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Hitting times for the stochastic wave equation

with fractional colored noise

Jorge Clarke de la Cerda and Ciprian A. Tudor

Abstract. We give sharp regularity results for the solution to the stochas-
tic wave equation with linear fractional-colored noise. We apply these re-
sults in order to establish upper and lower bounds for the hitting probabi-
lities of the solution in terms of the Hausdorff measure and the Newtonian
capacity.

1. Introduction

The recent development of a stochastic calculus for fractional Brownian motion
(fBm) naturally led to the study of stochastic partial differential equations (SPDEs)
driven by this Gaussian process. The motivation comes from the wide applicability
fBm. We refer to [13], [15], [17], [19] and [20] among others, for theoretical studies
of SPDEs driven by fBm. To list only a few examples of the appearance of fractional
noises in practical situations, we mention [14] for biophysics, [3] for financial time
series, [12] for electrical engineering, and [5] for physics.

The purpose of our paper is to study the stochastic wave equation driven by
fractional-colored Gaussian noise. Our work continues, in part, the line of research
which concerns SPDEs driven by fBm but at the same time it follows the research
line initiated by Dalang in [6] which treats equations with noise white in time and
correlated in space. More precisely, we consider a system of k stochastic wave
equations

(1.1)
∂2ui
∂t2

(t, x) = Δui(t, x) + Ẇi (t, x), t ∈ [0, T ], x ∈ R
d,

with initial conditions ui(t, x) = 0 and ∂ui/∂t (0, x) = 0 for every x ∈ R
d and for

every i = 1, . . . , k. The driving Gaussian process behaves as a fractional Brownian
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motion in time and has spatial covariance given by the Riesz kernel. More precisely

E
(
Wi(t, A)Wj(s,B)

)
= δi,j RH(t, s)

∫
A

∫
B

f(x− y) dx dy,

for every t, s ∈ [0, T ] and Borel sets A and B in R
d, where RH is the covariance of

the fractional Brownian motion (2.4) and f : Rd → R+ is the Fourier transform of
a nonnegative tempered measure μ on R

d whose density with respect to Lebesgue
measure is |ξ|−(d−β), 0 < β < d. Above, δi,j denotes the Kronecker symbol.

The equation (1.1) has been studied recently in [2] for H > 1/2. It has been
proven that (1.1) admits a unique mild solution if and only if β < 2H + 1, this
extends the result obtained in [6] in the case H = 1/2. The purpose of the present
paper is to analyze further the solution of (1.1). We will actually give sharp results
for its regularity, in time and in space, and we apply these regularity results to study
the hitting probabilities for the solution u of (1.1). More precisely, given a Borel
set A ⊂ R

k we want to determine whether the process (u(t, x), t ∈ [0, T ], x ∈ R
d)

hits the set A with positive probability. Recently, there have been several papers on
hitting probabilities, and more generally speaking, on potential theory for systems
of SPDEs. We refer, among others, to [7], [8], [9], [10], and [16]. The study
of hitting probabilities for stochastic partial differential equations with fractional
noise in time is new. As far as we know, only the paper [18] treats this problem.
Actually, in this reference the authors give upper and lower bounds for the hitting
times of solutions to a system of stochastic heat equations on the circle with noise
fractional in time.

Our aim is to advance this research direction. As we mentioned before, we
make a potential analysis of the solution to the stochastic wave equation with
fractional colored noise. That means the noise behaves as fractional Brownian
motion with respect to the time variable and it has “colored”non-white spatial
covariance. In our work this spatial covariance will be described by the Riesz
kernel. It is now widely accepted that in order to obtain results on the hitting times
of a stochastic process, a detailed analysis of the behavior of the increments of the
process is needed. We address this question and we find the following: the solution
u(t, x), t ∈ [0, T ], x ∈ R

d to (1.1) is Hölder continuous of order 1
2 (2H + 1− β), β ∈

(2H−1, d∧2H+1), in time as well as in space. This generalizes the result obtained
in [10] and [11] for the wave equation with white noise in time and Riesz covariance
in space. Although the main lines of our work follow the approach of [11], we
stress that, as usual, the fractional case involves more complex calculation and
the techniques used in the standard white noise case need to be adapted. This is
mainly due to the nature of the noise and to the structure of the Gaussian space
associated to the noise. We will point out later how the fractional noise requires a
more complex analysis than in e.g. [8] or [11]. Moreover, the study of the solution
to the wave equation is generally recognized to be more difficult than, for example,
the solution to the heat equation, due to the appearance of the trigonometric
functions, and this is also the case in our work.

We mention that there are more or less general criteria for determining the
hitting times for a stochastic process. Such criteria have been given in [4], [8], [9],
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and [11] among others. We will use the approach in [4] because it concerns Gaussian
processes and fits our context well (note that the solution to (1.1) is Gaussian).

Our paper is structured as follows. Section 2 contains some preliminaries,
briefly describe the basic properties of the Gaussian noise and its associated Hilbert
space, we list the elements of the potential theory that we will use and we recall
some facts related of the solution to the stochastic wave equation with fractional-
colored noise. In Section 3 we analyze the Hölder regularity of the solution with
respect to its time and space variables. Section 4 is devoted to the study of the
hitting probabilities for this solution, based on a criterion in [4].

2. Preliminaries

This section introduce the basic notions that we will need throughout the paper.
We first introduce the canonical Hilbert space associated to the fractional-colored
Gaussian noise. In part 2.2 we present the basics of the potential theory that is
needed.

2.1. The canonical Hilbert space

We denote by C∞
0 (Rd+1) the space of infinitely differentiable functions on R

d+1

with compact support, and by S(Rd) the Schwartz space of rapidly decreasing C∞

functions in R
d. For ϕ ∈ L1(Rd), we let Fϕ be the Fourier transform of ϕ:

Fϕ(ξ) =
∫
Rd

e−iξ·xϕ(x) dx.

We begin by introducing the framework of [6]. Let μ be a nonnegative tempered
measure on R

d, i.e., a nonnegative measure which satisfies

(2.1)

∫
Rd

( 1

1 + |ξ|2
)l

μ(dξ) <∞, for some l > 0.

Since the integrand is nonincreasing in l, we may assume that l ≥ 1 is an
integer. Note that 1 + |ξ|2 behaves as a constant near 0, and as |ξ|2 at ∞, and
hence (2.1) is equivalent to:

(2.2)

∫
|ξ|≤1

μ(dξ) <∞, and

∫
|ξ|≥1

μ(dξ)
1

|ξ|2l <∞, for some integer l ≥ 1.

Let f : Rd → R+ be the Fourier transform of μ in S ′(Rd), i.e.,
∫
Rd

f(x)ϕ(x) dx =

∫
Rd

Fϕ(ξ)μ(dξ), ∀ϕ ∈ S(Rd).

Simple properties of the Fourier transform show that, for any ϕ, ψ ∈ S(Rd),
∫
Rd

∫
Rd

ϕ(x) f(x − y)ψ(y) dx dy =

∫
Rd

Fϕ(ξ)Fψ(ξ)μ(dξ).
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An approximation argument shows that the previous equality also holds for
indicator functions ϕ = 1A and ψ = 1B, with A and B ∈ Bb(R

d), where Bb(R
d) is

the class of bounded Borel sets of Rd:

(2.3)

∫
A

∫
B

f(x− y) dx dy =

∫
Rd

F 1A(ξ)F 1B(ξ)μ(dξ).

