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Abstract. The concept of a weak Markov set takes its origin from Whit-
ney problems for differentiable functions on Rn. In the present paper we
study a version of the first Whitney problem of characterizing families
of continuous functions satisfying certain differential relations on weak
Markov sets. To this end we develop differential calculus on weak Markov
sets similar to that on open subsets of Rn. Then we show that some clas-
sical results for smooth functions and differential forms (such as Poincaré
lemma, de Rham and Hartogs theorems, Künneth formulas, etc.) are valid
also on certain weak Markov sets and more generally certain topological
spaces with weak Markov structures. The class of such spaces includes, in
particular, C∞ manifolds with boundaries and some Lipschitz and fractal
topological manifolds. Thus the paper offers yet another approach to anal-
ysis on fractals, a developing area of modern mathematics that focuses on
geometric and dynamical aspects of fractals.

1. Introduction

Motivated by boundary value problems for partial differential equations, classical
trace and extension theorems characterize traces of spaces of generalized smooth-
ness (e.g., Sobolev, Besov, etc.) to smooth submanifolds of a Euclidean space. But
in many cases one needs similar results for subsets of a more complicated geometric
structure (for instance, after the change of variables initial data may be situated
on a Lipschitz surface). The subject is originated from the seminal 1934 Hassler
Whitney papers [36] and [37], the first of which deals with the following problem:
characterize collections of m-jets on a closed subset of Rn that are traces of Cm

jets, i.e., sets of Taylor polynomials of degree m on Rn generated by Cm functions.
Whitney developed important analytic and geometric techniques which allowed
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him to solve this problem; moreover, he constructed a linear bounded extension
operator acting from the trace space to Cm(Rn). In the second paper, marked
by number I, he used his extension method to solve for univariate functions an
essentially more difficult (known as the first Whitney) problem of characterizing
continuous functions on an arbitrary closed subset of Rn that are traces of Cm(Rn)
functions.

In accordance with the one-dimensional case, it was natural to formulate the
second (Whitney) problem: does there exist a linear bounded extension operator
from Cm(Rn) trace to a closed subset of Rn to Cm(Rn)?

Although in the second half of the 20th century some important partial re-
sults were obtained, the problems remained unsolved almost 70 years. In the last
decade a significant breakthrough in the area has been made by Charles Feffer-
man (2003-2009) (see, in particular, his survey [13] and references therein) who
solved the second Whitney problem and made an important contribution towards
the solution of the first Whitney problem justifying the, so-called, Yu. Brudnyi–
Shvartsman finiteness principle for traces of Cm functions to closed subsets of Rn.
Fefferman’s results are based on multileveled, voluminous constructions that can
be turned into algorithms for finite sets.

Whitney theory may be viewed as an important step towards differential calcu-
lus on closed subsets of Euclidean spaces. (For C∞ functions on subanalytic sets
there are substantially more advanced theories developed by Len Bos and Pierre
Milman [7] and by Edward Bierstone and Pierre Milman [5].) However, up to
now it was not completely clear what property is responsible for a “differential
calculus”. It turns out that this is a “weak Markov property” introduced by the
author and Yuri Brudnyi in [3] and shared by many classes of sets that arise in
applications. For its definition, here and below, by Pk,n we denote the space of
real polynomials on Rn of degree k and by Qr(x) ⊂ Rn the closed cube centered
at x of sidelength 2r.

Definition 1.1. A point x of a subset S ⊂ Rn is said to be weak k-Markov if

(1.1) lim
r→0

{
sup

p∈Pk,n\{0}

( supQr(x) |p|
supS∩Qr(x) |p|

)}
<∞.

A closed set S ⊂ Rn is said to be weak k-Markov if it contains a dense subset
of weak k-Markov points.

The term weak Markov set is derived from that of Markov set introduced by Alf
Jonsson and Hans Wallin in [22] by means of local Markov polynomial inequalities
in connection with extension and trace problems for functions in Besov spaces,
see Section 2 below for an equivalent definition. The class of weak k-Markov sets
denoted by Mar∗k(R

n), contains, in particular, the closure of any open set, the
Ahlfors p-regular compact subsets of Rn with p > n− 1, a wide class of fractals of
arbitrary positive Hausdorff measure and closures of unions of any combination of
such sets. The class Mar∗0(R

n) (consisting of all nonempty closed subsets of Rn)
admits a filtration

Mar∗0(R
n) ⊃ Mar∗1(R

n) ⊃ Mar∗2(R
n) ⊃ · · · ⊃ Mar∗k(R

n) ⊃ · · · .
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We set

Mar∗∞(Rn) :=
⋂
k≥0

Mar∗k(R
n)

and refer to elements of this class as weak ∞-Markov sets.
The purpose of the present paper is to study a version of the first Whitney

problem of characterizing families of continuous functions satisfying certain dif-
ferential relations on weak Markov sets. To this end we develop differential calculus
on weak Markov sets first introducing (intrinsically) the notion of derivative of a
function on such a set and then establishing its basic properties similar to those for
derivatives of functions on Rn. Next, we consider examples of problems for func-
tions satisfying some differential relations and show, in particular, that many clas-
sical results for smooth functions and differential forms (such as Poincaré lemma,
de Rham and Hartogs theorems, Künneth formulas, etc.) are valid also on cer-
tain weak Markov sets and more generally certain topological spaces with weak
Markov structures. The class of such spaces includes, in particular, C∞ mani-
folds with boundaries and some Lipschitz and fractal topological manifolds. Thus
the paper offers yet another approach to analysis on fractals, a developing area of
modern mathematics that focuses on geometric and dynamical aspects of fractals.
(For known approaches and major developments in the area, see, e.g., survey [33]
and references therein.)

The paper is organized as follows. In Section 2 we formulate some basic prop-
erties of weak k-Markov sets accompanied by examples. In particular, we show
that (a) unlike Markov sets, Mar∗k+1(R

n) � Mar∗k(R
n) for all k ∈ Z+; (b) direct

products, closures of unions or of images under surjective C1 maps of weak k-
Markov sets are also weak k-Markov sets (in the corresponding Euclidean spaces);
however, classes Mar∗k(R

n), n ≥ 2, are not invariant under bi-Lipschitz maps;
and (c) for a fixed k ≥ 1, each closed subset of Rn is disjoint union of a subset
in Mar∗k(Rn) ∪ { ∅} and a set of Hausdorff dimension at most n− 1 whose closure
does not contain subsets in Mar∗k(R

n).
In Section 3 we give the (intrinsic) definition of the derivative of a function

f : S → R at a weak 1-Markov point x ∈ S ⊂ Rn similar to the classical one: f has
derivative at x if and only if there exists a vector DSf(x) ∈ Rn such that

f(y) = f(x) + 〈DSf(x), y − x〉+ o(‖y − x‖), y ∈ S

(here 〈·, ·〉 and ‖·‖ are the standard inner product and the Euclidean norm on Rn).
Coordinates of DSf(x) are called partial derivatives of f at x. We show that if a
function f has derivative at x, then it is restriction to S of a differentiable at x (in
the usual sense) function f̃ : Rn → R whose derivative at x coincides with DSf(x)
(see Proposition 3.2). Moreover, there are analogs of divided differences Δk

x,i,
1 ≤ k ≤ n, i ∈ N, on S with supports of cardinality n + 1 converging to x as
i→ ∞ such that DSf(x) = limi→∞

(
Δ1

x,i(f), . . . ,Δ
n
x,i(f)

)
(see Proposition 3.3).

Similarly, one defines derivatives of order m ≤ k of a function f : S → R at a
weak k-Markov point x ∈ S ⊂ Rn. If S ∈ Mar∗k(Rn) and f ∈ C(S) has derivatives
of order m ≤ k at all weak k-Markov points of S, then m-jets of f consisting of
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all partial derivatives of order ≤ m of f at these points are well defined. We say
that such f is m-times continuously differentiable (i.e., of class Cm), if the set
of m-jets of f satisfies, in each open relatively compact subset of S, the classical
Whitney–Glaeser condition for some modulus of continuity ω (see Theorem 3.4).
Then it follows that f is restriction to S of a m-times continuously differentiable
function f̃ on Rn.

We complete this section with formulations of the results related to the Whitney
problems on weak Markov sets, that is, of finiteness principle and finite depth
simultaneous extension for traces of differentiable functions to weak k-Markov sets,
see Theorem 3.5 and Remark 3.6.

In Section 4, using intrinsic definitions of derivatives at weak k-Markov points
of a set S ∈ Mar∗k(Rn), we define differential operators with continuous coefficients
on S of order m ≤ k whose domains consist of spaces of m-times continuously
differentiable functions on S. Further, we present examples of solving certain
homogeneous differential equations on S. In particular, we show that for some
Cantor-type weak k-Markov sets traces of polynomials of degree m ≤ k − 1 to
them are characterized as (m+1)-times continuously differentiable functions on S
whose partial derivatives of order m are equal to zero (Theorem 4.3), and describe
solutions of analogs of the Laplace equation (Theorem 4.5) and of the Cauchy–
Riemann equations (Theorem 4.4) on such sets.

In Section 5 we introduce the class Mar∗k of paracompact spaces with weak
k-Markov structure, analogously to the definition of the class of manifolds with Ck

structure in differential topology, i.e., gluing together relatively open subsets of
sets in Mar∗k(R

n) by means of local Cm homeomorphisms. (In particular, every Ck

manifold and every subset of Mar∗k(R
n), n ∈ N, belong to Mar∗k.) We prove that

any open cover of the space in Mar∗k admits a Ck partition of unity subordinate to
it (Proposition 5.2), introduce notions of “tangent bundle”, “differential” and “Ck

diffeomorphism” for spaces in Mar∗k (generalizing similar notions for Ck manifolds)
and prove an analog of the Whitney embedding theorem for them (Proposition 5.4).

Next, we introduce the subclass Mar∗k,Γ ⊂ Mar∗k (containing Ck manifolds as

well) consisting of spaces locally Ck diffeomorphic to direct products of simple Γ
sets, that is, weak k-Markov sets situated between graphs (in Rn+1) of continuous
functions f1, f2 : Kn → R, f1 ≤ f2, where Kn := (0, 1)n ⊂ Rn is the open unit
cube. (If, in this definition, f1 = f2, then, in general, the graph of f1 is a fractal
in Rn+1.) We show that fractal topological manifolds in Mar∗k,Γ can be obtained
by isotopic perturbations of C1 manifolds (Theorem 5.5). Further, we introduce
and study differential forms on spaces in Mar∗∞,Γ. In particular, we prove that an
analog of the classical Poincaré d-lemma for differential forms on C∞ manifolds is
valid also for d-closed differential forms on spaces in Mar∗∞,Γ. Thus the de Rham
complex of differential forms on such a space is well defined and, as in the case
of C∞ manifolds, the corresponding de Rham cohomology groups are isomorphic
to the Čech cohomology groups of the space (Theorem 5.8). We also establish an
analog of the Künneth formula for the de Rham cohomology groups of spaces in
Mar∗∞,Γ (Theorem 5.13).

Sections 6–12 contain proofs of the main results of the paper.
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In a forthcoming paper, following ideas of H. Whitney [39], we introduce in-
tegration of differential forms over special “fractal” chains in spaces from Mar∗∞,Γ

and establish an analog of the Stokes formula for them.

Acknowledgment. The paper arose in part out of discussions with Professor
Vladimir Goldshtein during my visit to Ben Gurion University of the Negev in
November 2010. I am grateful for his interest to the work. Also, I thank the
anonymous referee for valuable remarks improving the presentation of the paper.

2. Properties of weak Markov sets

All properties except for (6), (10) and (11) proved in Section 6 below either follow
directly from Definition 1.1 or have been established in [3] (see also Volume II,
Chapter 10 in [2]).

(1) Mar∗0(R
n) consists of all nonempty closed sets in Rn.

(2) Mar∗1(R) consists of all infinite closed subsets of R without isolated points.

(3) If S ∈ Mar∗k(R
n) and U ⊂ S is relatively open, then the closure Ū ∈ Mar∗k(R

n).

(4) If {Si}i∈I ⊂ Mar∗k(R
n), then ∪i∈ISi ∈ Mar∗k(R

n).

(5) For closed sets Si ⊂ Rni , i = 1, 2, their product S1 × S2 ∈ Mar∗k(R
n1+n2) if

and only if Si ∈ Mar∗k(Rni), i = 1, 2.

(6) Let x be a weak k-Markov point of S ⊂ Rn. Suppose a map ϕ : Rn → Rm,
m ≤ n, is such that the derivative Dϕ(x) of ϕ at x exists and has rank m. Then
ϕ(x) is a weak k-Markov point of ϕ(S) ⊂ Rm. In particular, if the set of such
points x is dense in S, then ϕ(S) ∈ Mar∗k(R

m).

(7) A closed set S ⊂ Rn belongs to the class of Markov sets, denoted by Mar(Rn),
if for some constant c > 0 and every x ∈ S, 0 < r ≤ diamS and p ∈ P1,n,

sup
Qr(x)

|p| ≤ c · sup
S∩Qr(x)

|p|.

If S ∈ Mar(Rn), then the above condition holds for polynomials of every degree,
see Chapter 2 in [22]. Hence, Mar(Rn) ⊂ Mar∗∞(Rn).

A closed set S ⊂ Rn is called (Ahlfors) d-regular (0 ≤ d ≤ n) if for every cube
Qr(x) with x ∈ S and 0 < r < diamS

c0 r
d ≤ Hd(S ∩Qr(x)) ≤ c1 r

d,

where c0, c1 > 0 are constants independent of x and r and Hd stands for the
Hausdorff d-measure on Rn.

Every d-regular compact subset of Rn with d > n− 1 is Markov, see Chapter 2
of [22]. So the closure of unions of di-regular compact sets Si ⊂ Rn with di > n−1,
i ∈ I, is weak ∞-Markov.
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Example 2.1. The classical von Koch snowflake curve is d-regular with d :=
log 4/ log 3, see, e.g., [10] for its construction.

(8) Fix k ∈ N+ ∪ {∞}. Every closed subset S ⊂ Rn is disjoint union of a (possibly
empty) weak k-Markov subset and a set of Hausdorff dimension at most n− 1.

In particular, let a closed set S ⊂ Rn have a base (in the relative topology)
consisting of sets of Hausdorff dimension greater than n − 1. Then S is weak
∞-Markov. (For otherwise, nonempty open set S \ Smax, where Smax is the maxi-
mal weak ∞-Markov subset of S, contains an element of the base with Hausdorff
dimension greater than n− 1.)

Using this fact one can prove, e.g., that the graph of the Weierstrass nowhere
differentiable function

∞∑
n=0

an cos(bnx), where 0 < a < 1, b > 1, ab > 1,

is weak ∞-Markov. (It follows from Theorem 4 in [32] and estimates in [15].)
More generally, it was proved in Theorem 5 of [32] that for a fixed 0 < α < 1

the graph of ϕ(x) =
∑∞

n=0 β
−αnq(βnx+ θn) with sufficiently large β > 1 and arbi-

trary θ0, θ1, . . . , where q is a Lipschitz function on R of period one monotone and
nonconstant on a compact interval, satisfies the above base topology assumption
(for n = 2). Hence, this graph belongs to Mar∗∞(R2).

(9) A point x of a subset S ⊂ Rn is weak k-Markov if and only if there exist
a convergent to 0 sequence of positive numbers {ri}i∈N and a sequence of finite
subsets Fi ⊂ S ∩Qri(x) with cardFi = dimPk,n, i ∈ N, such that

(2.1) sup
i∈N

{
sup

p∈Pk,n\{0}

( supQri
(x) |p|

supFi
|p|

)}
<∞.

The proof is a consequence of the following fact (cf. Proposition 3.5 in [3]):

Let V be an n-dimensional vector space of bounded real functions on a set X
(in particular, cardX ≥ n). There exist a finite subset F ⊂ X of cardF = n and
a constant c = c(n) > 0 such that for every v ∈ V ,

sup
X

|v| ≤ c ·max
F

|v|.

(10) Unlike Markov sets, Mar∗k+1(R
n) \Mar∗k(R

n) �= ∅ for all k ∈ Z+.

In view of (5) it suffices to establish this property for n = 1 only. It is done
in Subsection 6.2 by constructing, for each k ∈ Z+, a Cantor-type subset of R of
Hausdorff dimension zero belonging to Mar∗k(R) \Mar∗k+1(R).

(11) Classes Mar∗k(R), k ∈ Z+ ∪ {∞}, are invariant under bi-Lipschitz maps (i.e.,
if S ∈ Mar∗k(R) and ϕ : S → S′ ⊂ R is a bi-Lipschitz map, then S′ ∈ Mar∗k(R)),
while Mar∗k(Rn), n ≥ 2, k ∈ N ∪ {∞}, are not.

