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Non-critical dimensions for critical problems
involving fractional Laplacians

Roberta Musina and Alexander I. Nazarov

Abstract. We study the Brezis–Nirenberg effect in two families of non-
compact boundary value problems involving Dirichlet-Laplacian of arbi-
trary real order m ∈ (0, n/2).

Dedicated to Haim Brezis in occasion of his 70th birthday

1. Introduction

Nonlocal differential operators are commonly used to model diffusion processes
in presence of long range interactions, when pointwise defined operators, such
as the Laplacian and standard polyharmonic operators, are totally inadequate.
Rather, one is lead to introduce differential operators in a nonlocal way, usually
via global integration. In this context, a widely used operator is the fractional
Laplacian (−Δ)m, for real m > 0.

In recent years a lot of effort have been indeed spent in developing appropriate
mathematical techniques, suitable to handle nonlocal differential operators. One
of the main question is to understand how concentration phenomena may occur in
presence of non-local terms.

In the present paper we study some model noncompact Dirichlet’s problems in
which both the leading differential operator and the perturbing term might have
a nonlocal nature.

Let m and s be two given real numbers, with 0 ≤ s < m < n/2. Let Ω ⊂ Rn

be a bounded and smooth domain in Rn and put

2∗m =
2n

n− 2m
.
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Keywords: Fractional Laplace operators, Sobolev inequality, Hardy inequality, critical dimen-
sions.



258 R. Musina and A. I. Nazarov

We study equations

(−Δ)m u = λ(−Δ)su+ |u|2∗m−2 u in Ω,(1.1)

(−Δ)m u = λ|x|−2su+ |u|2∗m−2 u in Ω,(1.2)

under suitably defined Dirichlet boundary conditions. In dealing with equation (1.2)
we always assume that Ω contains the origin. For the definition of fractional
Dirichlet–Laplace operators (−Δ)m, (−Δ)s and for the variational approach to (1.1)
and (1.2) we refer to the next section.

The celebrated paper [4] by Brezis and Nirenberg was the inspiration for a
fruitful line of research about the effect of lower order perturbations in noncompact
variational problems. They took as model the case n > 2, m = 1, s = 0, that is,

(1.3) −Δu = λu + |u|4/(n−2)u in Ω, u = 0 on ∂Ω .

Brezis and Nirenberg pointed out a remarkable phenomenon that appears for pos-
itive values of the parameter λ: they proved existence of a nontrivial solution for
any small λ > 0 if n ≥ 4; in contrast, in the lowest dimension n = 3 non-existence
phenomena for sufficiently small λ > 0 can be observed. For this reason, the di-
mension n = 3 has been named critical for problem (1.3) (compare with [14], [9]).

Note that the Brezis–Nirenberg effect is a nonlinear analog of the so-called zero-
energy resonance for the Schrödinger operators (see, e.g., [19] and [20], pp. 287–288).

Clearly, as larger s is, as stronger the effects of the lower order perturbations
are expected in equations (1.1), (1.2). We are interested in the following question:
Given m < n/2, how large must be s in order to have the existence of a ground
state solution, for any arbitrarily small λ > 0? In case of an affirmative answer,
we say that n is not a critical dimension.

We present our main result, that holds for any dimension n ≥ 1 (see Theo-
rem 4.2 in Section 4 for a more precise statement).

Theorem. If s ≥ 2m− n/2, then n is not a critical dimension for the Dirichlet
boundary value problems associated to equations (1.1) and (1.2).

We point out some particular cases that are included in this result.

• If m is an integer and s = m−1, then at most the lowest dimension n = 2m+1
is critical.

• For any n > 2m, there always exist lower order perturbations of the type
|x|−2su and of the type (−Δ)

s
u such that n is not a critical dimension.

• If m < 1/4, then no dimension is critical, for any choice of s ∈ [0,m).

After [4], a large number of papers have been focussed on studying the effect of
linear perturbations in noncompact variational problems of the type (1.1). Most
of these papers deal with s = 0, when the problems (1.1) and (1.2) coincide. More-
over, as far as we know, all of them consider either polyharmonic case 2 ≤ m ∈ N,
see for instance [14], [7], [3], [11], [8], or the case m ∈ (0, 1), see [15], [16] and [2].
We cite also [5], where equation (1.1) is studied in case m = 2, s = 1. Thus, our
Theorem 4.2 covers all earlier existence results.
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Finally, we mention [1] (see also [17]), where equation (1.1) for the so-called
Navier-Laplacian is studied in case m ∈ (0, 1), s = 0. For a comparison between
the Dirichlet and Navier Laplacians we refer to [13].