Now we introduce the fractional Brownian motion (fBm) with Hurst index
H ∈ (0, 1). This is a mean zero Gaussian process (BH

t )t∈[0,T ] with covariance

(2.4) RH(t, s) :=
1

2

(
t2H + s2H − |t− s|2H)

, t, s ∈ [0, T ].

Let us denote by H the canonical Hilbert space associated with this Gaussian
process. This Hilbert space is defined as the closure of the linear space generated
by the indicator functions 1[0,t], t ∈ [0, T ], with respect to the inner product

〈
1[0,t], 1[0,s]

〉
H = RH(t, s).

It is well known that for H > 1/2 we have the expression

(2.5) RH(t, s) = αH

∫ t

0

∫ s

0

|u− v|2H−2 du dv

for every s, t ∈ [0, T ] with αH := H(2H − 1). More generally, for H > 1/2 and
every ψ, φ ∈ H = H ([0, T ]) we have

(2.6)
〈
ψ, φ

〉
H = αH

∫ T

0

∫ T

0

ψ(u)φ(v) |u − v|2H−2 du dv.

As in [1], on a complete probability space (Ω,F , P ), we consider a zero-mean
Gaussian process W = {Wt(A); t ≥ 0, A ∈ Bb(R

d)} with covariance

(2.7) E
(
Wt(A)Ws(B)

)
= RH(t, s)

∫
A

∫
B

f(x− y) dx dy =:
〈
1[0,t]×A, 1[0,s]×B

〉
HP .

Let E be the set of linear combinations of elementary functions 1[0,t]×A, t ≥ 0,

let A ∈ Bb(R
d), and let HP be the Hilbert space defined as the closure of E with

respect to the inner product 〈·, ·〉HP . (Alternatively, HP can be defined as the
completion of C∞

0 (Rd+1) with respect to the inner product 〈·, ·〉HP ; see [1].)
The map 1[0,t]×A �→ Wt(A) is an isometry between E and the Gaussian space

HW of W , which can be extended to HP . We denote this extension by

ϕ �→W (ϕ) =

∫ ∞

0

∫
Rd

ϕ(t, x)W (dt, dx).

In the present paper, we assume that H > 1/2. Hence, (2.5) holds. From (2.3)
and (2.5), it follows that for any ϕ, ψ ∈ E ,
〈
ϕ, ψ

〉
HP = αH

∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

ϕ(u, x)ψ(v, y)f(x − y) |u− v|2H−2 dx dy du dv

= αH

∫ ∞

0

∫ ∞

0

∫
Rd

Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ) |u− v|2H−2μ(dξ) du dv.
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Moreover, we can interchange the order of the integrals du dv and μ(dξ), since
for indicator functions ϕ and ψ, the integrand is a product of a function of (u, v)
and a function of ξ. Hence, for ϕ, ψ ∈ E , we have

(2.8)
〈
ϕ, ψ

〉
HP = αH

∫
Rd

∫ ∞

0

∫ ∞

0

Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ) |u−v|2H−2du dv μ(dξ).

The space HP may contain distributions, but it contains the space |HP| of
measurable functions ϕ : R+ × R

d → R such that

‖ϕ‖2|HP| := αH

∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

|ϕ(u, x)| |ϕ(v, y)| f(x−y) |u−v|2H−2dx dy du dv <∞.

2.2. Elements of the potential theory

Our aim is to analyze the probability

P
(
u(I) ∩ A) �= ∅

where u is the solution to (1.1), I is a Borel set included in [0, T ] × R
d, and A

is a Borel set in R
k. Here u(I) means the image of I under the random map

(t, x) → u(t, x).
We will briefly describe the notions from potential theory that we will need.

For all Borel sets F ⊂ R
d we define P(F ) to be the set of all probability measures

with compact support included in F . For all μ ∈ P(Rd), we denote by Iβ(μ) the
so-called β-energy defined by

(2.9) Iβ(μ) =

∫
Rd

∫
Rd

Kβ

(‖x− y‖)μ(dx)μ(dy)
where

(2.10) Kβ(r) =

⎧⎪⎨
⎪⎩
r−β if β > 0;

log
(
N0/r

)
if β = 0;

1 if β < 0.

Here N0 is a constant.
For all β ∈ R and F ∈ B(Rd) we define the β-dimensional capacity of F by

(2.11) Capβ(F ) =
[

inf
μ∈P(F )

Iβ(μ)
]−1

with the convention 1/∞ := 0. The β-dimensional Hausdorff measure of the set
F ∈ B(Rd) is given by

(2.12) Hβ(F ) = lim
ε→0+

inf
[ ∞∑

i=1

(2ri)
β ; F ⊂

∞⋃
i=1

B(xi, ri), sup
i≥1

ri ≤ ε
]

where B(x, r) denotes the Euclidean ball of radius r > 0 centered at x ∈ R
d. When

β < 0, the β-dimensional Hausdorff measure of F is infinite by definition.
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2.3. The stochastic wave equation with linear fractional-colored noise

Consider the linear stochastic wave equation driven by an infinite-dimensional
fractional Brownian motion W with Hurst parameter H ∈ (0, 1). That is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u

∂t2
(t, x) = Δu(t, x) + Ẇ (t, x), t > 0, x ∈ R

d

u(0, x) = 0, x ∈ R
d

∂u

∂t
(0, x) = 0, x ∈ R

d.

(2.13)

Here Δ is the Laplacian on R
d and W = {Wt(A); t ≥ 0, A ∈ Bb(R

d)} is a centered
Gaussian field with covariance

E(Wt(A)Ws(B)) = RH(t, s)

∫
A

∫
B

f(x− y) dx dy,

where RH is the covariance of the fractional Brownian motion and f is the Riesz
kernel.

Let G1 be the fundamental solution of utt −Δu = 0. It is known that G1(t, ·)
is a distribution in S ′(Rd) with rapid decrease, and

(2.14) FG1(t, ·)(ξ) = sin(t |ξ|)
|ξ| ,

for any ξ ∈ R
d, t > 0, d ≥ 1 (see e.g. [21]). In particular,

G1(t, x) =
1

2
1{|x|<t}, if d = 1,

G1(t, x) =
1

2π

1√
t2 − |x|2 1{|x|<t}, if d = 2,

G1(t, x) = cd
1

t
σt, if d = 3,

where σt denotes the surface measure on the 3-dimensional sphere of radius t.
The solution of (2.13) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R

d}
defined by

(2.15) u(t, x) =

∫ t

0

∫
Rd

G1(t− s, x− y)W (ds, dy).

By definition, u(t, x) exists if and only if the stochastic integral above is well
defined, i.e., gtx := G1(t− ·, x− ·) ∈ HP . In this case, E|u(t, x)|2 = ‖gtx‖2HP .

The following result was proved in [2].

Theorem 2.1. The stochastic wave equation (2.13) admits a unique mild solution
(u(t, x))t∈[0,T ],x∈Rd if and only if

(2.16)

∫
Rd

( 1

1 + |ξ|2
)H+1/2

μ(dξ) <∞.
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Remark 2.2. Note that (2.16) is equivalent to

(2.17)

∫
|ξ|≤1

μ(dξ) <∞, and

∫
|ξ|≥1

μ(dξ)
1

|ξ|2H+1
<∞.

