. So, suppose that the functional ϕ is not coercive. Then

we can find {un}n�1 ⊆W 1,p(Ω) and M1 > 0 such that

(3.2) ||un|| → ∞ as n→ ∞, and ϕ(un) �M1 for all n � 1 .

We have, for all n � 1,

(3.3) ϕ(un) =

∫
Ω

G(Dun) dz +
1

p

∫
∂Ω

β(z)|un|p dσ −
∫
Ω

F (z, un) dz �M1.

Let yn = un/||un||, n � 1. Then ||yn|| = 1 for all n � 1 and so we may assume
that

(3.4) yn
w→ y in W 1,p(Ω), and yn → y in Lp(Ω) and in Lp(∂Ω) as n→ ∞.

From (3.3) and Corollary 2.4, we have that, for all n � 1,

(3.5)
c1

p(p− 1)
||Dyn||pp +

1

p

∫
∂Ω

β(z) |yn|p dσ −
∫
Ω

F (z, un)

||un||p dz � M1

||un||p .
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Hypothesis H1 (i) implies that

|F (z, x)| � â(z)(1 + |x|p) for almost all z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω)+

=⇒
{NF (un)

||un||p
}
n�1

⊆ L1(Ω) is uniformly integrable.

From the Dunford–Pettis theorem, and passing to a suitable subsequence if
necessary, we may assume that

(3.6)
NF (un)

||un||p
w→ k in L1(Ω) as n→ ∞.

From hypothesis H1 (ii), we have

(3.7) lim sup
x→±∞

F (z, x)

|x|p � c1
p(p− 1)

λ̂1(p, β̂) uniformly for almost all z ∈ Ω .

Then (3.7) implies that

(3.8) k =
c1

p(p− 1)
h|y|p with h ∈ L∞(Ω), h(z) � λ̂1(p, β̂) for almost all z ∈ Ω

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). We return
to (3.5), pass to the limit as n→ ∞ and use (3.4), (3.6), (3.8). Then

c1
p(p− 1)

[
||Dy||pp +

∫
∂Ω

β̂(z) |y|pdσ
]
� c1
p(p− 1)

∫
Ω

h(z) |y|p dz

=⇒ ||Dy||pp +
∫
∂Ω

β̂(z) |y|pdσ �
∫
Ω

h(z) |y|p dz.(3.9)

First suppose that h �≡ λ̂1(p, β̂) (see (3.8)). Then from (3.9) and Proposition 4
of Papageorgiou and Rădulescu [21], we have

c6 ||y||p � 0 for some c6 > 0 =⇒ y = 0.

Then from (3.4), (3.5), (3.6) and (3.8), we see that

yn → 0 in W 1,p(Ω) as n→ ∞,

which contradicts the fact that ||yn|| = 1 for all n � 1.

Next we assume that h(z) = λ̂1(p, β̂) for almost all z ∈ Ω (see (3.8)). Then
from (3.9) and (2.4), we have

||Dy||pp +
∫
∂Ω

β̂(z)|y|p dσ = λ̂1(p, β̂)||y||pp, =⇒ y = ξ û1(p, β̂), with ξ ∈ R.

If ξ = 0, then y = 0 and as above, using (3.4), (3.6) and (3.8), we obtain

yn → 0 in W 1,p(Ω) as n→ ∞,

contradicting the fact that ||yn|| = 1 for all n � 1.
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So, we have ξ �= 0 and without any loss of generality, we may assume that ξ > 0
(the reasoning is similar if ξ < 0). Since û1(p, β̂) ∈ intC+, we have

(3.10) un(z) → +∞ for almost all z ∈ Ω, as n→ ∞.

Hypothesis H1 (iii) implies that given ξ > 0, we can find M2 =M2(ξ) > 0 such
that

(3.11) f(z, x)x− pF (z, x) � ξ for almost all z ∈ Ω, all |x| �M2.

Then, for almost all z ∈ Ω and all s �M2, we have

d

ds

F (z, s)

sp
=
f(z, s)sp − psp−1F (z, s)

s2p
=
f(z, s)s− pF (z, s)

sp+1
� ξ

sp+1
(see (3.11))

=⇒ F (z, y)

yp
− F (z, x)

xp
�− ξ

p

[ 1

yp
− 1

xp

]
for almost all z ∈ Ω, all y � x �M2.

We pass to the limit as y → +∞ and use (3.7). Then

c1
p(p− 1)

λ̂1(p, β̂)− F (z, x)

xp
� ξ

p

1

xp
for almost all z ∈ Ω, all x �M2

=⇒ c1
p− 1

λ̂1(p, β̂)x
p − pF (z, x) � ξ for almost all z ∈ Ω, all x �M2.

Since ξ > 0 is arbitrary, it follows that

(3.12) lim
x→+∞

[ c1
p− 1

λ̂1(p, β̂)x
p − pF (z, x)

]
= +∞

uniformly for almost all z ∈ Ω. From (3.10), (3.12) and Fatou’s lemma, we obtain

(3.13) lim
n→∞

∫
Ω

[ c1
p− 1

λ̂1(p, β̂)un(z)
p − pF (z, un(z))

]
dz = +∞ .

On the other hand, from (3.3) and Corollary 2.4, we have

c1
p(p− 1)

[
||Dun||pp +

∫
∂Ω

β̂(z) |un|p dσ
]
−
∫
Ω

F (z, un) dz �M1 for all n � 1

=⇒
∫
Ω

[ c1
p− 1

λ̂1(p, β̂)u
p
n − pF (z, un)

]
dz � pM1 for all n � 1.(3.14)

Comparing (3.13) and (3.14), we reach a contradiction. Similarly for the func-
tionals ϕ̂±. �

From this proposition we have the following additional property (see Papageor-
giou and Winkert [26]).

Corollary 3.4. If hypotheses H(a) (i), (ii), (iii), H(β) and H1 hold, then the func-
tionals ϕ and ϕ̂± satisfy the PS-condition.
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Now using the direct method, we can produce two solutions of constant sign.

Proposition 3.5. Assume that hypotheses H(a), H(β) and H1 hold. Then prob-
lem (1.1) admits at least two constant sign solutions, u0 ∈ intC+ and v0 ∈ −intC+,
both local minimizers of the energy functional ϕ.

Proof. First we produce the positive solution. From Proposition 3.3 we know
that ϕ̂+ is coercive. Also, using the Sobolev embedding theorem and the trace
theorem (which guarantee the compactness of the corresponding embedding and
trace maps), we see that ϕ̂+ is sequentially weakly lower semicontinuous. So, by
the Weierstrass theorem, we can find u0 ∈W 1,p(Ω) such that

(3.15) ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ W 1,p(Ω)].

By virtue of hypotheses H(a) (iv) and H1 (iv), given ε > 0, we can find δ =
δ(ε) ∈ (0, 1) such that

G(y) � 1

q
[c̃+ ε]|y|q for all y ∈ R

N with |y| � δ ,(3.16)

f(z, x) � (η0(z)− ε)xq−1 for almost all z ∈ Ω, all x ∈ [0, δ].(3.17)

Since û1(q, β̃) ∈ intC+, we can choose t ∈ (0, 1) small such that

(3.18) tû1(q, β̃)(z) ∈ (0, δ] and t|Dû1(q, β̃)(z)| � δ for all z ∈ Ω .

Then we have

ϕ̂+ (tû1(q, β̃))

� tq

q
[c̃+ ε] ||Dû1(q, β̃)||qq +

1

p

∫
∂Ω

β(z)(tû1(q, β̃))
p dσ −

∫
Ω

F (z, tû1(q, β̃)) dz

(see (3.1), (3.16), (3.18))

� tq

q
[c̃+ ε] ||Dû1(q, β̃)||qq +

tq

q

∫
∂Ω

β(z)û1(q, β̃)
qdσ − tq

q

∫
Ω

(η0(z)−ε)û1(q, β̃)qdz
(see (3.17), (3.18) and recall that δ ∈ (0, 1), q < p)

� tq

q
c̃
[
||Dû1(q, β̃)||qq +

∫
∂Ω

β̃(z) ũ1(q, β̃)
q dσ

]
+
tq

q
ε λ̂1(q, β̃)

− tq

q

∫
Ω

η0(z) û1(q, β̃)
q dz +

tq

q
ε (recall that ||û1(q, β̃)||q = 1)

=
tq

q

[ ∫
Ω

(c̃ λ̂1(q, β̃)− η0(z)) û1(q, β̃)
q dz + ε(λ̂1(q, β̃) + 1)

]
.

Note that∫
Ω

(η0(z)− c̃ λ̂1(q, β̃)) û1(q, β̃)
q dz = ξ∗ > 0 (see hypothesis H1 (iv)).
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Then

ϕ̂+(tû1(q, β̃)) �
tq

q
[−ξ∗ + ε(λ̂1(q, β̃) + 1)].