To prove the second part of the statement for k ∈ N we construct a Lipschitz
function ϕ : R → R whose graph Γϕ ∈ Mar∗k(R

2)\Mar∗k+1(R
2) (see Subsection 6.3).
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3. Traces of differentiable functions to weak Markov sets

Results of this section are proved in Section 7.

Definition 3.1. A function f : S → R is said to have derivatives of order ≤ m
(≤ k) at a weak k-Markov point x ∈ S ⊂ Rn if there exists a polynomial Tm

x (f) ∈
Pm,n such that

lim
y→x

|f(y)− Tm
x (f)(y)|

‖y − x‖m∞
= 0.

If
Tm
x (f)(z) :=

∑
|α|≤m

cα
α!

(z − x)α, α ∈ Zn
+, |α| := ‖α‖1,

then cα is called the partial derivative of order α at x and is denoted as Dα
Sf(x).

(Here ‖·‖∞ and ‖·‖1 stand for �∞-norm on Rn and �1-norm on Zn, respectively.)

Proposition 3.2. A function f : S → R has derivatives of order ≤ m (≤ k) at a
weak k-Markov point x ∈ S ⊂ Rn if and only if there exists a function f̃ : Rn → R

having derivatives of order ≤ m at x such that f̃ |S = f . Moreover, the Taylor
polynomial Tm

x (f̃) of degree m at x of any such extension f̃ coincides with Tm
x (f).

Next, we express derivatives of f : S → R in intrinsic terms using some analogs
of divided differences.

Proposition 3.3. For a weak k-Markov point x ∈ S ⊂ Rn, and a nonnegative
integer number m ≤ k there exist a convergent to 0 sequence of positive numbers
{ri}i∈N, a sequence of finite subsets Fm

i ⊂ S∩Qri(x)\{x} with cardFi = dimPm,n,
a sequence of signed measures μα

i , α ∈ Zn
+, |α| ≤ m, on Fm

i , i ∈ N, such that if a
function f : S → R has derivatives of order m at x, then

Dα
Sf(x) = lim

i→∞

∫
Fm

i

f dμα
i .(3.1)

Recall that the space Cm,ω(Rn) is defined by the norm

‖f‖Cm,ω(Rn) := sup
Rn

|f |+ max
|α|=m

sup
x 
=y

|Dαf(x)−Dαf(y)|
ω(‖x− y‖∞)

;

here ω : (0,∞) → (0,∞) is a nondecreasing concave function with ω(0+) = 0. For
a subset S ⊂ Rn by Cm,ω(S) we denote the trace space of continuous functions
on S equipped with the trace norm

‖f‖Cm,ω(S) := inf
{‖g‖Cm,ω(Rn) ; g|S = f

}
.

The following result characterizing functions in Cm,ω(S) is the analog of the
classical Whitney–Glaeser theorem (see, e.g., Volume I, Section 2.2 in [2]).

Theorem 3.4. Let S ⊂ Rn be weak k-Markov, k ∈ N. A function f ∈ C(S)
belongs to Cm,ω(S), m ≤ k, if and only if it has derivatives of order ≤ m (≤ k) at
each weak k-Markov point x ∈ S and there exists a constant λ > 0 such that for all
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weak k-Markov points x, y ∈ S, z ∈ {x, y},
max
|α|≤m

|Dα
Sf(x)| ≤ λ and

max
|α|≤m

|Dα
(
Tm
x (f)− Tm

y (f)
)
(z)|

‖x− y‖m−|α|
∞

≤ λ · ω(‖x− y‖∞).
(3.2)

Moreover,
‖f‖Cm,ω(S) ≈ inf λ

with constants of equivalence depending only on m and n.

Finally, we formulate a result proved in [3] that solves Whitney problems for
the trace of space Cm,ω(Rn) to weak k-Markov sets (k ≥ m).

Theorem 3.5. Let S ⊂ Rn be weak k-Markov, k ∈ N, and m ≤ k.

(a) Finiteness principle. Suppose that for f ∈ C(S) its restriction to each
subset S′ of S of cardinality at most 2

(
n+m
n

)
satisfies ‖f |S′‖Cm,ω(S′) ≤ 1.

Then f ∈ Cm,ω(S) and there exists c = c(m,n) > 0 such that ‖f‖Cm,ω(S) ≤ c.

(b) Finite depth simultaneous extension. There exists a linear bounded
extension operator E : Cm,ω(S) → Cm,ω(Rn),

(Ef)(x) :=

⎧⎪⎨⎪⎩
∞∑
i=1

λi(x)f(xi) if x ∈ Rn \ S,

f(x) if x ∈ S;

here all λi ∈ C∞(Rn) and have compact supports in Rn \ S, all xi ∈ S and
for each x ∈ Rn \S the number of nonzero terms in the above sum is at most(
n+m
n

) · w, where w is the order of the Whitney cover of Rn \ S.
Remark 3.6. If S ⊂ Rn is an arbitrary closed set, then, as it was discovered by Fef-
ferman [11], a statement similar to (a) is valid with the finiteness constant bounded
by (1 + dimPm,n)

3·dimPm,n . Later this bound was replaced by 2dimPm,n due to
Bierstone–Milman [6] and, independently and by a different method, Shvarts-
man [34]. A linear bounded extension operator Cm,ω(S) → Cm,ω(Rn) in this case
was constructed by Fefferman [12]. Using a modification of his method Luli [26]
constructed an extension operator Cm,ω(S) → Cm,ω(Rn) of finite depth, cf. (b).

4. Examples of extension problems

Definition 4.1. A function f on an open subset U of a weak k-Markov set S ⊂ Rn

is said to belong to the space Cm(U), m ≤ k, if for each x ∈ U there is its open
neighbourhood Ox ⊂ U such that f |Ox satisfies conditions of Theorem 3.4 with a
modulus of continuity ωx. Here C

∞(U) := ∩∞
�=1C

�(U).
We define Cm(U,Rp) as the space of maps U → Rp with coordinates in Cm(U).
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Using Theorem 3.4 and a smooth partition of unity subordinate to a suitable
cover of U by open subsets of Rn, one easily shows that f ∈ Cm(U) iff it is
restriction to U of a Cm function defined in an open neighbourhood of U in Rn.
In the case m = ∞ this follows from a result of Hestens [18].

Let S ∈ Mar∗k(R
n) and S0 ⊂ S be a dense subset of weak k-Markov points

of S. For each f ∈ Cm(S), m ≤ k, the function Dα
Sf ∈ C(S), |α| ≤ m, is defined

as the extension by continuity to S of the function Dα
S(f |S0) (which is locally

uniformly continuous on S0 due to Theorem 3.4). Next, for a differential operator
PD :=

∑
|α|≤m aαD

α, aα ∈ C(W ), where W ⊂ Rn is an open neighbourhood of S,
we define

PDSf :=
∑

|α|≤m

(aα|S)Dα
S f.(4.1)

If f is restriction to S of a Cm function f̂ defined in an open neighbourhood
of S in W , then (see Proposition 3.2)

PDSf = (PD f̂)|S .(4.2)

In what follows for a subset O of a Hausdorff topological space X , ∂O := Ō\Oo

and Oc := X \O stand for its boundary and complement in X .
In the formulated examples we deal with Cantor-type sets of the form

S := Ω̄ \
( ⋃

j≥1

Dj

)
,(4.3)

where Ω is a bounded open subset of Rn or Cn and {Dj}j≥1 is a family of mutually
disjoint domains in Ω such that ∂Dj = ∂(D̄j)

c for all j.

Example 4.2. The Sierpiński gasket is a d-regular set, d := log 3/ log 2, of the
form (4.3) obtained by repeatedly removing open equilateral triangles from an
initial equilateral triangle, see, e.g., [10].

Our first example describes traces of polynomials to a class of Cantor-type weak
Markov sets.

Theorem 4.3. Let S ⊂ Rn, n ≥ 2, be a weak k-Markov set, k ≥ 2, of the
form (4.3) such that Ω � Rn and all (D̄j)

c are domains. Suppose f ∈ Cm+1(S),
m ≤ k−1, satisfies Dα

Sf = 0 for all |α| = m. Then there exists a unique polynomial
pf ∈ Pm−1,n such that pf |S = f . In particular, S is connected.

Next we present a Hartogs-type theorem describing traces of holomorphic func-
tions to a class of Cantor-type weak Markov sets.

Theorem 4.4. Let S ⊂ Cn, n ≥ 2, be a weak k-Markov set, k ≥ 2, of the
form (4.3) such that Ω � Cn and all (D̄j)

c are domains. Let f ∈ C2
C
(S) :=

C2(S) ⊗ C satisfy ∂Sf = 0. Then there exists a unique holomorphic function
F ∈ O(Ω) ∩ C1

C
(Ω̄) such that F |S = f and supΩ̄ |F | = supS |f |.
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Our third example describes solutions of Laplace-type equations on a class of
Cantor-type weak Markov sets. In its formulation C2,α(Rn) stands for the space
of bounded C2 functions on Rn whose second-order derivatives satisfy the Hölder
condition with exponent α.

Theorem 4.5. Let S ⊂ Rn, n ≥ 3, be a weak k-Markov set, k ≥ 2, of the
form (4.3). Let f ∈ C2,α(S), 0 < α < 1, satisfy ΔSf = 0. Then there exist
functions F1, F2 ∈ C2,α(Rn) harmonic in ∪j≥1Dj and

(∪j≥1Dj

)c
, respectively,

such that limx→∞ Fi(x) = 0, i = 1, 2, and (F1 + F2)|S = f . Moreover, if F ′
1, F

′
2 ∈

C2,α(Rn) is any other pair of such functions, then F ′
1 = F1 on ∪j≥1Dj and F

′
2 = F2

on
(∪j≥1Dj

)c
.

5. Spaces with weak Markov structure

5.1. Basic definitions and properties

Most definitions of this subsection are similar to those of the theory of standard Ck

manifolds, see, e.g., [30].

Definition 5.1. A weak k-Markov structure on a second countable Hausdorff
space S is a collection of pairs D := {(Uα, ϕα)}α∈Λ, called charts, such that

(1) (Uα)α∈Λ is an open cover of S;

(2) Each ϕα is a homeomorphism of Uα onto a relatively open subset of a set
in Mar∗k(R

n) such that for all α, β ∈ Λ maps ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) →

ϕβ(Uα ∩ Uβ) (⊂ Rn) are of class Ck;

(3) D is maximal with respect to property (2).

A function f on an open subset U ⊂ S is of class Ck if f ◦ϕα ∈ Ck(ϕα(U ∩Uα))
for all (Uα, ϕα) ∈ D.

The definition implies that S is paracompact and of covering dimension at
most n. Moreover, it has a base of topology consisting of relatively compact open
subsets.

The class of spaces with weak k-Markov structure will be denoted Mar∗k. If M
is a Ck manifold, then by Mar∗k(M) ⊂ Mar∗k we denote the family of all weak
k-Markov closed subsets S ⊂M , i.e., such that in Definition 5.1 each (Uα, ϕα) has
the form Uα := Vα ∩ S and ϕα := ψα|Uα , where (Vα, ψα) is a C

k chart on M . In
particular, every Ck manifold and weak k-Markov subset of Rn belong to Mar∗k.

Proposition 5.2. Let S ∈ Mar∗k. For any open cover of S there exists a Ck

partition of unity subordinate to it.

For S1, S2 ∈ Mar∗k a continuous map f : S1 → S2 is said to be of class Ck if
it is of class Ck in all suitable charts (Uα1, ϕα1) ∈ D1 and (Uα2, ϕα2) ∈ D2 on S1

and S2, respectively (i.e., ϕα2 ◦ f ◦ ϕ−1
β1 ∈ Ck

(
(ϕβ1 ◦ f−1)(Uα2), ϕα2(Uα2)

)
).
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Every Ck map f : S1 → S2 determines an injective morphism of algebras
f∗ : Ck(U) → Ck(f−1(U)), U ⊂ S2 is open (here f∗ is the pullback by f).

For S ⊂ Mar∗k(R
n), k ≥ 1, the tangent bundle TS → S on S is defined as the re-

striction to S of the tangent bundle TRn → Rn on Rn. Clearly, TS ∈ Mark(TR
n).

Now, for a Ck map f : S → Rp the differential Ff : TS → TRp is defined as the
restriction of the differential Df̂ : TU → TRp, where f̂ is a Ck extension of f to
an open neighbourhood U ⊂ Rn of S. According to Propositions 3.2, 3.3, the defi-
nition of Df does not depend on the choice of the Ck extension f̂ and, in intrinsic
terms, Df :=

(
f, (Dj

Sfi)1≤i≤n, 1≤j≤p

)
, where f := (f1, . . . , fp).

Similarly, if S ∈ Mar∗k, then the tangent bundle TS → S is defined as the
quotient space of disjoint union

⊔
α∈Λ TUα, where TUα → Uα is the pullback

by ϕα of the bundle Tϕα(Uα), by means of the following equivalence relation:

TUα � v ∼ w ∈ TUβ ⇐⇒ (ϕβ)∗(w) = D(ϕβ ◦ ϕ−1
α )

(
(ϕα)∗(v)

)
;

here (Uα, ϕα) ∈ D and (ϕα)∗ : TUα → Tϕα(Uα)|ϕα(Uα) is the isomorphism of
bundles generated by ϕα. The weak k-Markov structure on TS is given by the
collection of charts { (TUα, (ϕα)∗)}α∈Λ.

Next, if f : S1 → S2 is a Ck map between S1, S2 ∈ Mar∗k, then the differential
is a morphism of bundles Ff : TS1 → TS2 defined in charts (Uα1, ϕα1) ∈ D1 and
(Uβ2, ϕα2) ∈ D2 such that f(Uα1) ⊂ Uβ2 by the formula

Df(v) := (ϕβ2)
−1
∗

(
D(ϕβ2 ◦ f ◦ ϕ−1

α1 )
(
(ϕα1)∗(v)

))
.

We say that f : S1 → S2 is a Ck embedding if f is an injection and Df is injective
on each fibre of TS1. If, in addition, f is a homeomorphism, then it is called a Ck

diffeomorphism.

Proposition 5.3. Suppose S1, S2 ∈ Mar∗k, k ≥ 1, and f : S1 → S2 is a Ck diffeo-
morphism. Then f−1 : S2 → S1 is a Ck diffeomorphism as well.

Let S ⊂ Rp be a closed subset and S ∈ Mar∗k. We say that the weak k-Markov
structure D on S is induced from Rp if each ϕα in Definition 5.1 for S is restriction
of a Ck map into Rn defined in an open neighbourhood of Uα in Rp.

Our next result is an analog of the Whitney embedding theorem [38].

Proposition 5.4. Suppose S ∈ Mar∗k, k ≥ 1, and the rank of TS is n. There
exists a proper Ck embedding f : S → RN , where N := 2n + 1 if k ≥ 2, such
that f(S) ∈ Mar∗k and has weak k-Markov structure induced from RN . Moreover,
f : S → f(S) is a Ck diffeomorphism.

(In case S ∈ Mar∗k(M), k ≥ 2, where dimM = n, one can replace 2n+1 by 2n
applying the strong Whitney embedding theorem to M .)

5.2. Calculus of differential forms

In what follows Kn := (0, 1)n ⊂ Rn stands for the open unit cube.
Let fij : K

ni → R, 1 ≤ i ≤ �, j = 1, 2, be continuous functions such that fi1 ≤
fi2 and closures of sets Γni

fi1,fi2
:= {(x, tfi1(x) + (1− t)fi2(x)) ; x ∈ Kni , t ∈ [0, 1]}
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are weak k-Markov subsets of Rni+1 for all 1 ≤ i ≤ m. A set of the form Γn1

f11,f12
×

· · ·×Γn�

f�1,f�2
⊂ Rn1+1×· · ·×Rn�+1 (=: Rn, n :=

∑�
i=1(ni+1) ) will be called a Γ set.

Each component Γni

fi1,fi2
⊂ Rni+1 will be called a simple Γ set.

By Mar∗k,Γ ⊂ Mar∗k we denote the subclass of sets S such that for each x ∈ S
there exists a chart (Uα, ϕα) with x ∈ Uα and ϕα(Uα) ⊂ Rn a Γ set.

If M is a Ck manifold, then by Mar∗k,Γ(M) ⊂ Mar∗k,Γ we denote the family of
closed subsets S ⊂M such that in the above definition each (Uα, ϕα) has the form
Uα := Vα ∩ S and ϕα := ψα|Uα , where (Vα, ψα) is a C

k chart on M .
In particular, every Ck manifold with a boundary, k ≥ 1, belongs to Mar∗k,Γ.

