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Exponentially sparse representations

of Fourier integral operators

Elena Cordero, Fabio Nicola and Luigi Rodino

Abstract. We investigate the sparsity of the Gabor-matrix representa-
tion of Fourier integral operators with a phase having quadratic growth.
It is known that such an infinite matrix is sparse and well organized, being
in fact concentrated along the graph of the corresponding canonical trans-
formation. Here we show that, if the phase and symbol have a regularity
of Gevrey type of order s > 1 or analytic (s = 1), the above decay is
in fact sub-exponential or exponential, respectively. We also show by a
counterexample that ultra-analytic regularity (s < 1) does not give super-
exponential decay. This is in sharp contrast to the more favorable case of
pseudodifferential operators, or even (generalized) metaplectic operators,
which are treated as well.

1. Introduction

We consider Fourier integral operators (FIOs) in the reduced form

(1.1) Tf(x) =

∫
Rd

e2πiΦ(x,η)σ(x, η)f̂ (η) dη

of the type of those in [1], namely the amplitude σ(z), z = (x, η), is in S0
0,0, i.e.,

∂α
z σ(z) is bounded for every α and the real-valued phase function Φ(z), satisfying

the standard nondegeneracy condition, belongs to S
(2)
0,0 , i.e., ∂

α
z Φ(z) is bounded

for |α| ≥ 2. Such FIOs represent the propagators at a fixed time t > 0, for the
Schrödinger equations

(1.2) Dtu+ aw(t, x,Dx)u = 0, u|t=0 = f(x),

with real-valued Hamiltonian a(t, x, ξ) belonging to S
(2)
0,0 uniformly in t, see for

example Tataru [38] and Bony [2], [3].
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In [12], [38] it was proved that the Gabor matrix representation of T is con-
centrated along the graph of the canonical transformation χ determined by Φ, and
provides optimal sparsity. The Gabor representation was then used to discuss the
boundedness properties of T , cf. [9], [11], and define Wiener algebras of global
FIOs containing operators of type (1.1), see [10].

In the present paper, see Section 3, we shall present a stronger sparsity result,
with exponential decay, for the case of analytic-Gevrey functions, namely when we
have in (1.1) for some s ≥ 1,

(1.3) |∂αΦ(z)| � C|α|(α!)s, α ∈ N
2d, |α| ≥ 2, z ∈ R

2d

and similarly for the amplitude:

(1.4) |∂ασ(z)| � C|α|(α!)s, α ∈ N
2d, z ∈ R

2d.

As a side result, we shall deduce boundedness of T on Ss
s(R

d), Gelfand–Shilov
spaces (basic definitions and properties for these spaces are recalled in the prelim-
inary Section 2).

We shall not give explicit applications to the general Schrödinger equation (1.2)
in the present paper but rather refer to [14] for this issue. We also point out a
number of papers where the Schrödinger propagators are treated in the analytic
framework under decay assumptions for a, Φ, σ, see for example [25], [28], [29],
[30], [32], [33]; cf. also [6], [7] and Chapter 6 of [31] for standing wave solutions.

Let us also mention the reach literature concerning the different case of the
Hörmander’s FIOs [27], i.e., positive homogeneity of degree 1 with respect to η
for Φ(x, η) and corresponding decay estimates in (1.3), (1.4), mainly addressed
to the study of the hyperbolic equations. For such FIOs in the analytic-Gevrey
category see the bibliography of [34] concerning the intensive production of the
years 80-90. The researches in this area are indeed extremely active also nowadays,
with applications to weakly hyperbolic problems in Gevrey classes.

In the above mentioned literature, the analytic regularity s = 1 is regarded as
optimal result. Instead, when dealing with the Gelfand–Shilov classes Ss

s(R
d), it

is natural to question whether we can go beyond the barrier s = 1, getting super-
exponential sparsity and ultra-analytic regularity, i.e., boundedness in Gelfand–
Shilov spaces for 1/2 ≤ s < 1. As we shall clarify in Section 4, this is possible
if and only if the phase function Φ(x, η) is quadratic in x, η. Such propagators
are obtained from (1.2) when a(t, x, ξ) has quadratic principal part in (x, ξ). The
corresponding operators T in (1.1), with amplitude satisfying (1.4) for 1/2 ≤ s < 1,
are studied in Section 5.