Choosing ε ∈ (
0, ξ∗

λ̂1(q,β̃)+1

)
, we see that

ϕ̂+(tû1(q, β̃)) < 0 , =⇒ ϕ̂+(u0) < 0 = ϕ̂+(0) (see (3.15)), hence u0 �= 0 .

From (3.15), we have

ϕ̂′
+(u0) = 0

=⇒ 〈A(u0), h〉+
∫
Ω

|u0|p−2u0h dz +

∫
∂Ω

β(z)(u+0 )
p−1h dσ

=

∫
Ω

f̂+(z, u0)h dz for all h ∈ W 1,p(Ω).(3.19)

In (3.19) we choose h = −u−0 ∈ W 1,p(Ω). Using Lemma 2.3 (c), (3.1) and
hypothesis H(β), we obtain

c1
p− 1

||Du−0 ||pp + ||u−0 ||pp � 0 =⇒ u0 � 0, u0 �= 0 .

Therefore (3.19) becomes

〈A(u0), h〉+
∫
∂Ω

β(z)up−1
0 h dσ=

∫
Ω

f(z, u0)h dz for all h∈W 1,p(Ω) (see (3.1)),

=⇒ u0 is a positive solution of (1.1) (see Papageorgiou and Rădulescu [21]).

From Winkert [29], we have that u0 ∈ L∞(Ω). So, we can apply the regularity
result of Lieberman [14] and infer that

u0 ∈ C+\{0} .
Hypotheses H1 (i), (iv) imply that given any ρ > 0, we can find ξρ > 0 such

that

(3.20) f(z, x) + ξρ x
p−1 � 0 for almost all z ∈ Ω, all x ∈ [0, ρ] .

Let ρ = ||u0||∞ and let ξρ > 0 be as postulated by (3.20). We have

−div a(Du0(z))+ ξρu0(z)
p−1 = f(z, u0(z))+ ξρu0(z)

p−1 � 0 for almost all z ∈ Ω

(see (3.20) and Papageorgiou and Rădulescu [21]), and so

(3.21) div a(Du0(z)) � ξρu0(z)
p−1 for almost all z ∈ Ω .

Let ξ0(t) = ta0(t) for all t > 0. From hypothesis H(a) (iii) and (2.1), we have
the following one-dimensional estimate:

t ξ′0(t) = t2a′0(t) + t a0(t) � c7 t
p−1 for all t > 0 and some c7 > 0.
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Integrating by parts leads to

(3.22)

∫ t

0

s ξ′0(s) ds = t ξ0(t)−
∫ t

0

ξ0(s) ds = t2a0(t)−G0(t) �
c7
p
tp for all t > 0 .

We set H(t) = t2a0(t) −G0(t) and H0(t) = c2 t
p/p for all t > 0. For δ ∈ (0, 1)

and s > 0, we introduce the sets

C1 = {t ∈ (0, 1) : H(t) � s} and C2 = {t ∈ (0, 1) : H0(t) � s}.
From (3.22) we see that C2 ⊆ C1 and so inf C1 � inf C2. Then, from Leoni [13]

(see p. 6), we have
H−1(s) � H−1

0 (s).

Hence ∫ δ

0

1

H−1
( ξp
p s

p
)ds � ∫ δ

0

1

H−1
0

( ξp
p s

p
)ds = ξp

C1

∫ δ

0

ds

s
= +∞ .

Then because of (3.21) we can apply the strong maximum principle of Pucci
and Serrin ([27], p. 111) and have u(z) > 0 for all z ∈ Ω. Subsequently, using
the boundary point lemma of Pucci and Serrin ([27], p. 120) we have u0 ∈ intC+.
Since

ϕ̂+|C+ = ϕ|C+ (see (3.1)),

we infer that u0 ∈ intC+ is local C1(Ω)-minimizer of ϕ, hence using Theorem 2.6,
we have that u0 is also a local W 1,p(Ω)-minimizer of ϕ.

In a similar fashion, working this time with the functional ϕ̂−, we produce
v0 ∈ −intC+ a negative solution of problem (1.1), which is a local minimizer of
the energy functional ϕ. �

In fact we can produce extremal constant sign solutions of (1.1), that is, the
smallest positive solution and the biggest negative solution. To reach that point,
we need some preliminary work.

Hypotheses H1 (i),(iii) imply that given ε > 0 and r ∈ (p, p∗), we can find
c8 = c8(ε, r) > 0 such that

(3.23) f(z, x)x � (η0(z)− ε) |x|q − c8 |x|r for almost all z ∈ Ω all x ∈ R .

This unilateral growth estimate on the reaction, leads to the following auxiliary
Robin problem:

(3.24)

⎧⎨
⎩

−div a(Du(z)) = (η0(z)− ε)|u(z)|q−2u(z)− c8|u(z)|r−2u(z) in Ω ,

∂u

∂na
(z) + β(z)|u(z)|p−2u(z) = 0 on ∂Ω .

Proposition 3.6. Assume that hypotheses H(a) and H(β) hold, η0 ∈ L∞(Ω) is
as in hypothesis H1 (iv), and p < r < p∗. Then for all ε > 0 small enough,
problem (3.24) has a unique positive solution ũ ∈ intC+, and since (3.18) is odd,
then ṽ = −ũ ∈ −intC+ is the unique negative solution.
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Proof. First we establish the existence of a positive solution for problem (3.24).
Let μ+ :W 1,p(Ω) → R be the C1-functional defined, for all u ∈W 1,p(Ω), by

μ+(u) =

∫
Ω

G(Du) dz +
1

p
||u−||pp +

1

p

∫
∂Ω

β(z)(u+)p dσ − 1

q

∫
Ω

(η0(z)− ε)(u+)q dz

+
c8
r
||u+||rr.

Using Corollary 2.4, hypothesis H(β) and recalling that η0 ∈ L∞(Ω)+, we have

μ+(u) �
c1

p(p− 1)
||Du||pp +

1

p
||u−||pp − c9(||u+||qq − ||u+||rp) for some c9 > 0

(recall that q � p < r)

=
c1

p(p− 1)
||Du||pp +

1

p
||u−||pp + c9(||u+||r−qp − 1)||u+||qp,

=⇒ μ+ is coercive.

Also, via the Sobolev embedding theorem and the trace theorem, we can check
that μ+ is sequentially weakly lower semicontinuous. So, by the Weierstrass theo-
rem, we can find ũ ∈ W 1,p(Ω) such that

(3.25) μ+(ũ) = inf[μ+(u) : u ∈ W 1,p(Ω)].

Reasoning as in the proof of Proposition 3.5, using the hypothesis on η0 ∈
L∞(Ω) (see hypothesis H1 (iv)), for ε > 0 small we have

μ+(ũ) < 0 = μ+(0) =⇒ ũ �= 0 .

From (3.25) we have μ′
+(ũ) = 0, and hence, for all h ∈W 1,p(Ω),

〈A(ũ), h〉 −
∫
Ω

(ũ−)p−1h dz +

∫
∂Ω

β(z)(ũ+)p−1h dσ

=

∫
Ω

(η0(z)− ε)(ũ+)q−1h dz − c8

∫
Ω

(ũ+)r−1h dz.(3.26)

In (3.26) we choose h = −ũ− ∈W 1,p(Ω), and using Corollary 2.4, we have

c1
p− 1

||Dũ−||pp + ||ũ−||pp � 0 =⇒ ũ � 0, ũ �= 0 .

Therefore (3.26) becomes

〈A(ũ), h〉+
∫
∂Ω

β(z)ũp−1h dσ =

∫
Ω

(η0(z)− ε)ũq−1h dz − c8

∫
Ω

ũr−1h dz(3.27)

for all h ∈ W 1,p(Ω) and for ε > 0 small.
From (3.27) it follows that ũ is a positive solution of (3.24) (see Papageorgiou

and Rădulescu [21]). As before the nonlinear regularity theory of Lieberman [14],
p. 320, and the nonlinear maximum principle of Pucci and Serrin [27], pp. 111, 120,
imply that ũ ∈ intC+.
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Next we show the uniqueness of this positive solution.
To this end, let j : Lq(Ω) → R = R∪{+∞} be the integral functional defined by

j(u) =

⎧⎨
⎩

∫
Ω

G(Du1/q) dz +
1

p

∫
∂Ω

β(z)up/qdσ if u � 0, u1/q ∈W 1,p(Ω),

+∞ otherwise.

Let u1, u2 ∈ dom j = {u ∈ Lq(Ω) : j(u) < +∞} (the effective domain of j). Let

v1 = u
1/q
1 and v2 = u

1/q
2 .

We have v1, v2 ∈W 1,p(Ω). We set

v = (tu1 + (1 − t)u2)
1/q, with t ∈ [0, 1].

