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On the effect of rearrangement on complex

interpolation for families of Banach spaces

Yanqi Qiu

Abstract. We give a new proof to show that the complex interpolation for
families of Banach spaces is not stable under rearrangement of the given
family on the boundary, although, by a result due to Coifman, Cwikel,
Rochberg, Sagher and Weiss, it is stable when the latter family takes
only 2 values. The non-stability for families taking 3 values was first
obtained by Cwikel and Janson. Our method links this problem to the
theory of matrix-valued Toeplitz operator and we are able to characterize
all the transformations on T that are invariant for complex interpolation
at 0, they are precisely the origin-preserving inner functions.

1. Introduction

This paper is a remark on the theory of complex interpolation for families of
Banach spaces, developed by Coifman, Cwikel, Rochberg, Sagher and Weiss in [1].
To avoid technical difficulties, we will concentrate on finite dimensional spaces.

Let D = {z ∈ C : |z| < 1} be the unit disc with boundary T = ∂D. The
normalised Lebesgue measure on T is denoted bym. By an interpolation family, we
mean a measurable family of complex N -dimensional normed spaces {Eγ : γ ∈ T},
i.e., Eγ is CN equipped with norm ‖·‖γ and for each x ∈ CN , the function γ �→ ‖x‖γ
defined on T is measurable. We should also assume that

∫
log+ ‖x‖γdm(γ) < ∞

for any x ∈ CN . By definition, the interpolated space at 0 is

E[0] := H∞(T; {Eγ})/zH∞(T; {Eγ}).

That is, for all x ∈ CN ,

‖x‖E[0] = inf
{
ess sup

γ∈T

‖f(γ)‖Eγ

∣∣ f : T → CN analytic, f(0) = x
}
.
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More generally, for any z∈ D, the interpolated space at z for the family {Eγ : γ ∈ T}
is denoted by E[z] or {Eγ : γ ∈ T}[z] whose norm is defined as follows. For any
x ∈ CN ,

‖x‖E[z] := inf
{
ess sup

γ∈T

‖f(γ)‖Eγ

∣∣ f : T → CN analytic, f(z) = x
}
.

It is known (see Proposition 2.4 in [1]) that in the above definition, instead of
using ess sup γ∈T

‖f(γ)‖Eγ , we can use (
∫ ‖f(γ)‖pEγ

Pz(dγ))
1/p for 0 < p < ∞ or

exp(
∫
log ‖f(γ)‖Eγ Pz(dγ)) without changing the norm on E[z]. Here Pz(dγ) is

the harmonic measure on T associated to z.
The goal of this paper is to investigate when the norm of the space E[0] is

invariant under a (measure preserving) rearrangement of the family {Eγ : γ ∈ T}.
A trivial example of such a rearrangement is a rotation on T. But, as we will see,
there are non trivial instances of this phenomenon. In particular, we recall the
following well-known result.

Theorem 1.1 (Corollary 5.1 in [1]). If Xγ = Z0 for all γ ∈ Γ0 and Xγ = Z1

for all γ ∈ Γ1, where Γ0 and Γ1 are disjoint measurable sets whose union is T,
then X [0] = (Z0, Z1)θ, where θ = m(Γ1) and (Z0, Z1)θ is the classical complex
interpolation space for the pair (Z0, Z1).

The key fact behind this theorem is the existence for any measurable partition
Γ0 ∪ Γ1 of the unit circle of an origin-preserving inner function taking Γ0 to an
arc of length 2πm(Γ0) and Γ1 to the complementary arc of length. For details,
see the appendix. More generally, complex interpolation at 0 is stable under the
rearrangements given by any inner function vanishing at 0.

Proposition 1.2. Let ϕ : D → C be an inner function vanishing at 0. Its bound-
ary value is denoted again by ϕ : T → T. Then for any interpolation family
{Eγ : γ ∈ T}, the canonical identity

Id : {Eγ : γ ∈ T} [0] → {Eϕ(γ) : γ ∈ T} [0]
is isometric.

Proof. The proof is routine; for details, see the last step in the proof of Theorem 1.1
in the appendix. �

Theorem 1.1 shows in particular that in the 2-valued case, the complex inter-
polation is stable under rearrangement (the reader is referred to Lemma 6.1 for
the detail). We show that in the general case, this is not the case. We learnt from
the referee that this result was previously obtained by Cwikel and Janson in [2]
with a different method, the statement is at the bottom of page 214, the proof is
from page 278 to page 283.

Our method is simpler and it also yields a characterization of all the transfor-
mations on T that are invariant for complex interpolation at 0, they are precisely
the inner functions vanishing at 0. In other words, the converse of Proposition 1.2
holds.
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Here is how the paper is organised. In §2, we recall a result from Helson and
Lowdenslager’s papers [3], [4] on the matrix-valued outer function FW : D → MN

associated to a given matrix weight W : T → MN . This result allows us to give
an approximation formula for |FW (0)|2 when W is a small perturbation of the
constant weight I, where I is the identity matrix in MN .

In Section 3, we study the interpolation families consisting of distorted Hilbert
spaces (i.e., CN equipped with norms ‖x‖γ = ‖W (γ)1/2x‖�N2 for a.e. γ ∈ T). We
produce an explicit example of such a family for which complex interpolation at 0
is not stable under rearrangement.

Our main results are given in Section 4, where we study some interpolation
families consisting of 3 distorted Hilbert spaces. It is shown that in this restricted
case, the complex interpolation at 0 is already non-stable under rearrangement.
One advantage of our method is that we are able to characterize all the transfor-
mations on T that are invariant for complex interpolation at 0, they are precisely
the inner functions Θ : T → T such that Θ(0) = Θ̂(0) = 0.

Section 5 is devoted to the stability of complex interpolation under rearrange-
ment for families of compatible Banach lattices. We also exhibit a rather surprising
non-stability example of interpolation family taking values in {X,X,X∗, X

∗}.
Finally, in the Appendix, we reformulate the argument of [1] to prove Theo-

rem 1.1, the proof somewhat explains why the 3-valued case is different from the
2-valued case.

2. An approximation formula

In this section, we first recall some results from Section 5 of [3] and Sections 10-12
of [4] in the forms that will be convenient for us, and then deduce from them a
useful formula.

LetW : T →MN be a measurable positive semi-definite (N×N)-matrix valued
function such that tr(W ) is integrable. Such a function should be considered as
a matrix weight. Without mentioning, all matrix weights in this paper satisfy:
There exist c, C > 0 such that

(2.1) c I ≤W (γ) ≤ C I for a.e. γ ∈ T,

where I is the identity matrix in MN . For such a matrix weight, let L2
W =

L2(T,W ;SN
2 ) be the set of functions f : T →MN for which

‖f‖2L2
W

=

∫
tr
(
f(γ)∗W (γ)f(γ)

)
dm(γ) <∞.

