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On profinite groups with commutators

covered by nilpotent subgroups

Pavel Shumyatsky

Abstract. The following results about a profinite group G are obtained.
The commutator subgroup G′ is finite if and only if G is covered by count-
ably many abelian subgroups. The group G is finite-by-nilpotent if and
only if G is covered by countably many nilpotent subgroups. The main
result is that the commutator subgroup G′ is finite-by-nilpotent if and only
if the set of all commutators in G is covered by countably many nilpotent
subgroups.

1. Introduction

Let G be a profinite group. If G is covered by countably many closed subgroups,
then by the Baire category theorem, at least one of the subgroups is open. This
simple observation suggests that if G is covered by countably many closed sub-
groups with certain specific properties, then the structure of G is similar to that of
the covering subgroups. For example, if G is covered by countably many subgroups
of finite rank, then G has finite rank. The profinite group G is said to have finite
rank at most r if each closed subgroup of G can be topologically generated by at
most r elements.

It was shown in the recent paper [3] that a profinite group is covered by count-
ably many procyclic subgroups if and only if it is finite-by-procyclic.

In the present article we will establish more results of this nature. Throughout
the paper the subgroups of a profinite group are assumed to be closed.

Theorem 1.1. For a profinite group G, the following conditions are equivalent:

1) the group G is covered by countably many abelian subgroups;

2) the group G has finite commutator subgroup;

3) the group G is central-by-finite.

Mathematics Subject Classification (2010): Primary 20E18; Secondary 20F14.
Keywords: Profinite groups, nilpotent subgroups, commutators.



1332 P. Shumyatsky

Theorem 1.2. For a profinite group G, the following conditions are equivalent:

1) the group G is covered by countably many nilpotent subgroups;

2) the group G is finite-by-nilpotent;

3) there exists a positive integer m such that Zm(G) is open.

Here Zm(G) denotes the mth term of the upper central series of G. Both above
theorems are in parallel with well-known results on abstract groups covered by
finitely many abelian, or nilpotent, subgroups. R. Baer characterized central-by-
finite groups as those groups having a finite covering by abelian subgroups (see
Theorem 4.16 in [14]). In 1992, M. J. Tomkinson [16] showed that a group G has
a finite covering by nilpotent subgroups if and only if Zm(G) has finite index in G
for some positive m. Some related issues have been also addressed in [4]. In view
of Hall’s theorem [10], it follows that a group G has a finite covering by nilpotent
subgroups if and only if G is finite-by-nilpotent. It is interesting to observe that our
Theorems 1.1 and 1.2 show that a profinite group G admits a countable covering by
abelian (respectivly, nilpotent) subgroups if and only if G admits a finite covering
by subgroups with the respective property. The proofs of the theorems do not use
the results on finite coverings of abstract groups.

If x, y ∈ G, then [x, y] = x−1y−1xy is the commutator of x and y. The closed
subgroup of G generated by all commutators is the commutator subgroup G′ of G.
In general, elements of G′ need not be commutators (see for instance [11] and
references therein). On the other hand, Nikolov and Segal [13] showed that for
any positive integer m there exists an integer f(m) such that if G is m-generator,
then every element in G′ is a product of at most f(m) commutators. Several
recent results indicate that if the set of all commutators is covered by finitely,
or countably, many subgroups with certain specific properties, then the structure
of G′ is somehow similar to that of the covering subgroups.

It was shown in [2] that if G is a profinite group that has finitely many pe-
riodic subgroups (respectively, subgroups of finite rank) whose union contains all
commutators, then G′ is locally finite (respectively, G′ is of finite rank). In [1]
similar results were obtained for the case where commutators are covered by count-
ably many subgroups: if G is a profinite group that has countably many periodic
subgroups (respectively, subgroups of finite rank) whose union contains all com-
mutators, then G′ is locally finite (respectively, G′ is of finite rank). In [6] the
corresponding results were obtained for profinite groups in which commutators of
higher order are covered by countably many periodic subgroups, or subgroups of
finite rank.

Profinite groups in which commutators are covered by procyclic subgroups were
studied in [8]. It was shown that if G is a profinite group that has finitely many,
saym, procyclic subgroups whose union contains all commutators, then G′ is finite-
by-procyclic. In fact, G′ has a finite characteristic subgroupM ofm-bounded order
such that G′/M is procyclic. Moreover, if G is a pro-p group that has m procyclic
subgroups whose union contains all commutators, then G′ is either finite of m-
bounded order or procyclic. Earlier, Fernández-Alcober and Shumyatsky proved
that if G is an abstract group in which the set of all commutators is covered by
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finitely many cyclic subgroups, then the commutator subgroup G′ is either finite
or cyclic [7]. Profinite groups in which the commutators are covered by countably
many procyclic subgroups were dealt with in [3]. Such groups were characterized
precisely as groups whose commutator subgroup is finite-by-procyclic.