However, one can show that the von Koch snowflake curve with the weak∞-Markov
structure induced from R2 does not belong to Mar∗∞,Γ. The next result shows that
this class contains sufficiently many fractal topological manifolds.

Theorem 5.5. Let M be a Ck submanifold, k ≥ 1, of an n-dimensional C∞

Riemannian manifold X of dimension m ≥ �n/2� ≥ 1 and let U ⊂ X be an open
neighbourhood of M . There is an open neighbourhood N ⊂ U of M such that

(A) For each d ∈ [m,n] there exist a topological submanifold Md ⊂ Mar∗∞,Γ(N)
having a base of topology of sets of Hausdorff dimension d and an isotopy hd,t :
Md → N , t ∈ [0, 1], such that hd,0 = id, hd,1(Md) = M , each hd,t(Md) ∈
Mar∗∞,Γ(N), 0 ≤ t < 1, and hd,t : Md → hd,t(Md) is a Ck diffeomorphism for
all such t. Moreover, Mm is a Lipschitz manifold and hm,1 : Mm → M is locally
bi-Lipschitz.

(B) For each l ∈ N there exist a Lipschitz submanifold Ml ∈ Mar∗l,Γ(N) \
Mar∗l+1,Γ(N) and an isotopy hl,t : Ml → N , t ∈ [0, 1], such that hl,0 = id, hl,1(Ml)
=M , each hl,t(Ml) ∈ Mar∗l,Γ(U)\Mar∗l+1,Γ(N), 0 ≤ t < 1 and hl,t :Ml → hl,t(Ml),
is a Cp diffeomorphism, p := min{l, k}, for all such t. Moreover, hl,1 : Ml → M
is locally bi-Lipschitz.

For S1, S2 ∈ Mar∗k, k ≥ 1, a continuous map f : S1 → S2 is said to be lo-
cally Lipschitz if it is locally Lipschitz in all suitable charts (Uα1, ϕα1) ∈ D1 and
(Uα2, ϕα2) ∈ D2 on S1 and S2, respectively (that is, ϕα2 ◦ f ◦ ϕ−1

β1 ∈ Liploc
(
(ϕβ1 ◦

f−1)(Uα2), ϕα2(Uα2)
)
, where the metric structures of sets in the brackets are in-

duced from those of the corresponding Euclidean spaces). Clearly, the definition
does not depend on the choice of charts and each Ck map S1 → S2 is locally Lip-
schitz as well. We say that f : S1 → S2 is locally bi-Lipschitz if f is a homeomor-
phism and f, f−1 are locally Lipschitz maps. Since the class of locally bi-Lipschitz
homeomorphisms preserves Hausdorff dimension and eachm-dimensional Ck mani-
foldM ,m ≥ 1, k ≥ 1, admits a proper Ck embedding into R2m, Theorem 5.5 shows
that there is a family of the cardinality of the continuum of locally bi-Lipschitz
nonequivalent weak ∞-Markov structures on M .

For S ∈ Mar∗k, k ≥ 1, the cotangent bundle T ∗S → S is a bundle dual to the
tangent bundle TS → S and equipped with a weak k-Markov structure induced
by that on TS. A differential form ω of class Ck on S of degree degω = p is
a Ck section of the bundle ∧p T ∗S. If rank of TS is n and x = (x1, . . . , xn) are
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coordinates in a chart on S, then ω can be written locally in these coordinates as

ω :=
∑
|I|=p

cI(x)dxI ,

where cI are of class Ck and for I = (i1, . . . , is), 1 ≤ i� ≤ n, 1 ≤ � ≤ s, we define
|I| := s and dxI := dxi1 ∧ dxi2 ∧ · · · ∧ dxis ; here dx1, . . . , dxn are local coordinates
on T ∗S in the chart, dual to the coordinates ∂/∂x1, . . . , ∂/∂xn on TS there (pulled
back from TRn by the map defining this chart).

In what follows we assume that S ∈ Mar∗∞. By Ωp(U) we denote the vector
space of C∞ differential forms of degree p on an open set U ⊂ S. The differential
d : Ωp(U) → Ωp+1(U) is defined exactly as in the case of differential forms on C∞

manifolds (e.g., if S ∈ Mar∗∞(Rn) and ω =
∑

|I|=p cI dxI ∈ Ωp(S), where x1, . . . , xn

are coordinates on Rn, then dω :=
∑

|I|=p

(∑n
i=1D

i
ScI dxi

) ∧ dxI).
The following result generalizes the classical Poincaré d-lemma for differential

forms on C∞ manifolds.

Theorem 5.6. If S ∈ Mar∗∞,Γ and ω ∈ Ωp(S) is d-closed, i.e., dω = 0, then for
each x ∈ S there exists an open neighbourhood Ux of x and, for p ≥ 1, a form
ηx ∈ Ωp−1(Ux) such that dηx = ω. If p = 0, then ω is locally constant.

By Ωp
S we denote the sheaf of germs of C∞ differential forms of degree p on

S ∈ Mar∗∞. Then from Proposition 5.2 we get (see, e.g., [19] for basic definitions
and results of algebraic topology used below):

Proposition 5.7. Ωp
S is a fine sheaf.

Combining Theorem 5.6 with Proposition 5.7 we obtain straightforwardly:

Theorem 5.8. Let S ∈ Mar∗∞,Γ and rankTS = n. Then we have the following
resolution of the constant sheaf R on S by the sheaves of differential forms:

0 −→ R
d−→ Ω0

S
d−→ Ω1

S
d−→ · · · d−→ Ωn

S
d−→ 0.

In particular, Ȟi(S,R) = Hi
dR(S,R), where Ȟi(S,R) is the Čech cohomology of

sheaf R on S and

Hi
dR(S,R) :=

Ker
(
Ωi(S)

d−→ Ωi+1(S)
)

d
(
Ωi−1(S)

) .

Since Ȟi(S,R) = 0 for i > dimc S, where dimc stands for the covering dimen-
sion, Theorem 5.8 yields

Corollary 5.9. For i > dimc S each d-closed form in Ωi(S) is d-exact.

The statement of Theorem 5.8 is not valid if S �∈ Mar∗∞,Γ as the following
simple example shows.
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Example 5.10. Let S ⊂ Mar∗∞(R) be the standard Cantor set in [0, 1]. Then
Ȟ0(S,R) consists of continuous locally constant functions on S. In particular,
each such function assigns finitely many values. Let [0, 1]\S := ∪∞

j=1(aj , bj) and ϕ
be a positive C∞ function on (0, 1) having zeros of infinite order at 0 and 1. For a
uniformly bounded sequence {cj} ⊂ R+ consider a sequence of positive functions

ϕj ∈ C∞(
(aj , bj)

)
, ϕj(x) := cj e

−(bj−aj)ϕ
( x−aj

bj−aj

)
, j ∈ N. Then the function ϕ̃

equals ϕj on (aj , bj), j ∈ N, and 0 on S ∪ (R \ [0, 1]) is C∞ on R. We set ψ(x) :=∫ x

−∞ ϕ̃(t) dt, x ∈ R. By the definition ψ ∈ C∞(R) and d(ψ|S) = 0. However, the

range of ψ|S is not finite. This shows that Ȟ0(S,R) is a proper subset ofH0
dR(S,R).

In general, for S ∈ Mar∗∞ as in the case of C∞ manifolds (using Proposition 5.7)
we obtain canonical homomorphisms of groups hiS : Ȟi(S,R) → Hi

dR(S,R) such
that if f : S1 → S2 is a C∞ map of spaces in Mar∗∞, then for all i the following
diagrams:

Ȟi(S2,R)
hi
S2−→ Hi

dR(S2,R)

f∗
C

⏐⏐� f∗
dR

⏐⏐�
Ȟi(S1,R)

hi
S1−→ Hi

dR(S1,R)

(5.1)

are commutative. Here f∗
C and f∗

dR are homomorphisms induced by f .
As another consequence of Theorem 5.8 we obtain the following interpolation

result. Let S ∈ Mar∗∞,Γ be a closed subset of a space X ∈ Mar∗∞ and the weak
∞-Markov structure on S is induced by that on X , i.e., the embedding S ↪→ X
induces surjective morphism Ω0

X → Ω0
S of sheaves of germs of C∞ functions.

Corollary 5.11. There exists an open neighbourhood N ⊂ X of S such that
for each d-closed form ω ∈ Ωp(S) there exists a d-closed form ω̃ ∈ Ωp(N) such
that ω̃|S = ω.

By H∗(S,R) we denote the ring of singular cohomology of S ∈ Mar∗∞ endowed
with � product (see, e.g., Appendix A in [29] for definitions). Also we consider the
ring H∗

dR(S,R) endowed with ∧ product. If S is a C∞ manifold, then the classical
de Rham theorem states that these two rings are isomorphic. This result can be
extended:

Theorem 5.12. For S ∈ Mar∗∞,Γ, there exists an isomorphism of rings ΦS :
(H∗

dR(S,R),∧) → (H∗(S,R),�) such that if f : S1 → S2 is a C∞ map of spaces in
Mar∗∞,Γ, then the following diagram is commutative:

H∗
dR(S2,R)

ΦS2−→ H∗(S2,R)

f∗
dR

⏐⏐� f∗
⏐⏐�

H∗
dR(S1,R)

ΦS1−→ H∗(S1,R).

(5.2)

Here f∗ is the ring homomorphism induced by f .
Moreover, if S is a C∞ manifold, then ΦS coincides with the classical de Rham

isomorphism defined by the pairing of differential forms and chains via integration.
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Let Si ∈ Mar∞,Γ, i = 1, 2. Then S1×S2 ∈ Mar∞,Γ as well. By πi : S1×S2 → Si,
i = 1, 2, we denote the natural projections. The map

(ω1, ω2) �−→ π∗
1(ω1) ∧ π∗

2(ω2), ωi ∈ Ω∗(Si), i = 1, 2,

determines a bilinear map ∧ : H∗
dR(S1,R)⊗H∗

dR(S2,R) → H∗
dR(S1×S2,R) sending

each ⊕p+q=kH
p
dR(S1,R)⊗Hq

dR(S2,R) into H
k
dR(S1 × S2,R).

As a corollary of Theorem 5.12 we have the following generalization of the
classical Künneth formula.

Theorem 5.13. Suppose S2 is homotopy equivalent to a CW complex having only
finitely many cells in each dimension. Then the map ∧ : H∗

dR(S1,R)⊗H∗
dR(S2,R) →

H∗
dR(S1 × S2,R) is an isomorphism.

In case both Si admit locally finite acyclic open covers, the result was first
established by Vladimir Goldshtein by the method analogous to the one described
in Section 5 of [8] (by means of the Mayer–Vietoris sequences which clearly exist
in the category of spaces in Mar∗∞, cf. Section 2 of [8] for similar arguments). The
question whether a general space in Mar∞,Γ has such a cover is open.

Theorem 5.13 can be applied, e.g., if S2 ∈ Mar∗∞,Γ is a compact topological
manifold (in this case it has homotopy type of a finite CW complex, see [24]).

In a forthcoming paper we present some results, different from those formu-
lated above, on the de Rham cohomology of certain topological manifolds in
Mar∗∞ \Mar∗∞,Γ (including von Koch snowflake-type curves) and of Cantor-type
sets in Rn (having similar to the Sierpiński gasket structures).

6. Proofs of Properties (6), (10) and (11)

6.1. Proof of Property (6)

We use the Remez-type inequality of [4]:

Let V ⊂ Rn be a bounded convex body and ω ⊂ V be a measurable subset. By | · |
we denote the Lebesgue measure on Rn. For each p ∈ Pk,n,

sup
V

|p | ≤ Tk

(1 + βn(λ)

1− βn(λ)

)
sup
ω

|p|,(6.1)

where λ := |ω|/|V |, βn(λ) := (1 − λ)1/n and Tk(x) := 1
2 ((x +

√
x2 − 1)k + (x −√

x2 − 1)k) is the Chebyshev polynomial of degree k.

(Using inequality (6.1) one easily shows that cubes Qr(x) in Definition 1.1 of a
weak Markov point can be replaced by closed balls B̄r(x) with respect to a norm
on Rn.)

We also use the Markov inequality asserting that

sup
[a,b]

|p′| ≤ k2

b− a
· sup
[a,b]

|p| for each p ∈ Pk,1.(6.2)
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Proof. First, we prove the result for m = n.
Let x ∈ S be a weak k-Markov point such that Dϕ(x) is invertible. Since the

required statement is clearly true for invertible affine maps, making suitable affine
transformations of Rn, we may assume that x = ϕ(x) and Dϕ(x) is the identity
map. Then in an open neighbourhood U of x we have

(6.3) ϕ(y) = y + s(y) · ‖y − x‖∞, where lim
y→x

s(y) = 0.

Here ‖ · ‖∞ is the �∞ norm on Rn.
Suppose that {ri}i∈N is a convergent to zero sequence of positive numbers such

that all Qri(x) ⊂ U and

(6.4) sup
i∈N

{
sup

p∈Pk,n\{0}

( supQri
(x) |p|

supS∩Qri
(x) |p|

)}
=: c <∞.

From (6.3) we get

(6.5) ‖ϕ(y)− y‖∞ ≤ si · ri for all y ∈ Qri(x),

where si := supy∈Qri
(x) ‖s(y)‖ → 0 as i→ ∞. This implies that

(6.6) ϕ(S ∩Qri(x)) ⊂ Qri(1+si)(x).

Now, from (6.3)–(6.6) using inequality (6.1), the intermediate value theorem and
inequality (6.2) we deduce that, for each p ∈ Pk,n,

(6.7) sup
Qri(1+si)

(x)

|p| ≤ Tk

(
1 +

(
(1 + si)

n − 1
)1/n

1− (
(1 + si)n − 1

)1/n) sup
Qri

(x)

|p|

≤ c · Tk
(
1 +

(
(1 + si)

n − 1
)1/n

1− (
(1 + si)n − 1

)1/n) sup
S∩Qri

(x)

|p|

≤ c · Tk
(
1 +

(
(1 + si)

n − 1
)1/n

1− (
(1 + si)n − 1

)1/n)(
sup

ϕ(S∩Qri
(x))

|p|+ k2
√
n · si · ri

ri(1 + si)
sup

Qri(1+si)
(x)

|p|
)
.

Due to (6.6) inequality (6.7) implies that, for all sufficiently large i,

sup
Qri(1+si)

(x)

|p| ≤
c · Tk

(
1+((1+si)

n−1)1/n

1−((1+si)n−1)1/n

)
1− c · Tk

(
1+((1+si)n−1)1/n

1−((1+si)n−1)1/n

)
· k2

√
n·si

1+si

· sup
ϕ(S)∩Qri(1+si)

(x)

|p|.

The first factor in the right-hand side of the last inequality tends to c as i tends
to ∞. This shows that x := ϕ(x) is a weak k-Markov point of ϕ(S).

The case of m < n is reduced to the previous one. Indeed, the statement is
clearly true for linear projections Rn → Rm. Making suitable affine transforma-
tions of Rn and Rm without loss of generality we may assume that x = ϕ(x)
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and Dϕ(x) : Rn → Rm is the linear projection sending (y1, . . . , yn) ∈ Rn to
(y1, . . . , ym) ∈ Rm. Let us define ϕ̃ : Rn → Rn by the formula

ϕ̃(y1, . . . , yn) :=
(
ϕ(y1, . . . , yn), ym+1, . . . , yn

)
.

By the definition Dϕ̃(x) exists and is the identity map. Thus the previous case
implies that ϕ̃(x) is a weak k-Markov point of ϕ̃(S) ⊂ Rn. Applying now the linear
projection Dϕ(x) to ϕ̃(x) and ϕ̃(S) we obtain the required result.

The second part of the statement of the property follows directly from the first
one and the definition of weak k-Markov sets. �

6.2. Proof of Property (10)

For each k ∈ Z+ we construct a compact set S ∈ Mar∗k(R) \Mar∗k+1(R).

For k = 0 we define S := {0} ⊂ R. Clearly, S ∈ Mar∗0(R) \ Mar∗1(R), see
properties (1), (2) of Section 2.

Assume now that k ≥ 1. We set S1 := {i/k, 0 ≤ i ≤ k}. Next, choose
λ1 ∈ (0, 1/(3k)] and define S2 := S1 + λ1 · S1. Then choose λ2 ∈ (0, λ1/(3k)]
and define S3 := S2 + λ2 · S1. Proceeding similarly at the nth step we define
Sn := Sn−1 + λn−1 · S1 for some λn−1 ∈ (0, λn−2/(3k)], etc. (Here X + Y :=
{x+ y ; x ∈ X, y ∈ Y } for X,Y ⊂ R.)

The required set S is defined as the closure of ∪∞
n=1Sn.