Clearly, L2
W is a Hilbert space.

We will consider two subspaces H2(W ) ⊂ L2
W and H2

0 (W ) ⊂ L2
W defined as

follows:

H2(W ) =
{
f ∈ L2

W | f̂(n) = 0, ∀n < 0
}
,

H2
0 (W ) =

{
f ∈ L2

W | f̂(n) = 0, ∀n ≤ 0
}
.
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Given the assumption (2.1) on W , the identity map Id: L2(T;S
N
2 ) → L2

W is an
isomorphism; more precisely,

(2.2) c1/2 ‖f‖L2(T;SN
2 ) ≤ ‖f‖L2

W
≤ C1/2 ‖f‖L2(T;SN

2 ).

In particular, H2
0 (T;S

N
2 ) and H2

0 (W ) are set theoretically identical but equipped
with equivalent norms.

In the sequel, any element F ∈ H2(T;SN
2 ) will be identified with its holomor-

phic extension on D, in particular, F (0) = F̂ (0), the 0-th Fourier coefficient.

We recall the following theorem (a restricted form) of Helson and Lowdenslager
from [3] and [5]. We denote by SN

2 the spaces of N×N complex matrices equipped
with the Hilbert–Schmidt norm.

Theorem 2.1 (Helson–Lowdenslager). Assume W a matrix weight satisfying the
assumption (2.1). Then there exists F ∈ H2(T;SN

2 ) such that

• F (γ)∗F (γ) =W (γ) for a.e. γ ∈ T.

• F is a right outer function, that is, F ·H2(T;SN
2 ) is dense in H2(T;SN

2 ).

Let Φ be the orthogonal projection of the constant function I to the subspace
H2(W )�H2

0 (W ) ⊂ L2
W , i.e., Φ = PH2(W )�H2

0 (W )(I). Then

(2.3) Φ(γ)∗W (γ)Φ(γ) = |F (0)|2 for a.e. γ ∈ T.

Moreover, Φ and F and both invertible.

If F and G are two (right) outer functions such that

F (γ)∗F (γ) = G(γ)∗G(γ) =W (γ) for a.e. γ ∈ T,

then there is a constant unitary matrix U ∈ U (N) such that F (z) = UG(z) for
all z ∈ D. In particular, |F (0)|2 = |G(0)|2 is uniquely determined by W , as shown
by the equation (2.3). Within all possible such outer functions, there is a unique
one such that F (0) is positive, we will denote it by FW .

Let Ψ = PH2
0 (W )(I), where the orthogonal projection PH2

0 (W ) is defined on the

space L2
W . Clearly, we have

(2.4) Φ = I −Ψ.

We have already known that set theoretically, H2
0 (W ) = H2

0 (T;S
N
2 ), and they are

equipped with equivalent norms, thus we have a Fourier series for Ψ ∈ H2
0 (W ) =

H2
0 (T;S

N
2 ):

Ψ =
∑
n≥1

Ψ̂(n)γn;

where the convergence is in H2
0 (T;S

N
2 ) and hence in H2

0 (W ).
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By definition, Ψ is characterized as follows. For any A ∈ MN and any n ≥ 1,
we have 〈Ψ, γnA〉L2

W
= 〈I, γnA〉L2

W
, i.e.,∫

tr(γ−nA∗WΨ) dm(γ) =

∫
tr(γ−nA∗W ) dm(γ).

Or equivalently,

(2.5)

∫
γ−nWΨ dm(γ) =

∫
γ−nW dm(γ), for n ≥ 1.

We denote by P+ the orthogonal projection of L2(T) onto the subspace H2
0 (T).

The generalized projection P+⊗IX on Lp(T;X) for 1 < p <∞ will still be denoted
by P+ . Note that P+ is slightly different to the usual Riesz projection, the latter
is defined as the orthogonal projection onto H2(T). Similarly, we denote by P− the

orthogonal projection onto H2
0 (T) and also its generalisation on Lp(T;X) when it

is bounded. With this notation, the equation system (2.5) is equivalent to

(2.6) P+(WΨ) = P+(W ).

Key observation: If W is a perturbation of identity, that is, if there exists a
measurable function Δ : T →MN such that

Δ(γ)∗ = Δ(γ) for a.e. γ ∈ T and ‖Δ‖L∞(T;MN ) < 1

and
W = I +Δ,

then the equation (2.6) has the form

(2.7) Ψ + P+(ΔΨ) = P+(Δ).

The above equation can be solved using a Taylor series.
To make the last sentence in the preceding observation rigorous, we introduce

the following Toeplitz type operator:

TΔ : H2
0 (T;S

N
2 )

LΔ−−→ L2(T;SN
2 )

P+−−→ H2
0 (T;S

N
2 ),

where LΔ : H2
0 (T;S

N
2 ) → L2(T;SN

2 ) is the left multiplication by Δ on the subspace
H2

0 (T;S
N
2 ). More precisely,

(LΔf)(γ) = Δ(γ)f(γ) for any f ∈ L2(T;SN
2 ).

Clearly, we have
‖TΔ‖ ≤ ‖Δ‖L∞(T;MN ) < 1.

The term P+(Δ) in equation (2.7) should be treated as an element in H2
0 (T;S

N
2 ),

then the equation (2.7) has the form

(2.8) (Id + TΔ)(Ψ) = P+(Δ).
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Since ‖TΔ‖ < 1, the operator Id + TΔ is invertible. Thus equation (2.8) has a
unique solution Ψ ∈ H2

0 (T;S
N
2 ) = H2

0 (W ) given by the formula

(2.9) Ψ = (Id + TΔ)
−1(P+(Δ)) =

∞∑
n=0

(−1)n T n
Δ(P+(Δ)),

where T 0
Δ(P+(Δ)) = P+(Δ), and the convergence is to be understood in the

space H2
0 (T;S

N
2 ). Combining equations (2.3), (2.4) and (2.9), we deduce the fol-

lowing formula:

|FI+Δ(0)|2 =
[
I −

∞∑
n=0

(−1)n T n
Δ(P+(Δ))

]∗
(I +Δ)×

[
I −

∞∑
n=0

(−1)n T n
Δ(P+(Δ))

]
.

We summarize the above discussion in the following:

Proposition 2.2. Let Δ : T → MN be a measurable bounded selfadjoint function
such that ‖Δ‖L∞(T;MN ) < 1. Let ε ∈ [0, 1]. Then we have

|FI+εΔ(0)|2 =
[
I −

∞∑
n=0

(−1)nεn+1 T n
Δ(P+(Δ))

]∗
(I + εΔ)

×
[
I −

∞∑
n=0

(−1)n εn+1 T n
Δ(P+(Δ))

]
.

