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Calderón–Zygmund estimates for parabolic

p(x, t)-Laplacian systems

Paolo Baroni and Verena Bögelein

Abstract. We prove local Calderón–Zygmund estimates for weak solu-
tions of the evolutionary p(x, t)-Laplacian system

∂tu− div
(
a(x, t)|Du|p(x,t)−2Du

)
= div

(|F |p(x,t)−2F
)

under the classical hypothesis of logarithmic continuity for the variable
exponent p(x, t). More precisely, we show that the spatial gradient Du of
the solution is as integrable as the right-hand side F , i.e.,

|F |p(·) ∈ Lq
loc =⇒ |Du|p(·) ∈ Lq

loc for any q > 1,

together with quantitative estimates. Thereby we allow the presence of
eventually discontinuous coefficients a(x, t), requiring only a VMO condi-
tion with respect to the spatial variable x.

1. Introduction

The aim in this paper is to provide a Calderón–Zygmund theory for weak solutions
of the parabolic p(x, t)-Laplacian system

(1.1) ∂tu− div
(
a(z)|Du|p(z)−2

Du
)
= div

(|F |p(z)−2
F
)

in ΩT := Ω× (0, T ).

Here, Ω is an open set in R
n with n ≥ 2 and ΩT denotes the parabolic cylinder

over Ω. Since we consider the case of systems, the solution is a possibly vector
valued function u : ΩT → R

N with N ≥ 1. With respect to the variable exponent
p(x, t) we assume logarithmic continuity which is classical in the theory of variable
exponent problems, while the regularity assumption on a(x, t) encompasses a large
class of not necessarily continuous coefficients, including the ones of the splitting
form a(x, t) = b(x)c(t), where b(·) belongs to the class of VMO functions and c(·)
is merely a measurable bounded function. For the precise assumptions we refer
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to Section 2 below. As usual we consider weak solutions u of (1.1), meaning that
they belong to a certain parabolic Sobolev space, in particular |Du|p(·) ∈ L1; see
Definition 2.1 below. The existence of such weak solutions is ensured by a result of
Antontsev and Shmarev [7], [8]. Our intention in this paper is to establish a local
Calderón–Zygmund theory for weak solutions to (1.1) and can be summarized as
follows: For any q > 1 we prove the inclusion

|F |p(·) ∈ Lq
loc(ΩT ) =⇒ |Du|p(·) ∈ Lq

loc(ΩT )

together with quantitative gradient estimates. At this stage we mention that when
the exponent p(·) is constant the result has been obtained in [4]; the stationary
case of our result was treated in [3]. We stress that, apart from the parabolic
scaling deficit, our quantitative gradient estimate is homogeneous in the sense that
the constant is independent of the p(·)-energy of Du. To our knowledge this fact
is new even for the stationary elliptic case.

Parabolic systems of the type considered in (1.1) are simplified versions of sys-
tems arising in the mathematical modeling of certain phenomena in fluid dynamics,
such as models for non-Newtonian fluids, especially electro-rheological fluids. The
peculiarity of these fluids is that their viscosity depends strongly on the external
electromagnetic field and therefore varies in space and time. A mathematical model
for electro-rheological fluids has been developed by Růžička in [32] and exhibits a
p(x, t)-growth structure in the nonlinear diffusion term. For simplified versions of
this model partial regularity results can be found in [5], [21] and for the stationary
case in [2], [13]. Other applications (in the case of equations) are models for flows
in porous media [6], [25].

Compared to the stationary case there are only a few regularity results for
parabolic problems with nonstandard growth. The first we mention, which in turn
is the starting point for almost any other regularity result in this area, is the
self-improving property of higher integrability, i.e., the existence of some ε > 0,
depending only on the structural constants, such that

|Du|p(·) ∈ L1+ε
loc (ΩT ).

This result was first established in the case of the p(x, t)-Laplacian equation by
Antontsev and Zhikov [9], and later for a quite general class of parabolic systems
with p(x, t)-growth independently by Zhikov and Pastukhova [34] and Bögelein
and Duzaar [10]. With regard to Hölder regularity, in the scalar case Chen and
Xu [15] proved that weak solutions of the parabolic p(x, t)-Laplacian equation
are locally bounded and Hölder continuous. The local Hölder continuity of the
spatial gradient Du for the parabolic p(x, t)-Laplacian system has recently been
established by Bögelein and Duzaar [11]. As already mentioned, for more general
parabolic systems with nonstandard growth partial regularity results can be found
in [5], [21].

The history of Calderón–Zygmund estimates for nonlinear problems begins in
the elliptic setting. The result for the p-Laplacian equation, i.e., the scalar case
N = 1, has been obtained by Iwaniec [26], while the vectorial case N > 1 has
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been treated by DiBenedetto and Manfredi [20]. The extension to elliptic equa-
tions with VMO coefficients has been achieved by Kinnunen and Zhou [29]. Gen-
eral elliptic equations, also involving nonstandard growth conditions, have been
treated by Acerbi and Mingione [3], who built on previous ideas of Caffarelli and
Peral [14] valid for homogeneous equations with highly oscillating coefficients. For
the case of higher order systems with nonstandard growth conditions we refer to
Habermann [24]. The anisotropic character of the evolutionary p-Laplacian system
makes it impossible to use elliptic techniques in the parabolic setting. Indeed it
was initially not clear how to transfer such results to the parabolic setting. The
result has finally been achieved by Acerbi and Mingione [4] who introduced the
necessary new tools for developing a local Calderón–Zygmund theory for the time
dependent, parabolic case (see also Misawa [31] for the special case F ∈ BMO).
Later, extensions to general parabolic systems were obtained by Duzaar, Mingione,
and Steffen [22] while a Calderón–Zygmund theory for evolutionary obstacle pro-
blems can be found in [12], [33].

The main difficulty when considering the time dependent parabolic case comes
from the nonhomogeneous scaling behavior of the system, in the sense that the
solution multiplied by a constant is in general no longer a solution. Note that this
problem appears already in the standard growth case when p(·) ≡ p with p �= 2.
As a consequence, all local estimates for the solution (such as energy estimates
or reverse Hölder inequalities) become inhomogeneous and the use of maximal
operators, which are typically used in the proof of Calderón–Zygmund estimates,
becomes delicate. The technique how for overcoming this problem goes back to
the pioneering work of DiBenedetto and Friedman [19]. The idea is to choose a
system of parabolic cylinders different from the standard one, whose space-time
scaling depends on the local behavior of the solution itself. In a certain sense
this allows rebalancing the nonhomogeneous scaling of the parabolic p-Laplacian
system. This technique is by now classical and is the core of the proof of almost
any regularity result for degenerate parabolic problems. The strategy is to find
parabolic cylinders of the form

(1.2) Q(λ)
� (zo) := B�(xo)×

(
to − λ2−p�2, to + λ2−p�2

)
, zo = (xo, to)

such that the scaling parameter λ > 0 and the average of |Du|p over Q
(λ)
� (zo) are

coupled in the following way:∫
Q

(λ)
� (zo)

|Du|p dz ≈ λp.

Such cylinders are called intrinsic cylinders or cylinders with intrinsic coupling.
The delicate aspect of this coupling clearly lies in the fact that the value of the
integral average must be comparable to the scaling factor λ, which itself is involved
in the construction of the support of the integral. On such intrinsic cylinders, i.e.,
when |Du| is comparable to λ in the above sense, the parabolic p-Laplacian system
∂tu = div(|Du|p−2Du) behaves in a certain sense like ∂tu = λp−2Δu. Therefore,

using intrinsic cylinders of the type Q
(λ)
� (zo) we can rebalance the multiplicative

factor λp−2 for instance by rescaling u in time by a factor λ2−p.
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When dealing with the case of nonstandard growth the construction of such a
uniform system of intrinsic cylinders is not possible anymore, since the exponent p
appears in the scaling parameter λ2−p and therefore the scaling will depend on the
particular point zo. This means that the scaling of the intrinsic cylinder will in fact
depend on space and time, so that we have to deal with a nonuniform intrinsic
geometry. More precisely, we consider cylinders of the form

(1.3) Q(λ)
� (zo) := B�(xo)×

(
to − λ(2−po)/po�2, to + λ(2−po)/po�2

)
, po := p(zo),

with an intrinsic coupling of the form (where for simplicity we omit the role of the
right-hand side F ): ∫

Q
(λ)
� (zo)

|Du|p(z) dz ≈ λ.

Note that, differently from (1.2), we made a change of parameter λpo ↔ λ, so
that the right-hand side is independent of po and hence independent of zo. The
main difficulty now comes from the fact that the heuristics we described above for
the standard growth case do not apply for the case of nonstandard growth, e.g. on

Q
(λ)
� (zo) the parabolic p(x, t)-Laplacian system behaves like ∂tu = λ(p(z)−2)/p(z)Δu

such that the multiplicative factor λ(p(z)−2)/p(z) does not cancel the scaling factor
λ(2−po)/po . This problem will be solved by a parabolic localization argument which
has its origin in [10]; see Section 4.

Now, we briefly describe the strategy of the proof of our main result. Since we
have to work on a system of nonuniform intrinsic cylinders of the type (1.3) there
is no uniform maximal function available. For this reason we avoid the use of any
maximal operator in the proof by a technique which goes back to [4]. Instead of
maximal operators we construct a covering of the super-level sets{|Du(z)|p(z) > λ

}
, λ 
 1

by exit cylinders Q
(λ)
�i (zi), i = 1, . . . ,∞, defined according to (1.3) on which we

have ∫
Q

(λ)
�i

(zi)

|Du|p(·) +M(|F |+ 1)p(·) dz ≈ λ.

Thereby, M 
 1 is a suitably chosen parameter depending on the structural
constants of the problem. Then, we know that

(1.4)

∫
Q

(λ)
�i

(zi)

|Du|p(·) dz � λ and

∫
Q

(λ)
�i

(zi)

(|F |+ 1)p(·) dz � λ

M
.