By the definition, each element x ∈ S is written as a (convergent) series

x =

∞∑
m=0

jm · λm
k

,(6.8)

where jm are integers between 0 and k, and λ0 := 1. Moreover, x ∈ Sn if and only
if jm = 0 for all m ≥ n.

Let us show that presentation (6.8) is unique. Indeed, suppose that x =∑∞
m=0 j

′
m · λm/k is another such presentation. By M ∈ Z+ we denote the minimal

number such that jm = j′m for 0 ≤ m ≤M but jM+1 �= j′M+1. Then we have

0 =
∣∣∣ ∞∑
m=0

(jm − j′m) · λm
k

∣∣∣ ≥ |jM+1 − j′M+1| · λM+1

k
−

∞∑
m=M+2

|jm − j′m| · λm
k

≥ λM+1

k
−

∞∑
m=M+2

λm ≥ λM+1

k
−

∞∑
m=1

λM+1

(3k)m
≥ λM+1

2k
> 0,(6.9)

a contradiction proving the claim.

Proposition 6.1. Suppose that limi→∞
λi+1

λi
= 0. Then S ∈ Mar∗k(R)\Mar∗k+1(R).

Proof. First, we reformulate property (9) of Section 2 for the case of weak Markov
subsets of R.
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Lemma 6.2. A point x of a subset S ⊂ R is weak k-Markov if and only if there
exist a convergent to 0 sequence of positive numbers {ri}i∈N, a sequence of finite
subsets Fi := {xi1, . . . , xik+1} ⊂ S ∩ Qri(x), i ∈ N, and a positive number δ(x)
such that for all i ∈ N

(6.10) min
m 
=n

|xim − xin| ≥ δ(x)ri.

Proof of Lemma 6.2. According to property (9) it suffices to show that the hy-
pothesis of the lemma is equivalent to (2.1). So assuming that (2.1) is valid, let us
show that (6.10) is also valid for some δ(x) > 0.

If, on the contrary, such δ(x) does not exist, then passing if necessary to a
subsequence of {ri}i∈N without loss of generality we may assume that

(a) lim
i→∞

xim − xin
ri

= 0 for some fixed m �= n;

(b) lim
i→∞

xij − x

ri
=: xj ∈ [−1, 1] for all 1 ≤ j ≤ k + 1.

Due to (a) the set F := {x1, . . . , xk+1} consists of at most k distinct points. Thus
there exists a polynomial p of degree k on R having zeros at points of F and such
that max[−1,1] |p| = 1. This and (b) imply for pi(t) := p

(
t−x
ri

) ∈ Pk,1 \ { 0}, i ∈ N,
that

sup
Qri

(x)

|pi| = 1 and lim
i→∞

sup
Fi

|p | = 0,

a contradiction with (2.1).
Conversely, if (6.10) is valid then according to an inequality following from the

classical Cartan lemma, see page 21 in [25], condition (2.1) is also valid for the
same {ri}i∈N and Fi ⊂ Qri(x), i ∈ N. �

Returning to the proof of Proposition 6.1, first, let us show that S �∈ Mar∗k+1(R).
Assuming the contrary, we find, by Lemma 6.2, a point x ∈ S, a convergent to 0 se-
quence of positive numbers {ri}i∈N, a sequence of subsets Fi := {xi1, . . . , xik+2} ⊂
S ∩Qri(x), i ∈ N, and a positive number δ(x) such that for all i ∈ N

min
m 
=n

|xim − xin| ≥ δ(x) ri.(6.11)

By j(i), i ∈ N, we denote a natural number such that

λj(i)+1 ≤ ri < λj(i).(6.12)

Case I. lim
i→∞

ri
λj(i)+1

<∞ or lim
i→∞

λj(i)

ri
<∞.

In each of these cases passing to a subsequence of {ri}i∈N we may assume
without loss of generality that there exist constants c1, c2 > 0 and a sequence
{k(i)}i∈N ⊂ N such that for all i ∈ N

c1 · λk(i) ≤ ri ≤ c2 · λk(i).(6.13)

Next, according to (6.8), there exists a unique nondecreasing sequence {xi}i∈N

such that xi ∈ Si and |xi+1 − xi| ≤ λi for all i ∈ N, and limi→∞ xi = x.
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Lemma 6.3. For all sufficiently large i, S ∩Qri(x) belongs to the set

S(xk(i)) :=
{
z ∈ S ; z := xk(i) +

∞∑
m=k(i)

jm · λm
k

, jm ∈ Z+ ∩ [0, k], m ≥ k(i)
}
.

Proof of Lemma 6.3. If z �∈ S(xk(i)), then one of the first k(i) terms in (6.8) for z
differs from the corresponding term in (6.8) for xk(i). Thus, as in (6.9) we have

|z − x| ≥ |z − xk(i)| − |xk(i) − x| ≥ λk(i)−1

2k
−

∞∑
m=k(i)

λm ≥ λk(i)−1

2k
− 3λk(i)

k
.

The latter, due to the hypothesis of the proposition and (6.13), is greater than ri
for all sufficiently large i. This implies that z �∈ S ∩Qri(x). �

Passing to a subsequence of {ri}i∈N, if necessary, we may assume without loss
of generality that S ∩Qri(x) ⊂ S(xk(i)) for all i.

According to the lemma, numbers in (6.11) can be written as

xip := xk(i) +
∞∑

m=k(i)

jmp · λm
k

, jmp ∈ Z+ ∩ [0, k], m ≥ k(i), 1 ≤ p ≤ k + 2.

In particular, there exist integers 1 ≤ p1(i) < p2(i) ≤ k + 2 such that jk(i)p1(i) =
jk(i)p2(i). This, the hypothesis of the proposition and (6.13) imply that for all
sufficiently large i

|xip1(i) − xip2(i)| ≤
∞∑

m=k(i)+1

λm ≤ 3λk(i)+1

k
< δ(x) · ri

which contradicts (6.11).

Case II. lim
i→∞

ri
λj(i)+1

= ∞ and lim
i→∞

λj(i)

ri
= ∞.

Using the second of these conditions and arguing as in the proof of Lemma 6.3
we obtain that for all sufficiently large i, S∩Qri(x) ⊂ S(xj(i)+1) (see (6.12)). Then
for the linear polynomial p(t) := t− x, t ∈ R, we have

sup
S∩Qri

(x)

|p | ≤ sup
S(xj(i)+1)

|p | ≤
∞∑

m:=j(i)+1

λm ≤ 3λj(i)+1

k
.

On the other hand,
sup

Qri
(x)

|p | = ri.

Therefore

lim
i→∞

supQri
(x) |p |

supS∩Qri
(x) |p |

≥ lim
i→∞

k · ri
3λj(i)+1

= ∞,

contradicting (6.11) (see the proof of Lemma 6.2).
Thus we have proved that S is not weak (k + 1)-Markov.
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To show that S ∈ Mar∗k(R) it suffices to check the condition of Lemma 6.2
for points x ∈ ∪∞

i=1Si (a dense subset of S). In this case if x ∈ Sm and i ≥ m,
then S ∩ Qλi(x) contains the set {x} + λi · S1 of cardinality k + 1 with distances
between its distinct points being at least λi/k. Thus according to Lemma 6.2, each
x ∈ ∪∞

i=1Si is weak k-Markov. This gives the required statement and completes
the proof of Proposition 6.1. �

Remark 6.4. The constructed set S is of Hausdorff dimension zero. For otherwise,
due to property (8), see Section 2, S contains a nonempty weak (k + 1)-Markov
subset. However, each point of S is at most weak k-Markov (see the proof of
Proposition 6.1), a contradiction.

Taking direct products of n copies of S we obtain, according to property (5)
of Section 2, a compact subset of Rn belonging to Mar∗k(Rn) \Mar∗k+1(R

n). This
completes the proof of property (10).

6.3. Proof of Property (11)

First, we prove invariance of Mar∗k(R) under bi-Lipschitz maps.

Theorem 6.5. If x ∈ S ⊂ R is a weak k-Markov point and ϕ : S → S′ ⊂ R is a
bi-Lipschitz map, than ϕ(x) ∈ S′ is weak k-Markov. In particular, if S is a weak
k-Markov set, then S′ is weak k-Markov as well.

Proof. Using the McShane extension theorem [27], without loss of generality we
may assume that ϕ : R → R is Lipschitz and its restriction ϕ|S : S → S′ is bi-
Lipschitz. Let {ri}i∈N, Fi := {xi1, . . . , xik+1} ⊂ S ∩ Qri(x), i ∈ N, and δ(x) > 0
be the same as in Lemma 6.2 for the point x ∈ S. Then we have ϕ

(
Qri(x)

) ⊂
Qc1ri(ϕ(x)), where c1 is the Lipschitz constant for ϕ, and for all i ∈ N

min
m 
=n

∣∣ϕ(xim)− ϕ(xin)
∣∣ ≥ δ(x)

c2
· ri,

where c2 is the Lipschitz constant for ϕ
−1 : S′ → S. Thus ϕ(Fi) ⊂ S′∩Qc1ri(ϕ(x)),

i ∈ N, satisfy conditions of Lemma 6.2 for the point ϕ(x) ∈ S′, sequence {c1ri}i∈N

and δ(ϕ(x)) := δ(x)/(c1c2). In particular, ϕ(x) ∈ S′ is weak k-Markov.
The second statement follows from the first one because ϕ is continuous and

so sends dense subsets of S to dense subsets of S′. �

To show that Mar∗k(Rn), n ≥ 2, k ∈ N, is not invariant under bi-Lipschitz
maps, we construct Lipschitz functions ϕ : R → R whose graphs Γϕ ∈ Mar∗k(R

2) \
Mar∗k+1(R

2).

(�) Let f : R → R be a bounded Lipschitz function such that

(a) a point (x0, f(x0)) ∈ Γf is weak k- but not weak (k+1)-Markov, 1 ≤ k <∞;

(b) f ′|R\{x0} has discontinuities of the first kind at some points of a set {xi}i∈N;

(c) f is differentiable at all points of the set R \ {{xi}i∈Z+

}
.

Existence of such f is established in Theorem 6.8.
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Suppose {ci}i∈N is a countable dense subset of an open interval (−t, t) ⊂ R

such that

{x0 + ci}i∈N

⋂
{xi + cj}i,j∈N = ∅.(6.14)

(For instance, {xi}i∈Z+ ⊂ Q and {ci}i∈N is a linearly independent family over Q.)
Let {ai}i∈N be a sequence of nonzero numbers such that

∞∑
i=1

|ai| <∞.

We define a bounded Lipschitz function

ϕ(x) :=

∞∑
i=1

aif(x− ci), x ∈ [x0 − t, x0 + t].(6.15)

Theorem 6.6. Γϕ ∈ Mar∗k(R
2) \Mar∗k+1(R

2).

Proof. We start with:

Lemma 6.7. (1) If f ′(x0) exists, then the point (x0, f(x0)) ∈ Γf is weak 0- but
not weak 1-Markov.

(2) If f ′(x0+) and f ′(x0−) exist and distinct, then the point (x0, f(x0)) ∈ Γf is
weak 1- but not weak 2-Markov.

Proof of Lemma 6.7. (1) Assume that f ′(x0) exists. Consider a map F : R2 → R2,

F (x, y) := (x, y − f(x)).

By our assumption the derivative DF (x0, f(x0)) exists and has rank 2. Thus ac-
cording to property (6) of Section 2, (x0, f(x0)) ∈ Γf is weak k-Markov if and
only if (x0, 0) := F (x0, f(x0)) ∈ F (Γf ) := R × {0} is weak k-Markov (with re-
spect to Pk,2). Since F (Γf ) belongs to the zero set of the linear polynomial y,
the point F (x0, f(x0)) is 0-Markov only. This gives the required statement for
(x0, f(x0)) ∈ Γf .

(2) Suppose f ′(x0−) �= f ′(x0+) exist. Consider the function

g(x) :=

{
f(x0) + f ′(x0−)(x− x0) for x ≤ x0

f(x0) + f ′(x0+)(x− x0) for x > x0.

By the definition f̃ := f − g has derivative 0 at x0. Consider a map F̃ : R2 → R2,

F̃ (x, y) := (x, y − f̃(x)).

Then F̃ has derivative of rank 2 at each point (x0, y). In particular, (x0, f(x0)) ∈
Γf is weak k-Markov iff the point (x0, 0) := F̃ (x0, f(x0)) ∈ F̃ (Γf ) := Γg is weak
k-Markov. The last point is obviously 1-Markov, because

(a) the convex hull of the intersection of a square Q centered at (x0, 0) with Γg

is a triangle T (Q) such that the ratio of its area to the area of Q is a positive
constant independent of the size of the square;
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(b) maximum of modulus of a linear polynomial on Q∩Γg is equal to maximum
of modulus of this polynomial on T (Q);

(c) from (a) and Remez-type inequality (6.1) follow that maximum of modulus
of a linear polynomial on Q is bounded from above by an absolute constant
times maximum of modulus of this polynomial on T (Q).

To show that (x0, 0) ∈ Γg is not weak 2-Markov note that the nonzero quadratic
polynomial p(x, y) :=

(
y− f(x0)− f ′(x0−)(x− x0)

)(
y− f(x0)− f ′(x0+)(x− x0)

)
is equal to zero on Γg. This gives the required statement. �

To prove the theorem, first, let us show that each point (x0+ci, ϕ(x0+ci)) ∈ Γϕ

is weak k- but not weak (k + 1)-Markov. Indeed, according to condition (6.14) all
functions ajf(x − cj), j �= i, are differentiable at x0 + ci. Therefore the bounded
Lipschitz function

ϕi(x) :=
∑
j 
=i

ajf(x− cj), x ∈ [x0 − t, x0 + t],

is differentiable at x0 + ci as well.
Next, consider an invertible map F : (x0 − t, x0 + t)×R → (x0 − t, x0 + t)×R

defined by
F (x, y) := (x, y − ϕi(x)).

Clearly, the derivativeDF (x0+ci, ϕ(x0+ci)) exists and has rank 2. Thus according
to property (6) of Section 2, the point (x0+ ci, ϕ(x0+ ci)) ∈ Γϕ is weak m-Markov
iff F (x0+ci, ϕ(x0+ci)) ∈ F (Γϕ) is weakm-Markov. By the definition F (Γϕ) is the
graph of the function aif(x− ci), x ∈ (x0 − t, x0 + t), and F (x0 + ci, ϕ(x0 + ci)) =
(x0 + ci, aif(x0)). Applying to F (Γϕ) the invertible linear transformation of R2

sending each (x, y) to (x − ci, y/ai) we obtain that (x0 + ci, ϕ(x0 + ci)) ∈ Γϕ is
weak m-Markov iff (x0, f(x0)) ∈ Γf is weak m-Markov. The above argument and
the hypothesis of the theorem imply that each (x0 + ci, ϕ(x0 + ci)) ∈ Γϕ is weak
k- but not weak (k + 1)-Markov.

Now, consider points (xi+cj , ϕ(xi+cj)) ∈ Γϕ, i, j ∈ N. Due to condition (6.14),
for a fixed n ∈ N either anf

′(xi+cj−cn) or anf ′(xi+cj−cn+) �= anf
′(xi+cj−cn−)

exist. Hence, the same holds for ϕ, i.e., either ϕ′(xi + cj) or ϕ′(xi + cj−) �=
ϕ′(xi + cj+) exist. Then Lemma 6.7 implies that points (xi + cj , ϕ(xi + cj)) ∈ Γϕ,
i, j ∈ N, are at most weak 1-Markov.

Finally, by the hypothesis, ϕ is differentiable on the set [x0 − t, x0 + t] \ {{xi +
cj}i∈Z+ ; j∈N}. Thus image of this set in Γϕ consists of weak 0-Markov points.

Combining these facts and using that {x0 + ci}i∈N is dense in [x0 − t, x0 + t]
and k ≥ 1, we obtain that Γϕ ∈ Mar∗k(R

2) \Mar∗k+1(R
2) as required. �

Theorem 6.8. For each k ∈ N there exists a bounded Lipschitz function f : R → R

satisfying assumptions (a)–(c) of condition (�).

Proof. For k = 1 we define the function f by the formula

f(x) :=

{
|x− x0| for |x− x0| ≤ 1,

1 for |x− x0| > 1.
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Then f ′ has discontinuities of the first kind at points x0 ± 1 and x0 and according
to Lemma 6.7, (x0, f(x0)) ∈ Γf is weak 1- but not weak 2-Markov.