In particular, we have

(2.10) |FI+εΔ(0)|2 = I + εΔ̂(0)− ε2
∑
n≥1

|Δ̂(n)|2 +O(ε3) as ε→ 0+.

Proof. It suffices to prove the approximation identity (2.10). We have

|FI+εΔ(0)|2 =
[
I − εP+(Δ) + ε2 TΔ(P+(Δ)) +O(ε3)

]∗
(I + εΔ)

× [
I − εP+(Δ) + ε2 TΔ(P+(Δ)) +O(ε3)

]
= I + εR1 + ε2R2 +O(ε3) as ε→ 0+,(2.11)

where

R1 = Δ− P+(Δ) − P+(Δ)∗,
R2 = P+(Δ)∗P+(Δ)−ΔP+(Δ)− P+(Δ)∗Δ+ TΔ(P+(Δ)) + TΔ(P+(Δ))∗.

For R1, we note that since Δ is selfadjoint, P−(Δ) = P+(Δ)∗ and hence

(2.12) Δ = P+(Δ) + P+(Δ)∗ + Δ̂(0).

Thus
R1 = Δ̂(0).
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For R2, we note that since the left hand side of equation (2.11) is independent
of γ ∈ T, the right hand side should also be independent of γ, hence R2 must be
independent of γ, it follows that

R2 =

∫
R2(γ) dm(γ) =

∫ (
P+(Δ)∗P+(Δ)−ΔP+(Δ) − P+(Δ)∗Δ

)
dm(γ)

= −
∑
n≥1

Δ̂(n)∗Δ̂(n) = −
∑
n≥1

|Δ̂(n)|2.
�

3. Interpolation families in the continuous case

To any invertible matrix A ∈ GLN(C) is associated a Hilbertian norm ‖·‖A on CN ,
which is defined as follows:

‖x‖A = ‖Ax‖�N2 , for any x ∈ CN ;

where �N2 denotes the space CN with the usual Euclidean norm. Let us denote
�2A := (CN , ‖ · ‖A). We have the following elementary properties:

• Let A,B ∈ GLN (C), then they define the same norm on CN if and only if
|A| = |B|. Thus, if U ∈ U (N) is a N×N unitary matrix, then ‖·‖UA = ‖·‖A.

• We define a pairing (x, y) =
∑N

n=1 xnyn for any x, y ∈ CN , then under this
pairing, we have the canonical isometries:

(�2A)
∗ = �2A−T ;

where A−T is the inverse of the tranpose matrix AT .

• We have the following canonical isometries:

�2A = �2
A

and �2A
∗
= �2(A∗)−1 .

Here we recall that, for a complex Banach space X , its complex conjugate X
is defined to be the space consists of the same element of X , but with scalar
multiplication

λ · v = λ̄v for λ ∈ C, v ∈ X.

Consider an N ×N -matrix weight W . To such a weight is associated an inter-
polation family {

�2w(γ) : γ ∈ T
}
, where w(γ) =

√
W (γ).

The following elementary proposition will be used frequently:

Proposition 3.1. For interpolation family {Eγ : γ ∈ T} with Eγ = �2w(γ), we have

E[0] = �2F (0), that is,

‖x‖E[0] = ‖F (0)x‖�N2 for all x ∈ CN ,

where F (z) is any right outer function associated to the weight W .
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Proof. By the definition of right outer function associated to the weight W ,

(3.1) F (γ)∗F (γ) =W (γ) for a.e. γ ∈ T.

For any x ∈ CN , define an analytic function fx : D → CN by

fx(z) = F (z)−1F (0)x,

then fx(0) = x and for a.e. γ ∈ T,

‖fx(γ)‖2w(γ) =
〈
W (γ)F (γ)−1F (0)x, F (γ)−1F (0)x

〉
=
〈
F (γ)∗F (γ)F (γ)−1F (0)x, F (γ)−1F (0)x

〉
= ‖F (0)x‖2�N2 .

This shows that ‖fx‖H∞(T;{Eγ}) ≤ ‖F (0)x‖�N2 , whence

‖x‖E[0] ≤ ‖F (0)x‖�N2 = ‖x‖�2
F(0)

.

The converse inequality will be given by duality; it suffices to show that

‖x‖E[0]∗ ≤ ‖x‖�2
F(0)−T

= ‖x‖(�2
F (0)

)∗ .

Consider the dual interpolation family {E∗
γ : γ ∈ T} = {�2w(γ)−T : γ ∈ T}, which

is naturally given by the weight W (γ)−T = (w(γ)−T )∗w(γ)−T . By Theorem 2.12
in [1], we have a canonical isometry{

E∗
γ : γ ∈ T

}
[0] = E[0]∗.

The identity (3.1) implies

(F (γ)−T )∗F (γ)−T =W (γ)−T for a.e. γ ∈ T.

Thus F (z)−T is the right outer function associated to the weight W (γ)−T . Then
the same argument as above yields that

‖x‖E[0]∗ ≤ ‖x‖�2
F(0)−T

= ‖x‖(�2
F (0)

)∗ . �

Remark 3.2. More generally, assume that X is a (finite dimensional) normed
space such that MN ⊂ End(X) and ‖u · x‖X = ‖x‖X for any u ∈ U (N). For
instance X = SN

p (1 ≤ p ≤ ∞) and MN acts on SN
p by the usual left multi-

plications of matrices. Consider the interpolation family Eγ = (X, ‖ · ‖X;A(γ))
with ‖x‖X;A(γ) = ‖A(γ) · x‖X for any γ ∈ T, then E[0] = (X, ‖ · ‖B(0)) with
‖x‖B(0) = ‖B(0) · x‖X , where B(z) is any right outer function associated to the
matrix weight A(γ)∗A(γ).

The following result is probably known to the experts of prediction theory, since
we do not find it in the literature, we include its proof.
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Proposition 3.3. The function {W (γ) : γ ∈ T} �→ FW (0) or equivalently {W (γ) :
γ ∈ T} �→ |F (0)|2 is not stable under rearrangement. More precisely, there exists
a family {W (γ) : γ ∈ T} and a measure preserving mapping S : T → T, such that

FW (0) �= FW◦S(0).