In the present article we study profinite groups in which the commutators are
covered by countably many nilpotent subgroups. Our main result is the following
theorem.

Theorem 1.3. Let G be a profinite group. The following conditions are equivalent:

1) the set of all commutators in G is covered by countably many nilpotent sub-
groups;

2) the commutator subgroup G′ is finite-by-nilpotent;

3) there exists a positive integer m such that Zm(G′) is open in G′.

Remark that no analogue of the above theorem for abstract groups is known.
We conjecture that if G is an abstract group in which the commutators are covered
by finitely many nilpotent subgroups, then G′ is finite-by-nilpotent.

Another natural conjecture (related to Theorem 1.1) is that if G is a profinite
group in which the commutators are covered by countably many abelian subgroups,
then the second commutator subgroup G′′ is finite. It seems however that the
techniques employed in the present article are insufficient for dealing with the
above conjectures.

2. On groups covered by nilpotent subgroups

The proof of Theorem 1.1 is quite straightforward. The proof of Theorem 1.2
will be somewhat more complicated. Throughout the article, whenever G is a
profinite group, we denote by 〈X〉 the subgroup of G topologically generated by
the subset X .

Proof of Theorem 1.1. It is immediate to see that a profinite group G has finite
commutator subgroup if and only if it is central-by-finite. Indeed, if G is central-
by-finite, then by Schur’s theorem (see Theorem 4.12 in [14]) the commutator
subgroup G′ is finite. On the other hand, if G′ is finite, G possesses an open
normal subgroup N such that N ∩G′ = 1. It is clear that N ≤ Z(G) and so G is
central-by-finite.

Further, suppose that Z(G) is open in G. Choose representatives g1, . . . , gn
of the cosets of Z(G) in G. We observe that G is a union of n abelian sub-
groups 〈gi, Z(G)〉. Thus, the proof of the theorem will be complete once we show
that if G is a union of countably many abelian subgroups, then Z(G) is open in G.

Write G = ∪Gi, where i = 1, 2, . . . , and Gi are abelian subgroups. Without
loss of generality we may assume that the subgroups Gi are proper. By the Baire
category theorem (see p. 200 in [12]), at least one of the subgroups Gi is open. So
we assume that G1 is open. Choose g1, . . . , gn ∈ G such that G = 〈G1, g1, . . . , gn〉.
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We may assume that no element gi belongs to G1. For some i ≤ n we look at the
coset B = giG1. It is clear that B is covered by the subsets B ∩Gj . The subsets
B ∩ Gj are closed and so by the Baire category theorem at least one of them has
non-empty interior. Therefore there exist a positive integer k ≥ 2, an element
b ∈ B, and an open subgroup Di such that bDi ⊆ B ∩ Gk. Since Gk is abelian,
it follows that so is the subgroup 〈b,Di〉. Taking into account that gi ∈ bG1,
we deduce that gi centralizes Di ∩ G1. Such a subgroup Di can be chosen for
each i ≤ n. We see that G1 ∩ ⋂

1≤i≤n Di is an open central subgroup of G. It
follows that Z(G) is open in G, as required. �

As usual, ifX and Y are subsets of a groupG, we denote by [X,Y ] the subgroup
generated by all commutators [x, y], where x ∈ X and y ∈ Y . For k = 1, 2, . . . , we
write X = [X, 0Y ] and [X, kY ] = [[X, k−1Y ], Y ].

Lemma 2.1. Let G be a finite group acting on an abelian group M . Suppose that
there exists an integer k with the property that for every element a ∈ G we have
[M, ka] = 1. Then there exists a number t, depending only on k and |G|, such that
[M, tG] = 1.

Proof. This is straightforward using the result of Crosby and Traustason [5]. �

Lemma 2.2. Let G be a profinite group covered by countably many nilpotent sub-
groups. Assume that N is a closed normal abelian subgroup of G such that CG(N)
is open. Then N contains a subgroup M such that

1) M is normal in G;

2) M is open in N ;

3) there exists a number t such that [M, tG] = 1.

