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Some two-dimensional extensions of Bougerol’s

identity in law for the exponential functional of
linear Brownian motion

Jean Bertoin, Daniel Dufresne and Marc Yor

Abstract. We present a two-dimensional extension of an identity in dis-
tribution due to Bougerol [4] that involves the exponential functional of a
linear Brownian motion. Even though this identity does not extend to the
level of processes, we point out further striking relations in this direction.

1. Introduction

1.1. To a linear Brownian motion (Bs, s ≥ 0) starting from 0, we associate the
exponential functional

At =

∫ t

0

exp(2Bs) ds , t ≥ 0.

The distribution of At is made accessible thanks to Bougerol’s identity in law:

(1.1) for fixed t, sinh(Bt)
(law)
= β(At),

where (β(u), u ≥ 0) denotes a Brownian motion which is independent of (Bs,
s ≥ 0), hence of At. Assuming (1.1), elementary computations yield the charac-
terization of the law of At as

(1.2) E

[ 1√
At

exp
(
− x2

2At

)]
=

a′(x)√
t

exp
(
− a2(x)

2t

)
, x ∈ R ,

where

a(x) = arg sinh(x) ≡ log
(
x+

√
1 + x2

)
and a′(x) =

1√
1 + x2

.
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For further reference, we note the simple, but useful, consequences of (1.2) that

(1.3) E

( 1√
At

)
=

1√
t
,

and, differentiating both sides of (1.3) with respect to t,

(1.4) E

(exp(Bt)

A
3/2
t

)
(∗)
= E

(exp(2Bt)

A
3/2
t

)
=

1

t3/2
,

where (∗) is obtained by time reversal of (Bs, s ≤ t) from time t.

1.2. It took some time, despite the original proof in [4], to understand simply the
deeper reasons why (1.1) holds. In [1], one finds the following arguments, among
which the (essential) time reversal one:

β(At) is distributed as

∫ t

0

exp(Bs) dβ(s) for fixed t,

and, by time reversal (at time t), this is also distributed as

exp(Bt)

∫ t

0

exp(−Bs) dβ(s).(1.5)

Now, it is easily shown, using Itô’s formula, that the process in (1.5) is distributed
as the process (sinh(Bt) , t ≥ 0).

1.3. In the present paper, we obtain an extension of (1.1), by considering the
two-dimensional vector (sinh(Bt), sinh(Lt)), where (Lt , t ≥ 0) denotes the local
time at 0 of B. Our main result is:

Theorem 1.1. For fixed t, the three following two-dimensional random variables
are identically distributed:

(1.6)

(
sinh(Bt) , sinh(Lt)

) (law)
=

(
β(At) , exp(−Bt)λ(At)

)
(law)
=

(
exp(−Bt)β(At) , λ(At)

)
,

where (β(u), u ≥ 0) is a one-dimensional Brownian motion, with local time at 0,
(λ(u), u ≥ 0), and β is independent of B.

It may be interesting to observe that Tanaka’s formula shows that the local time
at level 0 and time t of the process (sinh(Bs), s ≥ 0) is simply Lt, whereas that

of the process (exp(−Bs)β(As), s ≥ 0) can be expressed as
∫ t

0 exp(−Bs)dλ(As).
Hence we have also the identity in distribution between two-dimensional processes,

(1.7)
(
sinh(Bt), Lt

)
t≥0

(law)
=

(
exp(−Bt)β(At),

∫ t

0

exp(−Bs) dλ(As)
)
t≥0

.

We stress that (1.6) cannot be extended to the level of processes; see Section 2.2.
Hence the two identities in distribution (1.6) and (1.7) differ profoundly.
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Theorem 1.1 is proved in Section 3. In Section 2, we discuss a number of conse-
quences of and statements equivalent to Theorem 1.1. For instance, the well-known
equivalence in law, due to Paul Lévy, between the processes ((Bt −Bt, Bt) , t ≥ 0)
and ((|Bt| , Lt) , t ≥ 0) allows to present a version involving the supremum Bt =
sups≤t Bs instead of the local time version of Theorem 1.1.

Apart from this, Section 2 consists in the statements and discussions of four
other theorems. Roughly speaking, these theorems were motivated by our de-
sire to understand whether in (1.6) the two extreme identities hold for processes.
This question has now been solved in the negative (see [3]), but nonetheless there
are some rather remarkable identities between jump intensity measures, which are
described in Theorems 2.3–2.6, and which made us believe for some time in a
2-dimensional process identity extending (1.6). We let the reader discover the pre-
cise statements of these theorems in Section 2; their proofs are found in Section 4.