In the second part of this introduction we want to give a short presentation to
Gabor frames, addressing to non-expert readers. Generally speaking: paradigm
of the applications of harmonic analysis to the study of operators and function
spaces is the decomposition/reconstruction into “wave packets”: Fourier series,
wavelets, paraproducts, etc., see the survey work [41] and also [36] for applications
to dispersive equations and the restriction theorem. We may say that every class of
symbols, i.e., every class of partial differential equations, requires a corresponding
partition of the phase space into wave packets, cf. [18]. Consequently, we may
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represent the propagator as an infinite matrix, and the chosen partition works
effectively for the problem under investigation if the matrix is sparse and well-
organized. This means that the propagator re-arranges the wave packets with
a controlled number of overlapping of supports, granting continuity on function
spaces.

For wave equations and Hörmander’s FIOs let us mention the pioneering work
of Cordóba and Fefferman [16], the second dyadic decomposition of Seeger, Sogge
and Stein [35] and the phase space transform of Tataru and Geba [39]; see also
Tataru [37] for applications to wave equations with non-smooth coefficients.

Numerically stable treatments of Hörmander’s FIOs were carried on by Candès,
Demanet [4], [5] and Guo, Labate [26], wave packets being represented by curvelets
and shearles.

Gabor frames, used initially for problems in signal theory and time-frequency
analysis, cf. [17], [19], [23], turn out to be the correct setting for Schrödinger prop-
agators, at least when in the Hamiltonian the space variables x and their duals ξ
play symmetric role, as we have in the S0

0,0 class. This means that the microlocal
propagation of singularities is identified by the canonical transformation, modulo
errors which we may estimate parithetically in the x and ξ variables, see [2], [3],
[9], [10], [11], [12], [38], mentioned before.

To be definite, let us recall some basic definition. Let Λ = AZ2d with A ∈
GL(2d,R) be a lattice of the time-frequency plane. Consider the time-frequency-
shifts

(1.5) gλ = gλ1,λ2 = e2πiλ2xg(x− λ1), λ = (λ1, λ2) ∈ Λ.

The set of time-frequency shifts G(g,Λ) = {gλ : λ ∈ Λ} for a non-zero g ∈ L2(Rd)
is called a Gabor system. The set G(g,Λ) is a Gabor frame, if there exist constants
A,B > 0 such that

(1.6) A‖f‖22 ≤
∑
λ∈Λ

|〈f, gλ〉|2 ≤ B‖f‖22, ∀f ∈ L2(Rd).

If (1.6) is satisfied, then there exists a dual window γ ∈ L2(Rd), such that G(γ,Λ)
is a frame, and every f ∈ L2(Rd) possesses the frame expansions

f =
∑
λ∈Λ

〈f, gλ〉γλ =
∑
λ∈Λ

〈f, γλ〉gλ

with unconditional convergence in L2(Rd).
The Gabor decomposition of an operator T is then as follows:

Tf(x) =
∑
μ∈Λ

∑
λ∈Λ

〈Tgλ, gμ〉︸ ︷︷ ︸
Mμλ

cλγμ, with cλ = 〈f, γλ〉.

So the action of the operator T above can be read on the coefficient space as

{cλ}λ∈Λ 	−→
{∑

λ∈Λ

〈Tgλ, gμ〉cλ
}
μ∈Λ

,

i.e., it is represented as the infinite matrix {Mμλ}μ,λ∈Λ = {〈Tgλ, gμ〉}μ,λ∈Λ, which
we call the Gabor matrix of T .
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We can now describe the main results of the paper. Let T be defined as
in (1.1), with non-degenerate phase function Φ satisfying (1.3) and amplitude σ
satisfying (1.4). Let χ : R2d → R2d be the canonical transformation associated to

Φ. In the generic case s ≥ 1, fix a window g ∈ S
s/2
s/2(R

d). Then for some ε > 0,

(1.7) |Mμλ| � exp
(− ε|μ− χ(λ)|1/s);

see Theorem 3.3 below. Besides, if Φ is quadratic then (1.7) keeps valid for s ≥ 1/2,
for any choice of the window g in Ss

s (R
d), see Theorem 5.3. The Gaussian, be-

longing to S
1/2
1/2(R

d) would work as window in any case. Sparsity and boundedness

follow easily, see Propositions 3.4 and 3.5.
A class of counterexamples to the validity of (1.7) when s < 1 and Φ is not a

quadratic polynomial is given in Proposition 4.1.

2. Preliminaries

2.1. Notations

The Schwartz class is denoted by S(Rd), the space of tempered distributions by
S ′(Rd). We use the brackets 〈f, g〉 to denote the extension to S ′(Rd) × S(Rd) of
the inner product 〈f, g〉 = ∫

f(t)g(t)dt on L2(Rd).

The Fourier transform is normalized to be f̂(η) = Ff(η) =
∫
f(t)e−2πitηdt.

Translation and modulation operators, T and M are defined by

Txf(·) = f(· − x) and Mxf(·) = e2πix·f(·), x ∈ R
d.