Proof. Write G = ∪Gi, where i = 1, 2, . . . and Gi are nilpotent subgroups. Let
x ∈ G and X = xCG(N). Obviously, X is closed and therefore compact. It is
clear that X is covered by the (closed) subsets X ∩ Gi. By the Baire category
theorem, at least one of these subsets contains a non-empty interior. Hence, there
exist an open normal subgroup T in G, an element a ∈ X , and an integer j such
that X ∩aT is contained in Gj . Let R = T ∩CG(N). Since aR is contained in Gj ,
it follows that 〈a,R〉 ≤ Gj . Since Gj is nilpotent, there exists a positive integer k
such that [R, ka] = 1. Thus, we have shown that for each coset xCG(N) there
exist a ∈ xCG(N), a positive integer ka, and an open normal subgroup Ra such
that [Ra, kaa] = 1. We fix such representatives a1, a2, . . . , as, one in each coset
of CG(N). Set M = N ∩⋂

iRai . Being the intersection of N with finitely many
open normal subgroups, M is normal in G and open in N . Let k0 be the maximum
of the numbers kai . The group Ḡ = G/CG(N) naturally acts on M . Moreover,
the action of Ḡ on M verifies the condition [M, k0 ā] = 1 for every ā ∈ Ḡ. By
Lemma 2.1, there exists a number t such that [M, tḠ] = 1. Of course, this implies
that [M, tG] = 1, as required. �
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Proof of Theorem 1.2. In view of Hall’s theorem [10], it follows that G is finite-by-
nilpotent if and only if there exists a positive integer m such that Zm(G) is open.
Further, suppose that for some positive integer m the subgroup Zm(G) is open
in G. Choose representatives g1, . . . , gn of the cosets of Zm(G) in G. We observe
that G is a union of n nilpotent subgroups 〈gi, Zm(G)〉. Thus, the proof of the
theorem will be complete once we show that if G is a union of countably many
nilpotent subgroups, then for some positive integer m the subgroup Zm(G) is open
in G.

So we assume that G = ∪Gi, where i = 1, 2, . . . and Gi are nilpotent sub-
groups. By the Baire category theorem, at least one of the subgroups Gi is open.
Therefore G is virtually nilpotent. Let c be the minimal nonnegative integer such
that G contains an open, nilpotent of class c, normal subgroup N . If c = 0, then G
is finite and there is nothing to prove. If c = 1, then G is virtually abelian and
the result is straightforward from Lemma 2.2. Thus, suppose that c ≥ 2 and use
induction on c. Put Z = Z(N). It is clear that CG(Z) is open. Therefore, by
Lemma 2.2, there exists a number t and a subgroup M ≤ Z, which is normal in G
and open in Z, such that [M, tG] = 1. Since Z/M is finite, the group G has an
open normal subgroup K such that K ∩Z ≤ M . Let L = K ∩N and F = M ∩L.
The nilpotency class of L/F is at most c− 1 and [F, tG] = 1. By induction, there
exists an open normal subgroup J such that [J, rG] ≤ F for some positive integer r.
Therefore [J, r+tG] = 1 and J ≤ Zr+t(G). The proof is complete. �

3. On groups in which commutators are covered by nilpotent
subgroups

Our goal in the present section is to prove Theorem 1.3. Thus, we will work under
the following hypothesis.

Hypothesis 3.1. Let G be a profinite group in which the set of all commutators
is contained in the union ∪Gi, where i = 1, 2, . . . and Gi are nilpotent subgroups.

Lemma 3.2. Assume Hypothesis 3.1. Then G has an open normal subgroup H
such that H ′ is nilpotent.

Proof. For each positive integer i set

Si = {(x, y) ∈ G×G | [x, y] ∈ Gi}.

Note that the sets Si are closed in G×G and cover the whole group G×G. By the
Baire category theorem, at least one of these sets contains a non-empty interior.
Hence, there exist an open normal subgroup H in G, elements a, b ∈ G, and an
integer j such that [ah1, bh2] ∈ Gj for any choice of h1, h2 ∈ H .

Let K be the closed subgroup of G generated by all commutators of the form
[ah1, bh2], where h1, h2 ∈ H . Note that K ≤ Gj and that H normalizes K.
Since Gj is nilpotent, so is K. Let D = K ∩ H . Then D is a normal nilpotent
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subgroup of H and the normalizer of D in G has finite index. Therefore there
are only finitely many conjugates of D in G. Let D = D1, D2, . . . , Dr be all these
conjugates. All of them are normal in H and so their product D1D2 · · ·Dr is
nilpotent. Of course, the product D1D2 · · ·Dr is a closed normal subgroup of G.
Thus, we can examine the quotient G/D1D2 · · ·Dr.