1.4. Before we enter into the details of the proofs of our theorems, we make
some remarks explaining how our understanding of Bougerol’s identity (1.1) has
developed: in [19], a Mellin transform proof was given, based on the identity in
law (3.6) below. Later, in [1], a time-reversal argument and stochastic calculus
proof of (1.1) were found. We feel that, at the moment, our understanding of
Theorem 1.1 lies at the level of [19], and that it should be possible to develop some
kind of understanding similar to that in [1]. However, such a proof eludes us for
now; it is not clear that a time-reversal argument is what is missing. Nevertheless,
we present some further extensions of Bougerol’s identity different from the ones
found in the volume [20], which, hopefully will lead us in the future to a better
understanding of Theorem 1.1. We also refer to [17] for a recent survey of this
topic.

2. Discussion of and some theorems closely related to Theo-
rem 1.1

2.1. First we note that we may rewrite the identity in law (1.6) in the seemingly
slightly weaker form

(
sinh(|Bt|) , sinh(Lt)

) (law)
=

(|β|(At) , exp(−Bt)λ(At)
)

(law)
=

(
exp(−Bt)|β|(At) , λ(At)

)
.

(2.1)

This supposes no loss of generality, since the expressions on the left-hand side
(without absolute values) of (1.6) only differ from the expressions with absolute
values in (2.1) by multiplication by a symmetric Bernoulli variable, independent
of the remaining quantities.

Secondly, it is well known that the law of the two-dimensional vector (|Bt|, Lt)
is symmetric. More precisely, it is given by

P(|Bt| ∈ dx , Lt ∈ d�) =
2(x+ �)√

2πt3
exp

(
− (x+ �)2

2t

)
dx d�, x ≥ 0, � ≥ 0,(2.2)
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as can be checked using Lévy’s identity (Theorem VI.2.3 in [15], p. 240) and the
reflection principle (Exercise 3.14 in [15], p. 110, or Proposition 2.8.1 in [10], p. 95).
Hence, the common law of (2.1) is also symmetric.

2.2. We now consider the second elements of the first and third vectors in (1.6)
(or (2.1)), and we deduce from there

(2.3) sinh(Lt)
(law)
= λ(At) .

Now, unlike for Bougerol’s identity (1.1), for which the possibility of an identity
in law between processes is immediately ruled out, since the left-hand side of (1.1)
is not a martingale, whereas the right-hand side is, when one considers (2.3) it
seems reasonable to wonder whether this identity might be valid at the level of the
two increasing processes involved. However, the recent results in [3] rule out this
possibility. In fact, it is this uncertainty which prevented us from publishing the
earlier version of this paper [9].

We point out also that for each fixed t ≥ 0, we deduce from (1.7) the rather
puzzling identity in law

λ(At)
(law)
= sinh

(∫ t

0

exp(−Bs) dλ(As)
)
,

which complements (2.3).

2.3. Reformulation in terms of Brownian suprema. A celebrated identity in dis-
tribution due to Paul Lévy states that

(
(Bt −Bt, Bt), t ≥ 0

) (law)
=

(
(|Bt| , Lt), t ≥ 0

)
where Bt = sups≤t Bs denotes the supremum of the Brownian trajectory up to
time t. This enables us to reformulate (2.1) in the form

(
sinh(Bt −Bt), sinh(Bt)

) (law)
=

(
(β − β)(At), exp(−Bt)β(At)

)
(law)
=

(
exp(−Bt)(β − β)(At), β(At)

)
,

with β(t) = sups≤t β(s). We leave to the interested reader further alternative
reformulations of this identity in the same vein.

2.4. A partial interpretation in terms of the Bessel clock. We now discuss Bouge-
rol’s identity (1.1) in terms of a two-dimensional Bessel process. Specifically, let
(Rh, h ≥ 0) denote 2-dimensional Bessel process starting from 1, and let

Hu =

∫ u

0

dh

R2
h

, u ≥ 0,

be the clock associated with R. The well-known skew-product decomposition of
planar Brownian motion ([12], p. 270; [13]; [14]) shows that the clock H can be
viewed as the inverse of the exponential Brownian functional A; consequently,
considering the inverses of the increasing processes involved in (2.3), we obtain the
following:
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Corollary 2.1. Let (σt, t ≥ 0) denote a stable (1/2) subordinator. Precisely,

σt := inf{u : λu ≥ t}, t ≥ 0,

independent of (Rh, h ≥ 0). Then, for fixed s, one has

(2.4) Hσs

(law)
= σa(s)

where a(s) ≡ arg sinh(s).

It is interesting to compare Corollary 2.1 with the following consequence of (1.7):

Corollary 2.2. There is the identity between processes

(σt)t≥0

(law)
=

(
Hση(t)

)
t≥0

,

where σ is as in Corollary 2.1 and η : [0,∞) → [0,∞) is the inverse bijection of
the continuous strictly increasing process

s 
→
∫ s

0

du

Rσu

.

Proof. Indeed, in terms of the Bessel clock, (1.7) yields

(Lt)t≥0

(law)
=

(∫ At

0

dλ(u)

Ru

)
t≥0

.