The following relations hold: for x, y ∈ Rd and f, g ∈ L2(Rd),

(2.1) MyTx = e2πixyTxMy, (Txf )̂ = M−xf̂ , (Mxf )̂ = Txf̂ .

Throughout the paper, we shall use the notation A � B to express the in-
equality A ≤ cB for a suitable constant c > 0, and A � B for the equivalence
c−1B ≤ A ≤ cB.

The letter C denotes a positive constant, not necessarily the same at every
appearance.

2.2. Gelfand–Shilov spaces

Specially in applied mathematics, it is of great interest to quantify the decay of
functions at infinity, and the Schwartz class S(Rd) reveals to be insufficient for
this. The so-called Gelfand–Shilov type spaces, introduced in [21] turn out to be
very useful. Let us recall their definition and main properties; see e.g. [21], [31]
for details.

Definition 2.1. Let s, r ≥ 0 be given. A function f ∈ S(Rd) is in the Gelfand–
Shilov type space Ss

r(R
d) if there exist constants A,B > 0 such that

(2.2) |xα∂βf(x)| � A|α|B|β|(α!)r(β!)s, α, β ∈ N
d.
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The space Ss
r(R

d) is nontrivial if and only if r+s > 1, or r+s = 1 and r, s > 0.

So the smallest nontrivial space with r = s is provided by S
1/2
1/2(R

d). Every function

of the type P (x)e−a|x|2 , with a > 0 and P (x) polynomial on Rd, is in the class

S
1/2
1/2(R

d). We observe the trivial inclusions Ss1
r1 (R

d) ⊂ Ss2
r2 (R

d) for s1 ≤ s2 and

r1 ≤ r2. Moreover, if f ∈ Ss
r(R

d), also xδ∂γf belongs to the same space for every
fixed δ, γ.

The action of the Fourier transform on Ss
r (R

d) interchanges the indices s and r,
as explained in the following theorem.

Theorem 2.2. For f ∈ S(Rd) we have f ∈ Ss
r(R

d) if and only if f̂ ∈ Sr
s (R

d).

Therefore for s = r the spaces Ss
s(R

d) are invariant under the action of the
Fourier transform.

We shall also need the following analyticity property of functions in Ss
r (R

d),
when s < 1.

Theorem 2.3 (Proposition 6.1.8 in [31]). Assume f ∈ Ss
r(R

d), 0 < s < 1, r > 0.
Then f extends to an entire analytic function f(x+ iy) in Cd, with

(2.3) |f(x+ iy)| � e−ε|x|1/r+δ|y|1/(1−s)

, x ∈ R
d, y ∈ R

d,

where ε and δ are suitable positive constants.

Let us underline the following property, which exhibits two equivalent ways of
expressing the decay of a continuous function f on Rd. This follows immediately
from Proposition 6.1.5 in [31], see also Proposition 2.4 in [13], where the mutual
dependence between the constants ε and C below was shown.

Proposition 2.4 (Proposition 6.1.5 in [31], Proposition 2.4 in [13]). Consider
r > 0 and let h be a continuous function on Rd. Then the following conditions are
equivalent:

(i) There exists a constant ε > 0 such that

(2.4) |h(x)| � e−ε|x|1/r , x ∈ R
d.

(ii) There exists a constant C > 0 such that

(2.5) |xαh(x)| � C|α|(α!)r , x ∈ R
d, α ∈ N

d.

Indeed, assuming (2.4), then (2.5) is satisfied with C = (rd/ε)r. Viceversa, (2.5)
implies (2.4) for any ε < r (dC)−1/r. Also, the constant implicit in the notation �
in (2.4) depends only on the corresponding one in (2.5) and viceversa.
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2.3. Time-frequency characterization of Gelfand–Shilov spaces

Consider a distribution f ∈ S ′(Rd) and a Schwartz function g ∈ S(Rd) \ {0} (the
so-called window). The short-time Fourier transform (STFT) of f with respect
to g is

Vgf(x, η) = 〈f, gx,η〉 =
∫
Rd

e2πitηg(t− x)f(t) dt (x, η) ∈ R
2d.

The short-time Fourier transform is well-defined whenever the bracket 〈·, ·〉 makes
sense for dual pairs of function or (ultra-)distribution spaces, in particular for
f ∈ S ′(Rd) and g ∈ S(Rd), f, g ∈ L2(Rd), or f ∈ (Ss

r)
′(Rd) and g ∈ Ss

r(R
d)

(see [23] for the full details).
The following inversion formula holds for the STFT (see Proposition 11.3.2

in [23]): assume g ∈ S(Rd) \ {0}, f ∈ L2(Rd), then

(2.6) f =
1

‖g‖22

∫
R2d

Vgf(x, η)MηTxg dx dη.

