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Dynamical dessins are dense

Christopher J. Bishop and Kevin M. Pilgrim

Abstract. We apply a recent result of the first author to prove the follow-
ing result: any continuum in the plane can be approximated arbitrarily
closely in the Hausdorff topology by the Julia set of a postcritically finite
polynomial with two finite postcritical points.

1. Introduction

Given compact subsets A,B ⊂ C their Hausdorff distance d(A,B) is given by

d(A,B) := inf{r : A ⊂ Nr(B), B ⊂ Nr(A)}

where Nr(A), Nr(B) denote the r-neighborhoods of A and B, respectively. Given
a polynomial g ∈ C[z], we denote by gj the jth iterate of g, and define its

• filled-in Julia set K(g) := {z : gj(z) �→ ∞}, and
• Julia set J(g) := ∂K(g).

K. Lindsey ([4], Theorem 2.2) has shown:

Theorem 1. Given any Jordan curve J bounding a closed topological disk K and
any ε > 0, there exists a polynomial g ∈ C[z] such that

(1) d(K(g),K) < ε,

(2) d(J(g),J ) < ε.

The proof is constructive; the above paper illustrates the result of applying the
method of proof to a Jordan domain K outlining the figure of a cat, yielding a
polynomial g of degree 301.

In this note, a continuum is a compact connected subset ofC. It is elementary to
show that any continuum can be approximated arbitrarily closely in the Hausdorff
topolology by a Jordan curve. Conclusion (2) of Theorem 1 then implies:
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Corollary 1. Given any continuum K and any ε > 0, there exists a polynomial
g ∈ C[z] such that d(J(g),K) < ε.

In this note, we generalize Corollary 1.
Before stating our main result, we recall some definitions. A continuum is

a dendrite if it is locally connected and has empty interior. Given a complex
polynomial p ∈ C[z], a complex number c is a critical point of p if p′(c) = 0; its
image p(c) is a critical value. We denote by C(p) := {c : p′(c) = 0} the set of critical
points of p. A polynomial f is a Belyi polynomial if deg(f) > 1 and if its set of
critical values f(C(f)) is contained in the set {0, 1}; these have been much studied
from many points of view, see, e.g., [7]. We next introduce some dynamical notions.
A polynomial g ∈ C[z] is postcritically finite if P (g) := {gj(c) : c ∈ C(g), j > 0}
is finite. If g is postcritically finite, the following facts are known (see, e.g., [5]):
J(g) is connected and locally connected, and is a dendrite if and only if no element
of C(g) is periodic. In [6], a Belyi polynomial g is called an extra-clean dynamical
Belyi polynomial 1 if P (g) = {0, 1}, g(0) = g(1) = 0, and g′(0) �= 0, g′(1) �= 0; we
denote the set of such polynomials by XDBP . Note that if g ∈ XDBP then J(g)
is a dendrite. Theorem 3.6 in [3] implies that each g ∈ XDBP is naturally a point
on a zero-dimensional variety defined over Q. It follows that if g ∈ XDBP then
the coefficients of g lie in the field Q of algebraic numbers. Two polynomials g1, g2
are conjugate as dynamical systems if there exists A(z) = az + b, a, b ∈ C, a �= 0,
such that g2 = A ◦ g1 ◦A−1. We denote by

G := {A ◦ g ◦A−1 : A(z) = az + b, a, b ∈ Q, a �= 0, g ∈ XDBP} ⊂ Q[z].

Since Q[z] is countable, so is G.
Our main result is:

Theorem 2. Given any continuumK ⊂ C and any ε > 0, there exists a polynomial
g ∈ G with d(J(g),K) < ε.

A key ingredient in our proof is an approximation result of the first author
wherein continua are approximated by sets of the form f−1([0, 1]), where f is a
Belyi polynomial and [0, 1] ⊂ C is the unit interval.