Using Lemma 1 of Dı́az and Saá [6], we have

|Dv(z)| � (t|Dv1(z)|q + (1 − t)|Dv2(z)|q)1/q
=⇒ G0(|Dv(z)|) � G0((t |Dv1(z)|q + (1− t)|Dv2(z)|q)1/q)

(since G0(·) is increasing)
� tG0(|Du1(z)1/q|) + (1− t)G0(|Du2(z)1/q|) for almost all z∈Ω

(see hypothesis H(a) (iv))

=⇒ G(Dv(z)) � tG(Du1(z)
1/q) + (1− t)G(Du2(z)

1/q) for almost all z ∈ Ω,

=⇒ u �→
∫
Ω

G(Du1/q) dz is convex.

Similarly, since β � 0 and q � p, we have that u �→ ∫
∂Ω β(z)u

p/qdσ is convex.
Therefore it follows that the integral functional j(·) is convex. Also, using Fatou’s
lemma, we see that j(·) is lower semicontinuous.

Suppose that u1 and u2 are positive solutions of problem (3.24). From the first
part of the proof, we have

u1, u2 ∈ intC+ .

So, for every h ∈ C1(Ω) and for |t| > 0 small, we have

uq1 + th, uq2 + th ∈ dom j.

We can see that j(·) is Gâteaux differentiable at uq1 and uq2 in the direction h.
Moreover, using the chain rule and the nonlinear Green’s identity (see, for example,
Gasinski and Papageorgiou [8], p. 120), we have

j′(uq1)(h) =
1

q

∫
Ω

−div a(Du1)

uq−1
1

h dz,

j′(uq2)(h) =
1

q

∫
Ω

−div a(Du2)

uq−1
2

h dσ for all h ∈ C1(Ω).
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The convexity of j(·) implies the monotony of j′. Hence

0 �
∫
Ω

(−div a(Du1)

uq−1
1

− −div a(Du2)

uq−1
2

)
(uq1 − uq2) dz

=

∫
Ω

c8 (u
r−q
2 − ur−q1 )(uq1 − uq2) dz =⇒ u1 = u2 (since q < r).

This proves the uniqueness of the positive solution ũ ∈ intC+.
The oddness of (3.24) implies that ṽ = −ũ ∈ −intC+ is the unique negative

solution of (3.24). �

The functions ũ ∈ intC+ and ṽ ∈ −intC+ from Proposition 3.6, provide bounds
for the constant sign solutions of problem (1.1).

Let S+ (resp. S−) be the set of positive (resp. negative) solutions of (1.1).
From Proposition 3.5 and its proof, we know that

S+ �= ∅ and S+ ⊆ intC+

S− �= ∅ and S− ⊆ intC+ .

Also, as in Filippakis, Kristaly and Papageorgiou [7], exploiting the monotonic-
ity of the map A(·), we have that

S+ is downward directed,

that is, if u1, u2 ∈ S+, then there exists u ∈ S+ such that u � u1, u � u2. Also,

S− is upward directed,

that is, if v1, v2 ∈ S−, then there exists v ∈ S− such that v1 � v, v2 � v.

Proposition 3.7. Assume that hypotheses H(a), H1 and H(β) hold. Then ũ � u
for all u ∈ S+ and v � ṽ for all v ∈ S−.

Proof. We do the proof for the elements of S+, the proof for the elements of S−
being similar.

So, let u ∈ S+ and let ϑu : Ω×R → R be the Carathéodory function defined by

(3.28) ϑu(z, x) =

⎧⎨
⎩

0 if x < 0,
(η0(z)− ε)xq−1 − c8x

r−1 + xp−1 if 0 � x � u(z),
(η0(z)− ε)u(z)q−1 − c8u(z)

r−1 + u(z)p−1 if u(z) < x .

Let �u(z, x) =
∫ x
0 ϑu(z, s) ds and consider the C1-functional γ̂+u :W 1,p(Ω) → R

defined, for all w ∈ W 1,p(Ω), by

γ̂+u (w) =

∫
Ω

G(Dw) dz +
1

p
||w||pp +

1

p

∫
∂Ω

β(z)(w+)p dσ −
∫
Ω

�u(z, w) dz.
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From (3.28) it is clear that γ̂1+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ū ∈ W 1,p(Ω) such that

(3.29) γ̂+u (ū) = inf[γ̂+u (w) : w ∈ W 1,p(Ω)].

As before (see the proof of Proposition 3.5), for t ∈ (0, 1) small such that
tû1(q, β̃) � u (recall that u ∈ intC+ and use Lemma 3.3. of Filippakis, Kristaly
and Papageorgiou [7]), we have

γ̂+u (tû1(q, β̃)) < 0 = γ̂+u (0) =⇒ γ̂+u (ū) < 0 = γ̂+u (0) (see (3.29)), hence ū �= 0 .

From (3.29), we have (γ̂+u )
′(ū) = 0, hence, for all h ∈W 1,p(Ω),

(3.30) 〈A(ū), h〉+
∫
Ω

|ū|p−2ūh dz +

∫
∂Ω

β(z)(ū+)p−1h dσ =

∫
Ω

ϑu(z, ū)h dz

In (3.30), first we choose h = −u− ∈ W 1,p(Ω). Using Corollary 2.4 and (3.28),
we obtain

c1
p− 1

||Dū−||pp + ||ū−||pp � 0 =⇒ ū � 0, ū �= 0 .

Also, on (3.30) we act with (ū− u)+ ∈W 1,p(Ω). Then

〈A(ū), (ū − u)+〉+
∫
Ω

ūp−1(ū− u)+dz +

∫
∂Ω

β(z)ūp−1(ū− u)+dz

=

∫
Ω

[(η0(z)− ε)uq−1 − c8u
r−1 + up−1](ū− u)+dz (see (3.28))

�
∫
Ω

f(z, u)(ū−u)+dz+
∫
Ω

up−1(ū−u)+dz (see (3.23) and recall u ∈ intC+)

=〈A(u), (ū−u)+〉+
∫
Ω

up−1(ū−u)+dz +
∫
∂Ω

β(z)up−1(ū−u)+dσ (since u∈S+),

=⇒
∫
{ū>u}

(a(Dū)− a(Du), Dū−Du)RN dz +

∫
{ū>u}

(ūp−1 − up−1)(ū − u) dz+

+

∫
∂Ω

β(z)(ūp−1 − up−1)(ū − u)+dσ � 0,

=⇒|{ū > u}|N = 0 (see Lemma 2.3 and hypothesis H(β)),

=⇒ ū ∈ [0, u] = {w ∈W 1,p(Ω) : 0 � w(z) � u(z) for almost all z ∈ Ω}, ū �= 0 .

Then (3.30) becomes

〈A(ū), h〉+
∫
∂Ω

β(z)ūp−1h dσ =

∫
Ω

((η0(z)− ε)ūq−1 − c8ū
r−1)h dz

for all h ∈W 1,p(Ω) (see (3.28)),

=⇒ ū is a positive solution of (3.24) (see Papageorgiou and Rădulescu [21]),

=⇒ ū = ũ ∈ intC+ (see Proposition 3.6),

=⇒ ū � u for all u ∈ S+.

In a similar fashion we show that v � ṽ for all v ∈ S−. �
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Now we re ready to produce extremal constant sign solutions for problem (1.1),
that is the smallest positive and the biggest negative solutions of (1.1).

Proposition 3.8. Assume that hypotheses H(a), H1 and H(β) hold. Then prob-
lem (1.1) has a smallest positive solution u∗ ∈ intC+ and a biggest negative solu-
tion v∗ ∈ −intC+.

Proof. First we produce the smallest positive solution.
Since S+ is downward directed, without any loss of generality, we may assume

that

(3.31) ||u||∞ �M3 for some M3 > 0 all u ∈ S+.

From Hu and Papageorgiou [10], p. 178, we know that we can find {un}n�1 ⊆ S+

such that
inf S+ = inf

n�1
un .

For every n � 1, we have

(3.32)

⎧⎨
⎩ 〈A(un), h〉+

∫
∂Ω

β(z)up−1
n h dσ =

∫
Ω

f(z, un)h dz for all h ∈W 1,p(Ω),

ũ � un for all n � 1.

Choosing h = un ∈ W 1,p(Ω) in (3.32) and using Corollary 2.4, hypothesis
H(β), (3.31) and hypothesis H1 (i), we see that

{un}n�1 ⊆W 1,p(Ω) is bounded .

So, by passing to a suitable subsequence if necessary, we may assume that

(3.33) un
w→ u∗ in W 1,p(Ω) and un → u∗ in Lp(Ω) and in Lp(∂Ω) as n→ ∞ .

In (3.32), we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and
use (3.33). Then

lim
n→∞ 〈A(un), un − u∗〉 = 0

=⇒ un → u∗ in W 1,p(Ω) as n→ ∞ (see Proposition 2.8), ũ � u∗ .(3.34)

So, if in (3.32) we pass to the limit as n→ ∞ and use (3.34), then

〈A(u∗), h〉+
∫
∂Ω

β(z)up−1
∗ h dσ =

∫
Ω

f(z, u∗)h dz for all h ∈ W 1,p(Ω), ũ � u∗

=⇒ u∗ ∈ S+ and u∗ = inf S+ .