Now, we consider the case of k ≥ 2. We set tn := 2−n2

, n ∈ N+. Let p be a
univariate polynomial of degree k equals zero at t0 := 1 and t1 := 1/2 and such
that sup[−1,1] |p | ≤ 1. (If k ≥ 4, then we can choose p so that its derivatives at t0
and t1 are zeros as well.) We define the function f by the formula

f(x) :=

{
0 if x ∈ (⋃

j∈Z+
[t2j/2, t2j+2]

)⋃
(R \ (0, 1)),

t2j · p
(
t−1
2j · x) if x ∈ [t2j , t2j/2]; j ∈ Z+.

According to this formula, f is Lipschitz and bounded on R and f ′ has at most first
kind discontinuities at points t2j and t2j/2, j ∈ Z+. (If k ≥ 4 and p′ is zero at t0
and t1, then f

′ is continuous on R \ { 0}.) Let us show that (0, f(0)) = (0, 0) ∈ Γf

is weak k-Markov.

Lemma 6.9. Let Γh ⊂ Q1(0) be the graph of h := f |[1/3,1]. Then

sup
q∈Pk,2\{0}

( supQ1(0) |q|
supΓh

|q|
)
=: C <∞.

Proof of Lemma 6.9. Assuming, on the contrary, that the statement is false, us-
ing a compactness argument we find a polynomial q ∈ Pk,2 \ { 0} such that
q|Γh∩Q1(0) = 0. Therefore considering p and q in complex variables (z, w) ∈ C2

we obtain that q(z, w) equals zero on the complex irreducible curves {(z, w) ∈ C2;
w = p (z)} and {(z, w) ∈ C2 ; w = 0}. Since p is of degree k, for each w from
a Zariski open subset U of C the equation p (z) = w has k distinct solutions
z1(w), . . . , zk(w) ∈ C. Thus the univariate holomorphic polynomial q(·, w) be-
ing of degree at most k has roots z1(w), . . . , zk(w). This implies that q(z, w) =
r(w)(p (z) − w) for all z ∈ C and w ∈ U . Since dkq/dzk = const, we get that r is
constant on the (connected) open set U . Also, q(z, 0) = 0 for all z ∈ C. Hence,
r = 0 (because p �≡ 0). We conclude that q ≡ 0, a contradiction. �

Let us consider squares Qt2j (0) ⊂ R2, j ∈ Z+. Observe that, by the definition

of f , the graph of t−1
2j · f(t2jx), x ∈ [1/3, 1], coincides with Γh for all j ∈ Z+.

Hence, by Lemma 6.9 for each q ∈ Pk,2 \ {0} we have

supQt2j
(0) |q|

supΓf∩Qt2j
(0) |q|

≤ sup(x,y)∈Q1(0) |q(t2jx, t2jy)|
sup(x,y)∈Γh∩Q1(0) |q(t2jx, t2jy)|

≤ C.

This and Definition 1.1 imply that (0, 0) ∈ Γf is weak k-Markov.
Now, let us show that (0, 0) ∈ Γf is not weak (k + 1)-Markov. Suppose that

this is wrong. Then there exists a convergent to zero sequence of positive numbers
{ri}i∈N such that

(6.16) sup
i∈N

{
sup

q∈Pk+1,2\{0}

( supQri
(0) |q|

supΓf∩Qri
(0) |q|

)}
=: c <∞.

For each i by t2j(i) ∈ {t2j}j∈Z+ we denote the maximal number not exceeding ri.
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Applying (6.16) to q(x, y) := y we obtain

sup
i∈N

{ sup(x,y)∈Qri
(0) |y|

sup(x,y)∈Γf∩Qri
(0) |y|

}
= sup

i∈N

{ ri
t2j(i)

}
≤ c.

Thus

t2j(i) ≤ ri ≤ c t2j(i) for all i ∈ N.(6.17)

Consider the polynomial qi(x, y) := y
(
y − t2j(i) · p (t−1

2j(i) · x)
) ∈ Pk+1,2. Then

supQri
(0) |qi| ≥ |qi(ri, t2j(i))| = r2i . Also, inequality (6.17) and definition of the

sequence {tn} imply that for all sufficiently large i,

1

2
· t2(j(i)−1) ≥ c t2j(i) ≥ ri.

By the definition of f for such i we have

Γf ∩ {
[t2j(i), ri]× [−ri, ri]

} ⊂ {
(x, y) ∈ R2 ; y = 0

}
.

In turn, this implies that (recall that sup[−1,1] |p| ≤ 1)

sup
Γf∩Qri

(0)

|qi| = sup
Γf∩{[0,t2(j(i)+1) ]×[−ri,ri]}

|qi|

= sup
Γf∩Qt2(j(i)+1)

(0)

|qi| ≤ sup
Qt2(j(i)+1)

(0)

|qi| ≤ 2 · t2j(i) · t2(j(i)+1).

From these estimates we obtain

lim
i→∞

( supQri
(0) |qi|

supΓf∩Qri
(0) |qi|

)
≥ lim

i→∞

r2i
2 · t2j(i) · t2(j(i)+1)

≥ lim
i→∞

t2j(i)
2 · t2(j(i)+1)

= ∞.

This contradicts (6.16) and shows that (0, 0) ∈ Γf is not weak (k+1)-Markov. �

Proposition 6.10. There exists a bounded Lipschitz function ϕ : R → R whose
graph Γϕ ∈ Mar∗∞(R2).

Proof. According to Theorem 6.6, there exists a uniformly bounded sequence of
Lipschitz functions {ϕi}i∈N on R with uniformly bounded Lipschitz constants1 such
that ϕi is differentiable outside a countable dense subset Si ⊂ R and Γϕi ⊂ R2

is weak i-Markov, i ∈ N. We choose a sequence of numbers {ci}i∈N such that
{ci + Si} ∩ {cj + Sj} = ∅ for all i �= j (e.g., choose {ci}i∈N to be a linearly
independent family over a vector space over Q generated by all Si, i ∈ N), and
define a bounded Lipschitz function

ϕ(x) :=

∞∑
i=1

ϕi(x− ci)

i2
.

Then ϕ is differentiable outside the countable set ∪∞
i=1{Si + ci}. As in the proof

of Theorem 6.6 one shows that Γϕ is weak i-Markov for all i ∈ N because each
{Si + ci} is dense in R. Thus Γϕ ∈ Mar∗∞(R2). �

1For a Lipschitz function f : R → R its Lipschitz constant is L(f) :=supx �=y |f(x)−f(y)|/|x−y|.
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Example 6.11. Point (0, 0) ∈ R2 is weak ∞-Markov for the graph of f(x) =
x sin

(
1/x

)
(exercise for the reader). However, it is weak 0-Markov only for graphs

of functions g(x) = h(x) sin
(
1/x

)
, where h ∈ C(R+) and h(x) = o(x) as x→ 0+.

Let us prove now that classes Mar∗k(R
n), n ≥ 2, k ∈ N∪{∞}, are not invariant

under bi-Lipschitz maps.
Let ϕ : R → R be a Lipschitz function such that Γϕ ∈ Mar∗k(R

2) for some
k ∈ N∪{∞}. We set S := Γϕ×Rn−2 ⊂ Rn (if n = 2, then S := Γϕ). Due to prop-
erty (5) of Section 2, S ∈ Mar∗k(R

n). We define a bi-Lipschitz map F : Rn → Rn,

F (x, y, z) := (x, y − ϕ(x), z), (x, y) ∈ R2, z ∈ Rn−2.

Then F (S) := {(x, 0, z) ∈ Rn;x ∈ R, z ∈ Rn−2}. If Mar∗k(Rn) is invariant under F ,
then F (S) ∈ Mar∗k(R

n) as well. However, F (S) �∈ Mar∗1(R
n) as the set of zeros of

the linear polynomial y ∈ P1,n. This proves the second part of property (11).

7. Proofs of Propositions 3.2, 3.3 and Theorem 3.4

Proof of Proposition 3.2. First, let us show that the polynomial Tm
x (f) in Defi-

nition 3.1 is unique. Suppose T̃m
x (f) and Tm

x (f) are polynomials subject to this
definition. Then |T̃m

x (f)(y) − Tm
x (f)(y)| = o(‖y − x‖m∞). By the definition of a

weak k-Markov point, there exists a convergent to zero sequence of positive num-
bers {ri}i∈N and a constant c > 0 such that, for all i,

sup
Qri

(x)

|T̃m
x (f)− Tm

x (f)| ≤ c · sup
S∩Qri

(x)

|T̃m
x (f)− Tm

x (f)|.

On the other hand, by the one-dimensional Remez inequality (cf. (6.1)),

sup
Q1(x)

|T̃m
x (f)− Tm

x (f)| ≤
(4√n
ri

)m

· sup
Qri

(x)

|T̃m
x (f)− Tm

x (f)|.

Combining these inequalities we get

sup
Q1(x)

|T̃m
x (f)− Tm

x (f)| ≤ c ·
(4√n
ri

)m

· o(rmi ) −→ 0 as i→ ∞.

Thus T̃m
x (f) = Tm

x (f).
Now, if f̃ : Rn → R has derivatives of order ≤ m at x and Tm

x (f̃) is its Taylor
polynomial of degree m at x, then due to Definition 3.1, the function f := f̃ |S
has derivatives of order ≤ m at x, and Tm

x (f) = Tm
x (f̃) by the uniqueness just

proved. So let us prove the converse statement. To this end choose a retraction
map ψ : Rn → S such that ‖y−ψ(y)‖∞ ≤ 2 ·dist∞(y, S) for all y ∈ Rn. We define

f̂(y) :=
f(y)− Tm

x (f)(y)

‖y − x‖m∞
, y ∈ S \ {x}, f̂(x) := 0, and

f̃(y) := Tm
x (f)(y) + ‖y − x‖m∞ · (f̂ ◦ ψ)(y), y ∈ Rn.
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Then f̃ is the required extension of f . To prove this we must check that f̂ ◦ ψ is
continuous at x. (Since (f̂ ◦ ψ)(x) = 0, this will imply the required statement.)

For otherwise, there exists a sequence {yi}i∈N ⊂ Rn tending to x such that

limi→∞ |(f̂ ◦ ψ)(yi)| �= 0. By definition, ‖yi − ψ(yi)‖∞ ≤ 2 · dist∞(yi, S) ≤ 2 ·
‖yi − x‖∞. Hence, {ψ(yi)}i∈N ⊂ S tends to x as well. But f̂ is continuous

(and equals zero) at x by Definition 3.1. This implies that limi→∞ |(f̂ ◦ ψ)(yi)| =
limi→∞ |f̂(ψ(yi))| = 0, a contradiction showing that f̂ ◦ψ is continuous and equals
zero at x. �

Proof of Proposition 3.3. Let {ri}i∈N and Fi ⊂ S ∩ Qri(x), cardFi = dimPk,n,
i ∈ N, be the same as in property (9) for x, see (2.1). Perturbing each Fi, without
loss of generality we may assume that x �∈ Fi for all i ∈ N. Since inequalities of
property (9) are also valid for polynomials in Pm,n, by Proposition 3.5 in [3] there
exist subsets Fm

i ⊂ Fi, cardFi = dimPm,n (=: dm,n), i ∈ N, such that

sup
i∈N

{
sup

p∈Pm,n\{0}

( supQri
(x) |p |

supFm
i
|p |

)}
=: c <∞.(7.1)

We set {ri}i∈N and {Fm
i }i∈N to be the required objects of the proposition.

Next, from (7.1) follows that each Fm
i is a minimal interpolating set for poly-

nomials of degree m on Rn. If Fm
i := {xi1, . . . , xidm,n} by �ij ∈ Pm,n we denote a

polynomial equal to 1 at xij and 0 at all other points xis, s �= j. Then we define

(7.2) μα
i ({xij}) :=

1

α!
·Dα�ij(x), i ∈ N, 1 ≤ j ≤ dm,n, |α| ≤ m.

Let us prove (3.1). By definition,∫
Fm

i

f dμα
i =

dm,n∑
j=1

f(xij) · D
α�ij(x)

α!
=

1

α!
·Dα

( dm,n∑
j=1

f(xij) · �ij
)
(x)

=
Dα

(
Pi(f)

)
(x)

α!
,

where Pi(f) ∈ Pm,n is such that Pi(f)(xij) := f(xij) for all 1 ≤ j ≤ dm,n. Thus to
prove the required statement it suffices to show that the sequence of polynomials
{Pi(f)}i∈N converges (uniformly on a fixed cube) to Tm

x . To this end consider
polynomials Pi(f) − Tm

x , i ∈ N. Since Pi(f)|Fm
i

= f , there exists a convergent to
zero sequence of positive numbers {ci}i∈N such that, for all i,

max
y∈Fm

i

|Pi(f)(y)− Tm
x (y)|

‖y − x‖m∞
≤ ci.

From these inequalities arguing as in the proof of Proposition 3.2 we obtain that

sup
Q1(x)

|Pi(f)− Tm
x | ≤ c̃i

for some convergent to zero sequence {c̃i}i∈N ⊂ R+. This shows that {Pi(f)}i∈N

converges uniformly on Q1(x) to T
m
x and completes the proof. �
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Proof of Theorem 3.4. Inequalities (3.2) and the Whitney–Glaeser theorem (see,
e.g., Volume I, Section 2.2 in [2]) imply that there exists a function F ∈ Cm,ω(Rn)
of norm at most c(m,n)λ such that Tm

x (F ) = Tm
x (f) for all weak k-Markov points

x ∈ S. In particular, F = f at weak k-Markov points of S. Since the set of such
points is dense in S and f is continuous, F |S = f , i.e., f ∈ Cm,ω(S). Conversely, if
f ∈ Cm,ω(S), then by the Whitney–Glaeser theorem it satisfies inequalities (3.2).

Also, due to Proposition 3.2, Tm
x (f) coincides with Tm

x (F ) for any Cm,ω ex-
tension F of f . Therefore by the Whitney–Glaeser theorem applied to an almost
optimal Cm,ω extension of f , inf λ ≈ ‖f‖Cm,ω(S) with constants of equivalence
depending on m and n only. �

8. Proofs of Theorems 4.3, 4.4 and 4.5

Proof of Theorem 4.3. Since f ∈ Cm+1(S) and S is compact, there exists a func-

tion f̂ ∈ Cm+1(Rn) with compact support such that f̂ |S = f . We prove the
theorem by induction on m.

Assume first thatm = 1, i.e., Dα
Sf = 0 for all |α| = 1. For eachDj ⊂ Ω consider

the d-closed 1-form λj := d(f̂ |Dj ). We extend λj to (Dj)
c by zero denoting the

extended form λ̂j .

Lemma 8.1. There exist a modulus of continuity ω and a constant C > 0 such that
if λ̂j =

∑n
i=1 aij dxi, then all aij ∈ C1,ω(Rn) and sup�, 1≤i≤n ‖

∑�
j=1 aij‖C1,ω(Rn) ≤

C, and all λ̂j are d-closed.

Proof of Lemma 8.1. Since f̂ ∈ C2
c (R

n), there exists a modulus of continuity ω such

that f̂ ∈ C2,ω(Rn). Let us prove the statement for such ω and C := ‖f̂‖C2,ω(Rn).

Let df̂ :=
∑n

i=1 ci dxi. By the hypothesis, all ci and their partial derivatives
∂ci/∂xj vanish on S. Moreover, aij |Dj := ci|Dj . Hence, for all admissible � ∈ N,∑�

j=1 aij(x) and
∑�

j=1 ∇aij(x) tend to 0 uniformly in x as D′
� := ∪�

j=1Dj � x →
∪�
j=1

(
D̄j \Dj

)
(⊂ S). This and the definition of aij imply that a′i� :=

∑�
j=1 aij ∈

C1
c (R

n). Moreover, ‖a′i�‖C1,ω(D′
�)

= ‖ci|D′
�
‖C1,ω(D′

�)
≤ C and if x1 ∈ D′

� and
x2 ∈ (D′

�)
c, then

sup
Rn

|a′i�|+ max
|α|=1

|Dαa′i�(x1)−Dαa′i�(x2)|
ω(‖x2 − x1‖∞)

≤ sup
Rn

|ci|+ max
|α|=1

|Dαci(x1)−Dαci(z)|
ω(‖x2 − x1‖∞)

≤
(
1− ω(‖z − x1‖∞)

ω(‖x2 − x1‖∞)

)
sup
Rn

|ci|

+
ω(‖z − x1‖∞)

ω(‖x2 − x1‖∞)

(
sup
Rn

|ci|+ max
|α|=1

|Dαci(x1)−Dαci(z)|
ω(‖z − x1‖∞)

)
≤ C

for some z ∈ [x1, x2] ∩D′
� \D′

� (�= ∅).
These show that aij ∈ C1,ω(Rn) and sup�, 1≤i≤n ‖a′i�‖C1,ω(Rn) ≤ C.

The closedness of λ̂j follows from its definition. �
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Let us fix a point o /∈ Ω̄ and define

gj(x) :=

∫ x

o

λ̂j , x ∈ Rn.