In this paragraph, we introduce some terminology and perspective related
to Belyi polynomials; see [7]. We denote by BP the set of Belyi polynomials.
If f ∈ BP , its dessin is D(f) := f−1([0, 1]). By ibid. Lemma 3.4, D(f) is a tree
with vertices V (f) := f−1({0, 1}); an edge e of D(f) is the closure of a component
of f−1((0, 1)). Thinking of [0, 1] as a tree with a single edge and with two vertices
v0 = 0, v1 = 1, the map f : D(f) → [0, 1] sends a closed edge e of D(f) homeomor-
phically to the edge [0, 1]. Thus the valence of a vertex ṽ of D(f), defined as the
number of edges incident to ṽ, coincides with the local degree deg(f, ṽ) of f at ṽ,
defined as the multiplicity of the zero of the polynomial z �→ f(z)− f(ṽ). A leaf
of D(f) is a vertex ṽ of valence 1. Hence a vertex ṽ of D(f) is a critical point of f
if and only if it is not a leaf.

1The adjective ‘clean’ is inherited from a technical symmetry-breaking condition commonly
assumed in the theory of dessins d’enfants; see [7]. The modifier ‘extra’ refers to the additional
condition g(0) = g(1) = 0, and g′(0) �= 0, g′(1) �= 0.



Dynamical dessins are dense 1035

The approximation result we use is the following theorem.

Theorem 3. Given any continuum K ⊂ C and any ε > 0, there exists f ∈ BP
for which (i) d(D(f),K) < ε, (ii) for each ṽ ∈ V (f), deg(f, ṽ) ≤ 4, and (iii) the
coefficients of f belong to Q.

Proof. Conclusion (i) is Theorem 1.1 in [2]; (ii) follows from its proof; see op. cit. § 3,
paragraph 3. We now prove (iii). Let f ∈ BP satisfy (i) with d(D(f),K) < ε/2
and also (ii). Belyi’s theorem and the Grothendieck correspondence [7] imply that
there exists h0(z) = a0z + b0, a0, b0 ∈ C, a0 �= 0, for which f ◦ h0 ∈ Q[z]. Using
the density of Q in C, choose a1, b1 ∈ Q with a1 ≈ a0, b1 ≈ b0 so that

max{|(h1 ◦ h−1
0 )(z)− z| : z ∈ D(f)} < ε/2,

and put f1 := f ◦h0 ◦h−1
1 ∈ Q[z]. Then f1 satisfies conditions (ii) and (iii), and (i)

holds since D(f1) = (h1 ◦ h−1
0 )(D(f)) and

d(D(f1),K) ≤ d(D(f1), D(f)) + d(D(f),K) < ε. �

The proof of our main result, Theorem 2, has two steps. Suppose K ⊂ C is a
continuum and ε > 0 is given.

(1) We apply Theorem 3 to obtain a polynomial f ∈ BP ∩Q[z] satisfying both
d(D(f),K) < ε/2 and the valence condition (ii).

(2) We define a sequence of polynomials gn ∈ G such that d(J(gn), D(f)) → 0 as
n → ∞. The convergence will be proven in Lemma 1; it is here we use the
valence condition on f . Then, choosing n such that d(J(gn), D(f)) < ε/2
will establish that d(J(gn),K) < ε, completing the proof.

In the next two paragraphs, we construct the polynomials gn.

Let q(z) := 4z(1 − z). Note that q ∈ BP , that q([0, 1]) = q−1([0, 1]) = [0, 1],
and that q(0) = q(1) = 0, with C(q) = {1/2}. For each n ∈ N, n ≥ 1, we have
qn ◦ f ∈ BP ∩ Q[z] and D(qn ◦ f) = D(f) as subsets of C. Their tree structures
differ: each edge of D(f) is a union of 2n edges of D(qn ◦ f). It is easy to see that
the set of leaves of D(qn ◦ f) coincides with the set of leaves of D(f), and that
if ṽ is such a leaf then (qn ◦ f)(ṽ) = 0. Lemma 2 will say that we can make edges
of qn◦f as small as we like by choosing n sufficiently large. Since D(qn◦f) = D(f)
as sets, the valence of the tree D(qn ◦ f) remains bounded above by 4.