Similarly we produce the biggest negative solution v∗∈−intC+ of problem (1.1).
�

Now that we have extremal constant sign solutions, we can produce a nodal
(sign changing) solution of problem (1.1). This requires a strengthening of the con-
dition on the reaction f(z, ·) near zero. Nevertheless, the new stronger requirement
does not alter the overall geometry of the problem.
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The new hypotheses on f(z, x), are the following:

f : Ω× R → R is a Carathéodory function, f(z, 0) = 0 for almost all z ∈ Ω,(H2)

hypotheses H2 (i), (ii), and (iii) are the same as the corresponding hypothe-

ses H1 (i), (ii), and (iii), and

(iv) c̃ λ̂2(q, β̃) < lim inf
x→0

f(z,x)
|x|q−2x uniformly for almost all z ∈ Ω.

In what follows, u∗ ∈ intC+ and v∗ ∈ −intC+ are the extremal constant sign
solutions of problem (1.1) produced in Proposition 3.8. Using them in the next
proposition, we produce a nodal solution.

Proposition 3.9. If hypotheses H(a), H2 and H(β) hold, then problem (1.1)
admits a nodal solution y0 ∈ [v∗, u∗] ∩ C1(Ω).

Proof. Let u∗ ∈ intC+ and v∗ ∈ −intC+ be the two extremal constant sign
solutions produced in Proposition 3.8. We introduce the following modifications
of the reaction f(z, x) and the boundary term β(z)|x|p−2x:

k(z, x) =

⎧⎨
⎩

f(z, v∗(z)) + |v∗(z)|p−2v∗(z) if x < v∗(z),
f(z, x) + |x|p−2x if v∗(z) � x � u∗(z),
f(z, u∗(z)) + u∗(z)p−1 if u∗(z) < x

(3.35)

for all (z, x) ∈ Ω× R;

b(z, x) =

⎧⎨
⎩

β(z)|v∗(z)|p−2v∗(z) if x < v∗(z),
β(z)|x|p−2x if v∗(z) � x � u∗(z),
β(z)u∗(z)p−1 if u∗(z) < x

(3.36)

for all (z, x) ∈ ∂Ω× R.

We also consider the positive and negative truncations of k(z, ·) and b(z, ·):
k±(z, x) = k(z,±x±) and b±(z, x) = b(z,±x±).

All these functions are Carathéodory. We set

K(z, x) =

∫ x

0

k(z, s) ds, K±(z, x) =
∫ x

0

k±(z, s) ds,

B(z, x) =

∫ x

0

b(z, s) ds, B±(z, x) =
∫ x

0

b±(z, s) ds.

We introduce the C1-functionals ψ, ψ± : W 1,p(Ω) → R defined by

ψ(u) =

∫
Ω

G(Du) dz +
1

p
||u||pp +

∫
∂Ω

B(z, u) dσ −
∫
Ω

K(z, u) dz,

ψ±(u) =
∫
Ω

G(Du) dz +
1

p
||u||pp +

∫
∂Ω

B±(z, u) dσ −
∫
Ω

K±(z, u) dz,

for all u ∈W 1,p(Ω).
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In what follows, we use the following three order intervals in W 1,p(Ω):

I = [v∗, u∗] = {u ∈ W 1,p(Ω) : v∗(x) � u(z) � u∗(z) for almost all z ∈ Ω},
I+ = [0, u∗] = {u ∈W 1,p(Ω) : 0 � u(z) � u∗(z) for almost all z ∈ Ω},
I− = [v∗, 0] = {u ∈ W 1,p(Ω) : v∗(z) � u(z) � 0 for almost all z ∈ Ω}.

Claim 1.
Kψ ⊆ I, Kψ+ = {0, u∗}, Kψ− = {v∗, 0}.

Let u ∈ Kψ. Then

(3.37) 〈A(u), h〉+
∫
Ω

|u|p−2uh dz +

∫
∂Ω

b(z, u)hdσ =

∫
Ω

k(z, u)h dz.

In (3.37), first we choose h = (u − u∗)+ ∈ W 1,p(Ω). Using (3.35) and (3.36),
we have〈
A(u), (u − u∗)+

〉
+

∫
Ω

up−1(u− u∗)+dz +
∫
∂Ω

β(z)up−1
∗ (u− u∗)+dσ

=

∫
Ω

[f(z, u∗) + up−1
∗ ](u− u∗)+dz

=
〈
A(u∗), (u− u∗)+

〉
+

∫
Ω

up−1
∗ (u− u∗)+dz

+

∫
∂Ω

β(z)up−1
∗ (u− u∗)+dσ (since u∗ ∈ S+),

=⇒
∫
{u>u∗}

(a(Du)−a(Du∗), Du−Du∗)RN dz+

∫
{u>u∗}

(up−1−up−1
∗ )(u−u∗) dz=0,

=⇒ |{u > u∗}|N = 0 ( see Lemma 2.3), hence u � u∗.

If in (3.37) we choose h = (v∗ − v)+ ∈ W 1,p(Ω), then reasoning in a similar
way, we obtain v∗ � u. Therefore we conclude that

Kψ ⊆ I = [v∗, u∗] .

In a similar way, we show that

Kψ+ ⊆ I+ = [0, u∗] and Kψ− ⊆ I = [v∗, 0] .

The extremality of u∗ ∈ intC+ and v∗ ∈ −intC+ (see Proposition 3.8), implies
that

Kψ+ = {0, u∗} and Kψ− = {0, v∗}.
This proves Claim 1.

Claim 2. u∗ ∈ intC+ and v∗ ∈ −intC+ are local minimizers of ψ.

Consider the functional ψ+. From (3.35), (3.36) and Corollary 2.4, it is clear
that ψ+ is coercive. Also, the Sobolev embedding theorem and the trace theorem
imply that ψ+ is sequentially weakly lower semicontinuous.
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So, we can find ū∗ ∈ W 1,p(Ω) such that

(3.38) ψ+(ū∗) = inf[ψ+(u) : u ∈ W 1,p(Ω)] = m+.

As in the proof of Proposition 3.5, for t ∈ (0, 1) small, we have tû1(q, β̃) � u∗
(see Lemma 3.3 of Filippakis, Kristaly and Papageorgiou [7]) and then

ψ+(tû1(q, β̃)) < 0 =⇒ ψ+(ū∗) < 0 = ψ+(0), hence ū∗ �= 0 .

From (3.38) we have

ū∗ ∈ Kψ+\{0} =⇒ ū∗ = u∗ ∈ intC+ (see Claim 1) .

Clearly ψ|C+ = ψ+|C+ . So, u∗ ∈ intC+ is a local C1(Ω)-minimizer of ψ.
Therefore, we can use Theorem 2.6 and conclude that u∗ ∈ intC+ is a local
W 1,p(Ω)-minimizer of ψ.

Similarly for v∗ ∈ −intC+ using this time the functional ψ−. This proves
Claim 2.

Without any loss of generality, we may assume that

(3.39) ψ(v∗) � ψ(u∗).

The analysis is similar if the opposite inequality holds. Also, we may assume
that Kψ is finite. Indeed, if Kψ is finite, then Claim 1 and the extremality of u∗
and v∗ imply that we have an infinity of nodal solutions. So, Claim 2 implies that
we can find ρ ∈ (0, 1) small such that

(3.40) ψ(v∗) � ψ(u∗) < inf[ψ(u) : ||u− u∗|| = ρ] = mρ, ||u∗ − v∗|| > ρ

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). The func-
tional ψ is coercive (see (3.35),(3.36) and Corollary 2.4). So, we infer that

(3.41) ψ satisfies the PS-condition

(see Corollary 3.4). Then (3.40) and (3.41) above, permit the use of Theorem 2.1
(the mountain pass theorem) and find y0 ∈ W 1,p(Ω) such that

(3.42) y0 ∈ Kψ and mρ � ψ(y0).

From (3.42), (3.40) and Claim 1, we have

y0 ∈ [v∗, u∗]\{v∗, u∗} =⇒ y0 is a solution of (1.1) (see (3.35), (3.36)).

So, if we show that y0 �= 0, then because of the extremality of u∗ and v∗ we
have that y0 is nodal.

Since y0 is a critical point of ψ of mountain pass type with reference points
u∗ ∈ intC+ and v∗ ∈ −intC+ (see (3.40)), we have

ψ(y0) = inf
γ∈Γ

max
0�t�1

ψ(γ(t))(3.43)

where Γ = {γ ∈ C([0, 1],W 1,p(Ω)) : γ(0) = v∗, γ(1) = u∗}
According to (3.43), in order to show the nontriviality of y0, it suffices to

produce γ∗ ∈ Γ such that ψ|γ∗ < 0. In what follows, we construct such a path.
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Let ∂BL
q

1 = {u ∈ Lq(Ω) : ||u||q = 1} and set

M =W 1,q(Ω) ∩ ∂BLq

1 and Mc =M ∩ C1(Ω).