The paper is organized as follows. After introducing some notation and prelim-
inary facts in Section 2, we provide the main estimates in Section 3. In Section 4
we prove Theorem 4.2 and point out an existence result for the case s < 2m−n/2.

2. Preliminaries

The fractional Laplacian (−Δ)
m
u of a function u ∈ C∞

0 (Rn) is defined via the
Fourier transform

F [u](ξ) =
1

(2π)n/2

∫
Rn

e−iξ·x u(x) dx

by the identity

(2.1) F [(−Δ)
m
u] (ξ) = |ξ|2mF [u](ξ).

In particular, Parseval’s formula gives∫
Rn

(−Δ)
m
u · udx =

∫
Rn

|(−Δ)m/2u|2 dx =

∫
Rn

|ξ|2m |F [u]|2 dξ .

For future convenience we recall that if m ∈ (0, 1) then

(2.2) (−Δ)
m
u(x) = Cn,m · p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2m
dy,

see for instance Chapter 2, Section 3 in [10]. Here p.v. stands for the principal
value of the integral, while

Cn,m = 22m+n/2 Γ(m+ n/2)

Γ(−m)
.

We also recall the well-known Sobolev inequality

(2.3)

∫
Rn

|(−Δ)m/2u|2 dx ≥ Sm

( ∫
Rn

|u|2∗m dx
)2/2∗m

,

that holds for any u ∈ C∞
0 (Rn) and m < n/2, see for example [18], 2.8.1/15.

Let Dm(Rn) be the Hilbert space obtained by completing C∞
0 (Rn) with respect

to the Gagliardo norm

(2.4) ‖u‖2m =

∫
Rn

|(−Δ)m/2u|2 dx.

Thanks to (2.3), the space Dm(Rn) is continuously embedded into L2∗m(Rn). The
best Sobolev constant Sm was explicitly computed in [6]. Moreover, it has been
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proved in [6] that Sm is attained in Dm(Rn) by a unique family of functions, all of
them being obtained from

(2.5) φ(x) = (1 + |x|2)(2m−n)/2

by translations, dilations in Rn and multiplication by constants.

Dilations play a crucial role in the problems under consideration. Notice that
for any ω ∈ C∞

0 (Rn), R > 0 it turns out that∫
Rn

|ξ|2m|F [ω](ξ)|2 dξ = Rn−2m

∫
Rn

|ξ|2m|F [ω(R·)](ξ)|2 dξ(2.6) ∫
Rn

|ω|2∗m dx = Rn

∫
Rn

|ω(R·)|2∗m dx .

Finally, we point out that the Hardy inequality

(2.7)

∫
Rn

|(−Δ)m/2u|2 dx ≥ Hm

∫
Rn

|x|−2m|u|2 dx

holds for any function u ∈ Dm(Rn). The best Hardy constant Hm was explicitly
computed in [12].

The natural ambient space to study the Dirichlet boundary value problems
for (1.1) and (1.2) is

H̃m(Ω) = {u ∈ Dm(Rn) : suppu ⊂ Ω},
endowed with the norm ‖u‖m. By Theorem 4.3.2/1 in [18], for m + 1/2 /∈ N

this space coincides with Hm
0 (Ω) (that is the closure of C∞

0 (Ω) in Hm(Ω)), while

for m+ 1/2 ∈ N one has H̃m(Ω) � Hm
0 (Ω). Moreover, C∞

0 (Ω) is dense in H̃m(Ω).

Clearly, if m is an integer then H̃m(Ω) is the standard Sobolev space of functions
u ∈ Hm(Ω) such that Dαu = 0 for every multiindex α ∈ Nn with 0 ≤ |α| < m.

We agree that (−Δ)0u = u, H̃0(Ω) = L2(Ω), since (2.4) reduces to the stan-
dard L2 norm in case m = 0.