Therefore, if M is large u solves (here we suppose a ≡ 1 for simplicity)

∂tu− div
(|Du|p(z)−2Du

) ≈ 0 on Q
(λ)
�i (zi)

approximately. This heuristic suggests comparing u to the solution w of{
∂tw − div

(|Dw|p(zi)−2Dw
)
= 0 in Q(λ)

�i
(zi),

w = u on ∂P Q(λ)
�i

(zi).
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To be precise, this will be done in a two step comparison argument. Here, we
stress that the comparison argument relies strongly on the localization technique
introduced in [1], [3]; we replace the variable exponent p(z)−2 by the constant ex-
ponent p(zi)−2 and we control the error, via estimates in L logL spaces, using the
logarithmic continuity assumption (2.4). The advantage now is that the theory of
DiBenedetto and Friedman [18] ensures that Dw satisfies an a priori L∞-estimate.
Via the comparison argument this L∞-estimate can be transferred into estimates
for Du on the super-level sets. At this stage the final result follows by a standard
argument using Fubini’s theorem.

2. Statement of the result

As already mentioned, Ω will be a bounded open set in R
n, n ≥ 2, and ΩT :=

Ω× (0, T ), T > 0, will denote the space-time cylinder over Ω. Moreover, we shall
consider an exponent function p : ΩT → (2n/(n+ 2),∞). For k ∈ N we define
Lp(·)(ΩT ,R

k) to be the set of those measurable functions v : ΩT → R
k such that

|v|p(·) ∈ L1(ΩT ), i.e.,

Lp(·)(ΩT ,R
k) :=

{
v : ΩT → R

k :

∫
ΩT

|v|p(·) dz < ∞
}
.

As usual we shall deal with weak solutions to (1.1) which are specified in the
following:

Definition 2.1. A map u ∈ L2(ΩT ,R
N ) ∩ L1

(
0, T ;W 1,1(Ω,RN )

)
is a weak solu-

tion of the parabolic system (1.1) if and only if Du ∈ Lp(·)(ΩT ,R
Nn) and

(2.1)

∫
ΩT

u · ϕt −
〈
a(·)|Du|p(·)−2Du,Dϕ

〉
dz =

∫
ΩT

〈|F |p(·)−2F,Dϕ
〉
dz

holds for every test function ϕ ∈ C∞
0 (ΩT ,R

N ).

Since our problem is local in nature, it is not restrictive to assume the existence
of γ1 and γ2 such that

(2.2)
2n

n+ 2
< γ1 ≤ p(z) ≤ γ2 < ∞ for all z ∈ ΩT .

The lower bound γ1 > 2n/(n + 2) is unavoidable even in the constant exponent
case p(·) ≡ p; see Chapters 5 and 8 of [17]. With respect to the regularity of p(·)
we will assume the strong logarithmic continuity condition

(2.3) |p(z)− p(z̃)| ≤ ω
(
dP(z, z̃)

)
for any z, z̃ ∈ ΩT ,

where the parabolic metric dP is given by

dP(z, z̃) := max
{
|x− x̃|,

√
|t− t̃ |

}
for z = (x, t), z̃ = (x̃, t̃) ∈ R

n+1
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and ω : [0,+∞) → [0,+∞) is a nondecreasing modulus of continuity satisfying

(2.4) lim sup
�↓0

ω(�) log
(1
�

)
= 0,

an assumption which was first considered in [1] and then used in [3] and [13]. By
virtue of (2.4) we may assume that there exists R1 ∈ (0, 1] depending on ω(·) such
that

(2.5) ω(�) log
(1
�

)
≤ 1 for all � ∈ (0, R1].

For the coefficient function a : ΩT → R we will assume its measurability and that

(2.6) ν ≤ a(z) ≤ L for any z ∈ ΩT

holds with some constants 0 < ν ≤ 1 ≤ L. With regard to its regularity, we will
only assume that it satisfies a VMO condition with respect to the spatial variable.
More precisely, writing

(a)xo,�(t) :=

∫
B�(xo)

a(x, t) dx for B�(xo) ⊂ Ω,

we assume that there exists ω̃ : [0,∞) → [0, 1] such that

(2.7) sup
B�(xo)⊂Ω,0<�≤r

∫
B�(xo)

∣∣ a(x, t)− (a)xo,�(t)
∣∣ dx ≤ ω̃(r)

for a.e. t ∈ (0, T ) any r > 0 and

(2.8) lim
r↓0

ω̃(r) = 0.

Here, we stress that with respect to time we assume nothing more than measurabi-
lity. Moreover, our assumptions on a allow product coefficients of the type a(x, t) =
b(x) c(t), with b ∈ VMO(Ω)∩L∞(Ω) and c ∈ L∞(0, T ). Now we are ready to state
our main result.

Theorem 2.2. Let u be a weak solution of the parabolic system (1.1) where
p : ΩT → [γ1, γ2] and a : ΩT → [ν, L] satisfy assumptions (2.2)–(2.4) and (2.6)–(2.8).
Moreover, assume that |F |p(·) ∈ Lq

loc(ΩT ) for some q > 1. Then we have

|Du|p(·) ∈ Lq
loc(ΩT ).

Moreover, for K ≥ 1 there exist a radius

Ro = Ro(n,N, ν, L, γ1, γ2,K, ω(·), ω̃(·), q) > 0

and a constant c ≡ c(n,N, ν, L, γ1, γ2, q) such that the following holds: if

(2.9)

∫
ΩT

|Du|p(·) + (|F |+ 1)p(·) dz ≤ K,
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then for every parabolic cylinder Q2R ≡ Q2R(zo) � ΩT with R ∈ (0, Ro], there
holds

(2.10)

∫
QR

|Du|p(·)q dz ≤ c
[ ∫

Q2R

|Du|p(·) dz+
(∫

Q2R

(|F |+1)p(·)q dz
)1/q ]1+d(po)(q−1)

,

where

(2.11) d(po) :=

⎧⎪⎪⎨
⎪⎪⎩

po
2

if po ≥ 2,

2po
po(n+ 2)− 2n

if po < 2,
with po := p(zo).

We note that the constant c in Theorem 2.2 remains stable when q ↓ 1 and it
blows up, i.e., c → ∞ when q → ∞. Moreover, due to an improved localization
technique we are able to prove the gradient estimate (2.10) with a constant c
independent of the parameter K, which was not known even in the elliptic case;
see [3], [24].

Remark 2.3. The same result holds true if we assume, instead of the VMO
condition (2.8), that the BMO seminorm of a with respect to x is small, i.e., that

[a]BMO := sup
r>0

ω̃(r) ≤ εBMO

with some constant εBMO > 0 depending on n,N, ν, L, γ1, γ2, and q.

3. Preliminaries and notation

3.1. Notation

For a point zo ∈ R
n+1 we shall always write zo = (xo, to) with xo ∈ R

n and to ∈ R

and we shall consider, as we did for instance in the statement of Theorem 2.2,
symmetric parabolic cylinders around zo of the form Q�(zo) := B�(xo)× (to − �2,
to + �2). Moreover, in the course of the proof of our main result, in order to
rebalance the nonhomogeneity of the parabolic system, we shall also deal with
scaled cylinders of the form

(3.1) Q(λ)
� (zo) := B�(xo)× Λ(λ)

� (zo),

where λ > 0 and

Λ(λ)
� (zo) :=

(
to − λ(2−po)/po�2, to + λ(2−po)/po�2

)
.

In any case, when considering a particular cylinder Q
(λ)
� (zo) with center zo, we

denote by po the value of p(·) at the center of the cylinder, i.e., po ≡ p(zo). Note
that such a system of scaled cylinders is nonuniform in the sense that the scaling
λ(2−po)/po depends on the particular point zo via po ≡ p(zo). In the particular
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case λ = 1 the cylinders Q
(1)
� (zo) reduce to the standard parabolic ones, i.e.,

Q
(1)
� (zo) ≡ Q�(zo). By χQ

(λ)
� (zo), for a constant χ > 1, we denote the χ-times

enlarged cylinder, i.e., χQ
(λ)
� (zo) := Q

(λ)
χ� (zo). For g ∈ L1

loc(C,R
k), with C ⊂ ΩT

of strictly positive measure, we shall write

(g)C :=

∫
C

g(z) dz :=
1

|C|
∫
C

g(z) dz

for the mean value of g on C. Finally, αn denotes the Lebesgue measure of the unit
ball B1(0) in R

n. We will denote by c a generic constant greater than one, possi-
bly varying from line to line. We will indicate the dependencies of the constants in
parentheses. For compactness of notation we will denote by the word data exactly
the set of parameters n, N , ν, L, γ1, and γ2, so that by writing c(data,M) we
will mean that the constant c depends on n, N , ν, L, γ1, γ2 and moreover upon M .
Constants we need to recall will be denoted with special symbols, such as cDiB, c̃,
c∗, and c�.

3.2. Preliminaries

The following lemma is a standard iteration lemma and can be found for instance
in [23], Lemma 6.1.

Lemma 3.1. Let φ : [R, 2R] → [0,∞) be a function such that

φ(r1) ≤ 1

2
φ(r2) +A+

B
(r2 − r1)β

for every R ≤ r1 < r2 ≤ 2R,

where A,B ≥ 0 and β > 0. Then

φ(R) ≤ c(β)
[
A+

B
Rβ

]
.

The next lemma is a useful tool when dealing with p-growth problems. The
continuous dependence of the constant on p allows considering instead a constant
depending on γ1 and γ2 when p ∈ [γ1, γ2].

Lemma 3.2. Let p ∈ [γ1, γ2]. Then there exists a constant c ≡ c(n,N, γ1, γ2) such
that for any A, B ∈ R

Nn, not both zero, there holds(|A|2 + |B|2)(p−2)/2 |B −A|2 ≤ c
〈|B|p−2

B − |A|p−2
A,B −A

〉
.