As mentioned in the introduction, we will consider throughout the paper that
the spatial covariance of the noise W is given by the Riesz kernel. This means the
measure μ is

dμ(ξ) = |ξ|−d+βdξ with β ∈ (0, d).

In this case the kernel f is given by

f(ξ) = |ξ|−β with β ∈ (0, d).

Note that in the case of the Riesz kernel, condition (2.16) is equivalent to

(2.18) β ∈ (
0, d ∧ (2H + 1)

)
.

Remark 2.3. Since H > 1/2 and so 2H + 1 ∈ (2, 3), for dimension d = 1, 2 we
have β ∈ (0, d) while for d ≥ 3 we have β ∈ (0, 2H + 1).

3. Regularity of the solution

3.1. Regularity in time

In this part we focus our attention on the behavior of the increments of the solution
u(t, x) with respect to the variable t. We give upper and lower bounds for the
L2-norm of this increment. Usually, obtaining upper bounds is considered easier
than obtaining lower bounds. This is the case in our work. Actually, to obtain
the sharp regularity of u with respect to the time variable, we need to impose
a stronger assumption than (2.18) on the parameters β and H (condition (3.1)
below). This is due to the characteristics of the scalar product in HP .

We will start with the following useful lemma that gives an explicit expression
for the H norm of the cosine and sine functions.

Lemma 3.1. Let f(x) = cos(x) and g(x) = sinx for x ∈ R. Then, for every
a, b ∈ R, a < b,

‖ f 1(a,b)‖2H = αH

∫ b−a

0

dv cos(v) v2H−2(b− a− v)

+ αH cos(a+ b)

∫ b−a

0

dv v2H−2 sin(b− a− v).

and

‖ g 1(a,b)‖2H = αH

∫ b−a

0

dv cos(v) v2H−2(b− a− v)

− αH cos(a+ b)

∫ b−a

0

dv v2H−2 sin(b − a− v).
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Proof. Using the expression of the scalar product in the Hilbert space H and the
trigonometric identities we can write

‖ f 1(a,b)‖2H + ‖ g 1(a,b)‖2H = αH

∫ b

a

∫ b

a

|u− v|2H−2(cos u cos v + sinu sin v) du dv

= αH

∫ b

a

du

∫ b

a

dv |u− v|2H−2 cos(u − v)

= 2αH

∫ b

a

du

∫ u−a

0

dv cos(v) v2H−2

= 2αH

∫ b−a

0

dv cos(v) v2H−2(b − a− v)

where we made the change of variables ṽ = u− v in the integral with respect to v
and we computed the integral with respect to u. Similarly

‖ f 1(a,b)‖2H − ‖ g 1(a,b)‖2H = αH

∫ b

a

du

∫ b

a

dv |u− v|2H−2(cos u cos v − sinu sin v)

= αH

∫ b

a

∫ b

a

|u− v|2H−2 cos(u + v) du dv

and by the change of variable ṽ = u− v in the integral with respect to v,

‖ f 1(a,b)‖2H − ‖ g 1(a,b)‖2H = 2αH

∫ b

a

du

∫ u−a

0

dv cos(2u− v) v2H−2

= 2αH

∫ b−a

0

dv v2H−2

∫ b

v+a

du cos(2u− v)

= αH

∫ b−a

0

dv v2H−2
(
sin(2b− v)− sin(2a+ v)

)

= 2αH cos(a+ b)

∫ b−a

0

dv v2H−2 sin(b − a− v).

�

Remark 3.2. As a consequence of Lemma 3.1 we deduce the following:

(i) For every a, b ∈ R, a < b,

‖ f 1(a,b)‖2H ≤ 2αH

∫ b−a

0

dv cos(v) v2H−2(b− a− v).

(ii) For any x > 0 the quantity
∫ x

0
v2H−2 cos(v) (x− v) dv is positive (it is the sum

of two norms).

(iii) For every a, b ∈ R, a < b,

‖ f 1(a,b)‖2H ≥ 2αH cos(a+ b)

∫ b−a

0

dv v2H−2 sin(b − a− v).
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Later, we use also the following lemma.

Lemma 3.3. For every a, b ∈ R with a < b,
∫ b

a

∫ b

a

du dv sin(u− v) |u − v|2H−2 = 0.

Proof. This follows from the trivial equality
∫ b

a

∫ b

a

sin(u) cos(v) |u − v|2H−2du dv =

∫ b

a

∫ b

a

sin(v) cos(u) |u− v|2H−2du dv. �

Concretely, we will prove the following result concerning regularity in time of
the solution to (2.13). We mention that, in the rest of our paper, c, C, etc. will
denote generic positive constants that may change from line to line.

Proposition 3.4. Assume that

(3.1) β ∈ (
2H − 1, d ∧ (2H + 1)

)
.

Let t0,M > 0 and fix x ∈ [−M,M ]d. Then there exist positive constants c1 and c2
such that, for every s, t ∈ [t0, T ],

c1|t− s|2H+1−β ≤ E
∣∣u(t, x)− u(s, x)

∣∣2 ≤ c2 |t− s|2H+1−β .

Proof. We let h > 0 and we estimate the L2(Ω)-norm of the increment u(t+h, x)−
u(t, x). Splitting the interval [0, t + h] into the intervals [0, t] and [t, t + h], and
using the inequality |a+ b|2 ≤ 2(a2 + b2), we obtain

E
∣∣u(t+ h, x)− u(t, x)

∣∣ 2 ≤ 2
{∥∥ (gt+h,x − gt,x) 1[0,t]

∥∥2

HP +
∥∥ gt+h,x 1[t,t+h]

∥∥2
HP

}
=: 2

[
E1,t(h) + E2(h)

]
.(3.2)

The first summand can be evaluated as

E1,t(h) = αH

∫
Rd

μ(dξ)

∫ t

0

∫ t

0

dv dv |u− v|2H−2F(
gt+h,x − gtx

)
(u, ·) (ξ)

× F(gt+h,x − gtx) (v, ·) (ξ)

= αH

∫
Rd

μ(dξ)

∫ t

0

∫ t

0

du dv |u− v|2H−2
[FG1(u+ h, ·) (ξ)−FG1(u, ·) (ξ)

]

× FG1(v + h, ·) (ξ)−FG1(v, ·) (ξ)

= αH

∫ t

0

∫ t

0

du dv |u− v|2H−2Ih,

where

Ih =

∫
Rd

μ(dξ)
[FG1(u + h, ·) (ξ)−FG1(u, ·) (ξ)

]

× [FG1(v + h, ·) (ξ)−FG1(v, ·) (ξ)
]

=

∫
Rd

μ(dξ)

(
sin((u + h)|ξ|)− sin(u|ξ|))

|ξ|

(
sin((v + h)|ξ|)− sin(v|ξ|))

|ξ| .
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Using trigonometric identities we obtain

E1,t(h) = αH

∫ t

0

∫ t

0

du dv |u− v|2H−2

×
∫
Rd

μ(dξ)
sin(h|ξ|2 )2

|ξ|2 cos
( (2u+ h) |ξ|

2

)
cos

((2v + h) |ξ|
2

)

= c · αH

∫ t

0

∫ t

0

du dv |u− v|2H−2

×
∫
Rd

dξ

|ξ|d−β+2
sin(h|ξ|)2 cos

(
(2u+ h) |ξ|) cos

(
(2v + h) |ξ|).