Since λ̂j is d-closed, the integral is independent of the path joining o and x. In
particular, since by our assumption (D̄j)

c is connected and ∂Dj = ∂(D̄j)
c, the

continuous function gj is equal to zero on (Dj)
c and supRn |gj | ≤ C′ for some

C′ > 0 independent of j. Next, due to Lemma 8.1 the function g′� :=
∑�

j=1 gj
equals zero on (D′

�)
c and satisfies ‖g′�‖C2,ω(Rn) ≤ C′′ for some C′′ > 0 independent

of �. Also, by our construction, d
(
f̂ |D′

�
− g′�

)
= 0 for all �.

Further, according to a compactness result for bounded sequences in C2,ω(Rn),
see, e.g. Volume II, Proposition 5.4 in [2], there exists a subsequence {g′�p}p∈P

of {g′�} and a function g ∈ C2,ω(Rn) such that for every closed cube Q ⊂ Rn,

lim
p∈P

‖g − g′�p‖C2(Q) = 0.

In particular, g equals zero on (∪j Dj)
c
and d

(
f̂ |Ω−g|Ω

)
= 0 (since Ω̄ := (∪j Dj)�S

and dS(f̂ |S) = 0). Connectedness of Ω implies that f̂ |Ω̄ − g|Ω̄ = const. On the

other hand, f̂ |S = f and g|S = 0. This shows that f is the restriction to S of a
(unique) polynomial of degree zero, as required. As a corollary, we get immediately
that S is connected. This proves the case m = 1.

Now, assuming that the theorem is valid for m− 1 ≥ 1 we prove it for m.
To this aim we consider functions Dα

Sf , |α| = m− 1. Then dS(D
α
Sf) = 0 and

by the induction hypothesis, Dα
Sf = const for all α. Since Dα

Sf = D
π(α)
S f for

any permutation π defined on the set of coordinates of α, there exists a unique
homogeneous polynomial p ∈ Pm−1,n such that Dαp = Dα

Sf for all |α| = m − 1.
In particular, Dα(f − p |S) = 0 for all |α| = m − 1 and f − p |S ∈ Cm+1(S).
Applying to this function the induction hypothesis we obtain that f − p |S = q|S
for a unique q ∈ Pm−2,n. Thus f is the restriction to S of the (unique) polynomial
pf := p+ q ∈ Pm−1,n. �

Proof of Theorem 4.4. Since f ∈ C2
C
(S) and S is compact, there exist a modulus

of continuity ω and a function f̂ ∈ C2,ω
C

(Cn) := C2,ω(R2n) ⊗ C with compact

support such that f̂ |S = f . We set η := ∂(f̂ |Ω̄) and by η̂ denote its extension
to Cn by zero. Then repeating literally the proof of Lemma 8.1 we obtain that
if η̂ :=

∑n
j=1 aj dz̄j, then all aj ∈ C1,ω

C
(Cn) and η̂ is a ∂-closed (0, 1)-form on Cn

with support in (∪j≥1Dj).

Lemma 8.2. There exists a function g ∈ C1
C
(Cn) equals zero on S ∪ Ω̄c such

that ∂g = η̂.

Proof of Lemma 8.2. We set

δ(z) := dz1∧· · ·∧dzn and δ′(z) :=
n∑

k=1

(−1)k−1dz1∧· · ·∧dzk−1∧dzk+1∧· · ·∧dzn.
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Without loss of generality we may assume that Ω̄ ⊂ B, the open unit Euclidean
ball in Cn. Then the function

g(z) :=

∫
ξ∈B

η̂(ξ) ∧ δ′
( ξ̄ − z̄

‖ξ − z‖2
)
∧ δ(ξ), z ∈ Cn,(8.1)

satisfies ∂(g|B) = η̂|B, see Section 6.4, Theorem 6.9 in [17]; here ‖ · ‖ is the the
�2-norm on Cn. Since supp η̂ � B, g ∈ C1

C
(Cn), and moreover, is holomorphic

on B \ supp η̂. Further, (8.1) shows that g is complex analytic on (supp η̂)c and
limz→∞ g(z) = 0. Therefore by the classical Hartogs theorem in Cn, n ≥ 2, the
function g is holomorphic on (supp η̂)c and equals zero in the connected component
of this set containing (B̄)c.

On the other hand, we can write η̂ =
∑

j≥1 η̂j , where η̂j is extension by zero
of η|Dj . Then we rewrite (8.1) as

g(z) =

∫
ξ∈B

∑
j≥1

η̂j(ξ) ∧ δ′
( ξ̄ − z̄

‖ξ − z‖2
)
∧ δ(ξ)

=
∑
j≥1

∫
ξ∈B

η̂j(ξ) ∧ δ′
( ξ̄ − z̄

‖ξ − z‖2
)
∧ δ(ξ).

(The change of the order is possible because the series on the right is absolutely
convergent.) Since each η̂j is of class C1 and ∂-closed on Cn (cf. the proof of
Lemma 8.1) and (D̄j)

c is connected and ∂Dj = ∂(D̄j)
c, each term, say gj , on

the right-hand side of the above identity is zero on (Dj)
c and satisfies ∂gj = η̂j

on Cn (cf. a similar argument above for g). Hence, g =
∑

j≥1 gj equals zero on

∪j≥1(Dj)
c = S � Ω̄c as required. �

Now, consider the function F := f̂ |Ω̄ − g|Ω̄. Then by Lemma 8.2, F ∈ C1
C
(Ω̄),

F |S = f and ∂F |Ω = 0. Thus F ∈ O(Ω) ∩ C1
C
(Ω̄). Further, by the maximum

modulus principle, supDj
|F | = supD̄j\Dj

|F | for all j. Moreover, ∪j≥1

(
D̄j \Dj

) ⊂
S and Ω̄ := (∪j≥1Dj) ∪ S. Therefore supΩ̄ |F | = supS |f |. This implies that such
an extension F is unique. �

Proof of Theorem 4.5. Let f̂ ∈ C2,α(Rn) be a function with compact support such

that f̂ |S = f . Consider the functions f̃1, obtained as extension of (Δf̂)|(∪j Dj)c

by zero to Rn, and f̃2, obtained as extension of (Δf̂)|∪j Dj
by zero to Rn. Then

from the hypotheses of the theorem as in the proof of Theorem 4.3 one obtains
that f̃i ∈ C0,α(Rn), i = 1, 2, and have compact supports. By the definition,

Δf̂ = f̃1 + f̃2 (because (Δf̂)|S = 0).
We set

Fi(x) :=
1

n(2− n)ωn

∫
Rn

f̃i(y)

‖x− y‖n−2
dy1 ∧ · · · ∧ dyn,

where ωn is the volume of the unit Euclidean ball in Rn and ‖ · ‖ is the �2-norm
on Rn. Then according to the Schauder theorem, see, e.g., Chapter 4 in [14],
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Fi ∈ C2,α(Rn) and ΔFi = f̃i, i = 1, 2. Moreover, limx→∞ Fi = 0 (because n ≥ 3
and f̃i have compact supports) and F1, F2 are harmonic in ∪j≥1Dj and (∪j≥1Dj)

c,

respectively. By our construction Δ(F1 + F2 − f̂) = 0, i.e., F1 + F2 − f̂ is a
harmonic function having limit zero at infinity. Thus by the maximum principle
F1 + F2 − f̂ = 0. In particular, (F1 + F2)|S = f , as required.

If F ′
1, F

′
2 ∈ C2,α(Rn) is another pair of functions satisfying the conclusion of

the theorem, then F1 − F ′
1 = F2 − F ′

2 on S and F1 − F ′
1, F2 − F ′

2 are harmonic in
∪j≥1Dj and (∪j≥1Dj)

c, respectively. Since Fi − F ′
i ∈ C2,α(Rn) and S is weak k-

Markov with k ≥ 2, the latter implies that the function H ∈ C(Rn) equals F1−F ′
1

on ∪j≥1Dj and F2 − F ′
2 on (∪j≥1Dj)

c is harmonic and has limit zero at infinity.
Thus H = 0. This proves the uniqueness part of the theorem. �

9. Proofs of results of Subsection 5.1

Proof of Proposition 5.2. Let V = (Vβ)β∈B be an open cover of S. Consider the
open coverW = (Wγ)γ∈Γ consisting of all possible sets Vβ∩Uα where (Uα, ϕα) ∈ D
is a chart. Since S is paracompact of covering dimension ≤ n having a base of
relatively compact open subsets, there exist locally finite open refinements W ′ =
(W ′

i )i∈I of W and W ′′ = (W ′′
i )i∈I of W ′ such that the order of W ′ is ≤ n+ 1 and

W ′′
i �W ′

i for each i ∈ I, see, e.g. arguments in the proof of Lemma 1.4 in [30].
To prove the result it suffices for each i ∈ I to construct a nonnegative Ck

function gi on S such that gi > 0 on W̄ ′′
i and supp gi ⊂W ′

i . Then

ρi :=
gi∑
s∈I gs

, i ∈ I,

is the required Ck partition of unity.
To this end for each W̄ ′′

i ⊂W ′
i choose (Uα(i), ϕα(i)) ∈ D such that W ′

i ⊂ Uα(i).
Then ϕα(i)(W̄

′′
i ) is a compact subset of the relatively open subset ϕα(i)(W

′
i ) of a

weak k-Markov set Sα(i) of R
n. In a standard way we construct a nonnegative Ck

function g̃i on Rn positive on ϕα(i)(W̄
′′
i ) such that (supp g̃i) ∩ Sα(i) � ϕα(i)(W

′
i ),

see, e.g., [30]. Finally, we determine gi := ϕ∗
α(i)g̃i. �

Proof of Proposition 5.3. By definitions of the objects involved, it suffices to prove
the following version of the proposition:

If S1, S2 ∈ Mar∗k(Rn), k ≥ 1, and f : S1 → S2 is a Ck diffeomorphism, then
f−1 : S2 → S1 is a Ck diffeomorphism as well.

In this case the definition of the Ck diffeomorphism and the (classical) inverse
function theorem in Rn imply that there exist open neighbourhoods U1 of S1

and U2 of S2 and a Ck extension f̂ : U1 → U2 of f which is a Ck diffeomorphism.
Therefore f̂−1 : U2 → U1 is a C

k diffeomorphism of manifolds, see, e.g., [30]. Hence,

f−1 := f̂−1|S2 : S2 → S1 is a Ck diffeomorphism by definition. �

Proof of Proposition 5.4. Since the covering dimension of S is at most n and S
is separable, it can be covered by at most n + 1 charts (Ui, ϕi)1≤i≤m so that
each Ui is disjoint union of at most countable family of mutually disjoint open sets
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Vij � S such that ϕi(Vij) � Rn is of diameter (measured in the Euclidean norm)
at most 1/4. Choose vectors vij ∈ Rn such that vij + ϕi(Vij) contain 0 ∈ Rn.
Let L ⊂ Rn be a one-dimensional subspace containing a unit vector e. Choose a
sequence of points {xij} ⊂ L enumerated by the same indices as the family {Vij}
such that xij := nije, nij ∈ N. In particular, distances between distinct points of
the sequence are greater than or equal to 1.

Let {ρij} be a Ck partition of unity subordinate to the open cover (Vij) of S.
Then ρi :=

∑
j ρij , 1 ≤ i ≤ m, is a Ck partition of unity subordinate to the open

cover (Ui). We define maps ϕ̃i : S → Rn,

ϕ̃i(x) := ρi(x)
(
xi(x) + vi(x) + ϕi(x)

)
, x ∈ S.

Here xi :=
∑

j xijχij and vi :=
∑

j vijχij , where χij is the characteristic function
of Vij .

Then we define a map Φ : S → Rm(n+1) by the formula

Φ(x) :=
(
ϕ̃1(x), . . . , ϕ̃m(x), ρ1(x), . . . , ρm(x)

)
.

Note that Φ(x) = Φ(x′) implies that ρi(x) = ρi(x
′) �= 0 for some i and hence

x, x′ ∈ Ui. Assume that x ∈ Vij and x′ ∈ Vij′ . Then ρij(x) =: ρi(x) = ρi(x
′) :=

ρij′ (x
′). In turn, this implies that xij + vij + ϕi(x) = xij′ + vij′ + ϕi(x

′). Hence,
if j �= j′, then 1 ≤ ‖xij − xij′‖2 = ‖(vij′ + ϕi(x

′)) − (vij + ϕi(x))‖2 ≤ 1/2, a
contradiction. Thus j = j′ and ϕi(x) = ϕi(x

′), i.e., x = x′.
Now we check that DΦ is injective on each fibre of TS. At each point x ∈ S

the differential DΦ(x) sends a vector v ∈ TxS ⊂ TS of the tangent space at x to
the following vector in Rn × · · · × Rn × R× · · · × R ⊂ TΦ(x)R

m(n+1):

(DΦ(x))(v) :=
(
(Dρ1(x))(v)(x1(x) + v1(x) + ϕ1(x)) + ρ1(x)(Dϕ1(x))(v), . . . ,

(Dρm(x))(v)(xm(x) + vm(x) + ϕm(x)) + ρm(x)(Dϕm(x))(v),

(Dρ1(x))(v), . . . , (Dρm(x))(v)
)
.

Let 1 ≤ s ≤ m be such that ρs(x) �= 0. Assuming that (DΦ(x))(v) = 0 we get
(Dϕs(x))(v) = 0, a contradiction.

Finally, let us show that Φ is proper, i.e., preimage under Φ of a compact subset
of Rm(n+1) is compact in S. Assuming, on the contrary, that this is false we find
a sequence {sn}n∈N ⊂ S without limit points such that {Φ(sn)}n≥1 ⊂ Rm(n+1) is
bounded. This implies that the sequence

{∑m
i=1 ρi(sn)xi(sn)

}
n≥1

⊂ L is bounded.

We get from here that supn≥1 mini∈Jn ‖xi(sn)‖2 <∞, where Jn is the set of indices
i ∈ {1, . . . ,m} for which ρi(sn) �= 0. Since ‖xi(sn)‖2 ∈ N for all i ∈ Jn and
n ∈ N, the latter inequality implies that there exist a number i0 and an infinite
subsequence {snp}p∈N of {sn} such that xi0 (snp) �= 0 and are equal for all p ∈ N.
This is possible only if all snp belong to some Vi0j0 contradicting our assumption
(because Vi0j0 ⊂ S is relatively compact but {snp} does not have limit points in S).
Thus Φ is proper.

Lemma 9.1. Let S ∈ Mar∗k, k ≥ 1, and the rank of TS be n. Suppose f : S →M
is a Ck map into a smooth Riemannian manifold M of dimM > n. Then f(S)
has measure zero.
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Proof. Since S can be covered by at most countable family of charts it suffices
to prove the result for S ∈ Mar∗k(R

n). Next, since f is Ck and M is a smooth

manifold, there is an open neighbourhood U ⊂ Rn of S and a Ck map f̂ : U →M
such that f̂ |S = f . Then by the classical Sard theorem f̂(U) is of measure zero

in M . Since f(S) ⊂ f̂(U) is union of a countable family of compact subsets, it is
measurable and so has measure zero as well. �

If S ∈ Mar∗k with k ≥ 2, starting with the proper embedding Φ: S → RN ,
N := m(n+1) > 2n+1, as above, we then show that by projecting onto a hyper-
plane it is possible to obtain an embedding into RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement)
and let Pv : RN → RN−1 be the orthogonal projection onto this hyperplane. We
show that the set of v for which Φv = Pv ◦ Φ fails to be a proper embedding is
of measure zero, hence that it is possible to choose v for which Φv is a proper
embedding.

The map Φv fails to be an embedding exactly when it is not injective or DΦv

is not injective at some point. Let us consider the two failures separately:
If v is in the image of the map β : (S × S) \ΔS → Sn−1, where ΔS ⊂ S × S is

the diagonal, given by

β(x1, x2) :=
Φ(x1)− Φ(x2)

‖Φ(x1)− Φ(x2)‖2 ,

then Φv will fail to be injective. Note however that β maps a space in Mar∗k, k ≥ 2,
with rank of tangent bundle 2n into (N − 1)-dimensional Riemannian manifold,
and if N > 2n+ 1, then Lemma 9.1 implies that the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U,ϕ).
The map Φv will fail to be an immersion in U precisely when v coincides with a
vector in the normalized image of D(Φ ◦ ϕ−1), where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence, we have a map (letting N(w) = ‖w‖2)
D(Φ ◦ ϕ−1)

N ◦D(Φ ◦ ϕ−1)
: ϕ(U)× Sn−1 −→ SN−1.