The following lemma can be deduced from Lemma 2.2 of [16]. Note that the
dependence of the constant on γ2 instead of p can be deduced from the proof of
the lemma.

Lemma 3.3. Let p ∈ [γ1, γ2]. Then there exists a constant c� ≡ c�(γ2) such that
for any A, B ∈ R

Nn there holds

|A|p ≤ c� |B|p + c�
(|A|2 + |B|2)(p−2)/2 |B −A|2.



Calderón–Zygmund estimates for parabolic p(x, t)-Laplacian systems 1363

Finally, we state a useful estimate which is a consequence of Iwaniec’s inequality
for Orlicz spaces [27]; see also inequality (28) of [3]. Fix β > 0, Q ⊂ R

n+1, and
g ∈ Lσ(Q) for some σ > 1. Then, there holds

(3.2)

∫
Q

|g| logβ
(
e+

|g|
(g)Q

)
dz ≤ c(σ, β)

( ∫
Q

|g|σ dz
)1/σ

for all σ > 1.

The constant c(σ, β) blows up when σ ↓ 1. Moreover, c(σ, β) depends continuously
on β and therefore it can be replaced by a constant c(σ, γ1, γ2) if β ∈ [γ′

2, γ
′
1].

4. Nonuniform intrinsic geometry

Lemma 4.1 yields a parabolic localization technique. Obviously the difficulty stems
from the necessity of coupling the technique of intrinsic geometry with the local-
ization needed to treat the variable exponent growth conditions. As we already
pointed out in the introduction, this will be achieved using a nonuniform intrinsic
geometry, i.e., a system of cylinders as defined in (3.1) whose scaling depends on
the particular point considered. The following lemma is due to [10].

Lemma 4.1. Let κ,K,M ≥ 1 and p : ΩT → [γ1, γ2] satisfy (2.3) and (2.5). Then
there exists a radius �o ≡ �o(n, γ1, κ,K,M, ω(·)) ∈ (0, R1] such that the following

holds: whenever Du,F ∈ Lp(·)(ΩT ,R
Nn) satisfy (2.9) and Q

(λ)
� (zo) ⊂ ΩT is a

parabolic cylinder with � ∈ (0, �o] and λ ≥ 1 such that

(4.1) λ ≤ κ

∫
Q

(λ)
� (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz,

then we have

(4.2) λ ≤
( Γ

4�n+2

)po/2

, p2 − p1 ≤ ω(Γ�α) and λω(Γ�α) ≤ e 3npo/α,

where

po := p(zo), p1 := inf
Q

(λ)
� (zo)

p(·), p2 := sup
Q

(λ)
� (zo)

p(·)

and

(4.3) Γ := 4βnκKM, βn := max{1, (2αn)
−1}, α := min

{
1, γ1

n+2
4 − n

2

}
.

Proof. We first deduce from (4.1), (2.9) (recall that Q
(λ)
� (zo) ⊂ ΩT ), and the

definitions of Γ and βn in (4.3) the following bound for λ:

λ ≤ κKM

|Q(λ)
� (zo)|

=
κKM

2αn�n+2
λ(po−2)/po ≤ βnκKM

�n+2
λ(po−2)/po =

Γ

4�n+2
λ(po−2)/po .
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Rewriting this inequality we obtain (4.2)1. Now, we come to the proof of (4.2)2.
We define

(4.4) �o := R
1/α
1 Γ−2/α ≤ R1 ≤ 1

and assume that � ≤ �o. Keeping in mind the definitions of α and Γ this deter-
mines �o as a constant depending on n, γ1, K, M , κ and ω(·). From (2.3) and
the fact that λ ≥ 1 we obtain the following preliminary bound for the oscillation

of p(·) on Q
(λ)
� (zo):

p2 − p1 ≤ ω
(
2�+

√
2λ(2−po)/(2po)�

) ≤ ω
(
2�+

√
2λ(2−γ1)/(2po)�

)
.

In the case γ1 ≥ 2 this leads us to

p2 − p1 ≤ ω(4�) ,

while in the case 2n/(n+ 2) < γ1 < 2 we infer from (4.2)1 that

p2 − p1 ≤ ω
(
4λ(2−γ1)/(2po)�

) ≤ ω
(
4
(
Γ
4

)(2−γ1)/4
�1−(2−γ1)(n+2)/4

)
≤ ω

(
Γ�γ1(n+2)/4−n/2

)
.

Note that the restriction γ1 > 2n/(n+ 2) ensures that the exponent of � is positive,
i.e., γ1(n+ 2)/4 − n/2 > 0. Combining the estimates from the cases γ1 ≥ 2 and
γ1 < 2 and recalling that � ≤ 1 we arrive at

p2 − p1 ≤ ω(Γ�α) ,

which proves (4.2)2. Finally, we come to the proof of (4.2)3. Using the definition
of �o in (4.4) and the logarithmic bound (2.5) (which is applicable sinceR1/Γ ≤ R1)
we obtain

Γω(Γ�α) ≤ Γω(Γ�α
o ) ≤ Γω(R1/Γ) ≤ (

Γ
R1

)ω(R1/Γ)
= exp

[
ω
(
R1

Γ

)
log

(
Γ
R1

)] ≤ e .

Moreover, by similar reasoning and using the last inequality we get

�−ω(Γ�α) = Γω(Γ�α)/α (Γ�α)−ω(Γ�α)/α ≤ e 1/α (Γ�α)−ω(Γ�α)/α

= e 1/α exp
[ω(Γ�α)

α log 1
Γ�α

] ≤ e 2/α.

At this stage (4.2)3 follows from (4.2)1 and the previous two inequalities since

λω(Γ�α) ≤ (
Γ�−(n+2)

)poω(Γ�α)/2 ≤ e po/2+po(n+2)/α ≤ e 3npo/α .

This completes the proof of the lemma. �

Since the family of intrinsic cylinders is nonuniform, in the sense that the scaling
depends on the center of the cylinder, we need the following nonuniform version of
the Vitali covering theorem, which can be found as Lemma 7.1 of [10]. Note that
we can choose L1 = 1 due to assumption (2.5) and that we replaced M by KM
which is more suitable in our setting.
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Lemma 4.2. Let K,M, λ ≥ 1 and let p : ΩT → [γ1, γ2] fulfill assumptions (2.3)
and (2.5). Then there exists χ ≡ χ(n, γ1) ≥ 5 and �1 = �1(n, γ1,K,M) ∈ (0, 1]
such that the following is true: let F = {Qi}i∈I be a family of axially parallel
parabolic cylinders of the form

Qi ≡ Q(λ)
�i

(zi) ≡ B�i(xi)×
(
ti − λ(2−p(zi))/p(zi)�2i , ti + λ(2−p(zi))/p(zi)�2i

)
with uniformly bounded radii, in the sense that there holds

(4.5) �i ≤ min
{
�1,

[
βnKMλ−2/p(zi)

]1/(n+2)
}

∀ i ∈ I

with βn defined in (4.3). Then there exists a countable subcollection G ⊂ F of
disjoint parabolic cylinders such that⋃

Q∈F
Q ⊂

⋃
Q∈G

χQ.

5. Higher integrability

In this section we provide a higher integrability result for solutions to homogeneous
parabolic p(x, t)-Laplacian systems that will be crucial later in the proof of certain
comparison estimates. We consider the parabolic system

(5.1) ∂tv − div
(
a(z)|Dv|p(z)−2Dv

)
= 0 on A× (t1, t2) =: A,

where A ⊂ R
n is an open set and t1 < t2. Then, we have the following higher

integrability result from [10] (compare with Theorem 2.2 there), see also [34].

Theorem 5.1. Suppose that p : A → [γ1, γ2] satisfies (2.3) and (2.5) and that
a : A → R satisfies (2.6). Then there exists εo ≡ εo(data) > 0 such that the
following holds: whenever a function v ∈ L2(A,RN )∩L1(t1, t2;W

1,1(A,RN )) with
Dv ∈ Lp(·)(A,RNn) is a weak solution to the parabolic system (5.1) on A, we have
that

(5.2) Dv ∈ L
p(·)(1+εo)
loc

(
A,RNn

)
.

Moreover, for any K ≥ 1 there exists a radius �2 ≡ �2(n, γ1, γ2,K, ω(·)) ∈ (0, R1]
such that there holds: if

(5.3)

∫
A

(|Dv|+ 1)p(·) dz ≤ K

and ε ∈ (0, εo], then for any parabolic cylinder Q2�(zo) ⊂ A with � ∈ (0, �2] we
have ∫

Q�(zo)

|Dv|p(·)(1+ε) dz ≤ c
(∫

Q2�(zo)

|Dv|p(·) dz
)1+εd(p(zo))

+ c(5.4)

for a constant c ≡ c(data) and with d(·) defined in (2.11).
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Note that the quantitative higher integrability estimate (5.4) is nonhomoge-
neous, in the sense that the exponents of |Dv| on both sides of the inequality are
different. In Corollary 5.2 we deduce a homogeneous version of this estimate valid
on intrinsic cylinders of the type (5.5). In order to understand that inequality (5.7)
is homogeneous, one has to interpret λ ≈ ∫ |Dv|p(·) dz in a heuristic sense which
will become clear later.

Corollary 5.2. Let K, c∗, ĉ ≥ 1 and suppose that p : A → [γ1, γ2] satisfies (2.3)
and (2.5) and that a : A → R fulfills (2.6). Then there exist εo ≡ εo(data) > 0, c ≡
c(data, c∗, ĉ) ≥ 1, and �2 ≡ �2(n, γ1, γ2,K, ω(·)) ∈ (0, R1] such that the following
holds: whenever v ∈ L2(A,RN) ∩L1(t1, t2;W

1,1(A,RN )) with Dv ∈ Lp(·)(A,RNn)
is a weak solution to the parabolic system (5.1) satisfying (5.3) and

(5.5)

∫
Q

(λ)
2� (zo)

|Dv|p(·) dz ≤ c∗λ

for some cylinder Q
(λ)
2� (zo) ⊂ A with � ∈ (0, �2] and λ ≥ 1 satisfying

(5.6) λp2−p1 ≤ ĉ, where p1 := inf
Q

(λ)
2� (zo)

p(·), p2 := sup
Q

(λ)
2� (zo)

p(·),

then we have (5.2) and

(5.7)

∫
Q

(λ)
� (zo)

|Dv|p(·)(1+εo) dz ≤ c λ1+εo .