We now turn qn ◦ f into a dynamical system; cf. [6]. Suppose v0, v1 ∈ V (f) are
leaves of D(f), that is, vertices of valence 1. By replacing f with q ◦ f , we may
assume that f(v0) = f(v1) = 0. The assumption f ∈ Q[z] implies v0, v1 ∈ Q. Let
A(z) = (v1−v0)z+v0, so that A(0) = v0, A(1) = v1. Fix n ∈ N. Let gn := A◦qn◦f .

The paragraph below discusses the properties of the polynomials gn.
By construction, gn ∈ Q[z] and gn has two critical values, namely v0 and v1.

We have D(f) = D(qn ◦ f) = g−1
n ([v0, v1]) as sets. As trees, now an edge e of

D(qn◦f) is the closure of a component of g−1
n ((v0, v1)), where (v0, v1) is the interval

[v0, v1] minus its endpoints. Abusing notation slightly, we denote by V (gn) :=
g−1
n ({v0, v1}) the set of vertices ofD(qn◦f). Each critical point of gn maps under gn
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either to v0 or to v1; by construction, v0 = gn(v0) = gn(v1), and g′n(v0) �= 0,
g′n(v1) �= 0. It follows that P (gn) = {v0, v1} ⊂ Q, so that gn is postcritically finite,
and that every critical point lands on the fixed point v0 under iteration of gn. It is
a general fact that all fixed points of a postcritically finite map gn are either critical
points or they lie in the Julia set. We conclude v0 ∈ J(gn). Since gn(v1) = v0, we
have v1 ∈ J(gn) too. Hence V (gn) = g−1

n ({v0, v1}) ⊂ J(gn) by invariance of J(gn);
moreover, J(gn) is a dendrite. The valence condition on f implies that the local
degree of gn at any point is at most 4. Since A−1 ◦ gn ◦A ∈ XDBP and A ∈ Q[z],
we conclude gn ∈ G.

v0

v1

Figure 1. At left: the dessin D(q5 ◦ f) = D(f) where f(z) = z3,
with leaves v0, v1 marked. At right: an approximation of J(g5) by the
set g−1

5 (D(f)); its greater apparent thickness is an artifact of plotting
the 32 · 210 − 1 preimages of the vertices of D(f). Images courtesy of
Don Marshall.

The proof of Theorem 2 then rests upon establishing the closeness that Figure 1
suggests:

Lemma 1. The Hausdorff distance d(J(gn), D(f)) → 0 as n→ ∞.

2. Proof of Lemma 1

Suppose f, q, n, gn are as in step 2 of the outline given in the Introduction.

Lemma 2. The maximum diameter of an edge e of D(qn ◦ f) tends to zero as
n→ ∞.

Proof. An easy exercise shows the conclusion holds when f = q. Now suppose
f ∈ BP . Since the inverse branches of f are uniformly continuous on (0, 1), the
general conclusion holds. �

Let D := D(f). We recall from step 2 the following: D = g−1
n ([v0, v1]); the set

g−1
n ({v0, v1}) is the set of vertices of the tree D; the edges of D are the closures
of the components of g−1

n (v0, v1), where (v0, v1) is the Euclidean segment [v0, v1]
minus its endpoints.

We are going to cover D by a certain pair of Jordan domains Wi with the
property that Wi ∩ {v0, v1} = vi, i = 0, 1. See Figure 2.
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Figure 2. Caricature of W1. The domain W0 is similar. The disk shown
is B := B

(
v1+v0

2
, 10M

)
. The domain Ŵ1 is the portion of the disk to

the right of the longer vertical segment. The figure is not to scale; one
should imagine that v0, v1 appear much closer together compared to the
diameter of B, and that D is contained in the smaller disk 1

10
B with the

same center and 1
10
th the radius.