Note that since k ≥ 2, this map is at least of class C1. Thus, by Lemma 9.1,
its image has measure zero as long as 2n − 1 < N − 1, which is certainly true
since 2n < N − 1. Taking union over at most countably many charts, we see that
immersion fails on a set of measure zero in SN−1.

In addition, Φv is not proper if there exists a sequence {sn} ⊂ S such that
{Φ(sn)} ⊂ RN converges to ∞ and {Φv(sn)} ⊂ RN−1 is bounded. This implies
that limit points of {Φ(sn)/‖Φ(sn)‖2} are either v or −v. However, by the def-
inition of Φ limit points of the latter sequence coincide with limit points of the
sequence{

(ρ1(sn)x1(sn), . . . , ρm(sn)xm(sn), 0, . . . , 0)

‖ρ1(sn)x1(sn), . . . , ρm(sn)xm(sn), 0, . . . , 0)‖2

}
n≥1

⊂ SN−1 ∩ (
L× · · · × L× {0} × · · · × { 0}) =:M ∼= Sm−1.
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Since m− 1 ≤ n < N − 1, M is a set of measure zero in SN−1. Thus for Φv to be
proper it suffice to choose v �∈M .

We see that Φv fails to be a proper embedding for a set of v ∈ SN−1 of measure
zero. Hence repeating the above arguments (with Φ replaced by a suitable Φv) we
may reduce N all the way to N = 2n+ 1.

Next, let us show that if f : S → RN is a proper embedding, then f(S) ∈ Mar∗k
and has weak k-Markov structure induced from RN .

Let (U,ϕ) be a chart on S. By definition the map f ◦ϕ−1 : ϕ(U) ⊂ Rn → RN is
a Ck embedding. In particular, there exist an open neighbourhoodO ⊂ Rn of ϕ(U)

and a Ck embedding f̂ : O → RN which coincides with f ◦ ϕ−1 on ϕ(U). Since f
is a proper embedding, f(U) ⊂ f(S) is open in the induced from RN topology and
for each point x ∈ ϕ(U) there exists an open ball Bx � O centered at x such that

f̂(Bx)∩ f(S) = (f ◦ϕ−1)(Bx ∩ϕ(U)). Then f̂(Bx) is a C
k submanifold of the Ck

manifold

Mx := RN \ (
f̂(∂Bx) ∪ (f(S) \ (f ◦ ϕ−1)(Bx ∩ ϕ(U)))

)
;

here ∂Bx is the boundary of Bx. By the tubular neighbourhood theorem, there
exists an open neighbourhood Nx ⊂ Mx of f̂(Bx) and a Ck retraction rx : Nx →
f̂(Bx). In particular, Nx ∩ f(S) = (f ◦ ϕ−1)(Bx ∩ ϕ(U)).

By the definition ϕ ◦ f−1|(f◦ϕ−1)(Bx∩ϕ(U)) is restriction to f(U) of the Ck map

f̂−1 ◦ rx : Nx → Rn. Using the open cover (Nx)x∈ϕ(U) of f(U) we find its locally
finite open refinement (Wi)i∈I and a subordinate C∞ partition of unity {ρi}i∈I

with supp ρi � Wi. If τ : I → ϕ(U) is a refinement map such that Wi ⊂ Nτ(i),
then we define the map g : W := ∪i∈IWi → Rn by the formula

g(x) :=
∑
i∈I

ρi(x) ·
(
f̂−1 ◦ rτ(i)

)
(x), x ∈W.

For x ∈ f̂(ϕ(U)), let i1, . . . , iq be all indices for which ρim(x) �= 0, 1 ≤ m ≤ q.
Then

x ∈
( q⋂

m=1

Nτ(im)

)⋂
f(S) =

q⋂
m=1

(
f ◦ ϕ−1

)(
Bτ(im) ∩ ϕ(U)

)
,

so that

g(x) =

q∑
m=1

ρim(x)(ϕ ◦ f−1)(x) = (ϕ ◦ f−1)(x).

Hence,

g|f(U) = ϕ ◦ f−1.

Finally, we equip f(S) with the weak k-Markov structure consisting of all charts
of the form (f(U), ϕ◦f−1). Since f is proper, f(U) is open in the induced topology
so that the above argument shows that f(S) ∈ Mar∗k and has the weak k-Markov
structure induced from RN and f : S → f(S) is a Ck diffeomorphism. �



564 A. Brudnyi

10. Proof of Theorem 5.5

10.1. Hausdorff dimension of graphs of continuous functions

In this subsection we formulate and prove auxiliary results used in the proof of the
theorem.

In what follows dimH and dimB and dimB will denote the Hausdorff and lower
and upper box-counting dimensions of a bounded subset of a Euclidean space. If
dimB(F ) = dimB(F ) we refer to this value as the box-counting dimension of F
(denoted dimB(F )). We will use the following product formulas, see, e.g., page 94
in [10]:

If E ⊂ Rn and F ⊂ Rm are any Borel sets, then

(10.1) dimHE + dimHF ≤ dimH(E × F ) ≤ dimHE + dimB(F ).

Let f : I ⊂ R → R be bounded continuous on an interval I and Γf ⊂ R2 be its
graph. In many cases Γf may be fractal. We formulate several results of this type
(for other results, see, e.g., [9], [10], [21], [31], [32] and references therein).

If

(10.2) wΘ(x) :=

∞∑
n=0

an cos(2π(bnx+ θn)), 0 < a < 1 < b, ab > 1,

is the Weierstrass function with a random phase added to each term, and if
each θn is chosen independently with respect to the uniform probability measure
in [0, 1], then with probability one the Hausdorff dimension of the graph of wΘ over
each (nontrivial) subinterval I ⊂ R is D := 2 + (ln a)/(ln b), see Theorem 1 and
pages 796–798 in [21]. In the case of all θn = 0, i.e., of the classical Weierstrass
function w, it remains still unknown whether the Hausdorff dimension of Γw has
the same value although it is proved in [23] that dimBΓw = D.

Also, it was shown on page 796 of [21] that on each nontrivial subinterval I ⊂ R,
the function wΘ satisfies the Hölder condition with exponent 2−D. Thus according
to Corollary 11.2 of [10], for almost all sequences Θ = {θn} chosen independently
with respect to the uniform probability measure in [0, 1], the graph of wΘ over
each (nontrivial) subinterval I ⊂ R satisfies

dimH(ΓwΘ |I) = dimB(ΓwΘ |I) = D.(10.3)

Now, if ΓwΘ1
, . . . ,ΓwΘn

⊂ R2 are graphs of functions satisfying (10.3), then
according to the product formula (10.1)

dimH

(
ΓwΘ1

|I1 × · · · × ΓwΘn
|In × K̄s

)
= nD + s(10.4)

for all nontrivial closed intervals I1, . . . , In ⊂ R.
Observe that D attains any value in open interval (1, 2). Thus nD attains any

value in the interval (n + s, 2n + s). Moreover, ΓwΘ1
|I1 × · · · × ΓwΘn

|In × K̄s ∈
Mar∗∞(R2n+s) (K̄s := [0, 1]s) for all nontrivial closed intervals I1, . . . , In ⊂ R, see
properties (5) and (8) of Section 2.
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Example 10.1. The graph of the Weierstrass function

f(x) =
∞∑

n=1

( 7

10

)n

cos
(
9nπx

)
has a base of (induced) topology of sets of Hausdorff dimension more than one,
see, e.g., [10] and [32].

Further, it was proved in [40] by relatively simple methods that for the function

Φ(x) :=
∞∑
k=1

λ−kα

φ(λk
β

x), x ∈ [0, 1],(10.5)

where λ > 1, β > α > 1, and φ(x) = 2x for 0 ≤ x ≤ 1/2, φ(−x) = φ(x)
and φ(x + 1) = φ(x), its graph over any nontrivial closed subinterval of [0, 1]
has Hausdorff dimension 2. Taking the direct product of n copies of graphs of
such functions and of K̄s we obtain the graph of a continuous map K̄n+s → K̄n

having Hausdorff dimension 2n+ s over each nondegenerate closed cube in K̄n+s

(cf. (10.1)). Also, this graph belongs to Mar∗∞(R2n+s) due to properties (5) and (8)
of Section 2.

Finally, in the proofs of Theorem 6.6 and Proposition 6.10 we constructed
bounded Lipschitz functions R → R whose graphs either belong to Mar∗k(R

2) \
Mar∗k+1(R

2) for a fixed k ∈ N or to Mar∗∞(R2). In turn, taking direct products of n
copies of such graphs with Rs we obtain graphs of Lipschitz maps Rn+s → Rn either
belonging to Mar∗k(R2n+s) \Mar∗k+1(R

2n+s) for a fixed k ∈ N or to Mar∗∞(R2n+s),
see property (5) of Section 2.

In the proof of the theorem we use the following result.

Suppose ΓF := {(x, F (x)) ; x ∈ Q} ⊂ R2n is the graph of a continuous map
F : Q ⊂ Rn → Rn defined over a closed nondegenerate cube Q. Assume that

(P) ΓF is either belongs to Mar∗k(R2n) \ Mar∗k+1(R
2n) for a fixed k ∈ N, or

to Mar∗∞(R2n), or has a base of (induced) topology of sets of Hausdorff
dimension n ≤ d ≤ 2n.

Let T � Q be a convex open subsets and let ρ be a C∞ function on Rn with all
derivatives equal to zero on T c := Rn \ T and nonzero at each point of T (e.g., as
such a ρ one may take a regularized distance to the complement of T , see [35]).

Lemma 10.2. The graph ΓρF := {(x, ρ(x)F (x)) ; x ∈ T̄} of ρF over T̄ has the
same properties as ΓF , see (P).

Proof. Let us define a C∞ map ρ̃ : R2n → R2n by the formula ρ̃(x, y) := (x, ρ(x)y),
(x, y) ∈ Rn × Rn = R2n. Then by the hypothesis ρ̃ has a C∞ inverse on T × Rn.
Now implications ΓρF ∈ Mar∗k(R

2n) \ Mar∗k+1(R
2n) for a fixed k ∈ N, or ΓρF ∈

Mar∗∞(R2n) follow from property (6) of Section 2 provided that the same is true
for ΓF . The remaining property follows from the fact that ρ̃ is locally bi-Lipschitz
over T ×Rn and so preserves Hausdorff dimension of any Borel measurable subset
of this set. �
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10.2. Proof of Theorem 5.5

Proof. According to the assumptions of the theorem, there exists an open neigh-
bourhood U ′ ⊂ U of M and a C∞ submanifold M ′ of U ′ such that M and M ′

are Ck isotopic inside U ′, see, e.g., Section 4 in [30]. Proving the result for M ′

and taking suitable compositions of the isotopies between M ′
r and M ′, r ∈ {d, l},

and M ′ and M , we obtain the required result for M . Thus without loss of gener-
ality we may assume in the proof that M is of class C∞.

Let NM →M be the normal bundle on M . There exists a convex open neigh-
bourhood W of the zero section M ↪→ NM and a C∞ diffeomorphism g : W → X
whose image N is a tubular neighbourhood of M in U , see, e.g., Section 5 in [30].
Thus it suffices to construct the required objects inW and then embed them intoX
by g.

To this end recall that sinceM is of class C∞, it admits a C∞ triangulation (see,
e.g., Section 10 in [30]). Shrinking this triangulation, if necessary, we may assume
that NM is C∞ trivial in an open neighbourhood of the closure of each simplex of
the triangulation. Now each nondegenerate simplex σ of the triangulation is C∞

diffeomorphic to the standard m-dimensional simplex Δ ⊂ K̄m. Thus we may
identify (by means of C∞ diffeomorphisms) σ with Δ and NM on σ with Δ×Rn−m.
Using results of the previous subsection we construct graphs Γσ ⊂ Rn of continuous
maps Fσ : Δ → Rn−m equal zero on the boundary of Δ such that Γσ either belong
to Mar∗l (R

n)\Mar∗l+1(R
n) for a fixed � ∈ N (in this case the corresponding maps Fσ

are Lipschitz), or to Mar∗∞(Rn) and have bases of (induced) topology of sets of
Hausdorff dimension m ≤ d ≤ n (in case d = m maps Fσ are Lipschitz as well).
Using diffeomorphisms identifying σ with Δ and NM on σ with Δ×Rn−m, we may
regard each Fσ as a continuous section of NM over σ equals zero on the boundary
of σ. Choosing Fσ so that maxσ ‖Fσ‖2 are sufficiently small, we may assume that
images of all Fσ belong to W . Let us define a continuous section F : M → W by
the formula F |σ := Fσ for all σ of the triangulation ofM . We setMd := (g◦F )(M)
if all Γσ have bases of (induced) topology of sets of Hausdorff dimension m ≤ d ≤ n
and Ml := (g ◦ F )(M) if all Γσ ∈ Mar∗l (Rn) \Mar∗l+1(R

n). Moreover, since W is
convex, (1 − t)F (M) ⊂ W for all t ∈ [0, 1]. We define the required homotopy
hr,t(x) := g

(
(1 − t)g−1(x)

)
, x ∈ Mr, t ∈ [0, 1]; here r ∈ {d, l}. It is a matter of

definitions to check that the introduced objects satisfy the required conditions. �

11. Proof of Theorem 5.6

Due to the definitions of Mar∗∞,Γ and of Ωp(S) (see Subsection 5.2), it suffices to
prove the following version of the theorem.

Theorem 11.1. Let S = Γn1

f11,f12
× · · · × Γn�

f�1,f�2
� Rn := Rn1+1 × · · · × Rn�+1 be

a Γ set such that S̄ ∈ Mar∗∞(Rn). Let ω :=
∑

|I|=p cIdxI be a d-closed C∞ p-form

on S̄. Then for p ≥ 1 and an open subset U � S there exists a C∞ (p−1)-form ηU
on U such that dηU = ω|U . If p = 0, then ω is a constant function on S.
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Proof. We will prove the result by induction on �. For � = 1 we prove the following
more general statement.

Let S1 × S2 � Rn+1 × Rm be such that S1 � Rn+1, S̄1 ∈ Mar∗∞(Rn+1), is a
simple Γ set and S2 � Rm, S̄2 ∈ Mar∗∞(Rm), is a Γ set. Let x = (x1, . . . , xn+1)
and y = (y1, . . . , ym) be the standard coordinates on Rn+1 and Rm, respectively.
By dx we denote the differential on Ω∗(S̄1 × S̄2) with respect to the coordinate x
for y fixed. For a differential form ω =

∑
cIJdxI ∧dyJ on S̄1× S̄2 we set degx ω :=

max{|I| ; cIJ �≡ 0}.
Lemma 11.2. Suppose that ω is a dx-closed C∞ differential form on S̄1 × S̄2.
If degx ω ≥ 1, then there exists a C∞ differential form η on S1 × S̄2 such that
dxη = ω|S1×S̄2

. If degx ω = 0, then ω is independent of x.

Proof of Lemma 11.2. Without loss of generality we may assume that

S1 =
{(
x1, . . . , xn, tf1(x1, . . . , xn) + (1− t)f2(x1, . . . , xn)

)
; x ∈ Kn, t ∈ [0, 1]

}
for some continuous f1, f2 : Kn → R, Kn := (0, 1)n, such that f1 ≤ f2. By the
definition of C∞ functions on weak ∞-Markov sets (see Section 4), ω is restriction
to S̄1× S̄2 of a C

∞ differential form ω′ (of the same degree as ω) defined in an open
neighbourhood of S̄1×S̄2 in Rn+1×Rm. Since S̄1×S̄2 is compact, multiplying ω′ by
a suitable C∞ cut-off function, we obtain a C∞ differential form ω̃ on Rn+1 ×Rm

such that ω̃|S̄1×S̄2
= ω and deg ω̃ = degω, degx ω̃ = degx ω.

Since dxω̃ = 0 on S̄1 × S̄2 and S̄1 ∈ Mar∗∞(Rn+1),

dx
(
ω̃|(Kn×R)×S̄2

)
= β− + β+,

where each β−(·, y) coincides with dxω̃(·, y) on the connected component of(
(Kn × R) \ S1

) × {y} containing Kn × {−∞} × {y} and on the other connected

component of
(
(Kn ×R) \ S1

)× {y} equals zero. Similarly, each β+(·, y) coincides
with dxω̃(·, y) on the connected component of

(
(Kn × R) \ S1

) × {y} containing

Kn×{+∞}×{y} and on the other connected component of
(
(Kn×R)\S1

)×{y}
equals zero; here y ∈ S̄2 (see Section 8 for similar arguments). By the definition of
the dx operator on weak ∞-Markov sets, the differential forms β± are of class C∞

on (Kn × R) × S̄2. We write β± = (ω̃n+1)± + λ±, where (ω̃n+1)± := dxn+1 ∧ λ̃±
and λ± do not contain dxn+1. Since dxω = 0, the forms β± are dx-closed on
(Kn × R)× S̄2.