Proof. Without loss of generality we assume that zo = 0. We let εo and �2 be the
constants appearing in Theorem 5.1. The strategy now is to rescale the problem

from Q
(λ)
� and Q

(λ)
2� to the standard parabolic cylinders Q� and Q2� via a transfor-

mation in time and then apply Theorem 5.1. We start with the case po := p(0) ≥ 2
and define for (x, t) ∈ Q2� the rescaled exponent

p̃(x, t) := p
(
x, λ(2−po)/po t

)
,

the rescaled function

ṽ(x, t) := λ−1/po v
(
x, λ(2−po)/po t

)
and the rescaled coefficient

ã(x, t) := λ(p̃(x,t)−po)/po a
(
x, λ(2−po)/po t

)
.

Then, ṽ is a weak solution of the parabolic system

(5.8) ∂tṽ − div
(
ã(·)|Dṽ|p̃(·)−2Dṽ

)
= 0 in Q2�.

In order to apply the higher integrability Theorem 5.1 to ṽ we have to ensure that
the hypotheses on p̃ and ã are satisfied. Since po ≥ 2 and λ ≥ 1 we have

|p̃(x1, t1)− p̃(x2, t2)| =
∣∣p(x1, λ

(2−po)/po t1
)− p

(
x2, λ

(2−po)/po t2
)∣∣

≤ ω
(
max

{|x1 − x2|, λ(2−po)/(2po)
√
|t1 − t2|

})
≤ ω

(
max

{|x1 − x2|,
√
|t1 − t2|

})
= ω

(
dP

(
(x1, t1), (x2, t2)

))
.(5.9)
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Moreover by (2.6) and (5.6) there holds

(5.10) ν/ĉ ≤ ν λ−(p2−p1)/po ≤ ã(x, t) ≤ Lλ(p2−p1)/po ≤ ĉ L.

Therefore, we are allowed to apply Theorem 5.1 with (ν/ĉ, ĉ L) instead of (ν, L) to

the function ṽ on Q�, Q2� to infer that Dṽ ∈ L
p(·)(1+εo)
loc (Q2�,R

Nn) and, moreover,
the quantitative estimate∫

Q�

|Dṽ|p̃(·)(1+εo) dz ≤ c
( ∫

Q2�

|Dṽ|p̃(·) dz
)1+εod(po)

+ c

holds for a constant c ≡ c(data). Note that po = p(0) = p̃(0). Scaling from v to ṽ
and back and using the preceding estimate, (5.5), and (5.6) several times we find
that∫

Q
(λ)
�

|Dv|p(·)(1+εo) dz =

∫
Q�

λ
p̃(·)
po

(1+εo)|Dṽ|p̃(·)(1+εo) dz

≤ c λ1+εo

∫
Q�

|Dṽ|p̃(·)(1+εo) dz

≤ c λ1+εo
( ∫

Q2�

|Dṽ|p̃(·) dz
)1+εod(po)

+ c λ1+εo

= c λ1+εo
( ∫

Q
(λ)
2�

λ−p(·)/po |Dv|p(·) dz
)1+εod(po)

+ c λ1+εo

≤ c λεo(1−d(po))
( ∫

Q
(λ)
2�

|Dv|p(·) dz
)1+εod(po)

+ c λ1+εo

≤ c (data, c∗, ĉ)λ1+εo .(5.11)

This proves the lemma in the case po ≥ 2. In the case po < 2 we define similarly
to the preceding

p̃(x, t) := p
(
λ(po−2)/(2po) x, t

)
, ṽ(x, t) := λ−1/2 v

(
λ(po−2)/(2po) x, t

)
and

(5.12) ã(x, t) := λ(p̃(x,t)−po)/po a
(
λ(po−2)/(2po) x, t

)
for (x, t) ∈ Q2�̃, where �̃ := λ(2−po)/(2po)�. A straightforward computation shows
that

Dṽ(x, t) = λ−1/po Dv
(
λ(po−2)/(2po) x, t

)
in Q2�̃,

and that ṽ is a weak solution of the system (5.8) in Q2�̃, where ã, ṽ and p̃ are this
time the quantities defined just above. Notice that the estimate (5.10) holds also
for the vector field defined in (5.12), while the verification of (5.9) in this case is
analogous to the verification in the previous case. Applying again Theorem 5.1
and repeating the computations in (5.11) we obtain the assertion of the lemma
also in the case po < 2. �
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6. A priori estimates

In Theorem 6.1 we state the gradient bound of DiBenedetto and Friedman ([17]
and [18]) for parabolic standard growth problems. Later we will transfer these a
priori estimates via a comparison argument to our nonstandard growth problem.
Therefore, in this section we consider parabolic systems with constant p-growth of
the type

(6.1) wt − div
(
ã(t)|Dw|p−2Dw

)
= 0 on A× (t1, t2) =: A,

with p > 2n/(n+ 2) and ã : (t1, t2) → R. Here A is an open set in R
n and t1 < t2.

Moreover, we define

C(λ)
� (zo) := B�(xo)×

(
to − λ(2−p)/p �2, to + λ(2−p)/p �2

)
.

Note that the scaling of this system of cylinders does not depend on the center zo.
Later we will apply Theorem 6.1 with the choice p = po ≡ p(zo), and hence

the cylinders C
(λ)
� (zo) will coincide with the ones defined in (3.1). As mentioned

above, the next theorem is a consequence of the gradient bounds proved in [17]
and [18]. The precise statement for the case p ≥ 2 can be found in Lemma 1 of [4]
(replacing λ by λ1/p), and for the case 2n/(n + 2) < p < 2 in Lemma 2 of [4]
(replacing � by λ(p−2)/2� and subsequently λ by λ1/p).

Theorem 6.1. Let w ∈ C0(t1, t2;L
2(A,RN )) ∩ Lp(t1, t2;W

1,p(A,RN )) be a weak
solution to (6.1) in A with ã : (t1, t2) → R satisfying ν ≤ ã ≤ L for some constants
0 < ν ≤ 1 ≤ L. Moreover suppose that∫

C
(λ)
2� (zo)

|Dw|p dz ≤ c∗ λ

holds for some cylinder C
(λ)
2� (zo) � A, where c∗ is a given positive constant. Then

there exists a constant cDiB ≥ 1, depending on n,N, p, ν, L, and c∗ such that

sup
C

(λ)
� (zo)

|Dw| ≤ cDiB λ1/p.

7. Comparison estimates

In this section we prove two different comparison estimates. The first compares
the weak solution u of the original inhomogeneous parabolic system (1.1) to the
solution v of the associated homogeneous parabolic system (7.2) below. The sec-
ond compares v to the solution w of the frozen parabolic system (7.14). Both
the parabolic localization Lemma 4.1 and the homogeneous version of the higher
integrability estimate from Corollary 5.2 will be crucial in order to achieve homo-
geneous comparison estimates.

Now we let K ≥ 1 and suppose that (2.9) is satisfied. Next, we fix κ and M ≥ 1

to be specified later. In the following we consider a cylinder Q := Q
(λ)
� (zo) with
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zo = (xo, to) ∈ ΩT , � ∈ (0, 1], and λ ≥ 1 defined according to (3.1) and which

satisfies 2Q := Q
(λ)
2� (zo) � ΩT and

(7.1)
λ

κ
≤

∫
2Q

|Du|p(·) dz +
∫
2Q

M(|F |+ 1)p(·) dz ≤ λ.

Moreover, we abbreviate B := B�(xo) and Λ := Λ
(λ)
� (to) so that Q ≡ B × Λ and

define
po := p(zo), p1 := inf

2Q
p(·) and p2 := sup

2Q
p(·).

By v ∈ L2(2Q,RN) ∩ L1(2Λ;W 1,1(2B,RN )) with Dv ∈ Lp(·)(2Q,RNn) we denote
the unique solution of the homogeneous initial-boundary value problem

(7.2)

{
∂tv − div

(
a(z)|Dv|p(z)−2

Dv
)
= 0 in 2Q,

v = u on ∂P2Q.

Here the parabolic boundary ∂P2Q is given by

∂P2Q := (∂2B × 2Λ) ∪ (2B × {to − λ2−po(2�)2}).
Note that the existence of v can be inferred from small modifications of results
in [8]. Our first aim is to prove suitable energy and comparison estimates for the
comparison function v. Hence we subtract the weak formulation of the parabolic
system (7.2) from the one of (1.1) given in (2.1). This yields∫

2Q

(u− v) · ∂tϕdz −
∫
2Q

a(·)〈|Du|p(·)−2Du− |Dv|p(·)−2Dv,Dϕ
〉
dz

=

∫
2Q

〈|F |p(·)−2F,Dϕ
〉
dz

for any ϕ ∈ C∞
0 (2Q,RN ). For θ > 0 and τ := to + λ(2−po)/po (2�)2 we define

(7.3) χθ(t) :=

⎧⎪⎪⎨
⎪⎪⎩
1 on (−∞, τ − θ],

− 1
θ (t− τ) on (τ − θ, τ),

0 on [τ,∞).

