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Estimates for constant mean curvature

graphs in M × R

José M. Manzano

Abstract. We discuss some sharp estimates for a constant mean curva-
ture graph Σ in a Riemannian 3-manifold M × R whose boundary ∂Σ is
contained in a slice M×{t0} and satisfies a capillarity condition. We start
by giving sharp lower bounds for the geodesic curvature of the boundary
and improve these bounds when assuming additional restrictions on the
maximum height attained by the graph in M × R. We also give a bound
for the distance from an interior point to the boundary in terms of the
height at that point, and characterize when these bounds are attained.

1. Introduction

Constant mean curvature surfaces in several 3-manifolds have been extensively
studied in recent years. One of the most important families of such 3-manifolds
is the product space M × R, M being a Riemannian surface, which includes the
homogeneous spaces R3, H2 ×R and S2 ×R. It was Rosenberg in [15] who started
the study of minimal surfaces in M × R and, since then, many papers studying
this setting have appeared.

We will focus on constant mean curvature H > 0 graphs Σ (H-graphs in the
sequel) in M ×R whose boundary ∂Σ lies in some slice M ×{t0}. We denote by c
the infimum of the Gaussian curvatureKM of the domain Ω ⊂M over which Σ is a
graph, and we will assume the hypothesis 4H2+c > 0. It is worth mentioning that
the sign of 4H2 + c makes a qualitative difference in the geometry of H-surfaces
in M2(c)×R, where M2(c) stands for the simply connected surface with constant
Gaussian curvature c. For instance, 4H2 + c > 0 is the natural condition for
the existence of constant mean curvature H spheres in M2(c) × R. In fact, most
results in the present paper can be understood as comparison results between the
geometries of M × R and the corresponding homogeneous case M2(c)× R.
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Moreover, we will restrict ourselves to a capillarity problem, i.e., when Σ has
constant angle function ν = ν0 for some−1 < ν0 ≤ 0 along its boundary. The angle
function of Σ is defined by ν = 〈N,E3〉, where N is the unit normal vector field
to Σ for which the mean curvature of Σ is H , and E3 = ∂t is the vertical Killing
vector field. This problem is a classical example of an overdetermined situation so
it is not expected that many surfaces satisfy these conditions for a given domain
Ω ⊂ M . Although no capillary graphs for ν0 �= 0 are known in M × R different
from those invariant under a 1-parameter group of isometries, it turns out that, for
ν0 = 0, there are compact H-surfaces inM×R as a consequence of the Alexandrov
reflection principle, [2]. They are contained in the more general case of embedded
H-bigraphs, i.e., (not necessarily compact) connected embedded H-surfaces which
are made up of two graphs, symmetric with respect to some slice M × {t0}.

We will now list some examples of this kind of surfaces. Ritoré [13] and Große-
Brauckmann [3] constructed certain families of noncompact H-bigraphs in R3. In
the more general case of M2(c)×R, there are rotationally invariant H-spheres and
H-cylinders invariant under a 1-parameter group of isometries around a geodesic
which are H-bigraphs for 4H2 + c > 0 (see Section 2). In fact, the results proved
in this paper can be applied to some not necessarily embedded H-bigraphs which
are periodic with a compact fundamental piece, as in the horizontal unduloids in
M2(c) × R constructed by the author and Torralbo in [7]. Finally, in a general
product manifold M ×R, for H large enough, embedded constant mean curvature
spheres H in M × R exist as solutions of the isoperimetric problem as well as
certain perturbations of tubular neighborhoods around horizontal geodesics, see
Mazzeo and Pacard [8].

Most results in this paper will concern estimates for the geodesic curvature (in
M × {0}) of the boundary of an H-bigraph Σ ⊂ M × R depending on the height
that Σ reaches (the height function h ∈ C∞(Σ) is given by h(p, t) = t). Ros and
Rosenberg proved in Theorem 8 of [14] that for any properly embedded H-bigraph
in R3 ≡ R2 × R over a domain Ω ⊂ R2 with height function satisfying |h| ≤ 1/H ,
the components of R2−Ω are strictly convex. We generalize this result toM2(c)×R

and improve the estimate on the geodesic curvature when the maximum height of
the surface is assumed to be small enough.