Finally, we have the following characterization of Gelfand–Shilov functions; cf.
[8], [15], [24], [40].

Theorem 2.5. If s ≥ 1/2,

(2.7) f, g ∈ Ss
s(R

d) =⇒ Vgf ∈ Ss
s(R

2d);

if g ∈ Ss
s(R

d), then

(2.8) f ∈ Ss
s(R

d) ⇐⇒ |Vg(f)(z)| � e−ε|z|1/s , z ∈ R
2d, for some ε > 0.

3. Exponential sparsity of the Gabor matrix representation

The Fourier integral operator T with symbol (or amplitude) σ and phase Φ on R
2d

is formally defined in (1.1). The phase function Φ(x, η) is smooth on R2d, and
fulfills the estimates

(3.1) |∂αΦ(z)| � C|α|(α!)s, α ∈ N
2d, |α| ≥ 2, z ∈ R

2d,

for some C > 0, s ≥ 1, as well as the nondegeneracy condition

(3.2) | det ∂2
x,ηΦ(x, η)| ≥ δ > 0, (x, η) ∈ R

2d.

The symbol σ on R2d satisfies

(3.3) |∂ασ(z)| � M(z)C|α|(α!)s, α ∈ N
2d, z ∈ R

2d,

for the same s as in (3.1) and some C > 0, and some continuous weight M > 0
in R2d. We assume here that M is temperate, in the sense that

(3.4) M(z + w) � 〈z〉NM(w), z, w ∈ R
2d,

for some N > 0.
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We also denote by χ : R2d → R2d the canonical transformation defined by Φ, i.e.,

(3.5) (x, ξ) = χ(y, η) ⇐⇒
{

y = ∇ηΦ(x, η)

ξ = ∇xΦ(x, η).

The canonical transformation χ enjoys the following properties:

(i) χ : R2d → R2d is smooth, invertible, and preserves the symplectic form in R2d,
i.e., dx ∧ dξ = dy ∧ dη; χ is a symplectomorphism.

(ii) For z = (y, η),

(3.6) |∂α
z χ(z)| � C|α|(α!)s, |α| ≥ 1;

(iii) There exists δ > 0 such that, for (x, ξ) = χ(y, η),

(3.7)
∣∣∣ det ∂x

∂y
(y, η)

∣∣∣ ≥ δ.

We need a preliminary lemma.

Lemma 3.1. Let s ≥ 1 and ϕ(z) a real smooth function in Rd satisfying the
estimates

|∂αϕ(z)| ≤ C|α|+1(α!)s〈z〉2, α ∈ N
d, z ∈ R

d,

for some constant C > 0. Then for the same constant C it turns out

|∂αeiϕ(z)| ≤ (
ds−1 2d+1C2

)|α| |α|∑
j=1

(α!
j!

)s

〈z〉2j , |α| ≥ 1, z ∈ R
d.

Proof. By the Faà di Bruno formula (see, e.g., page 16 of [20]) and the hypothesis
we have, for |α| ≥ 1,

|∂αeiϕ(z)| ≤
|α|∑
j=1

1

j!

∑
γ1+···+γj=α

|γk|≥1

α!

γ1! · · · γj ! |∂
γ1ϕ(z)| · · · |∂γjϕ(z)|

≤
|α|∑
j=1

1

j!

∑
γ1+···+γj=α

|γk|≥1

α!

γ1! · · · γj ! C
|γ1|+···+|γj|+j(γ1! · · · γj !)s〈z〉2j

=

|α|∑
j=1

C|α|+j α!

j!
〈z〉2j

∑
γ1+···+γj=α

|γk|≥1

(γ1! · · · γj !)s−1.

Now will verify that

(3.8) γ1 + · · ·+ γj = α, |γk| ≥ 1 =⇒ γ1! · · · γj ! ≤ |α|!
j!

.
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This then gives the desired conclusion, taking into account that s ≥ 1, |α|! ≤ d|α|α!
and ∑

γ1+···+γj=α

|γk|≥1

1 ≤
d∏

k=1

(
αk + j − 1

j − 1

)
≤ 2|α|+d(j−1) ≤ 2(d+1)|α|.

It remains to prove (3.8). We argue by induction on j. If j = 1 it is obviously
true. Let therefore j ≥ 2 and assume that (3.8) holds for j − 1 factors. Then

γ1! · · · γj−1!γj ! ≤ (|α| − |γj |)!
(j − 1)!

γj ! ≤ (|α| − |γj |)!
(j − 1)!

|γj |!