Before we proceed to the proof of the proposition, let us mention that if the
weight W (γ) takes only 2 distinct values, i.e., if W (γ) = A0 for γ ∈ Γ0 and
W (γ) = A1 for γ ∈ Γ1 with T = Γ0 ∪ Γ1 a measurable partition, then a detailed
computation shows that we have

FW (0)2 = A
1/2
0 (A

−1/2
0 A1A

−1/2
0 )m(Γ1)A

1/2
0 = A

1/2
1 (A

−1/2
1 A0A

−1/2
1 )m(Γ0)A

1/2
1 .

In particular, FW (0) = FW◦M (0) for any measure preserving mappingM : T → T.
Of course, this can be viewed as a special case of Theorem 1.1. The fact that we
can calculate FW (0) efficiently in the above situation is due to the fundamental
fact that two quadratic forms can always be simultaneously diagonalized.

Proof. Fix r > 0, and define two M2-valued bounded analytic functions F1, F2 :
D →M2 by

F1(z) =

[
(1 + r2)1/4 r(1 + r2)−1/4z

0 (1 + r2)−1/4

]
,

F2(z) =

[
(1 + r2)−1/4 0

r(1 + r2)−1/4z (1 + r2)1/4

]
.

Note that they are both outer since z → F1(z)
−1 and z → F2(z)

−1 are bounded
on D. By a direct computation,

F1(e
iθ)∗F1(e

iθ) =W1(e
iθ) =

[
(1 + r2)1/2 reiθ

re−iθ (1 + r2)1/2

]
,

F2(e
iθ)∗F2(e

iθ) =W2(e
iθ) =

[
(1 + r2)1/2 re−iθ

reiθ (1 + r2)1/2

]
.

If we define S : T → T by S(γ) = γ, then S is measure preserving andW2 =W1◦S.
By noting that F1(0) and F2(0) are positive, we have F1 = FW1 and F2 = FW2 =
FW1◦S . However, FW1◦S(0) = F2(0) �= F1(0) = FW1(0). �

We denote

W (r)(eiθ) :=

[
(1 + r2)1/2 reiθ

re−iθ (1 + r2)1/2

]
,

and let w(r)(γ) =
√
W (r)(γ). The notation S : T → T will be reserved for the

complex conjugation mapping.

An immediate consequence of Propositions 3.1 and 3.3 is the following:
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Corollary 3.4. The interpolation family {Ẽ(r)
γ = �2

(w(r)◦S)(γ)
: γ ∈ T} is a rear-

rangement of the family {E(r)
γ = �2

w(r)(γ)
: γ ∈ T}. The identity mapping Id: Ẽ(r)[0]

→ E(r)[0] has norm ∥∥ Id : Ẽ(r)[0] → E(r)[0]
∥∥ = (1 + r2)1/2.

Proof. Indeed, we have

∥∥Id : Ẽ(r)[0] → E(r)[0]
∥∥ = sup

x �=0

‖FW (r)(0)x‖�22
‖FW (r)◦S(0)x‖�22

=
∥∥FW (r)(0)FW (r)◦S(0)

−1
∥∥
M2

= (1 + r2)1/2.

�

Remark 3.5. By Corollary 3.4 and a suitable discretization argument, we can
show that if Jk = {eiθ : (k − 1)π/4 ≤ θ < kπ/4}, for 1 ≤ k ≤ 8, and let γk ∈ Jk be

the center point on Jk, then the interpolation families B
(r0)
γ = �2

w(r0)(γk)
if γ ∈ Jk

and B̃
(r0)
γ = �2

w(r0)(γ̄k)
if γ ∈ Jk for r0 =

√
2 + 2

√
2 give different interpolation

space at 0, i.e., ∥∥ Id : B̃(r0)[0] → B(r0)[0]
∥∥ > 1.

We omit its proof, because in the next section, we give a better result by using the
formula obtained in §2.

4. Interpolation for three Hilbert spaces

In this section, we will show that complex interpolation is not stable even for a
family taking only 3 distinct Hilbertian spaces. The starting point of this section is
Proposition 2.2. Our proof is somewhat abstract, but it explains why the 3-valued
case becomes different from the 2-valued case, the idea used in the proof will be
applied further to get a characterization of measurable transformations on T that
preserve complex interpolation at 0.

Theorem 4.1. There are two different measurable partitions of the unit circle:

T = S1 ∪ S2 ∪ S3 = S′
1 ∪ S′

2 ∪ S′
3, m(Sk) = m(S′

k), for k = 1, 2, 3,

and three constant selfadjoint matrices Δk ∈M2 for k = 1, 2, 3, such that if we let

Δ = Δ11S1 +Δ21S2 +Δ31S3 and Δ′ = Δ11S′
1
+Δ21S′

2
+Δ31S′

3
,

then ∑
n≥1

|Δ̂(n)|2 �=
∑
n≥1

|Δ̂′(n)|2.

Before turning to the proof of the above theorem, we state our main result.
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Corollary 4.2. Let Δ,Δ′ be as in Theorem 4.1. For 0 < ε < 1/‖Δ‖∞, we define
two matrix weights which are perturbation of the identity:

Wε = I + εΔ and W ′
ε = I + εΔ′.

Denote wε and w′
ε the square roots of Wε and W ′

ε respectively. Then there exists
ε0 < 1 such that, whenever 0 < ε < ε0, we have

|FWε(0)|2 �= |FW ′
ε
(0)|2.

Thus, whenever 0 < ε < ε0, the interpolation families{
�2wε(γ)

: γ ∈ T
}

and
{
�2w′

ε(γ)
: γ ∈ T

}
have the same distribution and take only 3 distinct values. However, the interpo-
lation spaces at 0 given by these two families are different:

�2FWε(0)
�= �2FW ′

ε(0)
.

Proof. This is an immediate corollary of Proposition 2.2 and Theorem 4.1. The
last assertion follows from Proposition 3.1. �

Remark 4.3. We verify that in the two main cases where the interpolation is
stable under rearrangement, the function Δ �→ ∑

n≥1 |Δ̂(n)|2 is stable under rear-
rangement. Note first that we have the following matrix identity:∑

n≥1

|Δ̂(n)|2 =

∫
|P+(Δ)|2 dm.

• 2-valued case: If Δ is a 2-valued selfadjoint function, i.e, there is a measurable
subset A ⊂ T and two selfadjoint matrices Δ1,Δ2 ∈ MN , such that Δ =
Δ11A +Δ21Ac then∑

n≥1

|Δ̂(n)|2 =

∫
|P+(Δ)|2 dm =

∫ ∣∣P+

(
(Δ1 −Δ2)1A +Δ2

)∣∣2 dm
= |Δ1 −Δ2|2

∫
|P+(1A)|2 dm =

m(A)−m(A)2

2
|Δ1 −Δ2|2,

which depends on the measure of A but not the other structure of A.