Making the change of variables ũ = (2u+ h) |ξ| and ṽ = (2v + h) |ξ|, we obtain

E1,t(h) = c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

×
∫ (2t+h)|ξ|

h|ξ|

∫ (2t+h)|ξ|

h|ξ|
du dv |u− v|2H−2 cosu cos v

= c

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 ∥∥ cos(·) 1(h|ξ|,(2t+h)|ξ|)(·)

∥∥2

H,(3.3)

and using Lemma 3.1,

E1,t(h) = c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2

×
[ ∫ 2t|ξ|

0

cos(v) v2H−2(2 t |ξ| − v) dv

+ cos
(
2 t |ξ|+ 2 h |ξ| )

∫ 2t|ξ|

0

v2H−2
(
sin(2 t |ξ| − v)

)]

= c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2 ×

[
2 t |ξ|

∫ 2t|ξ|

0

cos(v) v2H−2dv

− sin
(
2 t |ξ|) ( 2 t |ξ|)2H−1

+ (2H − 1)

∫ 2t|ξ|

0

sin(v) v2H−2dv

+ cos
(
2 t |ξ|+ 2 h |ξ|)

∫ 2t|ξ|

0

v2H−2
(
sin(2 t |ξ| − v)

) ]
,(3.4)

where we use integration by parts. By point (i) of Remark 3.2, we have the upper
bound

E1,t(h) ≤ c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2

×
[
2 t |ξ|

∫ 2t|ξ|

0

cos(v) v2H−2dv − sin(2 t |ξ|) (2 t |ξ|)2H−1

+ (2H − 1)

∫ 2t|ξ|

0

sin(v) v2H−2dv
]
.
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We will treat the three summands above separately. For the first,

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2 2 t |ξ|

∫ 2t|ξ|

0

cos(v) v2H−2dv

= ct,H h2H+1−β
∣∣∣
∫
Rd

dξ

|ξ|d−β+2H+1
sin(|ξ|)2

∫ 2t|ξ|
h

0

cos(v) v2H−2dv
∣∣∣

≤ ct,H h2H+1−β

∫
Rd

dξ

|ξ|d−β+2H+1
sin(|ξ|)2

∣∣∣
∫ 2t|ξ|

h

0

cos(v) v2H−2dv
∣∣∣

≤ ct,H h2H+1−β

where we have used condition (2.18) and the fact that the integral

∫ ∞

0

cos(v)v2H−2dv

is convergent (this implies that the function x ∈ [0,∞) → ∫ x

0 cos(v) v2H−2dv ad-
mits a limit at infinity and is therefore bounded). On the other hand,

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2 sin(2 t |ξ|) (2 t |ξ|)2H−1

= ct h
3−β

∫
Rd

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(2 t |ξ|
h

)

= ct h
3−β

∫
|ξ|≤1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(2 t |ξ|
h

)

+ ct h
3−β

∫
|ξ|>1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(2 t |ξ|
h

)
.

The second part over the region |ξ| ≥ 1 is bounded by c h3−β simply because the
sine is bounded from above by 1. The second integral has a singularity for |ξ| close
to zero. Using that sin(x) ≤ x for all x ≥ 0, we will bound it above by

h3−β

∫
|ξ|≤1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(2 t |ξ|
h

)

≤ ct h
3−β

∫
|ξ|≤1

dξ

|ξ|d−β+3
|ξ|2

∣∣∣ sin
(2 t |ξ|

h

) ∣∣∣ 2−2H ∣∣∣ sin
(2 t |ξ|

h

) ∣∣∣ 2H−1

≤ ct h
2H+1−β

∫
|ξ|≤1

dξ

|ξ|d−β+2H−1

where we have bounded |sin(2t|ξ|/h)|2−2H by ct(|ξ|h−1)2−2H and |sin(2t|ξ|/h)|2H−1

by 1. The last integral is finite since β > 2H − 1 (assumption (3.1)).
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Finally

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2

∫ 2t|ξ|

0

sin(v) v2H−2 dv

= h2H+2−β

∫
Rd

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫ 2t|ξ|/h

0

sin(v) v2H−2 dv

= h2H+2−β

∫
|ξ|≤1

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫ 2t|ξ|/h

0

sin(v) v2H−2 dv

+ h2H+2−β

∫
|ξ|≥1

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫ 2t|ξ|/h

0

sin(v) v2H−2 dv

≤ h2H+2−β

∫
|ξ|≤1

dξ

|ξ|d−β+2H+2
|ξ|2

∫ 2t|ξ|/h

0

| sin v| v2H−2 dv

+ h2H+2−β

∫
|ξ|≥1

dξ

|ξ|d−β+2H+2

∫ 2t|ξ|/h

0

sin(v) v2H−2 dv.(3.5)

Using again the fact that ∫ ∞

0

sin(v) v2H−2 dv

is convergent it is easy to see that the integral over the region |ξ| ≥ 1 is bounded by
ct h

2H+2−β . For the integral over |ξ| ≤ 1 we make the change of variables ṽ = vh/ξ
and we get

h3−β

∫
|ξ|≤1

dξ

|ξ|d−β+1

∫ 2t

0

∣∣∣ sin
(v |ξ|
h

) ∣∣∣ v2H−2 dv

= h3−β

∫
|ξ|≤1

dξ

|ξ|d−β+1

∫ 2t

0

∣∣∣ sin
(v |ξ|
h

) ∣∣∣ 2−2H ∣∣∣ sin
(v |ξ|
h

) ∣∣∣ 2H−1

v2H−2 dv

≤ ct h
2h+1−β

∫
|ξ|≤1

dξ

|ξ|d−β+2H−1
,

where we have made the same analysis as for the second summand in the decom-
position of E1,t(h). In this way, we obtained the upper bound

(3.6) E1,t(h) ≤ Ch2H+1−β ,

for the summand E1,t(h) in (3.2).

Now we study the term E2(h) in (3.2) (the notation E2(h) instead of E2,t(h)
is due to the fact that it does not depend on t; see below). Using successively the
changes of variables ũ = u/h, ṽ = v/h in the integrals with respect to u and v
and ξ̃ = h ξ in the integral with respect to ξ, the summand E2(h) can be written
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as

E2(h) = αH

∫
Rd

∫ t+h

t

∫ t+h

t

FG1(t+ h− u, ·)(ξ)

× FG1(t+ h− v, ·)(ξ) |u− v|2H−2 du dv μ(dξ)

= αH

∫
Rd

μ(dξ)

|ξ|2
∫ h

0

∫ h

0

sin(u |ξ|) sin(v |ξ|) |u − v|2H−2 du dv

= αH h2H
∫
Rd

μ(dξ)

|ξ|2
∫ 1

0

∫ 1

0

sin(u |ξ|h) sin(v |ξ|h) |u− v|2H−2 du dv

= αH h2H+2−β

∫
Rd

μ(dξ)

|ξ|2
∫ 1

0

∫ 1

0

sin(u |ξ|) sin(v |ξ|) |u − v|2H−2 du dv.