Our statement now follows from the easy fact that the process
(
ση(t), t ≥ 0

)
is the

right inverse of the continuous increasing process s 
→ ∫ s

0
dλ(u)
Ru

. �

Again, one may wonder whether the identity (2.4) holds at the level of increas-
ing processes. However, the results in [3] rule out this possibility. It is then natural
to ask for which functionals Φ : C↑ → R the identity

(2.5) E(Φ(Hσ· )) = E(Φ(σa(·)))

may hold, where C↑ stands for the space of càdlàg increasing paths ω : R+ → R+.
A partially positive response is provided by the following result.

Theorem 2.3. Consider a measurable function Γ : R3
+ → R+ with Γ(·, 0, ·) = 0

and define

Φ(ω) =
∑
s≥0

Γ(ωs−,Δωs, s) , ω ∈ C↑ ,

where Δωs = ωs − ωs−. Then (2.5) holds.
More precisely, if Γ(x, y, s) = f(x, s)g(y) for some measurable nonnegative

functions f and g with g(0) = 0, then

E(Φ(Hσ·)) = E(Φ(σa(·))) = C(f)D(g) ,
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with

C(f) =

∫ ∞

0

dλ√
1 + λ2

E[f(Hσλ
, λ)] =

∫ ∞

0

dλ√
1 + λ2

E[f(σa(λ), λ)]

and

D(g) =

∫ ∞

0

dt√
2πt3

g(t) .

We observe that Corollary 2.2 implies that the range of the subordinated
clock Hσ has the same distribution as the range of subordinator σ (and hence
is a regenerative set). In particular we see that (2.5) holds whenever for a generic
increasing path ω, Φ(ω) depends only on the range of ω. This provides a quick
check of the identity E(Φ(Hσ· )) = E(Φ(σa(·))) in the special case when the func-
tion Γ does not depend on the time parameter, i.e., Γ(x, y, s) = Γ(x, y).

2.5. An amplification and a variant of Theorem 2.3.

Theorem 2.4. Let a, b ≥ 0 and let Γ : R2
+ → R+ be a measurable function with

Γ(·, 0) = 0. Introduce

Ha,b(Γ)(�) = E

[∑
λ≤�

(Rσλ−)
a Γ(Hσλ− , Hσλ

−Hσλ−)

Rb
σλ

]
.

For Γ = f ⊗ g there holds

Ha,b(f ⊗ g)(�) = h−
a−b(f, �)h

+
b (g) ,

where

h−
c (f, �) =

∫ ∞

0

dt f(t) E
[e(c+1)Bt

√
2πAt

(1− e−�2/2At)
]

h+
b (g) =

∫ ∞

0

dt g(t)√
2π

E

[e(2−b)Bt

A
3/2
t

]
.

It may be interesting to point out that these formulas simplify in the special
case where a = 0 and b = 1. Indeed, using (1.4),one gets that

h+
1 (g) =

∫ ∞

0

dt√
2πt3

g(t)

and then, using (1.3) and (1.2), that

h−
−1(f, �) =

∫ ∞

0

dt f(t)√
2πt

(
1− a′(�) exp

(
− a2(�)

2t

))

where a and a′ are defined below (1.2).
We also stress that the quantities

(2.6) mp,q(t) = E

[exp(pBt)

Aq
t

]

arising in Theorem 2.4, have been studied in [6] and [7], [8].
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2.6. A variant of Theorem 2.3 which involves the windings of planar Brownian
motion. The following variant of Theorem 2.3 bears upon a relationship between
the continuous winding process of planar Brownian motion, subordinated with
(σλ, λ ≥ 0), and the standard Cauchy process.

Theorem 2.5. Let Zu = |Zu| exp(iθu), u ≥ 0, denote a complex valued Brownian
motion, starting from 1 + i0, with (θu, u ≥ 0) its continuous winding process. Let
(σλ, λ ≥ 0) denote the inverse local time process of a linear Brownian motion, so σ
is a stable (1/2) subordinator, which is assumed to be independent of (Zu, u ≥ 0).
Finally, let (Cα, α ≥ 0) be a standard Cauchy process.

For any measurable Γ : R× R → R+ with Γ(x, 0) = 0, we have

E

[∑
λ≤�

Γ(θσλ− , θσλ
− θσλ−)

]
= E

[∑
λ≤�

Γ(Ca(λ)−, Ca(λ) − Ca(λ)−)
]

for all �’s. In particular, for fixed � ≥ 0, there is the equality in law:

(2.7) θσ�

(law)
= Ca(�) .

The reader interested in some applications of these identities in law to function-
als of the winding process (θu, u ≥ 0) may refer to Vakeroudis [16]. In particular,
the identity (2.7) allows applying D. Williams’ pinching method to yield yet an-
other proof of Spitzer’s celebrated theorem:

(2.8)
2

log t
θt

(law)−→
t→∞ C1 .