=
|α|!
j!

· j

|α| ·
(|α| − |γj |)!|γj |!

(|α| − 1)!
.

Since j ≤ |α| the derided estimate in (3.8) therefore follows if we prove that the
last fraction is ≤ 1. But this is clear because

(|α| − |γj |)!|γj |!
(|α| − 1)!

=
|γj |

|α| − 1
· |γj | − 1

|α| − 2
· |γj | − 2

|α| − 3
· · · 2

|α| − |γj |+ 1

and in this product each fraction is ≤ 1: indeed, j ≥ 2 and |γ1| ≥ 1 imply
|γj | ≤ |α| − 1 and therefore |γj | − k ≤ |α| − 1− k, for 0 ≤ k ≤ |γj | − 2. �

Remark 3.2. Let us observe that the Faà di Bruno formula, combined with the
formula (3.8), gives a cheap proof that Gevrey classes are stable by functional
composition, with precise estimates for the constants; we omit the details.

Theorem 3.3. Let s ≥ 1, and suppose the phase Φ and symbol σ satisfy (3.1)–(3.4)

above. Assume g ∈ S
s/2
s/2(R

d) Then there exists ε > 0 such that

(3.9) |〈Tgu, gv〉| � M(v1, u2) exp
(− ε|v − χ(u)|1/s).

for u = (u1, u2), v = (v1, v2) ∈ R2d.

Proof. A direct computation based on (2.1) (see e.g. the proof of Theorem 3.1
in [11]) shows that

〈Tgu, gv〉=
∫
Rd

∫
Rd

e2πi[Φ(x+v1,η+u2)−(v2,u1)·(x+v1,η)]σ(x+ v1, η + u2)ḡ(x)ĝ(η) dxdη.

By performing a Taylor expansion of Φ around (v1, u2) we obtain
(3.10)

|〈Tgu, gv〉| =
∣∣∣ ∫

R2d

e2πi(∇zΦ(v1,u2)−(v2,u1))ze2πiΦ2,(v1 ,u2)(z)σ(z + (v1, u2))G(z) dz
∣∣∣,

where G(z) = G(x, η) = g(x)⊗ ĝ(η), and

(3.11) Φ2,(v1,u2)(z) = 2
∑
|α|=2

∫ 1

0

(1 − t)∂αΦ((v1, u2) + tz) dt
zα

α!
, z = (x, η),

is the second order remainder in the Taylor formula for Φ at (v1, u2).
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Observe that (3.1) implies the estimates

(3.12) |∂αΦ2,(v1,u2)(z)| � C|α|(α!)s〈z〉2, α ∈ N
2d, z ∈ R

2d,

uniformly with respect to v1, u2 ∈ R
d.

Now, it is proved in Lemma 3.1 of [11] that

|∇zΦ(v1, u2)− (v2, u1)| � |v − χ(u)|.
Hence, it is sufficient to prove that

|〈Tgu, gv〉| � M(v1, u2) exp
(− ε|∇zΦ(v1, u2)− (v2, u1)|1/s

)
, u, v ∈ R

2d.

Using the formula (3.10) for the left-hand side, we are reduced to proving that the
function

hv1,u2(ω) :=

∫
R2d

e2πiωze2πiΦ2,(v1 ,u2)(z)σ(z + (v1, u2))G(z) dz, ω ∈ R
2d

satisfies the estimates

|hv1,u2(ω)| � M(v1, u2) exp
(− ε|ω|1/s)

or equivalently, by Proposition 2.4,

(3.13) |ωαhv1,u2(ω)| � M(v1, u2)C
|α|(α!)s, α ∈ N

2d, ω ∈ R
2d.

Now, repeated integrations by parts and Leibniz formula give

|ωαhv1,u2(ω)| ≤ (2π)−|α|
∣∣∣ ∫

R2d

〈z〉−2d−1e2πiωz
∑

β1+β2+β3=α

α!

β1!β2!β3!
(3.14)

× 〈z〉2d+1∂β1e2πiΦ2,(v1,u2)(z)∂β2σ(z + (v1, u2))∂
β3G(z) dz

∣∣∣.
Let us estimate the three derivatives above. By (3.12) and Lemma 3.1 we have

(3.15) |∂β1e2πiΦ2,(v1 ,u2)(z)| � C|β1|
|β1|∑
j=1

(β1!

j!

)s

〈z〉2j , |β1| ≥ 1.

Using (3.3) and (3.4), the derivatives of the symbol can be controlled by

|∂β2σ(z + (v1, u2))| ≤ M(v1, u2)C
|β2|(β2!)

s〈z〉N .