We use the following notation:

(3.7) Nt(ξ) =
αH

|ξ|2
∫ t

0

∫ t

0

sin(u |ξ|) sin(v |ξ|) |u− v|2H−2 du dv, t ∈ [0, T ], ξ ∈ R
d.

By Proposition 3.7 in [2] the term

N1(ξ) =
αH

|ξ|2
∫ 1

0

∫ 1

0

sin(u |ξ|) sin(v |ξ|) |u− v|2H−2 du dv

satisfies the inequality

N1(ξ) ≤ CH

( 1

1 + |ξ|2
)H+1/2

,

with CH a positive constant not depending on h. Consequently the term E2(h) is
bounded by

(3.8) E2(h) ≤ C h2H+2−β

∫
Rd

( 1

1 + |ξ|2
)H+1/2

μ(dξ)

and this is clearly finite due to (2.16). Relations (3.6) and (3.8) give the first part
of the conclusion.

Now we analyse now the lower bound of the increments of u(t, x) with respect to
the variable t. Let h > 0, x ∈ [−M,M ]d, and t ∈ [t0, T ] be such that t+h ∈ [t0, T ].
From the decomposition

E
∣∣u(t+ h, x)− u(t, x)

∣∣2 =
∥∥ (gt+h,x − gt,x) 1[0,t]

∥∥2
HP +

∥∥ gt+h,x 1[t,t+h]

∥∥2
HP

+ 2
〈
(gt+h,x − gt,x) 1[0,t], gt+h,x 1[t,t+h]

〉
HP

we immediately obtain, since the second summand on the right-hand side is posi-
tive,

E
∣∣u(t+ h, x)− u(t, x)

∣∣2
≥ ∥∥ (gt+h,x − gt,x) 1[0,t]

∥∥2
HP + 2

〈
(gt+h,x − gt,x) 1[0,t], gt+h,x 1[t,t+h]

〉
HP

:= E1,t(h) + E3,t(h).
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We can assume, without loss of the generality, that t = 1/2. Denote E1, 1/2(h) :=
E1(h). We first prove that

(3.9) E1(h) ≥ c h2H+1−β − c′ h2H+2−β .

for h small enough. Recall that we have an exact expression for E1(h) (see (3.4)).
Actually,

E1(h) =

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2 ∥∥ cos(·) 1(h |ξ|, h |ξ|+|ξ|)

∥∥2
H

= αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

×
∫ (1+h)|ξ|

h|ξ|

∫ (1+h)|ξ|

h|ξ|
du dv |u− v|2H−2 cosu cos v

= αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2

×
∫ |ξ|

0

∫ |ξ|

0

du dv cos(u + h |ξ|) cos(v + h |ξ|) |u− v|2H−2.

By using the trigonometric formula cos(x + y) = cos(x) cos(y) − sin(x) sin(y) we
write

E1(h) =αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

[
cos(h|ξ|)2

∫ |ξ|

0

∫ |ξ|

0

du dv cosu cos v |u−v|2H−2

− 2 sin(h|ξ|) cos(h|ξ|)
∫ |ξ|

0

∫ |ξ|

0

du dv sinu cos v |u− v|2H−2

+ sin(h|ξ|)2
∫ |ξ|

0

∫ |ξ|

0

du dv sinu sin v |u− v|2H−2
]

:= A+B + C.

We neglect the first term since it is positive. We bound the second term
by c h2H+2−β . Using again trigonometric identities, Lemma 3.3 (used at the third
line below), and the change of variables ṽ = u− v we have

−2 sin(h |ξ|) cos(h |ξ|)
∫ |ξ|

0

∫ |ξ|

0

du dv sinu cos v |u− v|2H−2

= − sin(h |ξ|) cos(h |ξ|)
∫ |ξ|

0

∫ |ξ|

0

du dv
(
sin(u + v) + sin(u − v)

) |u− v|2H−2

= − sin(h |ξ|) cos(h |ξ|)
∫ |ξ|

0

∫ |ξ|

0

du dv sin(u+ v) |u− v|2H−2

= c · sin(h |ξ|) cos(h |ξ|)
∫ |ξ|

0

v2H−2
(
cos(2 |ξ| − v)− cos(v)

)
dv
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and thus

B = c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)2 sin(h |ξ|) cos(h |ξ|)

×
∫ |ξ|

0

v2H−2
(
cos(2 |ξ| − v)− cos(v)

)
dv

= − c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)3 cos(h |ξ|) sin(|ξ|)

∫ |ξ|

0

v2H−2 sin(|ξ| − v) dv

= − c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)3 cos(h |ξ|) sin(|ξ|)

×
∫ |ξ|

0

v2H−2
(
sin(|ξ|) cos(v)− cos(|ξ|) sin(v)) dv

= − c · αH

∫
Rd

dξ

|ξ|d−β+2H+2
sin(h |ξ|)3 cos(h |ξ|) sin(|ξ|)

×
(
sin(|ξ|)

∫ |ξ|

0

v2H−2 cos(v) dv − cos(|ξ|)
∫ |ξ|

0

v2H−2 sin(v) dv
)

= − c · αH

∫
|ξ|≤1

dξ

|ξ|d−β+2H+2
sin(h |ξ|)3 cos(h |ξ|) sin(|ξ|)

×
(
sin(|ξ|)

∫ |ξ|

0

v2H−2 cos(v) dv − cos(|ξ|)
∫ |ξ|

0

v2H−2 sin(v) dv
)

− c · αH

∫
|ξ|≥1

dξ

|ξ|d−β+2H+2
sin(h |ξ|)3 cos(h |ξ|) sin(|ξ|)

×
(
sin(|ξ|)

∫ |ξ|

0

v2H−2 cos(v) dv − cos(|ξ|)
∫ |ξ|

0

v2H−2 sin(v) dv
)
.

Taking absolute value we see that the part over the set |ξ| ≤ 1 is bounded
by c h3 by simply majorizing sin(h |ξ|) by h |ξ|, cos(h |ξ|) sin(|ξ|) by 1, and

∣∣∣ sin(|ξ|)
∫ |ξ|

0

v2H−2 cos(v) dv − cos(|ξ|)
∫ |ξ|

0

v2H−2 sin(v) dv
∣∣∣

by a constant. Concerning the part over the region |ξ| ≥ 1 we bound again the last
expression by a constant and we use the change of variables ξ̃ = h ξ. This part is
bounded by

h2H+2−β

∫
|ξ|≥h

dξ

|ξ|d−β+2H+2

∣∣ sin(|ξ|)3 cos(|ξ|) sin(|ξ|/h) ∣∣

≤ h2H+2−β

∫
Rd

dξ

|ξ|d−β+2H+2

∣∣ sin(|ξ|)3∣∣ ≤ c h2H+2−β

since the last integral is convergent at infinity by bounding the sine function by 1
and at zero by bounding sin(x) by x and using the assumption β > 2H − 1.
Therefore

(3.10) B ≤ c h2H+2−β .
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Now we bound summand C from below. In this summand the H norm of the
sine function appears and this has been analyzed in [2]. We have, after the change
of variables ũ = u/ |ξ|, ṽ = v/ |ξ|,

C = αH

∫
Rd

dξ

|ξ|d−β+2
sin(h |ξ|)4

∫ 1

0

∫ 1

0

sin(u |ξ|) sin(v |ξ|) |u− v|2H−2 du dv

≥ αH

∫
|ξ|≥1

dξ

|ξ|d−β+2
sin(h |ξ|)4

∫ 1

0

∫ 1

0

sin(u |ξ|) sin(v |ξ|) |u − v|2H−2 du dv.