2.7. The joint Laplace-Mellin transform of (Hσλ
, Rσλ

). We now return to Theo-
rem 2.3, or rather we discuss part of its proof, as given in Paragraph 3.2 below. A
by-product of Lemma 4.1 is

(2.9) E

[ 1

Rσλ

∣∣∣∣Hσλ
= h

]
=

1√
1 + λ2

,

an intriguing identity, which made us suspect that Rσλ
and Hσλ

might be indepen-
dent. This is not the case, as we discovered by computing the joint Laplace–Mellin
transform of (Hσλ

, Rσλ
):

Theorem 2.6. The following formulae hold:

E

[ 1

(Rσλ
)2b

exp
(
− μ2

2
Hσλ

)]
= E

(μ)
[ 1

(Rσλ
)2b+μ

]

= Cb,μ × F
(
μ+1
2 − b, μ2 + 1− b, μ+ 1;−1/λ2

)
(1 + λ2)2b−1/2(λ2)(μ+1)/2−b

,(2.10)

where F ≡ 2F1 denotes the classical three parameter family of hypergeometric func-
tions, and E

(μ) refers to the expectation with respect to the probability measure P
(μ)

under which (Rt, t ≥ 0) is a Bessel process with index μ (i.e., of dimension 2+2μ)
and R0 = 1, and

Cb,μ =
Γ(b+ μ

2 + 1
2 )Γ(1 +

μ
2 − b)

Γ(12 )Γ(1 + μ)
.
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As a partial check of the formula (2.10), we have made explicit computations
when b = 1/2, b = −μ/2 (the result should be 1), and b = 0 (the result is
exp(−μa(λ)) = (λ +

√
1 + λ2)−μ). Let us give some details for b = 1/2. We note

that, for b = 1/2, (2.10) simplifies, as in the numerator

F
(μ
2
,
μ

2
+

1

2
, μ+ 1;−y

)
=

( 2

1 +
√
1 + y

)μ

,

and in the denominator

(1 + λ2)1/2(λ2)μ/2 ≡ λμ(1 + λ2)1/2.

Hence, using the fact that C1/2,μ = 2−μ, formula (2.10) simplifies to

2−μ · 2μ(
1 +

√
1 + 1/λ2

)μ · 1

λμ
√
1 + λ2

≡ 1(√
1 + λ2 + λ

)μ√
1 + λ2

,

which confirms the identity (2.9), since the right-hand side of the preceeding ex-
pression equals

1√
1 + λ2

E

(
exp

(
− μ2

2
Hσλ

))
.

3. Proof of Theorem 1.1

3.1. We start by recalling some well-known facts about Brownian motion running
up to an independent exponential time, which will be useful for the proof. In
this subsection, Sp denotes an exponential random variable with parameter p > 0,
independent of the Brownian motion B. For t ≥ 0, let gt = sup{u < t : Bu = 0}
be the last zero of B before t. It is known that the processes (Bu, u ≤ gSp)
and (BgSp+u, u ≤ Sp − gSp) are independent. As a consequence, the variables
LSp(≡ LgSp

) and BSp are independent. Moreover, since Lt and |Bt| have the same
law (see (2.2)), the same applies to LSp and |BSp |. Their common density is

√
2p exp(−

√
2pu), u ≥ 0

(this is because P(LSp ≥ �) = P(Sp ≥ τ�) = E[exp(−pτ�)] = exp(−�
√
2p), if τ� is

the time L· reaches �). An equivalent way to express this property is

√
2e(|β(1)|, λ(1)) (law)

= (e, e′),

where on the left e
(law)
= S1 is independent of β, and on the right the two variables

are independent copies of S1.

3.2. Recall the discussion in Paragraph 2.1. Our main goal is to show that

(3.1)
(
sinh(|Bt|), sinh(Lt)

) (law)
=

(
exp(−Bt)

√
At|β(1)|,

√
Atλ(1)

)
,

where B and β are independent Brownian motions.
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Note from the scaling property that (3.1) is equivalent to the identity in distri-
bution (

sinh(|Bt|), sinh(Lt)
) (law)

=
(
exp(−Bt)|β(At)|, λ(At)

)
.

We will establish (3.1) by computing the joint Mellin transforms of either side,
but before doing so we replace t with an exponential time Sp and multiply both
sides by

√
2e, assuming implicitly that Sp, e, B and β are independent. What will

be proved is:

(3.2)
√
2e

(
sinh(|BSp |), sinh(LSp)

) (law)
=

√
2e(exp(−BSp)

√
ASp |β(1)|,

√
ASpλ(1)) .