We introduce the following two sets of paths:

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1(q, β̃), γ̂(1) = û1(q, β̃)},
Γ̂c = {γ̂ ∈ C([−1, 1],Mc) : γ̂(−1) = −û1(q, β̃), γ̂(1) = û1(q, β̃)}.

From Papageorgiou and Rădulescu [23], we know that Γ̂c is dense in Γ̂ for the
relative W 1,q(Ω)-topology. Then using Proposition 2.7, we see that given γ̂ > 0,
we can find γ̂0 ∈ Γ̂c such that

(3.44) max
−1�t�1

c̃ ϑ(γ̂0(t)) � c̃ λ̂2(q, β̃) + δ̂,

where we recall that ϑ(u) = ||Du||qq +
∫
∂Ω β̃(z)|u|qdσ for all u ∈ W 1,q(Ω).

Hypothesis H(a) (iv) implies that given ε > 0, we can find δ1 = δ1(ε) > 0 such
that

(3.45) G(y) � c̃+ ε

q
|y|q for all y ∈ R

N with |y| � δ1.

Also, hypothesis H2 (iv) implies that we can find δ2 > 0 and ξ0 > c̃ λ̂2(q, β̃)
such that

(3.46)
1

q
ξ0|x|q � F (z, x) for almost all z ∈ Ω, all |x| � δ2.

Let δ = min{δ1, δ2, 1}. Since γ̂0 ∈ Γ̂c, u∗ ∈ intC+, v∗ ∈ −intC+, we can find
τ ∈ (0, 1) small such that, for all t ∈ [−1, 1], all z ∈ Ω,

(3.47) τ γ̂0(t) ∈ [v∗, u∗], τ |γ̂0(t)(z)| � δ, τ |Dγ̂0(t)(z)| � δ.

Then for all t ∈ [−1, 1], we have

ψ(τ γ̂0(t)) =

∫
Ω

G(τDγ̂0(t)) dz +
1

p

∫
∂Ω

β(z)|γ̂0(t)|pdσ −
∫
Ω

F (z, τ γ̂0(t)) dz

(see (3.35), (3.36) and (3.47))

� c̃+ ε

q
τq ||Dγ̂0(t)||qq +

c̃ τq

q

∫
∂Ω

β̃(z)|γ̂0(t)|qdσ − τq

q
ξ0 ||γ̂0(t)||qq

(see (3.45), (3.46) and recall that q � p, δ � 1)

� τq

q
[(c̃ λ̂2(q, β̃) + δ̂) + ε− ξ0]

(see (3.44) and recall that ||γ̂0(t)||q = 1).

Since ξ0 > c̃ λ̂2(q, β̃) and ε, δ̂ > 0 are arbitrary, we can choose them small so that

ψ(τ γ̂0(t)) < 0 for all t ∈ [−1, 1].
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Let γ0 = τ γ̂0. This is a continuous path in W 1,p(Ω) connecting −τû1(q, β̃) and
τû1(q, β̃) and have

(3.48) ψ|γ0 < 0.

Let m+ ∈ R be as in (3.38). We have see that

(3.49) ψ+(u∗) = m+ < 0 = ψ+(0).

Invoking the second deformation theorem (see, for example, Gasinski and Pa-
pageorgiou [8], p. 628), we can find a deformation h : [0, 1] × (ψ0

+\K0
ψ+

) → ψ0
+

such that

h(0, u) = u for all u ∈ ψ0
+\K0

ψ+
,(3.50)

h(1, ψ0
+\K0

ψ+
) ⊆ ψ

m+

+ ,(3.51)

ψ+(h(t, u)) � ψ+(h(s, u)) for all (t, s) ∈ [0, 1], s � t, all u ∈ ψ0
+\K0

ψ+
.(3.52)

Since u∗ ∈ Kψ+ , from Claim 1 and (3.49), we se that ψ
m+

+ = {u∗}. Also,

ψ+(τû1(q, β̃)) = ψ(τû1(q, β̃)) = ψ(γ0(1)) < 0 (see (3.48))

=⇒ τ û1(q, β̃) ∈ ψ0
+\K0

ψ+
= ψ0

+\{0}.
Therefore we can define

γ+(t) = h(t, τ û1(q, β̃))
+ for all t ∈ [0, 1] .

This is a continuous path in W 1,p(Ω). we have

γ+(0) = τû1(q, β̃) (see (3.50) and recall that û1(q, β̃) ∈ intC+),

γ+(1) = h(1, τ û1(q, β̃))
+ = u∗ (see (3.51) and recall that ψ

m+

+ = {u∗}).

So, the continuous path in W 1,p(Ω) connects τû1(q, β̃) and u∗. Moreover, for
all t ∈ [0, 1], we have

ψ(γ+(t)) = ψ(h(t, τ û1(q, β̃))
+)

= ψ+(h(t, τ û1(q, β̃))) (since ψ|C+ = ψ|C+)

� ψ+(τû1(q, β̃)) (see (3.52))

= ψ(τû1(q, β̃)) (since ψ+|C+ = ψ|C+)

< 0 (see (3.48)),

=⇒ ψ|γ+ < 0 .(3.53)

In a similar fashion we produce a continuous path inW 1,p(Ω) connecting−τû1(q, β̃)
and v∗ for which we have

(3.54) ψ|γ− < 0.
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We concatenate γ0, γ+, γ− and generate γ∗ ∈ γ such that

ψ|γ∗ < 0 (see (3.48), (3.53), (3.54)) =⇒ y0 �= 0 .

So, y0 ∈ C1(Ω) (nonlinear regularity theory, see Lieberman [14]) is a nodal
solution of (1.1). �

Therefore, we can state our first multiplicity theorem for problem (1.1) (reso-
nant problems).

Theorem 3.10. Assume that hypotheses H(a), H2 and H(β) hold. Then prob-
lem (1.1) has at least three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ [v0, u0] ∩ C1(Ω) nodal.

Remark 3.11. Three solutions theorems for coercive problems were also proved
by Liu [15] and Liu and Liu [16] (Dirichlet problems driven by the p-Laplacian),
and Kyritsi and Papageorgiou [11] (Neumann problems driven by p-Laplacian).
However, none of the aforementioned works allows for resonance to occur. Also,
they do not obtain nodal solutions, neither extremal constant sign solutions.

4. Semilinear problems

In this section we deal with the semilinear problem (that is, a(y) = y for all
y ∈ R

N ). Under stronger regularity conditions on the reaction f(z, ·), we can
improve Theorem 3.10 and produce a second nodal solution for a total of four
nontrivial solutions.

The problem under consideration is the following:

(4.1) −Δu(z) = f(z, u(z)) in Ω ,
∂u

∂n
+ β(z)u(z) = 0 on ∂Ω .

The hypotheses on the reaction f(z, x), are the following:

f : Ω× R → R is a measurable function such that for almost all z ∈ Ω,(H3)

f(z, 0) = 0, f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| � a(z)(1 + |x|r−2) for almost all z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)

and 2 < r < 2∗;

(ii) lim sup
x→±∞

f(z, x)/x � λ̂1(2, β) uniformly for almost all z ∈ Ω;

(iii) lim
x→±∞[f(z, x)x− 2F (z, x)] = +∞ uniformly for almost all z ∈ Ω;

(iv) there exist integer m � 2 and δ0 > 0 such that

f ′
x(z, 0) = lim

x→0

f(z, x)

x
� λ̂m+1(2, β) uniformly for almost all z ∈ Ω,

f ′
x(·, 0) �≡ λ̂m+1(2, β),

F (z, x) � λ̂m(2, β)

2
x2 for almost all z ∈ Ω, all |x| � δ0 .
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Remark 4.1. Hypothesis H3 (i) implies that given ρ > 0, we can find ξρ > 0
such that for almost all z ∈ Ω, the function x �→ f(z, x) + ξρ x is nondecreas-
ing on [−ρ, ρ]. Note that now we have weakened a little the condition near zero
(see hypothesis H3 (iv) and compare with hypothesis H2 (iv), where the inequality

is strict with respect to λ̂2(2, β)). The reason is the extra regularity structure
on f(z, ·) and the semilinearity of the problem. A careful reading of the proof of
Proposition 3.9 reveals that the strict inequality in hypothesis H2 (iv) was used in
order to be able to apply Proposition 2.7 and conclude that y0 �= 0, therefore y0 is
nodal. In the present semilinear smooth case, this can be avoided and instead use
critical groups. Indeed, as we explain in detail in the proof of the next result (The-
orem 4.2), the energy functional ϕ has a local linking at the origin with respect to
the orthogonal direct sum

H1(Ω) = H̄m ⊕ Ĥm+1, where H̄m = ⊕mi=1E(λ̂i(2, β)), Ĥm+1 = H̄⊥
m,

and so

Ck(ϕ, 0) = δk,dmZ for all k ∈ N0, dm = dim H̄m (see [28])

=⇒ Ck(ψ, 0) = δk,dmZ for all k ∈ N0 and dm � 2 (see [19]).(4.2)

On the other hand, y0 is a critical point of mountain pass-type of ψ, hence

(4.3) Ck(ψ, y0) �= 0 .