Hence, for |β1| ≥ 1,

(3.16)
∣∣〈z〉2d+1∂β1e2πiΦ2,(v1,u2)(z)∂β2σ(z + (v1, u2))∂

β3G(z)
∣∣

� M(v1, u2)C
|β1|+|β2|(β2!)

s〈z〉N+2d+1

|β1|∑
j=1

(β1!

j!

)s

〈z〉2j |∂β3G(z)|.
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Now, by Theorem 2.2, we have ĝ ∈ S
s/2
s/2(R

d), so G = g⊗ ĝ ∈ S
s/2
s/2(R

2d). This gives

〈z〉N+2d+1+2j |∂β3G(z)| � CN+2d+1+2j+|β3|((N + 2d+ 1 + 2j)!
)s/2

(β3!)
s/2

� C1
2j+|β3|(j!)s(β3!)

s/2

where we used the formula (m+ n)! ≤ 2m+nm!n! and Stirling’s formula. Hence

|β1|∑
j=1

(β1!

j!

)s

〈z〉N+2d+1+2j|∂β3G(z)| �
|β1|∑
j=1

(β1!

j!

)s

C1
2j+|β3|(j!)s(β3!)

s/2(3.17)

� C2
|β1|+|β3|(β1!)

s(β3!)
s/2

for a suitable C2 > 1, where we used
∑|β1|

j=1 1 = |β1| − 1 ≤ 2|β1|.
For |β1| ≥ 1, the estimate (3.16) can then be controlled by

(3.18)
∣∣〈z〉2d+1∂β1e2πiΦ2,(v1,u2)(z)∂β2σ(z + (v1, u2))∂

β3G(z)
∣∣

� M(v1, u2)C
|β1|+|β2|+|β3|(β1!β2!β3!)

s ≤ M(v1, u2)C
|α|(α!)s.

for a new constant C > 1. An easier argument shows that the same estimate holds
for β1 = 0 too.

Finally, the desired result (3.13) is obtained by using estimate (3.18) in (3.14),
together with

∑
β1+β2+β3=α

α!
β1!β2!β3!

= 3|α|. �

We now show two immediate byproducts of the above theorem, namely, expo-
nential sparsity of the Gabor matrix representation of T and the continuity on the
Gelfand–Shilov spaces. Let therefore G(g,Λ) be a Gabor frame for L2(Rd), with

g ∈ S
s/2
s/2(R

d), s ≥ 1. Under the assumptions of the previous theorem when M ≡ 1,

we have therefore the estimates

(3.19) |〈Tgu, gv〉| � exp
(− ε|v − χ(u)|1/s),

valid for u, v ∈ R2d, in particular for u, v ∈ Λ.
It is easy to see that this implies the sparsity for the Gabor matrix in the

classical – i.e., superpolynomial – sense; cf. [4], [26]. Actually, here we obtain a
sparsity of exponential-type, as detailed in the following result.

Proposition 3.4. Let G(g,Λ) be a Gabor frame for L2(Rd), with g ∈ S
s/2
s/2(R

d),

s ≥ 1. Under the assumptions of Theorem 3.3, with M ≡ 1, the Gabor matrix
〈Tgλ, gμ〉 is sparse in the following sense. Let a be any column or raw of the
matrix, and let |a|n be the n-largest entry of the sequence a. Then |a|n satisfies

|a|n ≤ C exp
(−εn1/(2ds)

)
, n ∈ N,

for some constants C > 0, ε > 0.

Indeed, this was shown in detail in Proposition 4.5 of [13] for any matrix sat-
isfying an estimate of the type (3.19).

Another consequence of Theorem 3.3 and the characterization (2.8) is a conti-
nuity result on Gelfand–Shilov spaces.



Exponentially sparse representations of Fourier integral operators 471

Proposition 3.5. Let s ≥ 1, and consider a symbol σ ∈ C∞(R2d) and a phase Φ
satisfying the assumptions (3.1), (3.2) and (3.3) with M ≡ 1. Then the corre-
sponding Fourier integral operator T in bounded on Ss

s(R
d).

Proof. The proof is analogous to the corresponding result for pseudodifferential
operators obtained in Proposition 4.7 of [13] (but here we restrict to s ≥ 1). In
short: from the inversion formula (2.6), we get

Vg(Tf)(v) =

∫
R2d

〈Tgu, gv〉Vgf(u) du,

with g(x) = e−
π
2 |x|2 , say. The estimate (3.19) together with the characterization

in (2.8) then give the desired conclusion. �

4. A counterexample to super-exponential decay

In this section we show that there is not a reasonable extension of Theorem 3.3 to
the case s < 1. In other terms, ultra-analytic phases and symbols generally do not
give super-exponential decay in (3.9), even for ultra-analytic windows.