More generally, we note in passing that for any real valued f in L2(T) the

expression 2‖P+(f)‖22 = 2
∑

n≥1 |f̂(n)|2 coincides with the variance of f .

• Rearrangement under inner functions: let ϕ : T → T be the boundary value
of an origin-preserving inner function. Assume Δ : T → MN selfadjoint.
Note that P+(Δ ◦ ϕ) = P+(Δ) ◦ ϕ and that ϕ preserves the measure m.
Hence ∑

n≥1

∣∣ ̂(Δ ◦ ϕ)(n)∣∣2 =

∫
|P+(Δ ◦ ϕ)|2 dm =

∫
|P+(Δ) ◦ ϕ|2 dm

=

∫
|P+(Δ)|2 dm =

∑
n≥1

|Δ̂(n)|2.
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Proof of Theorem 4.1. Assume by contradiction that for any pair of 3-valued self-
adjoint functions Δ and Δ′ as in the statement of Theorem 4.1, we have

(4.1)
∑
n≥1

|Δ̂(n)|2 =
∑
n≥1

|Δ̂′(n)|2.

We make the following reduction.

Step 1. The above assumption implies that for any pair of functions, Δ,Δ′

taking values in the same set of three matrices and having identical distribution,
the equation (4.1) holds as well. Indeed, given such a pair, we can consider the
pair of selfadjoint functions, which are still 3-valued,

γ →
[

0 Δ(γ)∗

Δ(γ) 0

]
and γ →

[
0 Δ′(γ)∗

Δ′(γ) 0

]
.

Then the square of the n-th Fourier coefficient becomes

[ |Δ̂(n)|2 0

0 |Δ̂∗(n)|2
]

and
[ |Δ̂′(n)|2 0

0 |Δ̂′∗(n)|2
]
,

respectively. The block (1, 1)-terms then give the desired equation.

Step 2. If we take N = 1 in the above step, then the conclusion is that for

any pair of 3-valued scalar functions f, f ′ ∈ L∞(T) such that f
d
= f ′, we have∑

n≥1 |f̂(n)|2 =
∑

n≥1 |f̂ ′(n)|2, or equivalently,

‖P+(f)‖22 = ‖P+(f
′)‖22.

Consequence I. Under the above assumption, if (A1, A2) is a pair of two disjoint
measurable subsets of T, and (A′

1, A
′
2) is another such pair such that m(A1) =

m(A′
1) and m(A2) = m(A′

2), then

(4.2)
〈
P+(1A1), P+(1A2)

〉
L2(T)

=
〈
P+(1A′

1
), P+(1A′

2
)
〉
L2(T)

Indeed, if we define A3 := T \ (A1 ∪ A2) and A′
3 := T \ (A′

1 ∪ A′
2). For any

α ∈ C, α �= 0, 1, consider

fα = α1A1 + 1A2 + 0× 1A3 and f ′
α = α1A′

1
+ 1A′

2
+ 0× 1A′

3
.

Then fα and f ′
α are two functions taking exactly 3 values 0, 1, α and fα

d
= f ′

α.
Hence by the assumption, we have

‖αP+(1A1) + P+(1A2)‖22 = ‖αP+(1A′
1
) + P+(1A′

2
)‖22, for any α ∈ C.(4.3)

Note that for any measurable set A, since 1A is real,

‖P+(1A)‖22 =
m(A)−m(A)2

2
(4.4)
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Taking this in consideration, the equation (4.3) implies that

�(α〈P+(1A1), P+(1A2)〉
)
= �(α〈P+(1A′

1
), P+(1A′

2
)〉), for any α ∈ C,

hence the equation (4.2) holds.

Step 3. We can deduce from our assumption the following consequence.

Consequence II. For any pair of scalar functions f, f ′ ∈ L∞(T) (without the

assumption that they are both 3-valued), such that f
d
= f ′ , we have ‖P+(f)‖2 =

‖P+(f
′)‖2.

Indeed, if

f =

n∑
k=1

fk1Ak
, f ′ =

n∑
k=1

fk1A′
k
,

where (Ak)
n
k=1 are disjoint subsets of T, so is (A′

k)
n
k=1, moreover m(Ak) = m(A′

k).
By (4.2) and (4.4), we have

‖P+(f)‖22 =

n∑
k=1

|fk|2 · ‖P+(1Ak
)‖22 +

∑
1≤k �=l≤n

fkfl
〈
P+(1A1), P+(1A2)

〉

=

n∑
k=1

|fk|2 · ‖P+(1A′
k
)‖22 +

∑
1≤k �=l≤n

fkfl
〈
P+(1A′

1
), P+(1A′

2
)
〉

= ‖P+(f
′)‖22.

Then by an approximation argument, more precisely, by using the fact that two

functions f, f ′ ∈ L2(T) such that f
d
= f can be approximated in L2(T) by two

sequences of simple functions (gn) and (g′n) such that gn
d
= g′n, we can extend

the above equality for pairs of equidistributed simple functions to the general
equidistributed pairs of functions, as stated in Consequence II.

Step 4. Now if we take f, f ′ ∈ L∞(T) to be f(γ) = γ and f ′(γ) = γ, then f
d
= f ′,

but we have ‖P+(f)‖2 = 1 �= 0 = ‖P+(f
′)‖2, which contradicts Consequence II.

This completes the proof. �

Define

Tk :=
{
eiθ

∣∣ 2(k − 1)π

3
≤ θ <

2kπ

3

}
for k = 1, 2, 3.

We claim that in Theorem 4.1 and hence in Corollary 4.2, we can take for example

S1 = S′
1 = T1, S2 = S′

3 = T2, S3 = S′
2 = T3.

Indeed, by the proof of Theorem 4.1, here we only need to show that〈
P+(1T1), P+(1T2)

〉 �= 〈
P+(1T1), P+(1T3)

〉
.

Since 1T1(γ) = 1T3(e
−i2π/3γ) and 1T2(γ) = 1T1(e

−i2π/3γ), we have〈
P+(1T1), P+(1T3)

〉
=
〈
P+(1T2), P+(1T1)

〉
.
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Thus we only need to show that

(4.5) �(〈P+(1T1), P+(1T2)
〉) �= 0.

Note that

�(1̂T1(n)1̂T2(n)
)
=

sin 2π
3 (1 − cos 2π

3 )

2π2n2
×

⎧⎪⎨
⎪⎩

0, if n ≡ 0 mod 3;

1, if n ≡ 1 mod 3;

−1, if n ≡ 2 mod 3.

Hence

�(〈P+(1T1), P+(1T2)
〉)

=
3 sin 2π

3 (1− cos 2π
3 )

2π2

∞∑
k=0

2k + 1

(3k + 1)2(3k + 2)2
,

which is non-zero, as we expected.