Since Du − Dv ∈ Lp(·)(2Q,RNn) and u = v on ∂P2Q in the sense of traces, we
are (formally) allowed to choose ϕ = (u− v)χθ in the preceding identity. We note
that the argument can be made rigorous via the use of Steklov averages and an
approximation argument; since this is standard we omit the details. This choice
of ϕ together with the observation that∫

2Q

(u− v) · ∂t[(u− v)χθ] dz = −
∫
2Q

∂t(u− v) · (u − v)χθ dz

= −1

2

∫
2Q

∂t|u− v|2χθ dz =
1

2

∫
2Q

|u− v|2∂tχθ dz

= − 1

2θ

∫ τ

τ−θ

∫
2B

|u− v|2 dz θ↓0→ −1

2

∫
2B

|u− v|2(·, τ) dx ≤ 0(7.4)
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leads, after letting θ ↓ 0, to∫
2Q

a(·)〈|Du|p(·)−2Du− |Dv|p(·)−2Dv,D(u− v)
〉
dz

≤ −
∫
2Q

〈|F |p(·)−2F,D(u − v)
〉
dz.(7.5)

This inequality will be used in the following in two different directions. The first
one will lead to an energy inequality for Dv. Rearranging terms and taking into
account that ν ≤ a(·) ≤ L we find

ν

∫
2Q

|Dv|p(·) dz ≤ L

∫
2Q

(|Du|p(·)−1|Dv|+ |Dv|p(·)−1|Du|) dz
+

∫
2Q

|F |p(·)−1
(|Du|+ |Dv|) dz

≤ ν

2

∫
2Q

|Dv|p(·) dz + c

∫
2Q

(|Du|p(·) + |F |p(·)) dz,
where in the last line we applied Young’s inequality and c ≡ c(ν, L, γ1, γ2). Absorb-
ing the first integral of the right-hand side into the left and subsequently using (7.1)
we get the following energy estimate for Dv:

(7.6)

∫
2Q

|Dv|p(·) dz ≤ c

∫
2Q

(|Du|p(·) + |F |p(·)) dz ≤ c(data)λ|Q|.

We now come to the proof of the comparison estimate. Starting again from (7.5)
we use Lemma 3.2 and Young’s inequality to infer

ν

∫
2Q

(|Du|2 + |Dv|2)(p(·)−2)/2 |Du−Dv|2 dz ≤ c

∫
2Q

|F |p(·)−1
(|Du|+ |Dv|) dz

≤ cM−(γ1−1)/γ1

∫
2Q

(|Du|p(·) + |Dv|p(·) +M |F |p(·)) dz,
where the constant c depends on n,N,L, γ1 and γ2. Finally, using (7.1) and the
energy estimate (7.6) this leads us to the first comparison estimate we were looking
for: ∫

2Q

(|Du|2 + |Dv|2)(p(·)−2)/2 |Du−Dv|2 dz ≤ c(data)M−(γ1−1)/γ1 λ |Q|.(7.7)

Now we let εo = εo(data) > 0 be the higher integrability exponent from Corol-
lary 5.2 and set

�3 := min{�o/2, �2} ∈ (0, 1],

where �o is the radius appearing in the localization Lemma 4.1 and �2 the ra-
dius for the higher integrability from Corollary 5.2. Note that �3 depends on
data, κ,K,M, ω(·). In the course of the proof we shall further decrease the value
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of �3 when necessary, but without changing its dependencies. In the following we
assume that

� ≤ �3.

Thanks to assumption (7.1) we can apply Lemma 4.1 on 2Q which yields that

(7.8) p2 − p1 ≤ ω
(
Γ(2�)α

)
and λp2−p1 ≤ λω(Γ(2�)α) ≤ e 3npo/α ≤ e 3nγ2/α,

where Γ and α are defined according to (4.3). Note that for the second estimate we
also used that λ ≥ 1. Therefore, assumption (5.6) of Corollary 5.2 is satisfied with
ĉ ≡ ĉ(n, γ1, γ2) := e 3nγ2/α. Due to the energy estimate (7.6) we know that also
assumption (5.5) is satisfied with c∗ replaced by the constant c(data) from (7.6).
The application of Corollary 5.2 then ensures that Dv ∈ Lp(·)(1+εo)(Q,RNn) and
moreover

(7.9)

∫
Q

|Dv|p(·)(1+εo) dz ≤ c(data)λ1+εo .

Next, we decrease the value of �3 in such a way that

(7.10) ω
(
Γ(2�3)

α
) ≤ ε1

γ′
1

, where ε1 :=
√
1 + εo − 1 ≤ εo

is satisfied. Then, by (7.8), for any z ∈ 2Q there holds

po(1 + ε1) ≤ p(z)
(
1 + ω

(
Γ(2�)α

))
(1 + ε1) ≤ p(z)

(
1 + ω

(
Γ(2�3)

α
))
(1 + ε1)

< p(z)(1 + ε1)
2 = p(z)(1 + εo),

and therefore we have Dv ∈ Lpo(1+ε1)(Q,RNn) together with the estimate∫
Q

|Dv|po(1+ε1) dz ≤
∫
Q

|Dv|p(·)(1+ω(Γ(2�)α))(1+ε1) dz + 1

≤
( ∫

Q

|Dv|p(·)(1+εo) dz
)(1+ω(Γ(2�)α))(1+ε1)/(1+εo)

+ 1

≤ c λ(1+ω(Γ(2�)α))(1+ε1) + 1 = c λ1+ε1λω(Γ(2�)α)(1+ε1) + 1

≤ c(data)λ1+ε1 ,(7.11)

where we used Hölder’s inequality, (7.9), (7.8), and the fact that λ ≥ 1. For later
reference we also provide the following estimate using (7.8) and (7.10):

p′o(p2 − 1) = po

(
1 +

p2 − po
po − 1

)
≤ po

(
1 +

ω(Γ(2�3)
α)

γ1 − 1

)
≤ po

(
1 + ε1

γ1

)
< po(1 + ε1).(7.12)

Together with (7.11), Hölder’s inequality, and (7.8) this implies∫
Q

|Dv|p′
o(p2−1) dz ≤

( ∫
Q

|Dv|po(1+ε1) dz
) p2−1

(po−1)(1+ε1)

≤ c λ(p2−1)/(po−1) = c λ1+(p2−po)/(po−1) ≤ c(data)λ.(7.13)
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We now define

ã(t) := (a)xo,�(t) :=

∫
B�(xo)

a(·, t) dx for any t ∈ (0, T ).

Note that ν ≤ ã(t) ≤ L for any t ∈ (0, T ) as a consequence of (2.6). By

w ∈ C0
(
Λ, L2(B;RN )

) ∩ Lpo
(
Λ,W 1,po(B;RN )

)
we denote the unique solution to the initial-boundary value problem

(7.14)

{
∂tw − div

(
ã(t)|Dw|po−2Dw

)
= 0 in Q,

w = v on ∂PQ.

Now we start deriving energy and comparison estimates for w. As before, we
subtract the weak formulations of (7.2) and (7.14) and test the result with ϕ :=
(v − w)χθ, where χθ is defined in (7.3). Here we recall that Dv ∈ Lpo(Q,RNn)
by (7.11) and therefore ϕ is (formally) admissible as a test function. Proceeding
as before, i.e., treating the terms involving the time derivatives with the argument
performed in (7.4) and passing to the limit θ ↓ 0 we obtain

(7.15)

∫
Q

〈
a(·)|Dv|p(·)−2Dv − ã(t)|Dw|po−2Dw,D(v − w)

〉
dz ≤ 0.

First, we shall use this inequality to get an energy estimate for Dw. Rearranging
terms, taking into account that ν ≤ a(·) ≤ L and ν ≤ ã(·) ≤ L, and also applying
Young’s inequality we find

ν

∫
Q

|Dw|po dz ≤ L

∫
Q

(|Dw|po−1|Dv|+ |Dv|p(·)−1|Dw|) dz
≤ ν

2

∫
Q

|Dw|po dz + c

∫
Q

(|Dv|po + |Dv|p′
o(p(·)−1)

)
dz

with a constant c ≡ c(ν, L, γ1, γ2). Absorbing the first integral of the right-hand
side into the left and using Hölder’s inequality, (7.11), (7.13), and the fact that
λ ≥ 1 we get the following energy estimate for Dw:∫

Q

|Dw|po dz ≤ c
[ ∫

Q

|Dv|po dz +

∫
Q

|Dv|p′
o(p2−1) dz + 1

]
≤ c(data)λ.(7.16)

In order to obtain a comparison estimate we once again start from (7.15) which
can be rewritten as follows:∫

Q

ã(t)
〈|Dv|po−2Dv − |Dw|po−2Dw,D(v − w)

〉
dz

≤
∫
Q

(
ã(t)− a(·))〈|Dv|po−2Dv,D(v − w)

〉
dz

+

∫
Q

a(·)〈|Dv|po−2Dv − |Dv|p(·)−2Dv,D(v − w)
〉
dz.
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Using Lemma 3.2 and the fact that ν ≤ ã(·) ≤ L we obtain

∫
Q

(|Dv|2 + |Dw|2)(po−2)/2|Dv −Dw|2 dz

≤ c
[ ∫

Q

|ã(t)− a(·)||Dv|po−1|Dv −Dw| dz

+

∫
Q

∣∣|Dv|po−1 − |Dv|p(·)−1
∣∣|Dv −Dw| dz

]
=: c [I + II],(7.17)

where c ≡ c(ν, L, γ1, γ2). Now we estimate separately the two terms. For the first
we use Hölder’s inequality several times, (7.11), (7.16), the fact that a(·) ≤ L,
ã(t) ≤ L, (2.7), and ω̃ ≤ 1 to infer that

I ≤ c
( ∫

Q

|a(t)− a(·)|p′
o |Dv|po dz

)1/p′
o
( ∫

Q

(|Dv|po + |Dw|po
)
dz

)1/po

≤ c
( ∫

Q

|a(t)− a(·)|p′
o(1+ε1)/ε1 dz

) ε1
p′o(1+ε1)

( ∫
Q

|Dv|po(1+ε1) dz
) 1

p′o(1+ε1)
λ1/po

≤ c λ1/p′
o+1/po

[
ω̃(�)

] ε1
γ′
1
(1+ε1) ≤ c(data)

[
ω̃(�)

]ε1/(2γ′
1) λ.