We define (weak) solutions of the Dirichlet problems for (1.1), (1.2) as suitably
normalized critical points of the functionals

RΩ
λ,m,s[u] =

∫
Rn

|(−Δ)m/2u|2 dx− λ

∫
Rn

|(−Δ)s/2u|2 dx
(∫

Ω

|u|2∗mdx
)2/2∗m

(2.8)

R̃Ω
λ,m,s[u] =

∫
Rn

|(−Δ)m/2u|2 dx− λ

∫
Ω

|x|−2s|u|2 dx
( ∫

Ω

|u|2∗mdx
)2/2∗m

,(2.9)

respectively. It is easy to see that both functionals (2.8), (2.9) are well defined on

H̃m(Ω) \ {0}.
We conclude this preliminary section with some embedding results.
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Proposition 2.1. Let m, s be given, with 0 ≤ s < m < n/2.

i) The space H̃m(Ω) is compactly embedded into H̃s(Ω). In particular the infima

(2.10) Λ1(m, s) := inf
u∈ ˜Hm(Ω)

u�=0

‖u‖2m
‖u‖2s

, Λ̃1(m, s) := inf
u∈ ˜Hm(Ω)

u�=0

‖u‖2m
‖|x|−su‖20

are positive and achieved.

ii) inf
u∈ ˜Hm(Ω)

u�=0

‖u‖2m
‖u‖2

L2∗m
= Sm.

Statement i) is well known for Λ1(m, s) and follows from (2.7) for Λ̃1(m, s).

To check ii), use the inclusion H̃m(Ω) ↪→ Dm(Rn) and a rescaling argument.

Clearly, the Sobolev constant Sm is never achieved on H̃m(Ω).

3. Main estimates

Let φ be the extremal of the Sobolev inequality (2.3) given by (2.5). In particular,
it holds that

(3.1) M :=

∫
Rn

|(−Δ)m/2φ|2 dx = Sm

(∫
Rn

|φ|2∗m dx
)2/2∗m

.

Fix δ > 0 and a cutoff function ϕ ∈ C∞
0 (Ω), such that ϕ ≡ 1 on the ball {|x| < δ}

and ϕ ≡ 0 outside {|x| < 2δ}. If δ is sufficiently small, the function

uε(x) := ε2m−n ϕ(x)φ
(x
ε

)
= ϕ(x)

(
ε2 + |x|2)(2m−n)/2

has compact support in Ω. Next we define

Aε
m :=

∫
Rn

|(−Δ)m/2uε|2dx Aε
s :=

∫
Rn

|(−Δ)s/2uε|2dx

Ãε
s :=

∫
Ω

|x|−2s|uε|2dx Bε :=

∫
Ω

|uε|2∗mdx

and we denote by c any universal positive constant.

Lemma 3.1. It holds that

Aε
m ≤ ε2m−n

(
M + c εn−2m

)
(3.2)

Aε
s, Ã

ε
s ≥ c ε4m−n−2s if s > 2m− n

2
(3.3)

Aε
s, Ã

ε
s ≥ c | log ε| if s = 2m− n

2
(3.4)

Bε ≥ ε−n
(
(MS−1

m )2
∗
m/2 − c εn

)
.(3.5)
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Proof of (3.2). First of all, from (2.6) we get

(3.6) Aε
m = ε2m−n

∫
Rn

|ξ|2m |F [ϕ(ε ·)φ]|2 dξ.

Thus

Γε
m := εn−2mAε

m −M =

∫
Rn

|ξ|2m |F [ϕ(ε ·)φ]|2 dξ −
∫
Rn

|ξ|2m |F [φ]|2 dξ.

We need to prove that

(3.7) |Γε
m| ≤ c εn−2m.

If m ∈ N, the proof of (3.7) has been carried out in [4], [8]. Here we limit ourselves
to the more difficult case, namely, when m is not an integer. See [15] and [2] for
related computations in case m ∈ (0, 1). We denote by k := 	m
 ≥ 0 the integer
part of m, so that m− k ∈ (0, 1). Then

Γε
m =

∫
Rn

|ξ|2kF [U−] · |ξ|2(m−k)F [U+] dξ

= Cn,m−k ·
∫
Rn

(−Δ)kU−(x) · p.v.
∫
Rn

U+(x)− U+(y)

|x− y|n+2(m−k)︸ ︷︷ ︸
Ψ(x,y)

dy dx,

where U± = ϕ(ε · )φ± φ, compare with (2.2).

We split the interior integral as follows:

p.v.

∫
Rn

Ψ dy = p.v.

∫
|y−x|≤|x|/2

Ψ dy

︸ ︷︷ ︸
I1

+

∫
|y−x|≥|x|/2

|y|≤|x|

Ψ dy

︸ ︷︷ ︸
I2

+

∫
|y−x|≥|x|/2

|y|≥|x|

Ψ dy

︸ ︷︷ ︸
I3

.