The same idea as in the proof of Theorem 4.1 yields the following charac-
terization: combining with Proposition 1.2, we have characterized all measurable
transformations on T that preserve complex interpolation at 0. At this stage, the
proof is quite direct.

Theorem 4.4. Let Θ : T → T be a measurable transformation. If for any inter-
polation family {Eγ ; γ ∈ T} we have

{
Eγ : γ ∈ T

}
[0] =

{
EΘ(γ) : γ ∈ T

}
[0],

then Θ is an inner function and Θ̂(0) = 0.

Remark 4.5. The main point of Theorem 4.4 is to characterize all the transfor-
mations which preserve the interpolation spaces at origin.

Proof. It suffices to show that Θ ∈ H∞
0 (T), since by definition Θ(γ) has modulus 1

for a.e. γ ∈ T. By Propositions 2.2, 3.1 and similar arguments in the proof of
Theorem 4.1, we have

‖P+(f ◦Θ)‖2 = ‖P+(f)‖2, for any scalar function f ∈ L∞(T).(4.6)

Now take f(γ) = γ, we have ‖P+(Θ)‖2 = ‖P+(γ)‖2 = 0, which implies that

Θ ∈ H∞(T) and hence Θ ∈ H∞(T). Then we can write Θ = Θ̂(0) + P+(Θ).
In (4.6), if we take f(γ) = γ, then ‖P+(Θ)‖2 = ‖P+(γ)‖2 = 1. Note that

1 = ‖Θ‖22 = |Θ̂(0)|2 + ‖P+(Θ)‖22,

whence Θ̂(0) = 0. This completes the proof. �
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5. Some related comments

Recall that an N -dimensional (complex) Banach space L is called a (complex)
Banach lattice with respect to a fixed basis (e1, . . . , eN ) of L if it satisfies the
lattice axiom: For any xk, yk ∈ C such that |xk| ≤ |yk| for all 1 ≤ k ≤ N ,

∥∥∥ N∑
k=1

xkek

∥∥∥
L

≤
∥∥∥ N∑

k=1

ykek

∥∥∥
L
.

Thus in particular, ∥∥∥ N∑
k=1

xkek

∥∥∥
L

=
∥∥∥ N∑

k=1

|xk|ek
∥∥∥

L
.

The above fixed basis (e1, . . . , eN ) will be called a lattice-basis of L . Such a Banach
lattice L will be viewed as function spaces over the N -point set [N ] = {1, . . . , N}
in such a way that ek corresponds to the Dirac function at the point k. Thus
for x, y ∈ L , we can write |x| ≤ |y| if |xk| ≤ |yk| for all 1 ≤ k ≤ N , and

log |x| =∑N
k=1 log |xk|ek, suppose that xk �= 0 for all 1 ≤ k ≤ N .

We will call {Lγ = (CN , ‖ · ‖γ) : γ ∈ T} a family of compatible Banach lattices,
if there is an algebraic basis (e1, . . . , eN) of CN which is simultaneously a lattice-
basis of Lγ for a.e. γ ∈ T and such that

0 < ess inf
γ∈T

‖ek‖γ ≤ ess sup
γ∈T

‖ek‖γ <∞ for all 1 ≤ k ≤ N.(5.1)

In the sequel, the notation {Lγ = (CN , ‖ · ‖γ) : γ ∈ T} is reserved for a family
of compatible Banach lattices with respect to the canonical basis of CN .

Complex interpolation at 0 for families of compatible Banach lattices is stable
under any rearrangement. The proof of the following proposition is standard.

Proposition 5.1. If {Lγ = (CN , ‖ · ‖γ) : γ ∈ T} be an interpolation family of
compatible Banach lattices, then

log ‖x‖L [0] = inf

∫
log ‖f(γ)‖γ dm(γ),(5.2)

where the infimum runs over the set of all measurable coordinate bounded functions
f : T → CN , i.e., fk : T → C is bounded for all 1 ≤ k ≤ N such that

log |x| ≤
∫

log |f(γ)| dm(γ)

(by convention log 0 := −∞). In particular, if M : T → T is measure preserving

and letting {L̃γ = LM(γ) : γ ∈ T}, then

Id : L [0] → L̃ [0]

is isometric.
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Proof. It suffices to show (5.2). Assume that x ∈ CN and ‖x‖L [0] < λ. Without
loss of generality, we can assume xk �= 0 for all 1 ≤ k ≤ N . By the definition of
L [0] there exists an analytic function f = (f1, . . . , fN) : D → CN such that

f(0) = x and ess sup
γ∈T

‖f(γ)‖γ < λ.

By (5.1), this implies in particular that f is coordinate bounded. Since z �→
log |fk(z)| is subharmonic, we have

log |xk| = log |fk(0)| ≤
∫

log |fk(γ)| dm(γ), for 1 ≤ k ≤ N.

Hence log |x| ≤∫
log |f(γ)| dm(γ). Obviously,

∫
log ‖f(γ)‖γ dm(γ) < logλ, whence

inf

∫
log ‖f(γ)‖γ dm(γ) ≤ log ‖x‖L [0].

Conversely, assume that x ∈ CN and xk �= 0 for all 1 ≤ k ≤ N and let
f : D → CN be any coordinate bounded analytic function such that log |x| ≤∫
log |f(γ)| dm(γ). Then by (5.1), ess sup γ∈T

‖f(γ)‖γ < ∞ and there exists

y ∈ CN such that

(5.3) |x| ≤ |y| and log |y| =
∫

log |f(γ)| dm(γ).

Define u(γ) := log |f(γ)|. By assumption, xk �= 0 and fk is bounded, hence
log |fk| ∈ L1(T), so we can define the Hilbert transform of uk. Let ũ(γ) be the
Hilbert transform of u(γ) and define g(γ) = eu(γ)+iũ(γ). Then gk(γ) = euk(γ)+iũk(γ)

is the boundary value of an outer function, hence

log |gk(0)| =
∫

log |gk(γ)| dm(t) =

∫
uk(γ) dm(γ) = log |yk|.

Thus |y| = |g(0)|. By Proposition 2.4 in [1], we have

‖y‖L [0] = ‖g(0)‖L [0] ≤ exp
( ∫

log ‖g(γ)‖γ dm(γ)
)

= exp
( ∫

log ‖f(γ)‖γ dm(t)
)
.

It is easy to see that L [0] is a Banach lattice and by (5.3),

‖x‖L [0] ≤ ‖y‖L [0].

Thus

log ‖x‖L [0] ≤ log ‖y‖L [0] ≤
∫

log ‖f(γ)‖γ dm(γ).