Suppose that D = 1. This implies that [ah1, bh2] = [a, b] for any h1, h2 ∈ H .
Obviously this happens if and only if [H, a] = [H, b] = H ′ = 1. Therefore H ′ ≤
D1D2 · · ·Dr, and the lemma follows. �

Lemma 3.3. Assume Hypothesis 3.1. Then for every element a ∈ G there exists
an open normal subgroup Ha such that [Ha, a] is nilpotent.

Proof. Fixed an element a ∈ G, for each positive integer i let

Si = {x ∈ G | [x, a] ∈ Gi}.

Note that the sets Si are closed in G and cover the whole group G. By the
Baire category theorem, at least one of these sets contains a non-empty interior.
Hence, there exist an open normal subgroup H in G, an element b ∈ G, and an
integer j such that [hb, a] ∈ Gj for any h ∈ H . We have [hb, a] = [h, a]b[b, a]. Since

[b, a] ∈ Gj , we conclude that [h, a]b ∈ Gj for any h ∈ H . Therefore [H, a] ≤ Gb−1

j ,
which is nilpotent. �

Lemma 3.4. Let G be a finite group acting on an abelian group M . Suppose that
there exists an integer k such that for every commutator a ∈ G we have [M, ka] = 1.
Then there exists a number t, depending only on k and |G′|, such that [M, tG

′] = 1.

Proof. Choose x ∈ M . The subgroup 〈xG〉 is G-invariant. It is sufficient to show
that there exists a number t, depending only on k and |G′| (and not on the choice
of x ∈ M), such that [〈xG〉, tG′] = 1. Therefore we can assume that M = 〈xG〉.
Now M is finitely generated and hence residually finite. It is sufficient to show
that there exists a number t, depending only on k and |G′|, such that [Q, tG

′] = 1
whenever Q is a finite G-invariant quotient of M . Therefore we can assume that M
is finite. Further, we note that G naturally acts on each Sylow subgroup of M . It
is sufficient to prove that the action of G on each Sylow subgroup of M satisfies
the conclusion of the lemma. Hence, without loss of generality we assume that M
is a finite p-group for some prime p.

The lemma will be proved by induction on |G′|. Since there is nothing to prove
when G′ = 1, we assume that G′ 
= 1. Suppose that G′′ 
= G′. By induction, there
exists a (k, |G′′|)-bounded number s such that [M, sG

′′] = 1. We allow the case
where G′′ = 1 and s = 1, and we assume that s is the minimal number with the
property that [M, sG

′′] = 1. Set Mi = [M, iG
′′] for i = 0, 1, . . . . Of course, we

have M0 = M and Mi+1 = [Mi, G
′′] for i = 0, 1, . . . . Let Ḡ = G/CG(Ms−1) and

we remark that Ḡ is metabelian since G′′ ≤ CG(Ms−1). The group Ḡ naturally
acts on Ms−1. Let a1, a2, . . . , ar be the commutators in Ḡ. Of course their num-
ber r does not exceed |G′|. For i = 1, 2, . . . , r we let Hi = 〈ai,Ms−1〉. Since for
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every commutator a ∈ G we have [M, ka] = 1, it follows that each subgroup Hi

is nilpotent of class at most k. Because Ḡ is metabelian, the subgroups Hi nor-
malize each other and therefore the subgroup 〈a1, a2, . . . , ar,Ms−1〉 is nilpotent
of class at most kr. In particular, [Ms−1, krḠ

′] = 1. Of course, it follows that
[Ms−1, krG

′] = 1.

Now we look at the natural action of G on M/Ms−1. If s ≥ 2, we repeat
the above argument and obtain that [Ms−2/Ms−1, krG

′] = 1. In other words,
[Ms−2, krG

′] ≤ Ms−1. Hence, [Ms−2, 2krG
′] = 1. Next, we look at the natural ac-

tion of G on M/Ms−2 and so on. Eventually we obtain that [M, skrG
′] = 1. Thus,

in the case where G′′ 
= G′ the result follows. Now assume that G′′ = G′.
Let K be the subgroup of G generated by all commutators whose orders are not

divisible by p. Then all commutators in G/K have p-power order and it follows
that G′/K is a p-group (see for example Lemma 3.2 in [15]). Since G′′ = G′, we
conclude that G′ = K. Choose a commutator a ∈ G of order not divisible by p.
The well-known property of coprime automorphisms (see Theorem 5.3.2 in [9])
shows that [M, ka] = 1 if and only if [M,a] = 1. Taking into account that G′ is
generated by commutators of order not divisible by p we deduce that [M,G′] = 1.
The proof is now complete. �

Lemma 3.5. Assume Hypothesis 3.1 and suppose that N is a closed normal abe-
lian subgroup of G such that CG(N) ∩ G′ is open in G′. Then N contains a
subgroup M such that

1) M is normal in G;

2) M is open in N ;

3) there exists a number t such that [M, tG
′] = 1.