From the one-dimensional Bougerol identity (1.1), the left-hand side of (3.2)
has the same distribution as

(3.3)
√
2e

(
|N |

√
ASp , |N ′|

√
A′

S′
p

)
,

where N and N ′ are independent standard normals and A′ is a copy of A which is
also independent of the other quantities. On the right-hand side of (3.2), use the
facts in Paragraph 3.1 and in particular the elementary identity

e
(law)
= |N |

√
2e

(see also formula (4.8.1) in [5]) to obtain

√
2e

(
exp(−BSp)

√
ASp |β(1)|,

√
ASpλ(1)

)
(law)
=

(
exp(−BSp)

√
ASpe ,

√
ASpe

′
)

(law)
=

(
exp(−BSp)

√
ASp |N |√2e ,

√
ASp |N ′|

√
2e′

)
.(3.4)

Squaring, we are left with calculating the joint Mellin transforms of

e(ASp , A
′
S′
p
) and

(
exp(−2BSp)ASpe , ASpe

′),(3.5)

and verifying that they are equal (the N and N ′ on both sides of (3.3) and (3.4)
can be cancelled).

The essential ingredient for computing these Mellin transforms is

(3.6) A
(ν)
Sp

(law)
=

β1,a

2γb

(see [18], paper no. 6, p. 94), where A(ν) denotes the exponential functional

A
(ν)
t =

∫ t

0

ds exp(2B(ν)
s ), t ≥ 0,

of a Brownian motion with drift ν, B
(ν)
s = Bs + νs, βu,v is a beta variable with

parameters (u, v), γb is a gamma variable with parameter b, and

a = a(ν, p) =
1

2

(
ν +

√
2p+ ν2

)
, b = b(ν, p) =

1

2

(− ν +
√
2p+ ν2

)
.
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The Mellin transform of A
(ν)
Sp

is then

E(A
(ν)
Sp

)r = 2−r Γ(1 + a)Γ(1 + r)Γ(b − r)

Γ(1 + a+ r)Γ(b)
.

On the one hand, since a(0, p) = b(0, p) =
√
p/2,

(3.7)

E[(eASp)
c(eA′

S′
p
)d]

= 2−c−d Γ(1 + c+ d)Γ(1 + a)Γ(1 + c)Γ(b− c)Γ(1 + a)Γ(1 + d)Γ(b − d)

Γ(1 + a+ c)Γ(1 + a+ d)Γ(b)2

= 2−c−d p

2

Γ(1 + c+ d)Γ(1 + c)Γ(
√

p
2 − c)Γ(1 + d)Γ(

√
p
2 − d)

Γ(1 + c+
√

p
2 )Γ(1 + d+

√
p
2 )

.

On the other hand, recalling the definition of A
(ν)
t and using the Girsanov–Came-

ron–Martin theorem, we obtain

E
[
(exp(−2BSp)ASpe)

c(ASpe
′)d

]
= Γ(1 + c) Γ(1 + d)E

[
exp(−2cBSp)(ASp)

c+d
]

= Γ(1 + c) Γ(1 + d)E
[
exp(2c2Sp)(A

(−2c)
Sp

)c+d
]
.

From the elementary identity

P
(
Sp ∈ ds ; exp(ηSp)

)
=

p

p− η
P(Sp−η ∈ ds), η < p,

we find, letting q = p− 2c2,

E
[
(exp(−2BSp)ASpe)

c(ASpe
′)d

]
=

p

q
Γ(1 + c) Γ(1 + d)E

[
(A

(−2c)
Sq

)c+d
]

= 2−c−d p

q
Γ(1 + c) Γ(1 + d)

Γ(1 + a(−2c, q)) Γ(1 + c+ d) Γ(b(−2c, q)− c− d)

Γ(1 + a(−2c, q) + c+ d) Γ(b(−2c, q))
.

Now, a(−2c, q) = −c +
√
p/2, b(−2c, q) = c +

√
p/2, and thus, comparing (3.7)

and the preceding,

p

q

Γ(1 + a(−2c, q)) Γ(b(−2c, q)− c− d)

Γ(1 + a(−2c, q) + c+ d) Γ(b(−2c, q))
=

p

p− 2c2
Γ(1− c+

√
p
2 ) Γ(−d+

√
p
2 )

Γ(1 + d+
√p

2 ) Γ(c+
√p

2 )

=
p

p− 2c2
(√

p
2 − c

)(√
p
2 + c

) Γ(
√

p
2 − c) Γ(

√
p
2 − d)

Γ(1 + c+
√

p
2 ) Γ(1 + d+

√
p
2 )

=
p

2

Γ(
√

p
2 − c) Γ(

√
p
2 − d)

Γ(1 + c+
√

p
2 ) Γ(1 + d+

√
p
2 )

.

Note that, along the way, it was necessary to assume q = p − 2c2 > 0, so that c
needed to be taken small enough, and likewise for d; precisely, c, d <

√
p/2. How-

ever, even with these restrictions, we can conclude the proof of the identity in law
of the two vectors in (3.5), thus ending the proof of (3.1).
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3.3. The second identity in Theorem 1.1 may be proved rather simply, by first
noting that (from the scaling property and the independence of B and β)

(3.8)
(
β(At), exp(−Bt)λ(At)

) (law)
=

(√
Atβ(1), exp(−Bt)

√
Atλ(1)

)
and then recalling (from the proof of Bougerol’s identity in [1]) that time reversal

(
Bt −B(t−u), 0 ≤ u ≤ t

) (law)
=

(
Bu, 0 ≤ u ≤ t

)
implies

(
At, exp(−2Bt)At

) (law)
=

(
exp(−2Bt)At, At

)
.