Their precise definition is a bit technical; we will give it later. Let W denote
either of the domains W0,W1, and let W̃ be a connected component of g−1

n (W ); it

will also be a Jordan domain. We will show diam W̃ → 0 uniformly in n (Lemma 3).
Lemma 1 will then follow easily.

In order to control the diameters of the domains W̃ , we will thicken the domains
W0,W1 to Jordan domains Ŵ0, Ŵ1 so thatW i ⊂ Ŵi and in addition Ŵi∩{v0, v1} =

Wi ∩ {v0, v1} = vi, i = 0, 1. Now suppose W, W̃ are as in the previous paragraph.

Let Ŵ be the thickening of W . There is a unique component
˜̂
W of g−1

n (Ŵ ) that

contains W̃ ; it is a thickening of W̃ . The “Koebe space”
˜̂
W \ W̃ will allow us

to control distortion and relate the diameter of W̃ to the diameter of the edge it
meets.

Suppose W, W̃ , W̃ ,
˜̂
W are as in the previous two paragraphs. Choose a point

v := W ∩ {v0, v1}; it is a branch value of gn. Since gn is a polynomial, we obtain

a map of pairs gn : (
˜̂
W, W̃ ) → (Ŵ ,W ) in which each restriction is proper and

each domain is a Jordan domain. Since Ŵ contains exactly one branch value of

gn, the preimage
˜̂
W ∩ g−1

n (v) consists of a single point, which we will denote by ṽ,

which is a vertex of D. Since v ∈ W , we have ṽ ∈ W̃ . Let k := deg(gn, ṽ). Since

the ramification of gn :
˜̂
W → Ŵ , if there is any, occurs at the unique point ṽ,

we have deg(gn :
˜̂
W → Ŵ ) = k as well. The control on the local degrees of the

polynomial f in Theorem 3 shows that k ≤ 4. Let D denote the open unit disk
in C. Up to precomposition with a rotation about the origin, there exists a unique

Riemann map φ : (D, 0) → (Ŵ , v). Since gn :
˜̂
W → Ŵ is ramified only possibly

at ṽ, we obtain a Riemann map φ̃ : (D, 0) → (
˜̂
W, ṽ) such that the following diagram
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commutes:

(
˜̂
W, ṽ)

gn �� (Ŵ , v)

(D, 0)

˜φ

��

z �→zk

�� (D, 0)

φ

��

We will apply the Koebe distortion principle to the map φ̃ and conclude that
the diameter of W̃ is bounded from above in terms of the diameters of the edges
of D; by Lemma 2, these tend to zero as n→ ∞.

We now construct the domains W0,W1. First, denote M := diam(D) and
B(a, r) := {z ∈ C : |z − a| < r}. Next see Figure 2.

We now give the definitions of the sets Wi and Ŵi. Let

v′0 :=
7v0 + v1

8
, v′′0 =

3v0 + v1
4

v′1 :=
v0 + 7v1

8
, v′′1 =

v0 + 3v1
4

Ŵ1−i := B
(v1 + v0

2
, 10M

)⋂ {|z − v′i| < |z − vi|}, i = 0, 1

W1−i := B
(v0 + v1

2
, 9M

)⋂{|z − v′′i | < |z − vi|
}
, i = 0, 1.

By construction,

• Ŵi ∩ {v0, v1} =W ∩ {v0, v1} = vi, i = 0, 1;

• D ⊂W0 ∪W1;

• Ŵi \Wi is an annulus, i = 0, 1.

Lemma 3. The maximum diameter of a component W̃ tends to zero as n→ ∞.

Proof. Suppose gn : (
˜̂
W, W̃ ) → (Ŵ ,W ) is a map of pairs as in the preceding para-

graphs; we adopt the notation used there. Up to precomposition with rotations
about the origin, the map φ is one of only two possible Riemann maps. Hence
there exist 0 < r < s < 1 such that if U := φ−1(W ), then

B(0, r) ⊂ U ⊂ B(0, s) ⊂ D.