We will use Proposition 3.8 in [2] (more precisely, we will use the inequality (34)
in that paper with k = 0; we notice that the term sin(h |ξ|)4 does not appear in
this proof, but analyzing the proof step-by-step we can see that this term can be
added without problems). For h small, we have that,

C ≥ αH

∫
|ξ|≥1

dξ

|ξ|d−β
sin(h |ξ|)4 1

|ξ|2
∫ 1

0

∫ 1

0

sin(u |ξ|) sin(v |ξ|) |u− v|2H−2 du dv

≥ αH

∫
|ξ|≥1

dξ

|ξ|d−β
sin(h |ξ|)4 1

|ξ|2H+1

= αH h2H+1−β

∫
|ξ|≥h

dξ

|ξ|d−β+2H+1
sin(|ξ|)4

≥ αH h2H+1−β

∫
|ξ|≥1

dξ

|ξ|d−β+2H+1
sin(|ξ|)4

= c · αH h2H+1−β .(3.11)

Relations (3.10) and (3.11) imply (3.9). Now, from the relation (3.9), for every
t0 ≤ s < t < T with s and t close enough

E1(t− s) ≥ c (t− s)2H+1−β − c′(t− s)2H+2−β ≥ c

2
(t− s)2H+1−β

if |t − s| ≤ c/(2c′). To extend the above inequality to arbitrary values of |t − s|,
we proceed as in the proof of Proposition 4.1 in [11]. Notice that the function

g(t, s, x, y) := E |u(t, x)− u(s, x)|2 is positive and continuous with respect to all
its arguments and therefore it is bounded below on the set {(t, s, x, y) ∈ [t0, T ]

2 ×
[−M,M ]2d; |t− s| ≥ ε} by a constant depending on ε > 0. Hence for |t− s| ≥ c

2c′
there also holds

E1(t− s) ≥ c1|t− s|2H+1−β .

On the other hand, from (3.3), (3.8), and Cauchy–Schwarz inequality, we obtain

E3,t(h) =
〈
(gt+h,x − gt,x) 1[0,t], gt+h,x 1[t,t+h]

〉
HP

≤ ∥∥ (gt+h,x − gt,x) 1[0,t]
∥∥
HP

∥∥ gt+h,x 1[t,t+h]

∥∥
HP ≤ c h(2H+1−β)/2+(2H+2−β)/2.

Consequently,

E
∣∣u(t+ h, x)− u(t, x)

∣∣2 ≥ C h2H+1−β − C′ h(2H+1−β)/2+(2H+2−β)/2,
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and this implies that, for every s, t ∈ [t0, T ] and x ∈ [−M,M ]d,

E
∣∣ u(t, x)− u(s, x)

∣∣2 ≥ C

2
|t− s|2H+1−β if |t− s| ≤

( C

2C′

)1/2

.

Similarly, as above, the previous inequality can be extended to arbitrary values of
s, t ∈ [t0, T ]. �

Proposition 3.4 implies the following Hölder property for the solution to (2.13).

Corollary 3.5. Assume (3.1). Then for every x ∈ R
d the map

t→ u(t, x)

is almost surely Hölder continuous of order δ ∈ (
0, (2H + 1− β)/2

)
.

Proof. This is a consequence of the relations (3.3) and (3.8) in the proof of Propo-
sition 3.4 and the fact that u is Gaussian. �

Remark 3.6. (i) Following the proof of Theorem 5.1 in [10] we can show that the
mapping t→ u(t, x) is not Hölder continuous of order (2H + 1− β)/2.

(ii) When H = 1/2, we recover the results in [10] and [11] in the linear case.

3.2. Regularity in space

Let us discuss the behavior of the solution u to the equation (2.13) with respect
to the spatial variable. We have:

Proposition 3.7. Assume (3.1) and fix M > 0 and t ∈ [t0, T ]. Then there exist
positive constants c3 and c4 such that for any x, y ∈ [−M,M ]d

c3 |x− y|2H+1−β ≤ E
∣∣u(t, x)− u(t, y)

∣∣2 ≤ c4 |x− y|2H+1−β .

Proof. Let z ∈ R
d. We compute

E
∣∣u(t, x+ z)− u(t, x)

∣∣2 =
∥∥ gt,x+z − gt,x

∥∥2
HP

= αH

∫
Rd

∫ t

0

∫ t

0

F(gt,x+z − gt,x)(u, ·)(ξ)F(gt,x+z − gt,x)(v, ·)(ξ)

× |u− v|2H−2du dv μ(dξ)

= αH

∫ t

0

∫ t

0

|u−v|2H−2 du dv

∫
Rd

|e−iξ·(x+z)− e−iξ·x|2 FG1(u, ·)(ξ)FG1(v, ·)(ξ)μ(dξ)

= αH

∫ t

0

∫ t

0

|u− v|2H−2 du dv

∫
Rd

|e−iξ·z − 1|2 sin(u |ξ|)
|ξ| · sin(v |ξ|)|ξ| μ(dξ)

=: E1,x(z) + E2,x(z),

where E1,x(z) and E2,x(z) are the integrals over the regions |ξ| < 1 and |ξ| ≥ 1,
respectively.
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For the first expression is easy to see that, using the inequality |1 − e−iξz|2 ≤
|ξ|2|z|2, we get the bound

E1,x(z) ≤ C |z|2
∫
|ξ|≤1

μ(dξ).

Developing the second expression we get

E2,x(z) = αH

∫ t

0

∫ t

0

|u− v|2H−2 du dv

∫
|ξ|≥1

|e−iξ·z − 1|2 sin(u |ξ|)
|ξ| · sin(v |ξ|)|ξ| μ(dξ)

= 2αH

∫ t

0

∫ t

0

|u− v|2H−2 du dv

∫
|ξ|≥1

dξ

|ξ|d−β
(1− cos(z · ξ)) sin(u |ξ|)|ξ| · sin(v |ξ|)|ξ| ,

where z · ξ means the scalar product in R
d. Again from Proposition 3.7 in [2] we

have that

Nt(ξ) ≤ ct,H

( 1

1 + |ξ|2
)H+1/2

for any t > 0, |ξ| ≥ 1, where Nt(ξ) is given by (3.7). Hence, writing, e = z/|z|

E2,x(z) ≤ C

∫
Rd

dξ

|ξ|d−β

(
1− cos(z · ξ)) ( 1

1 + |ξ|2
)H+1/2

= C z2H+1−β

∫
Rd

dw

|w|d−β

(
1− cos(w · e)) ( 1

|w|2 + |z|2
)H+1/2

≤ C|z|2H+1−β ,

where we used the change of variables w = ξ |z|. This proves the upper bound.
Let us prove the sharpness of this bound (i.e., the lower bound). We can

assume, without loss of generality, that t = 1. We note that

E
∣∣u(1, x+ z)− u(1, x)

∣∣ 2 ≥ F2(z)

:= 2αH

∫ 1

0

∫ 1

0

du dv |u− v|2H−2

∫
|ξ|≥1

dξ

|ξ|d−β

(
1− cos(ξ · z)) sin(u |ξ|)|ξ| · sin(v |ξ|)|ξ| .