This proves the converse inequality. �
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Remark 5.2. The preceding result should be compared with Corollary 5.2 in [1],
where it is shown that{

Lpγ (X,Σ, μ) : γ ∈ T
}
[z] = Lpz(X,Σ, μ),

where 1/pz =
∫
(1/pγ)Pz(dγ).

Definition 5.3. Let L = (CN , ‖ · ‖L ) be a symmetric Banach lattices, we define
SL to be the space of N ×N matrices equipped with the norm

‖A‖SL =
∥∥(s1(A), . . . , sN (A))

∥∥
L
,

where s1(A), . . . , SN (A) are singular numbers of the matrix A.

If the Banach lattices Lγ considered above are all symmetric, i.e., for any
permutation σ ∈ SN and any xk ∈ C,

∥∥∥ N∑
k=1

xkeσ(k)

∥∥∥
Lγ

=
∥∥∥ N∑

k=1

xkek

∥∥∥
Lγ

,

then to each Lγ is associated a Schatten type space SLγ = (MN , ‖ · ‖SLγ
).

The following proposition is classical (see [6]), and we omit its proof.

Proposition 5.4. Let {Lγ = (CN , ‖ · ‖γ) : γ ∈ T} be an interpolation family
of compatible symmetric Banach lattices and consider the associated interpolation
family {

SLγ = (MN , ‖ · ‖SLγ
) : γ ∈ T

}
.

Then for any z ∈ D, we have the following isometric identification:

Id : SL [z] → {SLγ} [z].
Combining Propositions 5.1 and 5.4, we have the following.

Corollary 5.5. Consider the interpolation family {SLγ : γ ∈ T}. Let M : T → T

be measure preserving and let {S̃Lγ = SLM(γ)
: γ ∈ T}. Then

Id : {SLγ} [0] −→ {S̃Lγ} [0]
is isometric.

The following proposition is related to our problem, see the discussion after it.

Proposition 5.6. Let {Eγ : γ ∈ T} be an interpolation family of N -dimensional
spaces such that there exist c, C > 0, for any x ∈ CN ,

c ·min
k

|xk| ≤ ‖x‖γ ≤ C ·max
k

|xk| for a.e. γ ∈ T.

Assume that Id : Eγ̄ → Eγ
∗
is isometric for a.e. γ ∈ T. Then

E[ζ] = �N2 , for any ζ ∈ (−1, 1).
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Proof. Fix ζ ∈ (−1, 1). For any x ∈ CN . Given any analytic function f : D →
CN such that f(ζ) = x and ‖f‖H∞({Eγ}) < ∞. Since ζ = ζ̄, we have f(ζ) =

f(ζ̄) = x. The assumption on the interpolation family implies that the function
z �→ 〈f(z), f(z̄)〉 is bounded analytic, hence

log ‖x‖2�N2 = log |〈f(ζ), f(ζ̄)〉| ≤
∫

log |〈f(γ), f(γ̄)〉|Pζ(dγ)

≤
∫

log
(‖f(γ)‖Eγ‖f(γ̄)‖E∗

γ

)
Pζ(dγ)

=

∫
log

(‖f(γ)‖Eγ‖f(γ̄)‖Eγ̄

)
Pζ(dγ) ≤ log

(‖f‖2H∞({Eγ})
)
.

Hence ‖x‖�N2 ≤ ‖f‖H∞({Eγ}). It follows that ‖x‖�N2 ≤ ‖x‖E[ζ].

By duality, this inequality also holds in the dual case, hence we must have
‖x‖�N2 = ‖x‖E[ζ]. �

Let Qj be the open arc of T in the j-th quadrant, i.e.,

Qj =
{
eiθ : (k − 1)π/2 < θ < kπ/2

}
for 1 ≤ j ≤ 4.

Suppose that X and Y are N -dimensional, define two interpolation families {Zγ :

γ ∈ T} and {Z̃γ : γ ∈ T} by letting

Zγ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X, γ ∈ Q1

Y, γ ∈ Q2

Y ∗, γ ∈ Q3

X∗, γ ∈ Q4

, Z̃γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X, γ ∈ Q1

Y, γ ∈ Q2

X∗, γ ∈ Q3

Y ∗, γ ∈ Q4

.

By Proposition 5.6, Z[0] = �N2 . For suitable choices of X and Y , we could have

Z̃[0] �= �N2 . More precisely, we have the following proposition.

Proposition 5.7. For any α ∈ T, define a 2× 2 selfadjoint matrix

δα :=
[

0 α
α 0

]
.

For 0 < ε < 1, let wα,ε = (I + εδα)
1/2 and X = �2wα,ε . Consider the weight Wα,ε

and the interpolation family generated by it as follows:

Wα,ε(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I + εδα, γ ∈ Q1

(I + εδα)
−1, γ ∈ Q2

(I + εδα)
−1, γ ∈ Q3

I + εδα, γ ∈ Q4

; Z̃α,ε
γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X, γ ∈ Q1

X∗, γ ∈ Q2

X
∗
, γ ∈ Q3

X, γ ∈ Q4

.

There exists α ∈ T and 0 < ε0 < 1, such that if 0 < ε < ε0 then

Z̃α,ε[0] �= �N2 .



Rearrangement on complex interpolation 457

Proof. We have

Wα,ε(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I + εδα, γ ∈ Q1

I − εδα + ε2I +O(ε3), γ ∈ Q2

I − εδα + ε2I +O(ε3), γ ∈ Q3

I + εδα, γ ∈ Q4

.

Applying a slightly modified variant of the approximation equation (2.10), we have

|FWα,ε(0)|2 = I +
ε2I

2
− ε2

[ ‖P+(hα)‖22 0

0 ‖P+(hα)‖22
]
+O(ε3);

where
hα = α1Q1 − α 1Q2 − α1Q3 + α 1Q4 .

Assume by contradiction that Z̃α,ε[0] = �N2 for any α ∈ T and small ε. Then
we must have ‖P+(hα)‖22 = 1/2 for any α ∈ T. In particular,

α �−→ ‖P+(hα)‖22 is a constant function on T.

It follows that the following function is a constant function:

C(α) = � 〈
αP+(1Q1),−αP+(1Q2)

〉
+ � 〈

αP+(1Q1), αP+(1Q4)
〉

+ � 〈− αP+(1Q2),−αP+(1Q3)
〉
+ � 〈− αP+(1Q3), αP+(1Q4)

〉
.