We set

θ±(x, y) :=
∫ xn+1

±∞
λ̃±(x1, . . . , xn, tn+1, y) dtn+1.

Clearly, θ± are of class C∞ on (Kn×R)×S̄2. Now, β±−dxθ± are dx-closed C
∞

differential forms on (Kn×R)×S̄2 not containing terms with dxn+1. Hence, partial
derivatives of their coefficients with respect to xn+1 are zeros. In particular, these
coefficients are zeros, because at each y ∈ S̄2 the forms (β± − dxθ±)(·, y) are equal
to zero on the corresponding connected components containing Kn×{±∞}×{y}.

Thus we have
β± = (ω̃n+1)± = dxθ±.
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In turn, equality dx(ω̃|(Kn×R)×S̄2
) = β+ + β− = dx(θ+ + θ−) and the classical

Poincaré lemma (for d-closed differential forms on Kn ×R) imply that if degx ω̃ =
degx ω ≥ 1, then there exists a C∞ differential form η on (Kn ×R)× S̄2 such that
ω̃|(Kn×R)×S̄2

− θ+ − θ− = dxη. Moreover, by our construction forms θ± equal zero

on S1 × S̄2 so that the previous equality implies that

dx
(
η|S1×S̄2

)
= ω

completing the proof of the lemma in this case.
Next, if degx ω̃ = degx ω = 0, then ω̃|(Kn×R)×S̄2

− θ+ − θ− =
∑
cJdyJ and

dxcJ = 0 for all J on (Kn ×R)× S̄2. Hence, all cJ do not depend on x ∈ Kn ×R,
i.e., ω̃|(Kn×R)×S̄2

− θ+ − θ− is a form in y. Since θ± equal zero on S1 × S̄2, the
differential form ω := ω̃|S̄1×S̄2

depends on y only. �

Lemma 11.2 shows that the theorem is valid for � = 1 and any open U � S.
Assuming that it is valid for �− 1 let us establish it for �.

To this end by x = (x1, . . . , xn�+1) and y := (y1, . . . , yn−n�−1) we denote the
standard coordinates on Rn�+1 and Rn−n�−1 := Rn1+1×· · ·×Rn�−1+1, respectively.
We will prove the statement by induction on degx ω.

For degx ω = 0 from d-closedness of ω and Lemma 11.2 we obtain that ω
is a d-closed form depending on y only. Thus it is pullback to S (under the
natural projection Rn → Rn�−1+1) of a d-closed differential form on Γ̄n1

f11,f12
×· · ·×

Γ̄
n�−1

f�−1 1,f�−1 2
� Rn−n�−1 and, since the number of terms in the direct product is

� − 1, the required statement (of the theorem) follows from the first induction
hypothesis.

Suppose that we have proved the statement for degx ω := s − 1 ≥ 0; let us
prove it for degx ω := s.

We write ω = ω1 + ω2, where ω1 is the sum of all terms of ω of degx ω := s
and degx ω2 ≤ s − 1. Then d-closedness of ω implies that dxω1 = 0. Therefore
from Lemma 11.2 we obtain that ω1 = dxη1 for some C∞ differential form on S
with degx η1 ≤ s − 1. Consider the form ω − dη1 := ω2 − dyη1. It is d-closed
on S with degx at most s − 1. Thus by the induction hypotheses applied to a Γ
set U ′ � S containing Ū , ω|U ′ = dηU ′ for a C∞ differential form ηU ′ on U ′. This
proves the step of the second induction and therefore the step of the first induction
completing the proof of the theorem. �

12. Proofs of Corollary 5.11 and Theorems 5.12 and 5.13

12.1. Proof of Corollary 5.11

Lemma 12.1. Any set of the form

Z :=
{(
x, tf1(x) + (1− t)f2(x)

) ∈ Rn+1 ; x ∈ K̄n, t ∈ [0, 1]
}

(12.1)

for some continuous f1, f2 : K̄n → R such that f1 ≤ f2, is a strong deformation
retract of Rn+1.
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Proof of Lemma 12.1. We refer to [20] for basic definitions of homotopy theory.

Clearly K̄n×R is a strong deformation retract of Rn+1. Thus it suffices to check
that Z is a strong deformation retract of K̄n×R. For (x, xn+1, s) ∈

(
K̄n×R

)×[0, 1]

we define the required retraction F :
(
K̄n × R

)× [0, 1] → Z as follows:

F (x, xn+1, s) :=

⎧⎪⎨⎪⎩
(
x, f2(x) + s(xn+1 − f2(x))

)
if xn+1 ≥ f2(x),(

x, xn+1

)
if f1(x) ≤ xn+1 ≤ f2(x),(

x, f1(x) + s(xn+1 − f1(x))
)

if xn+1 ≤ f1(x).
�

The lemma implies, in particular, that finite direct products of sets of the
form (12.1) are absolute retracts. Also, any S ∈ Mar∗∞,Γ is countable union of
such finite direct products, see Subsection 5.2; hence, by a result of Hanner [16], S
is an absolute neighbourhood retract. In particular, in the setting of the theorem,
there exists an open neighbourhood N ⊂ X of S and a continuous retraction
r : N → S. We embed X as a closed subset into some Rn by Proposition 5.4
so that the weak ∞-Markov structure on X is induced from that on Rn. Thus
without loss of generality we may assume in the proof that X (and therefore N)
belongs to Mar∗∞,Γ.

By i : S ↪→ N we denote the (C∞) embedding map. Then the pullbacks of r
and i define the following homomorphisms of Čech cohomology groups:

r∗C : Ȟp(S,R) −→ Ȟp(N,R), i∗C : Ȟp(N,R) −→ Ȟp(S,R)

such that i∗C ◦ r∗C = id. Thus

Ȟp(N,R) = r∗C
(
Ȟp(S,R)

)⊕Ker i∗C .

For a d-closed form ω ∈ Ωp(S), we denote by [ω] ∈ Hp
dR(S,R) its de Rham

cohomology class. Consider(
r∗C ◦ (hpS)−1

)
([ω]) ∈ Ȟp(N,R),

where hpS : Ȟp(S,R) → Hp
dR(S,R) is the isomorphism of Theorem 5.8 for S.

Since N ∈ Mar∗∞,Γ, the de Rham theorem is valid on N , i.e., hpN : Ȟp(N,R) →
Hp

dR(N,R) is an isomorphism (see (5.1)). Let ω̂ ∈ Ωp(N) be a d-closed form
whose de Rham cohomology class coincides with

(
hpN ◦ r∗C ◦ (hpS)

−1
)
([ω]). Using

the commutative diagram (5.1) for the map i and identity i∗C ◦ r∗C = id we obtain(
i∗dR ◦ hpN ◦ r∗C ◦ (hpS)−1

)
([ω]) =

(
hpS ◦ i∗C ◦ r∗C ◦ (hpS)−1

)
([ω]) = [ω].

Hence, the restriction of ω̂ to S belongs to the same de Rham cohomology class
as ω. Therefore ω − ω̂|S = dη with η ∈ Ωp−1(S) (here we assume that p ≥ 1,
for otherwise, the statement of the theorem is trivial). As η admits locally C∞

extensions to open subsets of N , using a suitable open cover of the closed set S and
a subordinate to it C∞ partition of unity, we patch such extensions together to find
a C∞ (p− 1)-form η̂ on N such that η̂|S = η. We set ω̃ := ω̂ − dη̂. Then ω̃|S = ω.
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12.2. Proof of Theorem 5.12

Assume first that S ∈ Mar∗∞,Γ is a closed subset of some Rn with the induced
weak ∞-Markov structure (S admits such an embedding by Proposition 5.4). By
i : S ↪→ Rn we denote the C∞ embedding and by r : N → S a continuous retraction
of an open neighbourhoodN ⊂ Rn of S onto S, cf. Theorem 5.11. Then the induced
homomorphisms

r∗ : Hk(N,R) → Hk(S,R) and i∗ : Hk(S,R) → Hk(N,R)

of singular homology groups satisfy r∗ ◦ i∗ = id. In particular, i∗ is an injection
and Hk(N,R) = i∗(Hk(S,R))⊕Ker r∗.

Let ω be a d-closed k-form on S and [ω] ∈ Hk
dR(S,R) be its cohomology class.

We choose a d-closed k-form ω̃ onN such that ω̃|S = ω (existing by Theorem 5.11).
Let σ be a singular k-cycle in S and let [σ] ∈ Hk(S,R) stand for its homology class.
We define a map ΦS : Hk

dR(S,R) → Hk(S,R) by the formula

(12.2)
〈
ΦS([ω]), [σ]

〉
:=

∫
σ′
ω̃, [σ] ∈ Hk(S,R),

where σ′ is a piecewise smooth singular chain in N with homology class i∗([σ]).
Identifying [ω̃] ∈ Hk

dR(N,R) with an element of Hk(N,R) by the classical de
Rham theorem, we obtain that the expression on the right in (12.2) can be written
as 〈i∗([ω̃]), [σ]〉, where i∗ : Hk(N,R) → Hk(S,R) is the map transpose to i∗.

We must check that ΦS is correctly defined, independent of embedding into Rn

and determines the required isomorphism of cohomology rings.
To check that ΦS is correctly defined, suppose that ω̃′ is another d-closed k form

on N satisfying ω̃′|S = ω. Using the isomorphism h∗N between Čech and de Rham
cohomology onN expressed in Theorem 5.8, consider (hkN )−1

(
[ω̃−ω̃′]

) ∈ Ȟk(N,R).
Then due to (5.1)(

i∗C ◦ (hkN )−1
)(
[ω̃ − ω̃′]

)
=

(
(hkS)

−1 ◦ i∗dR
)(
[ω̃ − ω̃′]

)
= (hkS)

−1(0) = 0.

Let K ⊂ S be compact such that σ ∈ Zk(K,R), the abelian group of singular
cycles in K. Since K is projective limit of the system of its open relatively compact
neighbourhoods U in N with the partial order defined by inclusion, Ȟk(K,R) is
isomorphic to inductive limit lim−→ Ȟk(U,R) taking along this system (see, e.g., [1]
for basic results of sheaf theory). Since ω − ω̃ = 0 on S,(

(iK↪→U )
∗
C ◦ (hkU )−1

)(
[(ω̃ − ω̃′)|U ]

)
= 0,

where iK↪→U : K → U is the embedding. As Ȟk(K,R) is the inductive limit of
groups Ȟk(U,R), the latter implies that there exists open U0 � N containing K
such that (hkU0

)−1
(
[(ω̃ − ω̃′)|U0 ]

)
= 0 in Ȟk(U0,R), that is (ω̃ − ω̃′)|U0 is d-exact.

Let σ′ ∈ Zk(U0,R) be a piecewise smooth singular k-cycle in U0 homologous to σ.
Then the d-exactness of (ω̃ − ω̃′)|U0 implies that∫

σ′
ω̃ =

∫
σ′
ω̃′.
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Since (12.2) does not depend on the choice of σ′ ∈ Zk(N,R), the above equality
shows that (12.2) does not depend on the choice of the extension ω̃ of ω; similarly it
is independent of the choice of the form representing the class [ω] as well. Thus ΦS

is correctly defined.
Next, if ΦS([ω]) = 0, then [ω̃]s ∈ Ker i∗ (here [ω̃]s stands for the singular coho-

mology class determined by ω̃ as above via the de Rham theorem on N). Since S
(being an absolute neighbourhood retract) is homotopy equivalent to a CW com-
plex, see, e.g., Theorem 1 in [28], singular cohomology on S is naturally isomorphic
to Čech cohomology. Thus

(hkN )−1)
(
[ω̃]

) ∈ Ker i∗C ⊂ Ȟk(N,R) ∼= HdR(N,R).

Therefore,

0 =
(
i∗C ◦ (hkN )−1

)(
[ω̃]

)
=

(
(hkS)

−1 ◦ i∗dR
)(
[ω̃]

)
= (hkS)

−1
(
[ω]

)
.

Thus, by Theorem 5.8, [ω] = 0 ∈ Hk
dR(S,R) showing that ΦS is an injection.

Further, for λ ∈ Hk(S, R) consider r∗(λ) ∈ Hk(N,R). Let [ω̃] ∈ Hk
dR(N,R)

be the de Rham cohomology class representing r∗(λ) (existing by the de Rham
theorem for C∞ manifolds). Since (i∗ ◦ r∗)(λ) = λ, by (12.2) we have ΦS([ω]) =
i∗([ω̃]) = λ for ω := ω̃|S . This shows that ΦS is a surjection.

The fact that ΦS(λ1 ∧ λ2) = ΦS(λ1) � ΦS(λ2), λ1, λ2 ∈ H∗
dR(S,R), follows

from (12.2) and the similar identity for cohomology on N (valid by the classical
de Rham theorem for C∞ manifolds).

Thus ΦS : H∗
dR(S,R) → H∗(S,R) is a ring isomorphism.

Next, we show that ΦS does not depend on embedding i : S ↪→ Rn.
Suppose that ip : S ↪→ Rnp , p = 1, 2, are proper C∞ embeddings. Consider the

proper C∞ embedding i := (i1, i2) : S ↪→ Rn := Rn1 × Rn2 . By πp : Rn → Rnp ,
p = 1, 2, we denote the natural projections. Clearly, πp ◦ i = ip, p = 1, 2. Due
to the preceding discussion, the map Φi(S) : H

∗
dR(i(S), R) → H∗(i(S), R) is well

defined. Moreover, due to (12.2) for [ω] ∈ Hk
dR(S, R) and σ ∈ Hk(S, R) we have〈(

i∗p ◦ Φip(S)◦(i∗p)−1
)
([ω]), σ

〉
=

〈(
Φip(S) ◦ ((πp|i(S))

∗)−1 ◦ (i∗)−1
)
([ω]), (πp ◦ i)∗(σ)

〉
=

〈(
Φi(S) ◦ (i∗)−1

)
([ω]), ((πp|i(S))

−1 ◦ πp ◦ i)∗(σ)
〉

=
〈(
Φi(S) ◦ (i∗)−1

)
([ω]), (i)∗(σ)

〉
.

Hence, i∗p ◦ Φip(S) ◦ (i∗p)−1 = i∗ ◦ Φi(S) ◦ (i∗)−1, p = 1, 2. This shows that ΦS does
not depend on embedding into Rn.

Let us prove now the commutativity of diagram (5.2). So assume that f :S1→S2

is a C∞ map of spaces in Mar∗∞,Γ. Without loss of generality we may assume that
Si ⊂ Rni , i = 1, 2, are closed and equipped with the induced weak∞-Markov struc-
tures. We embed S1 into S1 ×S2 as the closed subset Γf := {(s1, f(s1)) ; s1 ∈ S1}
and by π2 : Rn1 × Rn2 → Rn2 we denote the natural projection. Thus we may as-
sume that S1 ⊂ Rn1 ×Rn2 (equipped with the induced weak ∞-Markov structure,
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see arguments in the proof of Proposition 5.4) and f := π2|S1 . Since S2 ⊂ Rn2 , by
definition (12.2) for [ω] ∈ Hk

dR(S2, R) and σ ∈ Hk(S1, R) we have〈(
f∗ ◦ ΦS2

)
([ω]), λ

〉
=

〈
ΦS2([ω]), f∗(λ)

〉
=

〈(
ΦS1 ◦ f∗

dR

)
([ω]), λ

〉
,

as required.
The statement asserting that in the case of S being a C∞ manifold ΦS coincides

with the classical de Rham isomorphism follows from the fact that for S ⊂ Rn being
a C∞ submanifold the singular chain σ′ in (12.2) can be chosen from Zk(S, R).

The proof of the theorem is complete.

12.3. Proof of Theorem 5.13

We define a map × : H∗(S1,R) ⊗H∗(S2,R) → H∗(S1 × S2,R) of singular coho-
mology rings by the formula

λ1 × λ2 := π∗
1(λ1) � π∗

2(λ2), λ1 ⊗ λ2 ∈ H∗(S1,R)⊗H∗(S2,R).

Due to Theorem 5.12 we have

ΦS1×S2(c1 ∧ c2) = ΦS1(c1)× ΦS2(c2), c1 ⊗ c2 ∈ H∗
dR(S1,R)⊗H∗

dR(S2,R).

In turn, it is known, see, e.g., Appendix A in [29], that as spaces S1 and S2 are
homotopy equivalent to CW complexes, under the assumptions of the theorem,

× : H∗(S1,R)⊗H∗(S2,R) → H∗(S1 × S2,R)

is an isomorphism. Since ΦS1×S2 , ΦS1 and ΦS2 are ring isomorphisms, this fact
and the previous identity imply the required.
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