Condition (2.17) implies that

∫
|ξ|≥1

μ(dξ)

|ξ|3 ≤
∫
|ξ|≥1

μ(dξ)

|ξ|2H+1
<∞.

We apply Proposition 3.8 in [2] (more precisely, the inequality (34) in [2]
with k = 0) and we get (note that the result in [2] is stated without the fac-
tor (1 − cos(ξ · z)) but by analyzing the proof we can see that this factor may be
added without problems):

F2(z) ≥ C

∫
|ξ|≥1

dξ

|ξ|d−β+2H+1

(
1−cos(ξ ·z))−C′

∫
|ξ|≥1

dξ

|ξ|d−β+2H+2

(
1−cos(ξ ·z))
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(here C > C′) and, by the change of variables ξ|z| = w in the integral with respect
to ξ,

F2(z) ≥ C z2H+1−β

∫
|w|≥|z|

dw

|w|d−β+2H+1

(
1− cos(w · e))

− C′ z2H+2−β

∫
|w|≥|z|

dw

|w|d−β+2H+2

(
1− cos(w · e))

≥ C z2H+1−β .(3.12)

As in the proof of Theorem 5.1 in [10], we obtain that the integral

∫
|w|≥|z|

dw

|w|d−β+2H+1
(1 − cos(w · e))

is bounded below by a constant. (Notice that β > 2H − 1 implies that the first
integral above is convergent when z is zero, because 1 − cos(x) ≈ x2, when x is
near 0). Thus, it is immediate that

E
∣∣u(1, x+ z)− u(1, x)

∣∣2 ≥ C z2H+1−β . �

We have the following result concerning the Hölder continuity in space. We
mention that it is little more than an extension of Proposition 3.7.

Proposition 3.8. Assume β ∈ (0, d∧ (2H +1)). Then for any t ∈ [t0, T ] the map

x→ u(t, x)

is almost surely Hölder continuous of order δ ∈ (
0,
(
2H+1−β

2

) ∧ 1
)
.

Proof. We claim that

(3.13) E
∣∣ u(t, x)− u(t, y)

∣∣2 ≤ c |x− y|(2H+1−β)∧2

whenever |x − y| is sufficiently small. From Proposition 3.7, (3.13) is true when
β > 2H − 1. When β ∈ (0, 2H − 1] then it suffices to consider the part of the

quantity E |u(t, x+ z)− u(t, x)|2 over the region |ξ| ≤ 1 (the part over the region
|ξ| > 1 is, as in the proof of Proposition 3.7, bounded by c z2H+1−β so by c z2 for z
small). It is immediate to see that, using the inequality |1− e−iξz |2 ≤ |ξ|2|z|2 the
considered part is less than C|z|2 ∫|ξ|≤1

μ(dξ). This concludes the proof of (3.13).

The conclusion is a consequence of Proposition 3.7, the Gaussian nature of u
and the Kolmogorov continuity theorem. �

Remark 3.9. (i) WhenH = 1/2, the above result coincides with the results of [10]
and [11]).

(ii) In Proposition 3.8 we distinguish two cases: if β ∈ (0, 2H − 1) then the
solution to (2.13) has spatial Hölder continuity of order α for every α ∈ (0, 1) while
if β ∈ (2H − 1, d ∧ (2H + 1)) the Hölder exponent is δ ∈ (0, (2H + 1− β)/2) < 1.
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(iii) There is another way to see why the cases β ∈ (0, 2H − 1] and β ∈
(2H − 1, d ∧ (2H + 1)) need to be separated. Define

gt(z) := E
∣∣u(t, x+ z)− u(t, x)

∣∣2

= 2αH

∫ t

0

∫ t

0

|u− v|2H−2du dv

×
∫
Rd

dξ

|ξ|d−β

(
1− cos(z · ξ)) sin(u |ξ|)|ξ| · sin(v |ξ|)|ξ| .

We study the behavior of gt around z = 0. We also assume that d = 1. Notice
first that gt(0) = 0 and

g′t(z) = 2αH

∫ t

0

∫ t

0

|u− v|2H−2du dv

∫
Rd

dξ

|ξ|d−β−1
sin(z · ξ) sin(u|ξ|)|ξ| · sin(v|ξ|)|ξ|

and thus g′t(0) = 0 provided that β < 2H . Moreover

g′′t (z) = 2αH

∫ t

0

∫ t

0

|u− v|2H−2du dv

∫
Rd

dξ

|ξ|d−β−2
cos(z · ξ) sin(u |ξ|)|ξ| · sin(v |ξ|)|ξ|

and

g′′t (0) = 2αH

∫ t

0

∫ t

0

|u− v|2H−2 du dv

∫
Rd

dξ

|ξ|d−β−2

sin(u |ξ|)
|ξ| · sin(v |ξ|)|ξ|

≤ Ct 2αH

∫
Rd

dξ

|ξ|d−β−2

( 1

1 + |ξ|2
)H+1/2

,

which is a finite constant for β < 2H − 1. Therefore gt(z) behaves as Cz2 for z
close to 0.

3.3. Joint regularity

We denote by Δ the metric

(3.14) Δ
(
(t, x); (s, y)

)
= |t− s|2H+1−β + |x− y|2H+1−β ,

on [0, T ]× R
d. From Propositions 3.4 and 3.7, we obtain the following result.

Theorem 3.10. Fix M > 0 and assume (3.1). For every t, s ∈ [t0, T ] and x, y ∈
[−M,M ]d there exist positive constants C1 and C2 such that

C1 Δ
(
(t, x); (s, y)

) ≤ E
∣∣u(t, x)− u(s, y)

∣∣2 ≤ C2 Δ
(
(t, x); (s, y)

)
.

Proof. The upper bound can be easily obtained by using the upper bounds in
Propositions 3.4 and 3.7 since

E
∣∣ u(t, x)− u(s, y)

∣∣2 ≤ 2E
∣∣u(t, x)− u(s, x)

∣∣2 + 2E
∣∣u(s, x)− u(s, y)

∣∣2
≤ C2

(|t− s|2H+1−β + |x− y|2H+1−β
)
.
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Concerning the lower bound, it suffices to follow the lines of the proof of
Lemma 2.1 in [18] (see also steps 3 and 4 in the proof of Proposition 4.1 in [11]).
We will briefly explain the main points of the proof. The proof needs to be divided
into three cases:

|t− s|2H+1−β ≤ c3
4c2

|x− y|2H+1−β ,

|t− s|2H+1−β ≥ 4c4
c1

|x− y|2H+1−β ,

and
4c4
c1

|x− y|2H+1−β ≥ |t− s|2H+1−β ≥ c3
4c2

|x− y|2H+1−β ,

with the constants c1, c2, c3, and c4 appearing in the statements of Propositions 3.4
and 3.7. The first case can be handled as follows:

E
∣∣u(t, x) − u(s, y)

∣∣2 ≥ 1

2
E
∣∣ u(t, x)− u(t, y)

∣∣2 −E
∣∣u(t, y)− u(s, y)

∣∣2

≥ 1

2
c3 |x− y|2H+1−β − c2 |t− s|2H+1−β

≥ 1

2
c3 |x− y|2H+1−β − 1

4
c3 |x− y|2H+1−β

=
1

4
c3 |x− y|2H+1−β ≥ c3

8
|x− y|2H+1−β +

c3
8

4c2
c3

|t− s|2H+1−β

≥ C1 Δ
(
(t, x); (s, y)

)
.