In order to estimate II we first use (7.8) to find that for any z ∈ Q and b ≥ 0 there
holds

|bpo−1 − bp(z)−1| ≤ |po − p(z)| sup
σ∈[p1−1,p2−1]

bσ| log b|

≤ ω
(
Γ(2�)α

) [
bp2−1 log

(
e + bp

′
o(p2−1)

)
+ 1

e(γ1−1)

]
,

where in the last line we used bσ| log b| ≤ 1
e (γ1−1) for b ∈ [0, 1] and σ ∈ [p1−1, p2−1]

and bσ| log b| ≤ bp2−1 log(e + bp
′
o(p2−1)) for b > 1 and σ ∈ [p1 − 1, p2 − 1]. This

together with Hölder’s inequality, (7.11) and (7.16) yields

II ≤ c ω
(
Γ(2�)α

) ∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p′

o(p2−1)
)
+ 1

]
|Dv −Dw| dz

≤ c ω
(
Γ(2�)α

)( ∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p′

o(p2−1)
)
+ 1

]p′
o

dz
)1/p′

o

·
( ∫

Q

|Dv −Dw|po dz
)1/po

≤ c ω
(
Γ(2�)α

)( ∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p′

o(p2−1)
)
+ 1

]p′
o

dz
)1/p′

o

λ1/po ,

where c ≡ c(data). Next, we note that

log(e + ab) ≤ log(e + a) + log(e + b) ∀ a, b ≥ 0,
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which together with Young’s inequality allows to further estimate II as

II ≤ c ω
(
Γ(2�)α

)
λ1/po

[ ∫
Q

|Dv|p′
o(p2−1) logp

′
o

(
e +

|Dv|p′
o(p2−1)

(|Dv|p′
o(p2−1))Q

)
dz

+ logp
′
o

(
e +

(|Dv|p′
o(p2−1)

)
Q

) ∫
Q

|Dv|p′
o(p2−1) dz + 1

]1/p′
o

= c(data)ω
(
Γ(2�)α

)
λ1/po

[
II1 + II2 + 1

]1/p′
o ,(7.18)

with the obvious meanings for II1 and II2. In order to estimate II1 we apply
inequality (3.2) with the choices g = |Dv|p′

o(p2−1) and

σ :=
1 + ε1

1 + ε1/γ1
= c(data) > 1

to infer that

II1 ≤ c(data)
( ∫

Q

|Dv|p′
o(p2−1)σ dz

)1/σ

.

To the integral on the right-hand side we apply Hölder’s inequality (this is justified
by (7.12)). Subsequently using (7.11) and (7.8) we obtain

II1 ≤ c
( ∫

Q

|Dv|po(1+ε1/γ1)σ dz
) 1

σ · p2−1

(po−1)(1+ε1/γ1)

= c
( ∫

Q

|Dv|po(1+ε1) dz
) p2−1

(po−1)(1+ε1)

≤ c λ(p2−1)/(po−1) = c λ1+(p2−po)/(po−1) ≤ c(data)λ.

Now, we come to the estimate for II2 in (7.18). From (7.13) and (4.2)1 we get

(|Dv|p′
o(p2−1)

)
Q
=

∫
Q

|Dv|p′
o(p2−1) dz ≤ c λ ≤ c(data, κ)

(KM

�n+2

)po/2

.

Using this estimate, again (7.13), the fact that log(cx) ≤ c log(x) for c ≥ 1, and
that we can always assume c(KM/�n+2)po/2 ≥ e by possibly reducing the value
of �3, we find

II2 ≤ logp
′
o

(
e + c

(KM

�n+2

)po/2 ) ∫
Q

|Dv|p′
o(p2−1) dz ≤ cMp′

o logp
′
o

(K
�

)
λ

with c ≡ c(data, κ). Combining the estimates for II1 and II2 with (7.18) we obtain

II ≤ c(data, κ)ω
(
Γ(2�)α

)
M log

(K
�

)
λ.

Substituting the preceding estimates for I and II into (7.17) we get∫
Q

(|Dv|2 + |Dw|2)(po−2)/2 |Dv −Dw|2dz

≤ c(data, κ)
[
ω
(
Γ(2�)α

)
M log

(K
�

)
+
[
ω̃(�)

]ε1/(2γ′
1)
]
λ.
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Here, we still want to replace the exponent po in the integral on the left-hand side
by p(·). This is achieved with the help of Hölder’s inequality as follows:∫

1
2Q

(|Dv|2 + |Dw|2)(p(·)−2)/2 |Dv −Dw|2 dz

≤
( ∫

1
2Q

(|Dv|2 + |Dw|2)(po−2)/2 |Dv −Dw|2 dz
)1/2

·
( ∫

1
2Q

(|Dv|2 + |Dw|2)(2p(·)−po−2)/2 |Dv −Dw|2 dz
)1/2

≤ c
[
ω
(
Γ(2�)α

)
M log

(K
�

)
+
[
ω̃(�)

]ε1/(2γ′
1)
]1/2

λ1/2

·
( ∫

1
2Q

|Dv|2p(·)−po + |Dw|2p(·)−po dz
)1/2

.(7.19)

In order to further estimate the integral on the right-hand side we use that fact
that 2p(·)− po ≤ p(·)(1 + ω(Γ(2�)α)) ≤ p(·)(1 + ω(Γ�α3 )) ≤ p(·)(1 + εo) which is a
consequence of (7.10), Hölder’s inequality, (7.9), (7.8), and λ ≥ 1 to infer that∫

1
2Q

|Dv|2p(·)−po dz ≤ 2n+2

∫
Q

|Dv|p(·)(1+ω(Γ(2�)α)) dz + 1

≤ 2n+2
( ∫

Q

|Dv|p(·)(1+εo) dz
)(1+ω(Γ(2�)α))/(1+εo)

+ 1

≤ c λ1+ω(Γ(2�)α) + 1 ≤ c(data, κ)λ.

Moreover, since the parabolic system (7.14)1 is of the same type as (6.1), by (7.16)
we can apply Theorem 6.1 which yields that

(7.20) sup
1
2Q

|Dw| ≤ cDiB λ1/po .

Note that cDiB initially depends on n,N, ν, L and po. Since the dependence upon po
is continuous it can be replaced by a larger constant depending on γ1 and γ2 instead
of po, i.e., cDiB = cDiB(data). Therefore, using (7.20) and (7.8) we can bound also
the integral involving Dw in terms of λ. Inserting this in (7.19) we deduce the
second comparison estimate sought:∫

1
2Q

(|Dv|2 + |Dw|2)(p(·)−2)/2 |Dv −Dw|2 dz

≤ c(data, κ)
[
ω
(
Γ(2�)α

)
M log

(K
�

)
+
[
ω̃(�)

]ε1/(2γ′
1)
]1/2

λ|Q|.(7.21)

Note that this estimate holds for any cylinder 1
2Q ≡ Q

(λ)
�/2(zo) with λ ≥ 1 and

� ∈ (0, �3] such that 2Q satisfies the intrinsic relation (7.1) and 2Q � ΩT . We
recall that �3 ∈ (0, 1] depends on data, κ,K,M and ω(·).
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8. Proof of the Calderón–Zygmund estimate

This section is devoted to the proof of Theorem 2.2. We shall proceed in several
steps.

8.1. A stopping time argument

Here we construct a covering of the upper level set of |Du|p(·) with respect to some
parameter λ by intrinsic cylinders. The argument uses a certain stopping time
argument, which has its origin in [28] and subsequently has been refined in [4], with
the introduction of the “weight” M (see (1.4)), together with the Vitali covering
argument from Lemma 4.2.

We let K ≥ 1 and suppose that (2.9) is satisfied and consider a standard
parabolic cylinder QR ≡ QR(zo) such that Q2R � ΩT . Then we fix M ≥ 1 to be
specified later and define

(8.1) λo :=
[ ∫

Q2R

|Du|p(·) +M(|F |+ 1)p(·) dz
]d

≥ 1, where d := sup
Q2R

d(p(·))

and d(·) is defined as in (2.11). Next, following Section 9 in [30] (see also Section 4
of [4]), we fix two numbers R ≤ r1 < r2 ≤ 2R such that QR ⊂ Qr1 ⊂ Qr2 ⊂ Q2R,
all the cylinders sharing the same center zo. In the following we shall consider λ
such that

(8.2) λ > Bλo, where B :=
( 8χR

r2 − r1

)(n+2)d

and for zo ∈ Qr1 we consider radii � satisfying

(8.3) min
{
1, λ(po−2)/(2po)

}r2 − r1
4χ

≤ � ≤ min
{
1, λ(po−2)/(2po)

}r2 − r1
2

,

where po := p(zo) and χ ≡ χ(n, γ1) ≥ 5 denotes the constant appearing in

Lemma 4.2. Note that these choices of λ and � ensure that Q
(λ)
� (zo) ⊂ Qr2 for any

zo ∈ Qr1 . Next, we want to prove that for any zo ∈ Qr1 there holds

(8.4)

∫
Q

(λ)
� (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz < λ.

Indeed, enlarging the domain of integration from Q
(λ)
� (zo) to Q2R and recalling

the definition of λo from (8.1) we infer that∫
Q

(λ)
� (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz

≤ |Q2R|
|Q(λ)

� (zo)|

∫
Q2R

|Du|p(·) +M(|F |+ 1)p(·) dz =
(2R

�

)n+2

λ(po−2)/po λ1/d
o .
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Now we distinguish the cases po ≥ 2 and po < 2. If po ≥ 2, then 1/d ≤ 1/d(po) =
2/po and min {1, λ(po−2)/(2po)} = 1, so that, using also the choice of � from (8.3)
we obtain∫

Q
(λ)
� (zo)

|Du|p(·)+M(|F |+ 1)p(·) dz ≤
( 8χR

r2 − r1

)n+2

λ(po−2)/po λ1/d
o

< B1/d λ(po−2)/po B−1/d λ1/d = λ(po−2)/po λ1/d ≤ λ.