Consider, in dimension d = 1, any real-valued function ϕ(x), x ∈ R, satisfying
the following estimates:

(4.1) |ϕ(α)(x)| ≤ C|α|+1(α!)s, ∀α ≥ 2,

for some s < 1 (e.g. ϕ(x) = cosx). Let T be the FIO with phase Φ(x, η) = xη +
ϕ(x) and symbol σ ≡ 1, therefore Tf(x) = e2πiϕ(x)f(x), χ(y, η) = (y, η +∇ϕ(y)).
Observe that the assumptions (3.1),(3.2) are fulfilled, as well as (3.3) with M ≡ 1.
Then, the following holds true.

Proposition 4.1. For the above operator T , suppose the following estimate holds
for some 1/2 ≤ s′ < 1, g ∈ Ss′

s′ (R) \ {0}, ε > 0:

(4.2) |〈Tgu, gv〉| � exp
(− ε|v − χ(u)|1/s′), u, v ∈ R

2,

Then ϕ(x) is a polynomial of degree at most 2.

Proof. The estimate (4.2) implies that if f ∈ Ss′
s′ (R) then Tf ∈ Ss′

s′ (R) (see the

proof of Proposition 3.5 or Proposition 4.7 in [13]). Let now f(x) = e−x2 ∈
S
1/2
1/2(R) ⊆ Ss′

s′ (R); then Tf(x) = e2πiϕ(x)e−x2 ∈ Ss′
s′ (R). The hypothesis (4.1) with

s < 1 and Cauchy’s estimates imply that ϕ(x) extends to an entire function ϕ(z),

z = x + iy ∈ C. By Theorem 2.3 the function e2πiϕ(z)e−z2

satisfies the growth
estimate

|e2πiϕ(z)e−z2 | ≤ Ce−cx2+C|y|μ, z = x+ iy,

for some constants C, c > 0, with μ = 1/(1 − s′). The left-hand side is equal to

e−2πImϕ(z)−x2+y2

, hence

−Imϕ(z) ≤ C(1 + x2 + |y|μ).
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for a new constant C > 0. A similar estimate holds with −ϕ in place of ϕ,
because −ϕ satisfies the same assumptions as ϕ and e−2πiϕ(x)e−x2 ∈ Ss′

s′ (R) too.
Therefore we get

|Imϕ(z)| ≤ C(1 + x2 + |y|μ).
So, Imϕ(z) has at most an algebraic growth, and the same must hold for the real
part Reϕ(z), by the Cauchy–Riemann equations. As a consequence, |ϕ(z)| has at
most an algebraic growth, therefore ϕ(z) is a polynomial by the Liouville theorem.
Since the second derivative ϕ′′(x) is bounded by (4.1), ϕ(x) must have degree at
most 2. �

The above result shows that there is no hope to obtain super-exponential decay
except for quadratic phases. Indeed, T is then a metaplectic operator and for those
operators we are able to obtain optimal estimates for the corresponding Gabor
matrix decay, as explained in the following section.

5. A class of generalized metaplectic operators

We will study the class of Fourier integral operators whose canonical transforma-
tion is a linear transformation χ(z) = Az for some invertible matrixA ∈ GL(2d,R).
Since χ must preserve the symplectic form (assumption (i) at the beginning of Sec-
tion 3), A must be a symplectic matrix, i.e., an element of the symplectic group

Sp(d,R) =
{A ∈ GL(2d,R) : tAJA = J

}
, where J =

(
0 −Id
Id 0

)
.

For z = (x, ξ) we shall also write

π(z)f = MξTxf.

Given A ∈ Sp(d,R), the metaplectic operator μ(A) is defined by the intertwining
relation

(5.1) π(Az) = cA μ(A)π(z)μ(A)−1 ∀z ∈ R
d ,

where cA ∈ C, |cA| = 1 is a phase factor (for details, see e.g. [22]).

If χ = A = (A B
C D ) ∈ Sp(d,R), then (x, ξ) = (Ay + Bη,Cy + Dη) and

det ∂x/∂y(y, η) = detA, so that the condition (3.7) becomes detA �= 0.

Viceversa, to every matrix A = (A B
C D ) ∈ Sp(d,R) with detA �= 0 corresponds

a metaplectic operator μ(A) which is a Fourier integral operator of the type (1.1),
as proved in Theorem 4.51 and subsequent Remark 2 of [22], recalled below.