The other cases follow in a similar way from Lemma 3.1 in [18], replacing the
exponents in [18] with the exponents used here. �

Remark 3.11. The result of Theorem 3.10 can be stated also in the following
form. Fix M > 0 and assume (3.1). For every t, s ∈ [t0, T ] and x, y ∈ [−M,M ]d

with (t, x) close enough to (s, y), there exist positive constants C1, and C2 such that

C1

(|t− s|+ |x− y|)2H+1−β ≤ E
∣∣ u(t, x)− u(s, y)

∣∣ 2 ≤ C2

(|t− s|+ |x− y|)2H+1−β
.

4. Hitting times

We discuss the upper and lower bounds for the hitting probabilities of the solution u
to equation (2.13). These bounds will be given in terms of the Newtonian capacity
and the Hausdorff measure of the set (see Section 2 for the definition). We recall
our notation: if V = (V (x), x ∈ R

m) is an R
k-valued stochastic process then V (S)

denotes the range of the Borel set S under the random mapping x→ V (x).
Our result is based on the following criteria for the hitting probabilities proved

as Theorem 2.1 of [4].

Theorem 4.1. Let X = X(t), t ∈ R
N , be an R

k-valued centered Gaussian pro-
cess and fix I ⊂ R

N . Assume that there exist positive constants a1, a2, a3 and a4
such that

(i) For every t ∈ I, E[X(t)2] ≥ a1 > 0.
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(ii) There exists α1, . . . , αN ∈ (0, 1) such that for all t = (t1, . . . , tN ), s =
(s1, . . . , sN) ∈ I there holds

a2

N∑
j=1

|tj − sj |2αj ≤ E |X(t)−X(s)|2 ≤ a3

N∑
j=1

|tj − sj |2αj .

(iii) For all t = (t1, . . . , tN ), s = (s1, . . . , sN ) ∈ I,

Var
(
X(t)|X(s)

) ≥ a4

N∑
j=1

|tj − sj |2αj .

Then there exist positive constants a5 and a6 such that for every Borel set A in R
k

a5 Capk−Q(A) ≤ P (X(I) ∩ A �= ∅) ≤ a6 Hk−Q(A)

where Q =
∑N

j=1 1/αj.

Next, we will show that the solution to (2.13) satisfies the assumptions of the
previous result. This will be accomplished via several lemmas.

Lemma 4.2. Assume (3.1) and let u be the solution to (2.13). Then for every
t ∈ [t0, T ] and x ∈ R

d

E u(t, x)2 ≥ C.

Proof. Let σ2
t,x be the variance of u(t, x). We need to bound this variance from

below. Assume for simplicity that t = 1. Then

σ2
1,x = E

∣∣u(1, x)∣∣2 = αH

∫ 1

0

∫ 1

0

du dv |u− v|2H−2

∫
Rd

dξ

|ξ|d−β+2
sin(u |ξ|) sin(v |ξ|)

≥ αH

∫ 1

0

∫ 1

0

du dv |u− v|2H−2

∫
|ξ|≤1

dξ

|ξ|d−β+2
sin(u |ξ|) sin(v |ξ|)

≥ αH sin2 1

∫ 1

0

∫ 1

0

du dv |u− v|2H−2 u v = C > 0

where we used that sinx ≥ x sin 1 for every x ∈ [0, 1]. The general case t ∈ [t0, T ]
follows in the same way by making the change of variables ũ = u/t, ṽ = v/t and
then working on the domain D = {ξ ∈ R

d, |ξ| ≤ 1/(u t)}. �

Now, we bound the conditional variance (condition iii in Theorem 4.1).

Lemma 4.3. Assume (3.1) and fix t0,M > 0. Then for every s, t ∈ [t0, T ] and
x, y ∈ [−M,M ]d,

Var
(
u(t, x)|u(s, y)) ≥ CΔ

(
(t, x); (s, y)

)

where Δ is the metric given by (3.14).



Hitting probabilities for the fractional wave equation 707

Proof. We will use the following formula: if (U, V ) is a centered Gaussian vector,
then

(4.1) Var (U, V ) =

(
ρ2U,V − (σU − σV )

2
) (

(σU + σV )
2 − ρ2U,V

)
4 σ2

V

where
ρ2U,V = E (U − V )2, σ2

U = EU2, and σ2
V = EV 2.

Define

ρ2t,x,s,y = E
∣∣u(t, x)− u(s, y)

∣∣2, σ2(t, x) = E u(t, x)2, σ2
s,y = E u(s, y)2.

It suffices to show that

(
ρ2t,x,s,y − (σt,x − σs,y)

2
) (

(σt,x + σs,y)
2 − ρ2t,x,s,y

) ≥ cΔ
(
(t, x); (s, y)

)

for every s, t ∈ [t0, T ] and x, y ∈ [−M,M ]d. By Theorem 3.10 the second factor on
the left-hand side above is bounded below by a constant. So it remains to check
that (

ρ2t,x,s,y − (σt,x − σs,y)
2
) ≥ cΔ

(
(t, x); (s, y)

)
,

but this has been done in the proof of Proposition 3.2 in [18] (see also the proof of
Lemma 4.3 in [8]). �

Remark 4.4. Using the previous result we can bound the joint density pt,x,s,y of
the vector (u(t, x), u(s, y)). Actually, one can show that for every t ∈ [t0, T ] and
x, y ∈ [−M,M ]d we have the inequality

pt,s,x,y(z1, z2) ≤ C1 Δ
(
(t, x); (s, y)

)−k/2
exp

(
− C2 |z1 − z2|2

Δ
(
t, x); (s, y)

))

for every z1, z2 ∈ [−N,N ]k, where Δ is the metric defined by (3.14). It suffices to
follow the lines of Proposition 3.2 in [18].

We can state now the main result of this section.

Theorem 4.5. Assume (3.1) and consider nontrivial compact sets I and J in
[t0, T ] and [−M,M ]d, respectively. Fix N > 0 and let u be the solution to the
system (1.1). Then for every Borel set A contained in [−N,N ]k there holds

C−1 Capk−γ(A) ≤ P
(
u (I × J) ∩ A �= ∅) ≤ CHk−γ(A)

with

γ = k − 2(d+ 1)

2H + 1− β
.

Proof. The proof is a consequence of Theorem 4.1 and of Lemmas 4.2 and 4.3. �

Remark 4.6. (i) Of course, for H = 1/2, our result recovers the results in [11] in
the linear case.
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(ii) It is also possible to give some results concerning the probability that, for
fixed t and x, the sets u({t}×J) and u(I×{x}) hit a given Borel set A contained in
[−N,N ]k, (as before I and J are nontrivial compact sets in [t0, T ] and [−M,M ]d,
respectively). Actually, by routine arguments we have

C−1 Capk− 2d
2H+1−β

(A) ≤ P
(
u({t} × J ) ∩ A �= ∅) ≤ CHk− 2d

2H+1−β
(A)

and

C−1 Capk− 2
2H+1−β

(A) ≤ P
(
u(I × {x}) ∩ A �= ∅) ≤ CHk− 2

2H+1−β
(A).
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