Denote
Ũ := {z ∈ D | zk ∈ U}.

From the second part of Theorem 3 we have 1 ≤ k ≤ 4. Hence

r ≤ r̃ := r1/k, s̃ := s1/k ≤ s1/4,

and

(2.1) B(0, r) ⊂ B(0, r̃) ⊂ Ũ ⊂ B(0, s̃) ⊂ B(0, s1/4) ⊂ D;
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note that r and s1/4 do not depend on the choice of component
˜̂
W . By definition,

the following diagram commutes:

(W̃ , ṽ)
gn �� (W, v)

(Ũ , 0)

˜φ

��

z �→zk

�� (U, 0)

φ

��

The rescaled map ψ := |φ̃′(0)|−1(φ̃ − φ̃(0)) is an element of the class of so-called
Schlicht functions: injective holomorphic maps ψ : D → C with the normaliza-
tion ψ(0) = 0, ψ′(0) = 1. By Theorem 5.3 in [1], for all z ∈ D and all Schlicht
functions ψ,

|z|(1 + |z|)−2 ≤ |ψ(z)| ≤ |z|(1− |z|)−2.

Hence upon setting

ρ := r(1 + r)−2, σ := s1/4(1− s1/4)−2, δ := |φ̃′(0)|
we have by (2.1) that

B(ṽ, ρδ) ⊂ φ̃(Ũ) = W̃ ⊂ B(ṽ, σδ).

Let e be any one of the k components of g−1
n ((v0, v1)) whose closure meets ṽ; the

closure of e is an edge of D containing ṽ. Since (v0, v1) �⊂W , we have e �⊂ W̃ , so

ρδ < diam(e)

which implies

σδ < diam(e)
σ

ρ

and so
diam(W̃ ) ≤ 2σδ < 2 diam(e)

σ

ρ
→ 0

as n→ ∞, by Lemma 2. The constants ρ, σ are independent of n and of the choice
of ṽ, so the proof of Lemma 3 is complete. �

Proof of Lemma 1. Let W0,W1 be the domains as defined above, and let W̃ṽ,
ṽ ∈ V := g−1

n ({v0, v1}) denote the components of preimages g−1
n (Wi), i ∈ {0, 1}.

Denote J := J(gn). Pick ε < 1
2 inf{|a − b| : a ∈ D, b ∈ C \ W0 ∪W1}. Apply

Lemma 3 to obtain n so that diam(W̃ṽ) < ε for all ṽ ∈ V (gn). Each W̃ṽ is a
Jordan domains, so it has the same diameter as its closure.

On the one hand, by our choice of ε,

g−1
n (W0 ∪W1) =

⋃
ṽ∈V

W̃ṽ ⊂︸︷︷︸
Lemma 3

Nε(D) ⊂W0 ∪W1

and so W0 ∪W1 is backward-invariant under gn. It is a general fact that J may
be equivalently defined as the smallest closed subset of C satisfying #J > 1 and
g−1
n (J) ⊂ J ; see [5].
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Thus J ⊂W0 ∪W1. By invariance of J we have then

J ⊂ g−1
n (W0 ∪W1) =

⋃
ṽ∈V

W̃ṽ ⊂ Nε(D).

On the other hand, recalling the last sentence of Step 2, we have V ⊂ J , and
[v0, v1] ⊂ W0 ∪W1 implies D = g−1

n ([v0, v1]) ⊂ g−1
n (W0 ∪W1) =

⋃
ṽ∈V W̃ṽ, so by

our choice of ε and n, we have

Nε(J) ⊃ Nε(V ) ⊃
⋃
ṽ∈V

W̃ṽ ⊃ D.

This completes the proof of Lemma 1 and establishes Theorem 2. �
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