We claim that |Ij | ≤ c |x|2k−n for j = 1, 2, 3. Indeed, the Lagrange formula gives

|I1| ≤ max
|y−x|≤|x|/2

|D2U+(y)| ·
∫
|z|≤|x|/2

dz

|z|n+2(m−k)−2

≤ c |x|−(n−2m+2) · |x|2−2(m−k) = c |x|2k−n.

As concerns the last two integrals, we estimate

|I2| ≤
∫

|y−x|≥|x|/2
|y|≤|x|

c|y|−(n−2m)

|x− y|n+2(m−k)
dy ≤ |x|−(n+2(m−k)) · c |x|2m = c |x|2k−n,

and finally,

|I3| ≤
∫

|y−x|≥|x|/2
|y|≥|x|

c|x|−(n−2m)

|x− y|n+2(m−k)
dy ≤ c |x|−(n−2m) ·

∫
|z|≥|x|/2

dz

|z|n+2(m−k)

≤ c |x|−(n−2m) · |x|−2(m−k) = c |x|2k−n,
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and the claim follows. Now, since

|(−Δ)kU−(x)| ≤ c

|x|n−2(m−k)
χ{|x|≥δ/ε} +

c ε2k

|x|n−2m
χ{δ/ε≤|x|≤2δ/ε},

we obtain

|Γε
m| ≤ c

∫
|x|≥δ/ε

dx

|x|2n−2m
+ c

∫
δ/ε≤|x|≤2δ/ε

ε2k dx

|x|2n−2(m+k)
≤ c εn−2m,

that completes the proof of (3.7) and of (3.2).

Proof of (3.3) and (3.4). We use the Hardy inequality (2.7) to get

Aε
s ≥ c Ãε

s ≥ c ε4m−2s−n

∫
Rn

|x|−2s |ϕ(ε ·)φ|2 dx

≥ c ε4m−2s−n

∫
|x|<δ/ε

dx

|x|2s(1 + |x|2)n−2m
.

The last integral converges as ε → 0 if s > 2m − n/2, and diverges with speed
| log ε| if s = 2m− n/2.

Proof of (3.5). For ε small enough we estimate by below∫
Rn

|uε|2∗m = ε−n

∫
Rn

|ϕ(ε ·)φ|2∗m dx = ε−n
(∫

Rn

|φ|2∗m dx−
∫
|x|>δ/ε

|ϕ(ε ·)φ|2∗m dx
)

≥ ε−n
(
(MS−1

m )2
∗
m/2 − c

∫
|x|>δ/ε

|x|−2n dx
)
= ε−n((MS−1

m )2
∗
m/2 − cεn),

and Lemma 3.1 is completely proved. �

4. Two noncompact minimization problems

In this section we deal with the minimization problems

SΩ
λ (m, s) = inf

u∈ ˜Hm(Ω)
u�=0

RΩ
λ,m,s[u]; S̃Ω

λ (m, s) = inf
u∈ ˜Hm(Ω)

u�=0

R̃Ω
λ,m,s[u] ,

where the functionals R and R̃ are introduced in (2.8) and (2.9), respectively.

Lemma 4.1. The following facts hold for any λ ∈ R :

i) SΩ
λ (m, s) ≤ Sm;

ii) If λ ≤ 0 then SΩ
λ (m, s) = Sm and it is not achieved;

iii) If 0 < SΩ
λ (m, s) < Sm, then SΩ

λ (m, s) is achieved.

The same statements hold for S̃Ω
λ (m, s) instead of SΩ

λ (m, s).

Proof. The proof is nowadays standard, and is essentially due to Brezis and Niren-
berg [4]. We sketch it for the infimum SΩ

λ (m, s), for the convenience of the reader.
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Fix ε > 0 and take u ∈ C∞
0 (Rn) \ {0} such that

(4.1) (Sm + ε)
( ∫

Rn

|u|2∗mdx
)2/2∗m ≥

∫
Rn

|(−Δ)m/2u|2 dx.

Let R > 0 be large enough, so that uR(·) := u(R·) ∈ C∞
0 (Ω). Using (2.6) we get

SΩ
λ (m, s) ≤ ‖u‖2m − λR2(s−m)‖u‖2s

‖u‖2
L2∗m

≤ (Sm + ε)
(
1 + cR2(s−m)

)
,

where c depends only on u and λ. Letting R → ∞ we get SΩ
λ (m, s) ≤ (Sm + ε) for

any ε > 0, and i) is proved.