Proof. Let x ∈ G and let X be the set of all commutators contained in the
coset xCG(N). Suppose that X is non-empty. Obviously, the set X is closed and
therefore compact. It is clear that X is covered by the (closed) subsets X ∩ Gi.
By the Baire category theorem, at least one of these subsets contains a non-empty
interior. Hence, there exist an open normal subgroup T in G, an element a ∈ X ,
and an integer j such that all commutators contained in X ∩ aT belong to Gj .
Let R = T ∩ CG(N). Since all commutators contained in aR belong to Gj , it
follows that 〈aR〉 ≤ Gj . Since Gj is nilpotent, there exists a positive integer k
such that [R, ka] = 1. Thus, we have shown that whenever the coset xCG(N)
contains commutators, there exists a commutator a ∈ xCG(N), a positive inte-
ger ka, and an open normal subgroup Ra such that [Ra, kaa] = 1. We fix such
commutators a1, a2, . . . , as, one in each coset of CG(N) containing commutators.
Set M = N ∩⋂

iRai . Being the intersection of N with finitely many open normal
subgroups, M is normal in G and open in N . Let k0 be the maximum of the
numbers kai . The group Ḡ = G/CG(N) naturally acts on M . Further, the derived
group of Ḡ is finite and the action of Ḡ on M verifies the condition [M, k0 ā] = 1
whenever ā is a commutator in Ḡ. By a profinite version of Lemma 3.4 there exists
a number t such that [M, tḠ

′] = 1. Of course, this implies that [M, tG
′] = 1, as

required. �



1338 P. Shumyatsky

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We know from the proof of Theorem 1.2 that G′ is finite-by-
nilpotent if and only if there exists a positive integer m such that Zm(G′) is open
in G′ and that G′ is a union of finitely many nilpotent subgroups whenever Zm(G′)
is open in G′. Therefore we only have to show that under Hypothesis 3.1 there
exists a positive integer m such that Zm(G′) is open in G′.

Thus, assume Hypothesis 3.1. By Lemma 3.2 G possesses an open normal
subgroup H such that H ′ is nilpotent. Let a1, a2, . . . , as be elements of G such
that G = 〈H, a1, a2, . . . , as〉. By Lemma 3.3 for every i = 1, . . . , s there exists an
open normal subgroup Hi such that [Hi, ai] is nilpotent. Each subgroup [Hi, ai] is
normal in Hi. Therefore G contains only finitely many conjugates of each [Hi, ai]
and all such conjugates normalize each other (because they all are contained in Hi).
Denote by Ki the product of all conjugates of [Hi, ai]. It follows that Ki is a
normal nilpotent subgroup for every i = 1, . . . , s. Let U be the product of H ′ and
all subgroups Ki for i = 1, . . . , s. Then, being a product of finitely many normal
nilpotent subgroups, U is normal and nilpotent. Let V be the intersection of H
and the subgroups Hi for i = 1, . . . , s. Thus, V is an open normal subgroup and it
is easy to see that the image of V in G/U is centralized by H and the generators
a1, a2, . . . , as. We conclude that the image of V is central in G/U . By Schur’s
theorem, G′/U is finite.

Thus, we have shown that G′ is virtually nilpotent. Let c be the minimal
nonnegative integer such that G′ contains an open, nilpotent of class c, sub-
group N which is normal in G. If c = 0, then G′ is finite and there is nothing to
prove. If c = 1, then G′ is virtually abelian and the result is straightforward from
Lemma 3.5. Thus, assume that c ≥ 2 and use induction on c. Put Z = Z(N). It
is clear that CG(Z) ∩ G′ is open in G′. Therefore, by Lemma 3.5, there exists a
number t and a subgroup M ≤ Z, which is normal in G and open in Z, such that
[M, tG

′] = 1. Since Z/M is finite, the group G has an open normal subgroup K
such that K ∩ Z ≤ M . Let L = K ∩ N and F = M ∩ L. The nilpotency class
of L/F is at most c−1 and [F, tG

′] = 1. By induction, there exists an open normal
subgroup J in G′ such that [J, rG

′] ≤ F for some positive integer r. Therefore
[J, r+tG

′] = 1 and J ≤ Zr+t(G
′). The proof is now complete. �
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