From (4.2) and (4.3) we have that y0 is nontrivial, hence nodal.

Theorem 4.2. Assume that hypotheses H3 and H(β) hold. Then problem (4.1)
admits at least four nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0, ŷ ∈ intC1(Ω)[v0, u0] nodal.

Proof. From Theorem 3.10, we already have three nontrivial solutions,

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ [v0, u0] ∩C1(Ω) nodal.

Of course we may assume that u0 and v0 are extremal (see Proposition 3.9).
Let ρ = max{||u0||∞, ||v0||∞} and let ξρ > 0 be as postulated by the previous
remark. Then

Δy0(z) + ξρy0(z) = f(z, y0(z)) + ξρy0(z) � f(z, u0(z)) + ξρu0(z) (since y0 � u0)

= −Δu0(z) + ξρu0(z) for almost all z ∈ Ω,

=⇒ Δ(u0 − y0)(z) � ξρ(u0 − y0)(z) for almost all z ∈ Ω (u0 − y0 ∈ C+\{0}),
=⇒ u0 − y0 ∈ intC+ (by the maximum principle).

Similarly, we show that
y0 − v0 ∈ intC+ .

Therefore we have proved that

(4.4) y0 ∈ intC1(Ω)[v0, u0] .
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As before, ϕ : H1(Ω) → R is the energy functional for problem (4.1). So

ϕ(u) =
1

2
||Du||22 +

1

2

∫
∂Ω

β(z)|u|2dσ −
∫
Ω

F (z, u) dz for all u ∈ H1(Ω) .

Hypotheses H3 imply that ϕ ∈ C2(H1(Ω)). Also, let ψ ∈ C1(H1(Ω)) be the
truncated functional as in the proof of Proposition 3.9. From (3.35) and (3.36),
we have

ϕ|[v0,u0] = ψ|[v0,u0] .

So, (4.4) implies that

Ck(ϕ|C1(Ω), y0) = Ck(ψ|C1(Ω), y0) for all k � 0

=⇒ Ck(ϕ, y0) = Ck(ψ, y0) for all k � 0(4.5)

(since C1(Ω) is dense in H1(Ω), see Palais [19]).

Recall that y0 is a critical point of ψ of mountain pass type (see the proof of
Proposition 3.9). Hence

C1(ψ, y0) �= 0 =⇒ C1(ϕ, y0) �= 0 (see (4.5))

=⇒ Ck(ϕ, y0) = δk,1Z for all k � 0

(see Proposition 2.5 in Bartsch [5])

=⇒ Ck(ψ, y0) = δk,1Z for all k � 0 (see (4.5)) .(4.6)

Let H̄m = ⊕mi=1E(λ̂i(2, β)) and Ĥm+1 = H̄1
m = ⊕i�m+1E(λ̂i(2, β)) (here

E(λ̂i(2, β)) ⊆ C1(Ω) is the eigenspace corresponding to the eigenvalue λ̂i(2, β)).
We have

(4.7) H1(Ω) = H̄m ⊕ Ĥm+1 .

From hypothesis H3 (iv) we see that given ε > 0, we can find c9 = c9(ε) > 0
such that

F (z, x) � 1

2
(f ′
x(z, 0) + ε)x2 + c9|x|r for almost all z ∈ Ω, all z ∈ R .

If u ∈ Ĥm+1, then

ϕ(u) � 1

2
||Du||22 +

1

2

∫
∂Ω

β(z)u2 dσ − 1

2

∫
Ω

f ′
x(z, 0)u

2 dz − ε

2
||u||22 − c10 ||u||r

for some c10 > 0

� c11||u||2 − c10||u||r for some c11 > 0 (see hypothesis H3 (iv)).

Since r > 2, we can find δ1 ∈ (0, 1) such that

(4.8) ϕ(u) > 0 for all u ∈ Ĥm+1 with 0 < ||u|| � δ1.

Note that H̄m ⊆ C1(Ω) is finite dimensional and so all norms are equivalent.
So, we can find δ2 > 0 such that

(4.9) u ∈ H̄m, ||u|| � δ2 =⇒ |u(z)| � δ0 for all z ∈ Ω .
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Hence if u ∈ H̄m, ||u|| � δ2, then

(4.10) ϕ(u) � 1

2
||Du||22 +

1

2

∫
∂Ω

β(z)u2dσ − λ̂m(2, β)

2
||u||22 � 0

(see (4.8) and hypothesis H3 (iv)).
From (4.8) and (4.10) we infer that ϕ has a local linking with respect to the

orthogonal direct sum decomposition (4.7). Since ϕ ∈ C2(H1(Ω)), from Proposi-
tion 2.3 of Su [28] we have

Ck(ϕ, 0) = δk,dmZ for all k � 0, with dm = dim H̄m � 2

=⇒ Ck(ψ, 0) = δk,dmZ for all k � 0 .(4.11)

Recall that u0, v0 are local minimizers of ψ (see the proof of Proposition 3.9,
Claim 2). Hence

(4.12) Ck(ψ, u0) = Ck(ψ, v0) = δk,0Z for all k � 0 .

Finally recall that ψ is coercive (see (3.35), (3.36)). Therefore

(4.13) Ck(ψ,∞) = δk,0Z for all k � 0 .

Suppose that Kψ = {0, u0, v0, y0}. Then from (4.6), (4.11), (4.12), (4.13) and
the Morse relation (see (2.6)) with t = −1, we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0 =⇒ (−1)dm = 0, a contradiction.

So, there exists ŷ ∈ Kψ\{0, u0, v0, y0}. We have

ŷ ∈ [v0, u0] (see the proof of Proposition 3.9, Claim 1)

=⇒ ŷ ∈ C1(Ω) (regularity theory) is a nodal solution of (4.1).

Moreover, as we did earlier for y0, we show that

ŷ ∈ intC1(Ω)[v0, u0] . �

5. Oscillatory reaction

In this section we return to the study of problem (1.1) and we consider a reaction
with no global growth restriction. Instead, we assume a kind of oscillatory behavior
for f(z, ·) near zero. Also, we weaken the conditions on the map a(·).

The new hypotheses on the map a(y) and the reaction f(z, x) are the following:

a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0, hypotheses(H(a)′)

H(a)′ (i), (ii), (iii) are the same as hypotheses H(a) (i), (ii), (iii), and

(iv) if G0(t) =
∫ t
0
sa0(s) ds, then there exists q ∈ (1, p] such that

lim sup
t→0+

q G0(t)

tq
< +∞.



280 N. S. Papageorgiou and V.D. Rădulescu

and

f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0(H4)

for almost all z ∈ Ω, and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| � aρ(z) for
almost all z ∈ Ω, all |x| � ρ;

(ii) there exist functions w± ∈W 1,p(Ω) ∩C(Ω) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ Ω ,

A(w−) + β(z)|w−|p−2w− � 0 � A(w+) + β(z)wp−1
+ in W 1,p(Ω)∗,

f(z, w+(z)) � 0 � f(z, w−(z)) for all z ∈ Ω ;

(iii) there exist μ ∈ (1, q) and δ > 0 such that

μF (z, x) � f(z, x)x > 0 for almost all z ∈ Ω, as 0 < |x| � δ .

Remark 5.1. We stress that no global condition is imposed on f(z, ·). In hypoth-
esis H4 (ii), the second inequality means that

〈A(w−), h〉+
∫
∂Ω

β(z)|w−|p−2w−h dσ � 0 � 〈A(w+), h〉+
∫
∂Ω

β(z)wp−1
+ h dσ

for all h ∈ W 1,p(Ω) with h � 0. Evidently, hypothesis H4 (ii) is satisfied if there
exist c− < 0 < c+ such that

f(z, c+) � 0 � f(z, c−) for almost all z ∈ Ω .

Hypotheses H4 (ii), (iii) dictate a kind of oscillatory behavior for f(z, ·) near
zero.

Example 5.2. The following function satisfies hypotheses H4. For the sake of
simplicity, we drop the z-dependence:

f(x) =

{
|x|μ−2x− |x|r−2x if |x| � 1,

η(x) if |x| > 1,

where η ∈ C1(R) with η(±1) = 0.

Proposition 5.3. Assume that hypotheses H(a)′, H4 and H(β) hold. Then prob-
lem (1.1) admits at least two nontrivial constant sign solutions

u0 ∈ [0, w+] ∩ intC+ and v0 ∈ [w−, 0] ∩ (−intC+) .