This completes the proof of Theorem 1.1.

4. Proofs of Theorems 2.3 to 2.6

4.1. Proof of Theorem 2.3. (a) A key for the proof of Theorem 2.3 is the following
interesting, and puzzling, identity, as discussed in Subsection 2.7.

Lemma 4.1. For any measurable function f : R+ 
→ R+, and any s ≥ 0, we have:

E

[ 1

Rσs

f(Hσs)
]
=

1√
1 + s2

E
[
f(σa(s))

]
.

Proof. For all q, t, ε > 0, we have from (2.4) that

E
(
exp(−qσa(t))− exp(−qσa(t+ε))

)
= E

(
exp(−qHσt)− exp(−qHσt+ε)

)
.

The left-hand side can be computed explicitly and we obtain

exp
(−a(t)

√
2q
)− exp

(−a(t+ ε)
√

2q
) ∼ ε√

1 + t2

√
2q exp(−a(t)

√
2q) , ε → 0 .

We next turn our attention to the right-hand side and apply the Markov property.
In this direction, it is convenient to introduce a two-dimensional Bessel process R′

which is independent of R and write H ′ for its clock. Likewise, σ′ refers to an
independent subordinator which has the same distribution as σ. For every r > 0,
the notation P

′
r refers to the law under which R′

0 = r and E
′
r to the mathematical

expectation under P′
r. We point out that the scaling property implies the equalities

E
′
r

(
1− exp(−qH ′

σ′
ε
)
)
= E

′
1

(
1− exp(−qH ′

r−2σ′
ε
)
)
= E

′
1

(
1− exp(−qH ′

σ′
ε/r

)
)
.

Of course we can also express the right-hand side as E
(
1− exp(−qHσε/r

)
)
. Writing

σt+ε = σt + σ′
ε, with σ′

ε independent of σt and R, we get from an application of
the Markov property,

E
(
exp(−qHσt)− exp(−qHσt+ε)

)
= E

(
exp(−qHσt)E

′
Rσt

(
1− exp(−qH ′

σ′
ε
)
))

= E
(
exp(−qHσt)E

′
1

(
1− exp(−qH ′

σ′
ε/Rσt

)
))

= E
(
exp(−qHσt)

(
1− exp{−a(ε/Rσt)

√
2q})),
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where the third equality follows from (2.4). Note that when ε → 0+, the preceding
quantity is equivalent to

ε
√
2q E

(
exp(−qHσt)

1

Rσt

)
.

Putting the pieces together, we arrive at

E

(
exp(−qHσt)

1

Rσt

)
=

1√
1 + t2

exp
(− a(t)

√
2q
)
=

1√
1 + t2

E
(
exp(−qσa(t))

)

for all t, q > 0, which establishes Lemma 4.1. �

(b) To conclude the proof of Theorem 2.3, define, for jump intensity measures,
the following notation:

(4.1)

H(Γ)(s) = E

[∑
λ≤s

Γ(Hσλ− , Hσλ
−Hσλ− )

]

K(Γ)(s) = E

[ ∑
α≤a(s)

Γ(σα− , σα − σα−)
]

for given s, and Borel Γ : R+ ×R+ → R+ such that Γ(x, 0) = 0. Then, in order to
finish the proof of Theorem 2.3, it suffices to take Γ = f ⊗ g and to show

H(f ⊗ g)(s) = h(f)(s)

∫ ∞

0

dt√
2πt3

g(t) ,

K(f ⊗ g)(s) = k(f)(s)

∫ ∞

0

dt√
2πt3

g(t) ,

with, furthermore, the quantities h(f)(s) and k(f)(s) being equal, and equal to:

h(f)(s) =

∫ s

0

dλE
[ 1

Rσλ

f(Hσλ
)
]
=

∫ s

0

dλ√
1 + λ2

E
[
f(Hσλ

)
]

‖

k(f)(s) =

∫ a(s)

0

dαE
[
f(σα)

]
=

∫ s

0

dλ√
1 + λ2

E
[
f(σa(λ))

]
.