Theorem 5.1. Let A = (A B
C D ) ∈ Sp(d,R). If detA �= 0 we have

(5.2) μ(A)f(x) = (detA)−1/2

∫
e2πiΦ(x,η)f̂(η) dη,

with

(5.3) Φ(x, η) =
1

2
xCA−1x+ ηA−1x− 1

2
η A−1Bη.
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Solving (3.5) for the phase function in (5.3) we obtain χ = A, as expected.
Observe that the phase Φ in (5.3) satisfies conditions (3.1) and (3.2) and the

symbol σ ≡ (detA)−1/2 in (5.2) fulfills (3.3) with exponent s = 0 (so also for
s = 1/2) and the weight M ≡ 1. So these metaplectic operators satisfy the
assumptions of Theorem 3.3 for s ≥ 1 but the best decay result would be

(5.4) |〈μ(A)gu, gv〉| � exp
(− ε|v − χ(u)|), u, v ∈ R

2d,

provided g ∈ S
1/2
1/2(R

d). This decay result in not optimal, as shown by the following

motivating example.

Example 5.2. Consider the Cauchy problem for the harmonic oscillator:

(5.5)

⎧⎨⎩ i
∂u

∂t
− 1

4π
Δu+ π|x|2u = 0

u(0, x) = u0(x),

with (t, x) ∈ R× Rd, d ≥ 1. For every fixed t, the solution:

u(t, x) = (cos t)−d/2

∫
Rd

e2πi[
1

cos txη+
tan t

2 (x2+η2)]f̂(η) dη, t �= π

2
+ kπ, k ∈ Z

can be seen as a FIO of type (1.1) with phase Φt(x, η) =
1

cos t xη + tan t
2 (x2 + η2)

and symbol σt = (cos t)−d/2. The associate canonical transformation is

χt(y, η) =
( (cos t) I (− sin t) I

(sin t) I (cos t) I

)( y
η

)
.

With g(x) = e−
π
2 |x|2 , an explicit computation shows the Gaussian decay

|〈u(t, ·)gu, gv〉| ≤ 2−d/2 exp
(
− π

2
|v − χt(u)|2

)
, ∀u, v ∈ R

2d.

More generally, consider the case of a FIO T with phase Φ in (5.3) and symbol σ
that satisfies (3.3), (3.4), that generalizes the classical metaplectic operator above,
having a non-constant symbol.

Theorem 5.3. Let s ≥ 1/2, consider a FIO T with phase Φ in (5.3) and symbol σ
that satisfies (3.3), (3.4). Assume g ∈ Ss

s(R
d). Then there exists ε > 0 such that

|〈Tgu, gv〉| � M(v1, u2) exp
(− ε|v − χ(u)|1/s), ∀u, v ∈ R

2d.

Proof. The proof uses the same pattern of the one of Theorem 3.3. The matrix of
the second order derivatives of the phase Φ is

(∂αΦ)|α|=2 =

(
CA−1 (tA)−1

A−1 A−1B

)
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and the phase remainder (3.11) becomes

Φ2,(v1,u2)(z) =
∑
|α|=2

cαz
α, cα ∈ R, ∀(v1, u2) ∈ R

2d.

So |∂β(Φ2,(v1,u2)(z))| ≤ C〈z〉2−|β| for 1 ≤ |β| ≤ 2, whereas ∂β(Φ2,(v1,u2)(z)) = 0

for every z ∈ R2d when |β| > 2. In this case, by the Faà di Bruno formula, the
estimate (3.15) is replaced by

∣∣ ∂β1e2πiΦ2,(v1 ,u2)(z)
∣∣ ≤ C|β1|

|β1|∑
j=1

〈z〉2j−|β1|

j!

∑
γ1+···+γj=β1

1≤|γk|≤2

β1!

γ1! · · · γj ! , |β1| ≥ 1,

namely ∣∣ ∂β1e2πiΦ2,(v1,u2)(z)
∣∣ ≤ C

|β1|
1

|β1|∑
j=1

β1!

j!
〈z〉2j−|β1|

for a new constant C1 > 0. Now we have ĝ ∈ Ss
s(R

d), so that G := g⊗ ĝ ∈ Ss
s (R

2d),
and the analog of formula (3.17) is here

|β1|∑
j=1

β1!

j!
〈z〉N+2d+1+2j−|β1||∂β3G(z)| � C

|β1|+|β3|
2

|β1|∑
j=1

β1!

j!
(2j − |β1|)!sβ3!

s

� C
|β1|+|β3|
3 (β1!β3!)

s

where we used

(2j − |β1|)!sβ1!
1−s

j!
≤ (2j)!sβ1!

1−2s

j!
� C

|β1|
4

j!2s−1

|β1|!2s−1
≤ C

|β1|
4 .

(The last inequality holds because j ≤ |β1| and s ≥ 1/2). �
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