Proof. First we produce the positive solution.
To this end we introduce the following truncation-perturbation of f(z, x):

(5.1) ê+(z, x) =

⎧⎨
⎩

0 if x < 0,
f(z, x) + xp−1 if 0 � x � w+(z),
f(z, w+(z)) + w+(z)

p−1 if w+(z) < x .
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This is a Carathéodory function. We set Ê+(z, x) =
∫ x
0 ê+(z, s) ds and consider

the C1-functional τ̂+ : W 1,p(Ω) → R defined, for all u ∈W 1,p(Ω), by

τ̂+(u) =

∫
Ω

G(Du) dz +
1

p
||u||pp +

1

p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

Ê+(z, u) dz.

From (5.1) it is clear that τ̂+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u0 ∈W 1,p(Ω) such that

(5.2) τ̂+(u0) = inf[τ̂+(u) : u ∈ W 1,p(Ω)] .

Hypothesis H4 (iii) implies that

(5.3) F (z, x) � c12 |x|μ for almost all z ∈ Ω, all |x| � δ with c12 > 0 .

Also, hypothesis H(a)′ (iv) implies that we can find δ̂∈(0,min{δ, c+}) and c13 >0
such that

(5.4) G(y) � c13
q

|y|q for all y ∈ R
N with |y| � δ̂.

Let t ∈ (0, 1) small such that tû1(q, β)(z) � δ̂ for all z ∈ Ω (recall û1(q, β) ∈
intC+). Then from (5.3) and (5.4) we have

τ̂+(tû1(q, β)) �
tqc13
q

||Dû1(q, β)||qq +
tq

q

∫
∂Ω

β(z)û1(q, β)
pdσ − c12t

μ||û1(q, β)||μμ

(see (5.1)).

Since μ < q � p (see H4 (iv)), choosing t ∈ (0, 1) even smaller if necessary, we
will have

τ̂+(tû1(q, β)) < 0 =⇒ τ̂+(u0) < 0 = τ̂+(0) (see (5.2)), so u0 �= 0 .

From (5.2) we have τ̂ ′+(u0) = 0, and so, for all h ∈ W 1,p(Ω),

(5.5) 〈A(u0), h〉+
∫
Ω

|u0|p−2u0h dz +

∫
∂Ω

β(z)(u+0 )
p−1h dσ =

∫
Ω

ê+(z, u0)h dz.

In (5.5) we choose h = −u−0 ∈W 1,p(Ω). Then

c1
p− 1

||Du−0 ||pp + ||u−0 ||pp � 0 (see Corollary 2.4 and (5.1)) =⇒ u0 � 0, u0 �= 0 .
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Also, in (5.5) we choose h = (u0 − w+)
+ ∈W 1,p(Ω). We have

〈
A(u0), (u0 − w+)

+
〉
+

∫
Ω

up−1
0 (u0 − w+)

+dz +

∫
∂Ω

β(z)up−1
0 (u0 − w+)

+dσ

=

∫
Ω

ê+(z, u0)(u0 − w+)
+dz

=

∫
Ω

[f(z, w+) + wp−1
+ ](u0 − w+)

+dz (see (5.1))

�
〈
A(w+), (u0−w+)

+
〉
+

∫
Ω

wp−1
+ (u0−w+)

+dz +

∫
∂Ω

β(z)wp−1
+ (u0−w+)

+dσ

(see hypothesis H4 (ii))

=⇒ 〈
A(u0)−A(w+), (u0 − w+)

+
〉
+

∫
Ω

(up−1
0 − wp−1

+ )(u0 − w+)
+dz

+

∫
∂Ω

β(z)(up−1
0 − wp−1

+ )(u0 − w+)
+dσ � 0

=⇒ |{u0 > w+}|N = 0 (see Lemma 2.3), hence u0 � w+.

So, we have proved that

(5.6) u0 ∈ [0, w+] = {u ∈W 1,p(Ω) : 0 � u(z) � w+(z) for almost all z ∈ Ω}
From (5.1) and (5.6), equation (5.5) becomes

〈A(u0), h〉+
∫
∂Ω

β(z)up−1
0 h dσ =

∫
Ω

f(z, u0)h dz for all h ∈W 1,p(Ω),

and this implies

(5.7)

− div a(Du0(z)) = f(z, u0(z)) for almost all z ∈ Ω,

∂u0
∂na

+ β(z)up−1
0 = 0 on ∂Ω (see Papageorgiou and Rădulescu [21]).

Hypotheses H4 (i), (iii) imply that given ρ > 0, we can find ξρ > 0 such that

(5.8) f(z, x)x+ ξρ |x|p � 0 for almost allz ∈ Ω, all |x| � ρ.

From (5.7) and the nonlinear regularity theory of Lieberman [14], p. 320, we
have u0 ∈ C+\{0}. Let ρ = ||u0||∞ and let ξρ > 0 be as in (5.8). Then from (5.7),
we have

div a(Du0(z)) � ξρu0(z)
p−1 for almost all z ∈ Ω

=⇒ u0 ∈ intC+ (see Pucci and Serrin [27], pp. 111, 120).

For the negative solution, we introduce the Carathéodory function

(5.9) ê−(z, x) =

⎧⎨
⎩

f(z, w−(z)) + |w−(z)|p−2w−(z) if x < w−(z),
f(z, x) + |x|p−2x if w−(z) � x � 0,
0 if 0 < x.
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We set Ê−(z, x) =
∫ x
0 ê−(z, s) ds, and consider the C1-functional τ̂− : W 1,p(Ω) → R

defined, for all u ∈W 1,p(Ω), by

τ̂−(u) =
∫
Ω

G(Du) dz +
1

p
||u||pp −

1

p

∫
∂Ω

β(z)(u−)pdσ −
∫
Ω

Ê−(z, u) dz.

Working as above with the functional τ̂− and suing (5.9), we produce a negative
solution v0 ∈ −intC+. �

We introduce the following Carathéodory function:

(5.10) ê(z, x) =

⎧⎪⎨
⎪⎩
f(z, w−(z)) + |w−(z)|p−2w−(z) if x < w−(z),

f(z, x) + |x|p−2x if w−(z) � x � w+(z),

f(z, w+(z)) + w+(z)
p−1 if w+(z) < x .

We set Ê(z, x) =
∫ x
0 ê(z, s) ds and consider the C1-functional τ̂ :W 1,p(Ω) → R

defined, for all u ∈W 1,p(Ω), by

τ̂ (u) =

∫
Ω

G(Du) dz +
1

p
||u||pp +

1

p

∫
∂Ω

β(z)|u|pdσ −
∫
Ω

Ê(z, u) dz.

As in the proof of Proposition 3.9 (see Claim 1), using (5.10), we show that

(5.11) Kτ̂ ⊆ [w−, w+].

Hypothesis H4 (iii) implies the presence of a concave (that is a p-superlinear
as x→ 0) term (see 5.3) and this leads to the following result due to Papageorgiou
and Rădulescu [23] (the first result in this direction for a more restricted class of
functionals, goes back to Moroz [17]).

Proposition 5.4. If hypotheses H(a)′, H4 and H(β) hold, then Ck(τ̂ , 0) = 0 for
all k � 0.

Now we are ready for our second multiplicity theorem for problem (1.1). Note
that this theorem, we do not provide information concerning the sign of the third
solution.

Theorem 5.5. Assume that hypotheses H(a)′, H4 and H(β) hold. Then prob-
lem (1.1) admits at least three nontrivial solutions:

u0 ∈ [0, w+] ∩ intC+, v0 ∈ [w−, 0] ∩ (−intC+), y0 ∈ [w−, w+] ∩ C1(Ω).

Proof. From Proposition 5.3 we already have two constant sign solutions

u0 ∈ int [0, w+] ∩ intC+ and v0 ∈ [w−, 0] ∩ (−intC+).

From the proof of Proposition 5.3 we know that

• u0 is a minimizer of the functional τ̂+.

• v0 is a minimizer of the functional τ̂−.
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From (5.1), (5.9) and (5.10), we see that

τ̂+|C+ = τ̂ |C+ and τ̂−|−C+ = τ̂ |−C+ .

So, u0 ∈ intC+ and v0 ∈ −intC+ are also local C1(Ω)-minimizers of τ̂ . The-
orem 2.6 implies that they are also local W 1,p(Ω)-minimizers of τ̂ . Without any
loss of generality we may assume that τ̂(v0) � τ̂ (u0) (the analysis is similar if the
opposite inequality holds). Also, we assume that Kτ̂ is finite or otherwise we al-
ready have an infinity of distinct nontrivial solutions for problem (1.1) (see (5.11)).
Since u0 is a local minimizer of τ̂ , we can find ρ ∈ (0, 1) small such that

(5.12) τ̂ (v0) � τ̂(u0) < inf[τ̂ (u) : ||u − u0|| = ρ] = mρ, ||v0 − u0|| > ρ (see [1]).