If γ1 ≤ po < 2, we have

1/d ≤ 1/d(po) = 1− n(2− po)/(2po) and min {1, λ(po−2)/(2po)} = λ(po−2)/(2po),

and therefore we get

∫
Q

(λ)
� (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz ≤
(8χRλ(2−po)/(2po)

r2 − r1

)n+2

λ(po−2)/po λ1/d
o

= B1/d λn(2−po)/(2po) λ1/d
o < B1/d λn(2−po)/(2po) B−1/d λ1/d

= λn(2−po)/(2po) λ1/d ≤ λ.

Hence, in any case we have proved that (8.4) holds.
For λ as in (8.2) we consider the upper level set

E(λ, r1) :=
{
z ∈ Qr1 : z is a Lebesgue point of |Du| and |Du(z)|p(z) > λ

}
.

In the following we show that also a converse inequality holds true for small radii
and for points zo ∈ E(λ, r1). Indeed, by the Lebesgue differentiation theorem
(see [10], equation (7.9)) we infer for any zo ∈ E(λ, r1) that

lim
�↓0

∫
Q

(λ)
� (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz ≥ |Du(zo)|p(zo) > λ.

From the preceding reasoning we conclude that the last inequality yields a radius
for which the considered integral takes a value larger than λ, while (8.4) states
that the integral is smaller than λ for any radius satisfying (8.3). Therefore, the
continuity of the integral yields the existence of a maximal radius �zo satisfying

(8.5) 0 < �zo < min
{
1, λ(po−2)/(2po)

}r2 − r1
4χ

such that

(8.6)

∫
Q

(λ)
�zo

(zo)

|Du|p(·) +M(|F |+ 1)p(·) dz = λ.

By saying that �zo is maximal we mean that, for every

� ∈ (�zo ,min {1, λ(po−2)/(2po)}(r2 − r1)/2],
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inequality (8.4) holds. With this choice of �zo we define concentric parabolic cylin-
ders centered at zo ∈ E(λ, r1) as follows:

(8.7) Q0
zo := Q(λ)

�zo
(zo), Q

1
zo := Q(λ)

χ�zo
(zo), Q

2
zo := Q

(λ)
2χ�zo

(zo), Q
3
zo := Q

(λ)
4χ�zo

(zo).

Then, we have Q0
zo ⊂ Q1

zo ⊂ Q2
zo ⊂ Q3

zo ⊂ Qr2 and for j ∈ {0, . . . , 3} there holds

(8.8)
λ

(4χ)n+2
≤

∫
Qj

zo

|Du|p(·) +M(|F |+ 1)p(·) dz ≤ λ.

Note that the upper bound follows from (8.6) and the maximal choice of the
stopping radius �zo , while the lower bound follows from (8.6) by enlarging the
domain of integration from Q0

zo to Qj
zo and taking into account that |Qj

zo |/|Q0
zo| ≤

(4χ)n+2.

8.2. Estimates on intrinsic cylinders

Now we fix a particular cylinder Q0
zo and define the comparison functions v and

w as the unique solutions to the initial-boundary value problems (7.2) and (7.14)
with Q3

zo and Q2
zo instead of 2Q and Q. Thanks to (8.8) we know that (7.1) is

satisfied with κ = κ(n, γ1) = (4χ)n+2. Moreover, we assume that

R ≤ Ro ≤ �3,

where �3 = �3(data,K,M, ω(·)) ∈ (0, 1] denotes the radius introduced after (7.21)
for the choice κ = (4χ)n+2. This ensures that we can apply (7.7), (7.20), and (7.21)
with κ = (4χ)n+2 for any radius smaller than �3. Therefore, from (7.20) applied
with κ = (4χ)n+2 we infer that

(8.9) sup
Q1

zo

|Dw| ≤ cDiB λ1/po ,

where cDiB = cDiB(data) ≥ 1. In the following we denote the constant from
Lemma 3.3 by c� = c�(γ2) ≥ 1. For A chosen to depend on data according to

A ≥ 2 c2� c
γ2

DiB e 3n/α ≥ 1

we consider z ∈ Q1
zo ∩E(Aλ, r1). Our aim now is to deduce a suitable estimate for

|Du(z)|p(z). Applying Lemma 3.3 twice yields

|Du(z)|p(z) ≤ c2� |Dw(z)|p(z) + c2�
(|Dv(z)|2 + |Dw(z)|2)(p(z)−2)/2|Dv(z)−Dw(z)|2

+ c�
(|Du(z)|2 + |Dv(z)|2)(p(z)−2)/2 |Du(z)−Dv(z)|2.(8.10)

Next, we prove that

|Dw(z)|p(z) ≤ (|Du(z)|2 + |Dv(z)|2)(p(z)−2)/2|Du(z)−Dv(z)|2

+
(|Dv(z)|2 + |Dw(z)|2)(p(z)−2)/2|Dv(z)−Dw(z)|2(8.11)
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holds. Indeed, if (8.11) fails to hold we obtain from (8.9), (4.2)2,3 of Lemma 4.1
(which is applicable due to (8.8)), the fact that z ∈ E(Aλ, r1), and (8.10), that

|Dw(z)|p(z) ≤ c
p(z)
DiB λp(z)/po ≤ cγ2

DiB e 3n/α λ

<
1

A
cγ2

DiB e 3n/α |Du(z)|p(z) ≤ 1

A
2 c2� c

γ2

DiB e 3n/α |Dw(z)|p(z).

However this contradicts the choice of A and hence (8.11) is proved. Therefore,
combining (8.10) and (8.11) we get

|Du(z)|p(z) ≤ 2 c2�
(|Du(z)|2 + |Dv(z)|2)(p(z)−2)/2 |Du(z)−Dv(z)|2

+ 2 c2�
(|Dv(z)|2 + |Dw(z)|2)(p(z)−2)/2 |Dv(z)−Dw(z)|2.

Integrating overQ1
zo∩E(Aλ, r1) and using the comparison estimates (7.7) and (7.21)

with κ = (4χ)n+2 we obtain∫
Q1

zo
∩E(Aλ,r1)

|Du|p(·) dz ≤ 2 c2�

∫
Q1

zo

(|Du|2 + |Dv|2)(p(·)−2)/2 |Du−Dv|2 dz

+ 2 c2�

∫
Q1

zo

(|Dv|2 + |Dw|2)(p(·)−2)/2 |Dv −Dw|2 dz

≤ c(data)G(M,R)λ |Q0
zo | ,(8.12)

where

(8.13) G(M,R) := sup
�∈(0,R]

[ 1

M2−2/γ1
+ ω

(
Γ(2�)α

)
M log

(K
�

)
+
[
ω̃(�)

] ε1
2γ′

2

]1/2
.

Note that M ≥ 1 is yet to be chosen and α and Γ are defined according to (4.3).
Moreover, we recall that this estimate holds for any λ > Bλo and zo ∈ E(λ, r1).

Next, we will infer a bound for the measure of the cylinder Q0
zo . From (8.6) we

have

(8.14) |Q0
zo| =

1

λ

∫
Q0

zo

|Du|p(·) dz + 1

λ

∫
Q0

zo

M(|F |+ 1)p(·) dz.

We split the first integral of (8.14) as∫
Q0

zo

|Du|p(·) dz =

∫
Q0

zo
∩{|Du|p(·)≤λ/4}

|Du|p(·) dz +
∫
Q0

zo
∩E(λ/4,r2)

|Du|p(·) dz

≤ λ

4
|Q0

zo |+
∫
Q0

zo
∩E(λ/4,r2)

|Du|p(·) dz,

and similarly the second integral as∫
Q0

zo

M(|F |+ 1)p(·) dz ≤ λ

4
|Q0

zo |+
∫
Q0

zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz.
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Inserting the last two estimates into (8.14) we can absorb the term |Q0
zo |/2 from

the right-hand side into the left, yielding the estimate

|Q0
zo| ≤

2

λ

∫
Q0

zo
∩E(λ/4,r2)

|Du|p(·) dz + 2

λ

∫
Q0

zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz.

Using this estimate in (8.12) we obtain for a constant c ≡ c(data) that∫
Q1

zo
∩E(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
Q0

zo
∩E(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Q0

zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)
p(·)

dz.(8.15)

8.3. Estimates on level sets

Here we extend the estimate (8.15) to the super level set E(Aλ, r1). To this end
we first construct a suitable covering of E(λ, r1) by intrinsic cylinders of the type
considered in the preceding steps. Here, we recall from the preceding two steps
that for every zo ∈ E(λ, r1) there exists a radius �zo satisfying (8.5) such that on
the cylinders Qj

zo , j ∈ {0, . . . , 3} the estimates (8.8) and (8.15) hold. Next we want
to apply the Vitali-type covering argument from Lemma 4.2. To this end we note
that (8.6) and (4.2)1 (with κ = 1) imply that

λ ≤
(βnMK

�n+2
zo

)p(zo)/2

.

This ensures that assumption (4.5) of Lemma 4.2 is satisfied for the family F :=
{Q0

zo} of parabolic cylinders with center zo ∈ E(λ, r1) (note that by possibly
reducing the value of Ro we can ensure that �zo ≤ R ≤ Ro ≤ �1, where �1 is
the radius from Lemma 4.2). Applying the lemma then yields the existence of a
countable subfamily {Q0

zi}∞i=1 ⊂ F of pairwise disjoint parabolic cylinders, such
that the χ-times enlarged cylinders Q1

zi cover the set E(Aλ, r1), i.e.,

E(Aλ, r1) ⊂ E(λ, r1) ⊂
⋃
i∈N

Q1
zi .