Now, concerning K(Γ)(s), since the Lévy measure of the subordinator (σα, α ≥ 0)

is dt/
√
2πt3, we have

K(Γ)(s) = E

[ ∫ a(s)

0

dαf(σα−)
] ∫ ∞

0

dt√
2πt3

g(t)

=

∫ s

0

du√
1 + u2

E
[
f(σa(u))

] ∫ ∞

0

dt√
2πt3

g(t).
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Concerning H(Γ)(s), starting again with the same argument (i.e., the knowledge
of the Lévy measure of (σu, u ≥ 0)), we obtain

H(Γ)(s) = E

[ ∫ s

0

dλ

∫ ∞

0

dt√
2πt3

f(Hσλ
) g(Hσλ+t −Hσλ

)
]

= E

[ ∫ s

0

dλ

∫ ∞

0

dt√
2πt3

f(Hσλ
)E′

Rσλ
(g(H ′

t))
]

(4.2)

(from the Markov property for R). However, by scaling, we have

(4.3) E
′
ρ[g(H

′
t)] = E[g(Ht/ρ2)]

so that, substituting (4.3) into (4.2), we obtain

∫ ∞

0

dt√
2πt3

E
′
ρ

[
g(H ′

t)
]
=

∫ ∞

0

dt√
2πt3

E
[
g(Ht/ρ2)

]
=

1

ρ

∫ ∞

0

du√
2πu3

E
[
g(Hu)

]
.(4.4)

Note that, since the inverse of {u → Hu} is: t → At =
∫ t

0
dve2Bv , we have

∫ ∞

0

du√
2πu3

E[g(Hu)] =
1√
2π

E

[ ∫ ∞

0

dt g(t)
e2Bt√
A3

t

]
=

∫ ∞

0

dt g(t)
1√
2πt3

by (1.4).
Returning to (4.2), we have obtained

(4.5) H(Γ)(s) = E

[ ∫ s

0

dλ
1

Rσλ

f(Hσλ
)
] ∫ ∞

0

dt√
2πt3

g(t) .

c) Finally, to obtain the equality between H(Γ)(s) and K(Γ)(s), there remains
to show, with the notation as in the statement of Theorem 2.4, that

h(f)(s) = k(f)(s) for every Borel f ≥ 0.

Again, it suffices to prove this for fλ(a) = e−λa, for any λ ≥ 0. Now we have

E
[
exp(−νHσs)

]
= 1 + E

[∑
θ≤s

(
e−νHσλ − e

−νHσ
λ−

)]

= 1 + E

[∑
θ≤s

e
−νHσ

λ−
(
e
−ν(Hσλ

−Hσ
λ− ) − 1

)]

= 1 +H(fν ⊗ gν)(s)

(where : fν(a) = exp(−νa); gν(b) = (e−νb − 1))

= 1 + h(fν)(s)
( ∫ ∞

0

dt√
2πt3

gν(t)
)
.

On the other hand,

E
[
exp(−νσa(s))

]
= 1 +

∫ a(s)

0

dα fν(α)

∫ ∞

0

dt√
2πt3

gν(t) .
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Thus, explicitly,

(4.6) E
[
exp(−νHσs)

]
= 1− (h(fν)(s))

√
2ν

whereas

(4.7) E
[
exp(−νσa(s))

]
= 1− k(fν)(s)

√
2ν .

Since the left-hand sides of (4.6) and (4.7) are equal, so are the right-hand sides.
Therefore, for all Borel f ≥ 0,

(4.8) h(f)(s) = k(f)(s).

Hence, in complete generality,

(4.9) H(Γ)(s) = K(Γ)(s) ,

which finishes the proof of Theorem 2.3.

4.2. Proof of Theorem 2.4. Here are the main steps of this proof, which is quite
similar to that of Theorem 2.3:

1) We first transform

Ha,b(Γ)(�) = E

[∑
λ≤�

(Rσλ−)
af(Hσλ−)

g(Hσλ
−Hσλ−)1(σλ>σλ−)

(Rσλ
)b

]

= E

[ ∫ �

0

dλ(Rσλ
)af(Hσλ

)

∫ ∞

0

dt√
2πt3

g(Hσλ+t −Hσλ
)

(Rσλ+t)b

]

= E

[ ∫ �

0

dλ(Rσλ
)af(Hσλ

)ERσλ

[ ∫ ∞

0

dt√
2πt3

g(Ht)

(Rt)b

]]
.

We begin by studying

h(+)(r, g) = Er

[ ∫ ∞

0

dt√
2πt3

g(Ht)

Rb
t

]
= E

[ ∫ ∞

0

dt√
2πt3

g(Ht/r2)

(rRt/r2)b

]
(by scaling)

=
1

rb
E

[ ∫ ∞

0

dt√
2πt3

g(Ht/r2)

(Rt/r2)b

]
=

1

rb

(1
r

)
E

[ ∫ ∞

0

du√
2πu3

g(Hu)

(Ru)b

]

≡ 1

rb+1
h
(+)
b (g) .