Next, if λ ≤ 0 then clearly SΩ
λ (m, s) = Sm. If λ = 0 then Sm is not achieved.

The more it is not achieved for λ < 0, and ii) holds.

Finally, to prove iii) take a minimizing sequence uh. It is convenient to nor-
malize uh with respect to the L2∗m-norm, so that∫

Rn

|(−Δ)m/2uh|2 dx− λ

∫
Rn

|(−Δ)s/2uh|2 dx = SΩ
λ (m, s) + o(1).

We can assume that uh → u weakly in H̃m(Ω) and strongly in H̃s(Ω) by Proposi-
tion 2.1. Since

λ

∫
Rn

|(−Δ)s/2u|2 dx = λ

∫
Rn

|(−Δ)s/2uh|2 dx+ o(1)

=

∫
Rn

|(−Δ)m/2uh|2 dx− SΩ
λ (m, s) + o(1) ≥ (Sm − SΩ

λ (m, s)) + o(1),

then u �= 0. By the Brezis–Lieb lemma we get

1 = ‖uh‖2
∗
m

L2∗m = ‖uh − u‖2∗m
L2∗m + ‖u‖2∗m

L2∗m + o(1).

Thus

SΩ
λ (m, s) = ‖uh‖2m − λ‖uh‖2s + o(1)

=
(‖uh − u‖2m + ‖u‖2m

)− λ
(‖uh − u‖2s + ‖u‖2s

)
+ o(1)

=

(‖uh − u‖2m − λ‖uh − u‖2s
)
+
(‖u‖2m − λ‖u‖2s

)
(‖uh − u‖2∗m

L2∗m + ‖u‖2∗m
L2∗m

)2/2∗m + o(1)

≥ SΩ
λ (m, s) · ξ2h + 1

(ξ
2∗m
h + 1)2/2

∗
m

+ o(1),

where we have set

ξh :=
‖uh − u‖L2∗m

‖u‖L2∗m
.

Since 2∗m > 2, this implies that ξh → 0, that is, uh → u in L2∗m and hence u
achieves SΩ

λ (m, s). �
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We are in position to prove our existence result, that includes the theorem
already stated in the introduction.

Theorem 4.2. Assume s ≥ 2m− n/2.

i) If 0 < λ < Λ1(m, s) then SΩ
λ (m, s) is achieved and (1.1) has a nontrivial

solution in H̃m(Ω).

ii) If 0 < λ < Λ̃1(m, s) then S̃Ω
λ (m, s) is achieved and (1.2) has a nontrivial

solution in H̃m(Ω).

Proof. Since 0 < λ < Λ1(m, s) then SΩ
λ (m, s) is positive, by Proposition 2.1. The

main estimates in Lemma 3.1 readily imply SΩ
λ (m, s) < Sm. By Lemma 4.1,

SΩ
λ (m, s) is achieved by a nontrivial u ∈ H̃m(Ω), that solves (1.1) after multiplica-

tion by a suitable constant. Thus i) is proved. For ii), argue in the same way. �

In the case s < 2m−n/2 the situation is more complicated. We limit ourselves
to point out the next simple existence result.

Theorem 4.3. Assume s < 2m− n/2.

i) There exists λ∗ ∈ [0,Λ1(m, s)) such that the infimum SΩ
λ (m, s) is attained

for any λ ∈ (λ∗,Λ1(m, s)), and hence (1.1) has a nontrivial solution.

ii) There exists λ̃∗ ∈ [0, Λ̃1(m, s)) such that the infimum S̃Ω
λ (m, s) is attained

for any λ ∈ (λ̃∗, Λ̃1(m, s)), and hence (1.2) has a nontrivial solution.

Proof. Use Proposition 2.1 to find ϕ1 ∈ H̃m(Ω), ϕ1 �= 0, such that∫
Rn

|(−Δ)m/2ϕ1|2 dx = Λ1(m, s)

∫
Rn

|(−Δ)s/2ϕ1|2 dx .

Then test SΩ
λ (m, s) with ϕ1 to get the strict inequality SΩ

λ (m, s) < Sm. Then i)
follows by Proposition 2.1 and Lemma 4.1. For (1.2) argue similarly. �
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