Clearly, by translation invariance of Haar measure, we have〈
P+(1Q1), P+(1Q2)

〉
=
〈
P+(1Q2), P+(1Q3)

〉
=
〈
P+(1Q3), P+(1Q4)

〉
,〈

P+(1Q1), P+(1Q4)
〉
=
〈
P+(1Q2), P+(1Q1)

〉
,

hence

C(α) = −�{
2α2

(〈
P+(1Q1), P+(1Q2)

〉− 〈
P+(1Q1), P+(1Q2)

〉)}
.

Then α �→ C(α) is constant function if and only if〈
P+(1Q1), P+(1Q2)

〉− 〈
P+(1Q1), P+(1Q2)

〉
= 0,

which is equivalent to

(5.4) � (〈
P+(1Q1), P+(1Q2)

〉)
= 0.

By a similar computation as in the proof of inequality (4.5), we have

�(〈P+(1Q1), P+(1Q2)
〉)

=
4

π2

∞∑
k=0

2k + 1

(4k + 1)2(4k + 3)2
,

this contradicts (5.4), and hence completes the proof. �
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6. Appendix

Here we reformulate the argument of [1] to emphasize the crucial role played by
a certain inner function associated to the measurable partition of the unit circle
in proving Theorem 1.1. It follows from the preceding that the analogous inner
function for a measurable partition into 3 subsets does not exist.

Lemma 6.1. Suppose that Γ0 ∪ Γ1 is a measurable partition of T. Then there
exists an inner function ϕ such that ϕ(0) = 0, and ϕ(Γ0) ∪ ϕ(Γ1) is a partition
of T into two disjoint arcs (up to negligible sets). Moreover,

(6.1) m(ϕ(Γ0)) = m(Γ0) and m(ϕ(Γ1)) = m(Γ1).

Proof. Since any origin-preserving inner function ϕ preserves the measure m on T

(indeed note
∫
T
ϕ(γ)ndm(γ) =

∫
T
γndm(γ)∀n ∈ Z), it suffices to show the existence

of an inner function satisfying the partition condition.
Let v = 1Γ1 : T → R be the characteristic function of Γ1, its harmonic extension

on D will also be denoted by v. Note that 0 < v(z) < 1 for any z ∈ D. Let ṽ be
the harmonic conjugate of v and define ψ = v + iṽ on D. Then ψ is an analytic
map from D to S := {z ∈ C : 0 < �(z) < 1} and has non-tangential limit
ψ(γ) = v(γ) + iṽ(γ), a.e. γ ∈ T. Thus

ψ(Γ0) ⊂ ∂0 and ψ(Γ1) ⊂ ∂1,

where ∂0 = {z ∈ C : �(z) = 0} and ∂1 = {z ∈ C : �(z) = 1}. Let τ : S → D be
a Riemann conformal mapping such that τ(ψ(0)) = 0. Note that τ(∂0) and τ(∂1)
are disjoint open arcs of T. Define ϕ = τ ◦ψ : D → D. Then ϕ is an inner function
such that ϕ(0) = 0. We have

ϕ(Γ0) ⊂ τ(∂0) and ϕ(Γ1) ⊂ τ(∂1).

Hence m(ϕ(Γ0)) ≤ m(τ(∂0)) and m(ϕ(Γ1)) ≤ m(τ(∂1)). Since ϕ preserves the
measure m, we have

1 = m(ϕ(Γ0)) +m(ϕ(Γ1)) ≤ m(τ(∂0)) +m(τ(∂1)) = 1.

Thus up to negligible sets, we have

ϕ(Γ0) = τ(∂0) and ϕ(Γ1) = τ(∂1). �

Proof of Theorem 1.1. Suppose Γ0 ∪ Γ1 is a measurable partition of the circle and
let the interpolation family {Xγ : γ ∈ T} be such that

Xγ = Z0 for all γ ∈ Γ0, Xγ = Z1 for all γ ∈ Γ1.

By Lemma 6.1, we can find an inner function ϕ such that ϕ(0) = 0 and ϕ(Γ0) =
J0, ϕ(Γ1) = J1 up to negligible sets, where J0 ∪ J1 is a partition of the circle into

disjoint arcs. Consider the interpolation family of spaces {X̃γ : γ ∈ T} such that

X̃γ = Z0 for all γ ∈ J0, , X̃γ = Z1 for all γ ∈ J1.
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Then by a conformal mapping, it is easy to see

(6.2) X̃ [0] = (Z0, Z1)θ, θ = m(J1) = m(Γ1).

We have X̃ϕ(γ) = Xγ for a.e. γ ∈ T. If x ∈ CN is such that ‖x‖
˜X[0] < 1, then by

definition, there exists an analytic function f : T → CN such that f(0) = x and
ess sup t∈T

‖f(γ)‖
˜Xγ
< 1. Thus

ess sup
γ∈T

‖(f ◦ ϕ)(γ)‖Xt = ess sup
γ∈T

‖(f ◦ ϕ)(γ)‖
˜Xϕ(γ)

= ess sup
γ∈T

‖f(γ)‖
˜Xγ
< 1.

Since (f ◦ϕ)(0) = f(0) = x, the above inequality shows that ‖x‖X[0] < 1. By homo-
geneity, ‖x‖X[0] ≤ ‖x‖

˜X[0]. But if we consider the dual of the above interpolation

family, then we get the same inequality, hence we must have

(6.3) ‖x‖X[0] = ‖x‖
˜X[0].

By (6.3) and (6.2), we have

X [0] = (Z0, Z1)θ, θ = m(Γ1). �

By definition, a space is arcwise θ-Hilbertian if it can be obtained by complex
interpolation of a family of spaces on the circle such that on an arc, the spaces are
Hilbertian.

Remark 6.2 (Communicated by Gilles Pisier). The preceding argument also
shows that, as conjectured in [7], of which we use the terminology, any θ-Hilbertian
Banach space is automatically arcwise θ-Hilbertian, at least under suitable assump-
tions on the dual spaces, that are automatic in the finite dimensional case. We
merely indicate the argument in the latter case. Consider a measurable partition
Γ0 ∪ Γ1 of the unit circle with m(Γ1) = θ and a family of n-dimensional spaces
{Eγ | γ ∈ ∂D} such that Eγ = �n2 for any γ ∈ Γ1 but Eγ is arbitrary for γ ∈ Γ0.
If ϕ is the inner function appearing in Lemma 6.1, and if we set Fγ = Eϕ(γ) then
the identity map Id : E[0] → F [0] is clearly contractive and F [0] is arcwise θ-
Hilbertian. Applying this to the dual family {E∗

γ} in place of {Eγ} and using the

duality theorem from [1] (Theorem 2.12), we find that Id : E[0]
∗ → F [0]

∗
is also

contractive, and hence is isometric. This shows that E[0] is arcwise θ-Hilbertian.
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