The functional τ̂ is coercive (see (5.10)) and so we know that it satisfies the
PS-condition (see Corollary 3.4). Using this fact and (5.12), we see that we can
apply Theorem 2.1 (the mountain pass theorem) and produce y0 ∈ W 1,p(Ω) such
that

(5.13) y0 ∈ Kτ̂ ⊆ [w−, w+] (see (5.11)) and mρ � τ̂ (y0).

From (5.12) and (5.13), we see that

y0 /∈ {v0, u0}.
Also since y0 is a critical point of τ̂ of mountain pass type, we have

(5.14) C1(τ̂ , y0) �= 0 .

From Proposition 5.4 we know that

(5.15) Ck(τ̂ , 0) = 0 for all k � 0 .

Comparing (5.14) and (5.15), we infer that y0 �= 0. Finally the nonlinear
regularity theory (see [14]), implies that y0 ∈ [w−, w+]∩C1(Ω) (see also (5.13)). �

If we return to the stronger conditions H(a) for the map a(·) and we impose a
unilateral growth condition f(z, ·), we can improve Theorem 5.5 and provide sign
information for the third solution.

The new hypotheses on the reaction f(z, x) are the following:

(H5) f : Ω× R → R is a Carathéodory function such that f(z, x)

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| � aρ(z) for
almost all z ∈ Ω, all |x| � ρ;

(ii) there exist functions w± ∈W 1,p(Ω) ∩C(Ω) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ Ω ,

A(w−) + β(z)|w−|p−2w− � 0 � A(w+) + β(z)wp−1
+ in W 1,p(Ω)∗,

f(z, w+(z)) � 0 � f(z, w−(z)) for almost all z ∈ Ω ;
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(iii) there exist c13 > 0 and r ∈ (p, p∗) such that

f(z, x)x � −c13 |x|r for almost all z ∈ Ω all x ∈ R ;

(iv) with β̃ = 1
c̃β ∈ L∞(Ω)+, we have

c̃ λ̂2(q, β̃) < lim inf
x→0

f(z, x)

|x|p−2x
uniformly for almost all z ∈ Ω .

Remark 5.6. Hypotheses H5 (iii) is the extra unilateral growth condition imposed
on f(z, ·). Note that hypothesis H5 (iv) permits also (q − 1)-linear growth near
zero f(z, ·). This is more general than hypothesis H4 (iii), where μ < q.

Hypotheses H5 (iii), (iv) imply that we can find ξ0 > c̃ λ̂2(q, β̃) and c14 > 0 such
that

f(z, x)x � ξ0 |x|q − c14 |x|r for almost all z ∈ Ω, all x ∈ R .

This leads to the following auxiliary Robin problem:

(5.16)

⎧⎨
⎩

−div a(Du(z)) = ξ0|u(z)|q−2u(z)− c14|u(z)|r−2u(z) in Ω ,
∂u

∂na
+ β(z)|u(z)|p−2u(z) = 0 on ∂Ω .

Proposition 3.6 implies that problem (5.16) has a unique positive solution u+ ∈
intC+ and since (5.16) is odd, we have that v− = −u+ ∈ intC+ is the unique
negative solution of (5.16). Also, we have

u+ � u for all u ∈ S+ and v � v− for all v ∈ S− (see Proposition 3.7).

Having these bounds and reasoning as in the proof of Proposition 3.8, we pro-
duce extremal constant sign solutions.

Proposition 5.7. If hypotheses H(a), H5 and H(β) hold, then problem (1.1) has a
smallest positive solution u∗ ∈ intC+ and a biggest negative solution v∗ ∈ −intC+.

These extremal constant sign solutions, leads to a nodal solution (see the proof
of Proposition 3.9).

Proposition 5.8. If hypotheses H(a), H5 and H(β) hold, then problem (1.1) ad-
mits a nodal solution y0 ∈ [v∗, u∗] ∩ C1(Ω).

So, we can state the third multiplicity theorem for problem (1.1).

Theorem 5.9. Assume that hypotheses H(a), H5 and H(β) hold. Then prob-
lem (1.1) admits at least three nontrivial solutions:

u0 ∈ [0, w+] ∩ intC+, v0 ∈ [w−, 0] ∩ (−intC+), y0 ∈ [w−, w+] ∩ C1(Ω).
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6. p-Laplacian equations

In this section, we deal with equations driven by the p-Laplacian, that is a(y) =
|y|p−2y for all y ∈ R

N . So, now the differential operator is (p − 1)-homogeneous
and we can exploit this fact to drop the unilateral growth condition on f(z, ·)
(see H5 (iii)) and return to the case of a reaction with no global growth restriction.

So, the problem under consideration is the following:

(6.1) −Δpu(z) = f(z, u(z)) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω .

Recall
∂u

∂np
= |Du|p−2 ∂u

∂n
for all u ∈ W 1,p(Ω).

The new hypotheses on the reaction f(z, x) are the following:

f : Ω× R → R is a Carathéodory function such(H6)

that f(z, x) = 0 for almost all z ∈ Ω, and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| � aρ(z) for
almost all z ∈ Ω, all |x| � ρ;

(ii) there exist functions w± ∈W 1,p(Ω) ∩C(Ω) such that

w−(z) � c− < 0 � w+(z) for all z ∈ Ω ,

A(w−) + β(z)|w−|p−2w− � 0 � A(w+) + β(z)wp−1
+ in W 1,p(Ω)∗,

f(z, w+(z)) � 0 � f(z, w−(z)) for almost all z ∈ Ω ;

(iii) we have

λ̂2(p, β) < lim inf
x→0

f(z, x)

|x|p−2x
� lim sup

x→0

f(z, x)

|x|p−2x
� η0

uniformly for almost all z ∈ Ω.

In this case to produce extremal constant sign solutions, we do not pass through
an auxiliary problem (see (5.16)), but instead we argue directly.

Proposition 6.1. Assume that hypotheses H6 and H(β) hold. Then problem (6.1)
admits a smallest positive solution u∗ ∈ intC+ and a biggest negative solution
v∗ ∈ −intC+.

Proof. As in the proof of Proposition 3.8, we can find {un}n�1 ⊆ S+ such that

inf S+ = inf
n�1

un .

Thanks to (3.31), {un}n�1 ⊆W 1,p(Ω) is bounded and so we may assume that

(6.2) un
w→ u∗ in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).
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As in the proof of Proposition 3.8, using (6.2), we show that u∗ ∈ S+ ∪ {0}.
We need to show that u∗ �= 0. Arguing by contradiction, suppose that u∗ = 0.
Let yn = un/||un|| n � 1. Then ||yn|| = 1, yn � 0 for all n � 1. So, we may
assume that

(6.3) yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω), y � 0 .

We have, for all n � 1, and all h ∈W 1,p(Ω),

(6.4) 〈A(yn), h〉+
∫
∂Ω

β(z) yp−1
n h dσ =

∫
Ω

Nf(un)

||un||p−1
h dz.

In (6.4) we choose h = yn−y ∈W 1,p(Ω), pass to the limit as n→ ∞ and use (6.3).
Then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

=⇒ yn → y in W 1,p(Ω) (see Proposition 2.8), hence ||y|| = 1, y � 0 .(6.5)

Hypotheses H6 (i), (iii) imply that we can find c15 > 0 such that

|f(z, x)| � c15 |x|p−1 for almost all z ∈ Ω, all |x| �M3 (see (3.31))

=⇒
{ Nf (un)

||un||p−1

}
n�1

⊆ Lp
′
(Ω) is bounded (1/p+ 1/p′ = 1).

Passing to a subsequence if necessary and using hypothesis H6 (iii) (recall we
assume u∗ = 0), we obtain

(6.6)
Nf (un)

||un||p−1

w→ ϑyp−1 in Lp
′
(Ω) with λ̂2(p, β)<ϑ(z)�η0 for almost all z∈Ω

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). Returning
to (6.4), passing to the limit as n→ ∞ and using (6.5) and (6.6), we obtain

〈A(y), h〉+
∫
∂Ω

β(z)yp−1h dσ =

∫
Ω

ϑyp−1h dz for all h ∈W 1,p(Ω),

and thus

(6.7) −Δpy(z) = ϑ(z)y(z)p−1 for almost all z ∈ Ω,
∂u

∂np
+β(z)yp−1 = 0 on ∂Ω .

From (6.6) and (6.7) it follows that y must be nodal, which contradicts (6.5).
Therefore u∗ ∈ S+ and u∗ = intS+.

Similarly we produce v∗ ∈ −intC+ the biggest negative solution of (6.1). �

Using these extremal constant sign solutions and reasoning as in the proof of
Proposition 3.9, we have the final multiplicity theorem.

Theorem 6.2. Assume that hypotheses H6 and H(β) hold. Then problem (6.1)
admits at least three nontrivial solutions:

u0 ∈ [0, w+] ∩ intC+, v0 ∈ [w−, 0] ∩ (−intC+), y0 ∈ [w−, w+] ∩ C1(Ω) nodal.
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équations elliptiques quasilinéaires. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987),
no. 12, 521–524.
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