We then study:

h
(+)
b (g) = E

[ ∫ ∞

0

du√
2πu3

g(Hu)

(Ru)b

]
= E

[ ∫ ∞

0

dte2Bt√
2πA3

t

g(t)

(exp(bBt))

]

= E

[ ∫ ∞

0

dte(2−b)Bt√
2πA3

t

g(t)
]
=

∫ ∞

0

dtg(t)√
2π

E

[e(2−b)Bt√
A3

t

]

=

∫ ∞

0

dtg(t)√
2π

m2−b,3/2(t) ,

where the quantity mp,q(t) has been defined in (2.6).
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2) Let us return to

Ha,b(Γ)(�) = E

[ ∫ �

0

dλ(Rσλ
)a−b−1f(Hσλ

)
]
h
(+)
b (g)

= h
(−)
a−b(f, �)h

(+)
b (g), for F = f ⊗ g .

Thus, our next aim is to study

h(−)
c (f, �) := E

[ ∫ �

0

dλ(Rσλ
)c−1f(Hσλ

)
]
.

We can re-express this quantity as

h(−)
c (f, �) = E

[ ∫ τ�

0

dLu(Ru)
c−1f(Hu)

]

=

∫ ∞

0

du√
2πu

P
(
Lu < �|Bu = 0

)
E
[
(Ru)

c−1f(Hu)
]

=

∫ ∞

0

du√
2πu

P
(√

u
√
2e < �

)
E
[
(Ru)

c−1f(Hu)
]

=

∫ ∞

0

du√
2πu

P
(
e ≤ �2/2u

)
E
[
(Ru)

c−1f(Hu)
]

=

∫ ∞

0

du√
2πu

(
1− exp(−�2/2u)

)
E
[
(Ru)

c−1f(Hu)
]

= E

[ ∫ ∞

0

dAt√
2πAt

(
1− e−�2/2At

)
exp

(
(c− 1)Bt

)
f(t)

]

= E

[ ∫ ∞

0

dt
e(c+1)Bt

√
2πAt

(
1− e−�2/2At

)
f(t)

]

=

∫ ∞

0

dt f(t)E
[e(c+1)Bt

√
2πAt

(
1− e−�2/2At

)]
.

4.3. Proof of Theorem 2.5. Theorem 2.5 is a simple consequence of Theorem 2.3,
once one uses the well-known skew-product representation of θt = γHt , where
(γu, u ≥ 0) is a real-valued Brownian motion independent of (Ht, t ≥ 0) (we already
gave some references before Corollary 2.1). All one needs to do is to “freeze” γ,
then apply Theorem 2.3, and finally use Spitzer’s representation of the Cauchy
process as

(Cα, α ≥ 0)
(law)
= (γσα , α ≥ 0).

4.4. Proof of Theorem 2.6. The first equality follows from the (local) absolute
continuity relationship between the laws of different Bessel processes, see, e.g., [18].

There remains to prove the second equality. For this purpose, we use the same
arguments as in the proof of (16) in [9]; some details follow.

Let

J
def
= E

(μ)
[ 1

(Rσλ
)2b+μ

]
=

1

Γ(b+ μ
2 )

∫ ∞

0

du ub+μ/2−1
E
(μ)

[
exp(−uR2

σλ
)
]
.
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There is a classical expression for E
(μ)

[
exp(−uR2

t )
]
(see, e.g., page 441 of [15]),

which yields

E
(μ)

[
exp(−uR2

σλ
)
]
= E

((
1 + 2uσλ

)−1−μ
exp

(
− u

1 + 2uσλ

))
.

Using Fubini and making the change of variables v = 2uσλ/(1 + 2uσλ), we
obtain the following expression for the integral

I
def
=

∫ ∞

0

du ub+μ/2−1
(
1 + 2uσλ

)−1−μ
exp

(
− u

1 + 2uσλ

)

=
1

(2σλ)b+μ/2

∫ 1

0

dv vb+μ/2−1(1− v)μ/2−b exp
(
− v

2σλ

)
.

Hence, using Fubini again, we obtain

(4.10) J =
1

Γ(b + μ/2)

∫ 1

0

dv vb+μ/2−1(1− v)μ/2−b
E

[ 1

(2σλ)b+μ/2
exp

(
− v

2σλ

)]
.

To compute this last expectation, which we denote by K, we use

1

2σλ

(law)
=

N2

2λ2

(law)
=

γ1/2

λ2

where γ1/2 is a standard gamma(1/2)-variable. Then we obtain

K =
Γ(b+ μ

2 + 1
2 )

Γ(12 )λ
2b+μ (1 + vλ−2)b+μ/2+1/2

.

Plugging this in (4.10), we obtain:

J =
Γ(b+ μ

2 + 1
2 )

Γ(12 ) Γ(b+ μ/2)

∫ 1

0

dv vb+μ/2−1 (1− v)μ/2−b

λ2b+μ (1 + vλ−2)b+μ/2+1/2
.

Finally, to derive the desired formula, we use a classical integral representation
of 2F1, together with

2F1 (α, β, γ;−z) = (1 + z)γ−α−β
2F1(γ − α, γ − β, γ;−z) ;

see formula (9.5.3) in Lebedev [11]. We leave the details to the reader.
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[4] Bougerol, P.: Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst.
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