Moreover, for the 4χ-times enlarged cylinders Q3
zi we know that Q3

zi ⊂ Qr2 . Here,
we have used the notation from (8.7) with zo replaced by zi. Since we know that
on any of the cylinders Q1

zi , i ∈ N, the estimate (8.15) holds, we obtain, after
summing over i ∈ N, that∫

E(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
E(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz,(8.16)

where c ≡ c(data). We recall that this estimate holds for every λ > Bλo.
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8.4. Raising the integrability exponent

At this stage we would like to multiply both sides of (8.16) by λq−2 and subse-
quently integrate with respect to λ over (Bλo,∞). This, formally would lead to an
Lp(·)q estimate of Du after absorbing

∫ |Du|p(·)q dz on the left-hand side. However,
this step is not allowed since the integral might be infinite. This problem will be
overcome in the following by a truncation argument. For k ≥ Bλo we define the
truncation operator

Tk : [0,+∞) → [0, k], Tk(σ) := min{σ, k}
and

Ek(Aλ, r1) :=
{
z ∈ Qr1 : Tk

(|Du(z)|p(z)) > Aλ
}
.

Then, from inequality (8.16) we deduce that∫
Ek(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
Ek(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz.(8.17)

This can be seen as follows. In the case k ≤ Aλ we have Ek(Aλ, r1) = ∅ and
therefore (8.17) holds trivially. In the case k > Aλ the inequality (8.17) follows
since Ek(Aλ, r1) = E(Aλ, r1) and Ek(λ/4, r2) = E(λ/4, r2). Therefore, multiply-
ing both sides of (8.17) by λq−2 and integrating with respect to λ over (Bλo,+∞),
we obtain∫ ∞

Bλo

λq−2

∫
Ek(Aλ,r1)

|Du|p(·) dz dλ

≤ cG(M,R)

∫ ∞

Bλo

λq−2

∫
Ek(λ/4,r2)

|Du|p(·) dz dλ

+ cG(M,R)

∫ ∞

Bλo

λq−2

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz dλ.(8.18)

Using Fubini’s theorem we get, for the integral on the left-hand side of (8.18), that∫ ∞

Bλo

λq−2

∫
Ek(Aλ,r1)

|Du|p(·) dz dλ

=

∫
Ek(ABλo,r1)

|Du|p(·)
∫ Tk(|Du(z)|p(z))/A

Bλo

λq−2 dλ dz

=
1

q − 1

[ 1

Aq−1

∫
Ek(ABλo,r1)

|Du|p(·)Tk

(|Du|p(·))q−1
dz

− (Bλo)
q−1

∫
Ek(ABλo,r1)

|Du|p(·) dz
]

≥ 1

q − 1

[ 1

Aq−1

∫
Qr1

|Du|p(·)Tk

(|Du|p(·))q−1
dz − (Bλo)

q−1

∫
Qr1

|Du|p(·) dz
]
,
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where in the last line we used the decomposition

Qr1 = Ek(ABλo, r1) ∪ (Qr1 \ Ek(ABλo, r1))

and the fact that Tk(|Du|p(·)) ≤ ABλo on Qr1 \ Ek(ABλo, r1). Again by Fubini’s
theorem we obtain, for the first integral on the right-hand side of (8.18),∫ ∞

Bλo

λq−2

∫
Ek(λ/4,r2)

|Du|p(·) dz dλ

=

∫
Ek(Bλo/4,r2)

|Du|p(·)
∫ 4Tk(|Du|p(·))

Bλo

λq−2 dλ dz

≤ 4q−1

q − 1

∫
Qr2

|Du|p(·)Tk

(|Du|p(·))q−1
dz

and, analogously, for the integral involving the right-hand side F ,∫ ∞

Bλo

λq−2

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz dλ

=

∫
Qr2∩{M(|F |+1)p(·)>Bλo/4}

M(|F |+ 1)p(·)
∫ 4M(|F |+1)p(·)

Bλo

λq−2 dλ dz

≤ 4q−1M q

q − 1

∫
Qr2

(|F |+ 1)p(·)q dz.

Hence, combining the preceding estimates with (8.18) we get∫
Qr1

|Du|p(·)Tk

(|Du|p(·))q−1
dz ≤ (ABλo)

q−1

∫
Qr1

|Du|p(·) dz

+ c̄ Aq−1G(M,R)

∫
Qr2

|Du|p(·)Tk

(|Du|p(·))q−1
dz

+ c̄ Aq−1M qG(M,R)

∫
Qr2

(|F |+ 1)p(·)q dz,(8.19)

where c̄ = c̄(data). Note that the estimate stays stable as q ↓ 1.

8.5. Choice of the parameters

We nowmake the choices of the parametersM andRo so that c̄A
q−1G(M,R) ≤ 1/2

whenever R ≤ Ro. First, we choose M = M(data, q) ≥ 1 large enough so that

c̄ Aq−1

M1−1/γ1
≤ 1

4
.

Next, we decrease the value of Ro, now depending on data,K, ω(·), ω̃(·) and q, in
such a way that for any � ≤ Ro we have

(8.20) c̄ Aq−1
[
ω
(
Γ(2�)α

)
M log

(K
�

)
+
[
ω̃(�)

]ε1/(2γ′
1)
]1/2

≤ 1

4
.
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Note that this is possible due to the assumptions (2.4) and (2.8). Recalling the
definition of G in (8.13) we therefore have c̄Aq−1G(M,R) ≤ 1/2 for any R ≤ Ro.
Using this in (8.19) we get∫

Qr1

|Du|p(·)Tk

(|Du|p(·))q−1
dz

≤ 1

2

∫
Qr2

|Du|p(·)Tk

(|Du|p(·))q−1
dz

+ c
( R

r2 − r1

)β

λq−1
o

∫
Q2R

|Du|p(·) dz + c

∫
Q2R

(|F |+ 1)p(·)q dz,

where β ≡ (n+ 2)(q − 1)d and c ≡ c(data, q). At this point we apply Lemma 3.1
with

φ(r) ≡
∫
Qr

|Du|p(·) Tk

(|Du|p(·))q−1
dz,

and

A ≡ c

∫
Q2R

(|F |+ 1)p(·)q dz and B ≡ cRβλq−1
o

∫
Q2R

|Du|p(·) dz,

yielding ∫
QR

|Du|p(·) Tk

(|Du|p(·))q−1
dz ≤ c(β)

[
A+

B
Rβ

]
.

Passing to the limit k → ∞, which is possible by Fatou’s lemma, and taking
averages we find that

(8.21)

∫
QR

|Du|p(·)q dz ≤ c
[
λq−1
o

∫
Q2R

|Du|p(·) dz +
∫
Q2R

(|F |+ 1)p(·)q dz
]
.

Note that c ≡ c(data, q), since β depends continuously on p(·), i.e., the dependence
on p(·) via the parameter d can be replaced by a dependence on γ1 and γ2. Since
Q2R � ΩT was arbitrary, we have thus proved the first assertion in Theorem 2.2,
i.e., that |Du|p(·) ∈ Lq

loc(ΩT ). There remains to show the estimate (2.10).

8.6. Adjusting the exponent

Here we first observe that (8.21), together with the definition of λo in (8.1), leads to
the estimate (2.10) in Theorem 2.2, but with d instead of d(po), where po := p(zo)
and zo is the center of the cylinder Q2R ≡ Q2R(zo). We recall that d was defined
in (2.11) and d ≥ d(po). In order to decrease the exponent from d to d(po) we need
to show a bound of the form

(8.22) Ed−d(po) ≤ c(n, γ1), where E :=

∫
Q2R

|Du|p(·) + (|F |+ 1)p(·)q dz.

To this end we first deduce an upper bound for d− d(po) in terms of ω(R). Since
d(p(·)) is continuous there exists ẑ ∈ QR such that d = d(p(ẑ)). From the definition
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of d(·) in (2.11) we observe that

d(po) ≥ max
{po

2
,

2po
po(n+ 2)− 2n

}
.

In the following we distinguish the cases where p(ẑ) is larger or smaller than two.
In the case p(ẑ) ≥ 2 we get from (2.5) that

d− d(po) =
p(ẑ)

2
− d(po) ≤ p(ẑ)

2
− po

2
≤ 1

2
ω(R),

while in the case p(ẑ) < 2 we have p(ẑ) ≤ po and therefore we find in a similar way
that

d− d(po) ≤ 2p(ẑ)

p(ẑ)(n+ 2)− 2n
− 2po

po(n+ 2)− 2n

=
4n(po − p(ẑ))

[ p(ẑ)(n+ 2)− 2n][po(n+ 2)− 2n]
≤ 4n

[γ1(n+ 2)− 2n]2
ω(R).

Hence, in either case we have proved that d− d(po) ≤ c(n, γ1)ω(R). Recalling the
definition of E from (8.22) and using (2.9) we thus obtain

Ed−d(po) ≤ c(n, γ1)
[
R−(n+2)K

]c(n,γ1)ω(R) ≤ c(n, γ1).

We note that the last inequality is a consequence of the logarithmic continuity of ω
from (2.5), since R−ω(R) ≤ e and

Kω(R) = exp
[
ω(R) logK

] ≤ exp
[
ω(R) log

(
1
R

)] ≤ e

provided R ≤ Ro ≤ min{R1, 1/K}, where R1 is the radius from (2.5). This finishes
the proof of (8.22) and by the reasoning above we therefore obtain the asserted
estimate (2.10). Thus we have completed the proof of Theorem 2.2. �

8.7. Proof of Remark 2.3

Here it is enough to ensure that we can choose Ro > 0 and εBMO in such a way
that (8.20) is satisfied. Assuming for instance

[a]BMO ≤ εBMO :=
( 1

8 c̄Aq−1

)4γ′
1/ε1

and ω
(
Γ(2�)α

)
M log

(K
�

)
≤

( 1

8 c̄Aq−1

)2

for any � ≤ Ro we conclude that (8.20) holds, since ω̃(�) ≤ [a]BMO. The rest of
the proof is completely the same as the proof of Theorem 2.2.
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