Observe that, as H-graphs are stable, the condition 4H2 + c > 0 makes it
possible to apply Theorem 2.8 in [9] to conclude that the distance function d(p, ∂Σ),
p ∈ Σ, is bounded, so the height function is also bounded (in the case 4H2+ c ≤ 0,
this property fails, as invariant examples in H2 × R given in [10] and [16] show).
Aledo, Espinar and Gálvez proved in [1] that if Σ ⊆ M × R is an H-graph over a
compact open domain that extends to its boundary with h = 0 and ν = ν0 in ∂Ω,
and c = inf{KM (p) : p ∈ Ω} > −4H2, then Σ can attain at most the height

(1.1)

α(c,H, ν0) =

⎧⎪⎪⎨⎪⎪⎩
4H√−4cH2−c2

(
arctan

( √−c√
c+4H2

)
+ arctan

(
ν0

√−c√
c+4H2

))
if c < 0,

1+ν0
H if c = 0,

4H√
4cH2+c2

(
arctanh

( √
c√

c+4H2

)
+ arctanh

(
ν0

√
c√

c+4H2

))
if c > 0.
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Although they only considered the case ν0 = 0, their argument can be gener-
alized directly. This bound turns out to be the best one in terms of (c,H, ν0) in
the sense that the only such H-graphs in M2(c) × R for which equality holds are
spherical caps of rotationally invariant spheres meeting M2(c)×{0} with constant
angle ν0.

Theorems 3.3 and 4.2 yield the following results (for ν0 = 0) in the case the
regular domain Ω ⊂ M is compact (see also Remarks 3.4 and 4.4 for arbitrary
−1 < ν0 ≤ 0):

• The geodesic curvature κg of ∂Ω in M , with respect to the outer conormal
vector field, satisfies the lower bound

κg ≥ −4H2 + c(1− ν20)

4H
√
1− ν20

,

and, whenM = M2(c), equality holds only for rotationally invariant spheres.

• If we additionally suppose that |h| ≤ m ·α(c,H, ν0) for some constant 0 < m
≤ 1/2, then the previous bound is improved to the following one:

κg ≥ (4− 8m)H2 + c(1− ν20)

4mH
√
1− ν20

.

In Theorem 4.5, we will drop the compactness hypothesis in the second item above
when we restrict toM = M2(c) and ν0 = 0. In this case, equality holds if and only if
m = 1/2 and Σ is an H-cylinder invariant under a 1-parameter group of horizontal
isometries (these examples are described in section 2). Observe that m represents
the fraction of the maximum height that Σ is allowed to reach; it is remarkable
that the maximum height of the invariant horizontal H-cylinder is exactly one half
of the maximum height of the corresponding H-sphere in M2(c)×R, which makes
the value m = 1/2 special. Hence, we extend the results by Ros and Rosenberg
in [14], where the case M = R2 and m = 1/2 is treated.

Finally, in Section 5 we will give another application of the same techniques
to obtain a sharp lower bound for the distance from a point in Σ to ∂Σ. Let us
highlight that, in this last section, no capillarity condition or height restriction is
assumed.

Acknowledgements. The author thanks Joaqúın Pérez, Magdalena Rodŕıguez
and Francisco Torralbo for some helpful conversations.

2. Invariant surfaces in H2 × R and S2 × R

In this section, we study surfaces that are invariant under 1-parameter groups of
isometries in M2(c) × R which act trivially on the vertical lines. Among these,
we are interested in surfaces which are H-bigraphs (i.e., embedded H-surfaces
symmetric with respect to a horizontal slice), for H > 0 and 4H2 + c > 0, so that
these groups of isometries can be identified with 1-parameter groups of isometries
of the base M2(c).
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In H2, there exist three different types of 1-parameter groups of isometries,
namely, rotations around a point, parabolic translations (i.e., rotations about a
point at infinity) and hyperbolic translations. The family of rotationally invariant
H-surfaces in H2 × R was studied by Hsiang and Hsiang [6], and those invariant
under the other two families (including screw motion) were studied by Sa Earp [16]
but it was Onnis [10] who gave a full classification of all invariant H-surfaces in
H2 × R. The case of S2 is quite different, because the only 1-parameter groups of
isometries of S2 are the rotations around a certain point and, up to conjugation, this
point can be supposed to be the north pole. Such rotationally invariant H-surfaces
were classified by Pedrosa [12].

Finally, the only 1-parameter groups of isometries of R2 are rotations around
a point and translations; the former give rise in R3 = R2 ×R to Euclidean spheres
of radius 1/H , the latter to horizontal cylinders of radius 1/(2H).

For the sake of completeness, we now derive the parametrizations and formulas
that we will need in each of these situations. We will begin with rotations in both
H2 × R and S2 × R and then proceed to parabolic and hyperbolic translations in
H2 ×R. Let us recall that, up to a homothety, we can suppose c ∈ {−1, 0, 1} and,
in the cases c = 1 and c = 0, the condition 4H2 + c > 0 is meaningless (as H > 0)
but, for c = −1, it implies that H > 1/2.

2.1. Rotationally invariant surfaces in H2 × R and S2 × R

To begin, let us consider the hyperboloid model

H
2 × R =

{
(x, y, z, t) ∈ R

4 : x2 + y2 − z2 = −1, z > 0
}

endowed with the metric dx2 + dy2 − dz2 + dt2. It was shown by Hsiang and
Hsiang that, for any H > 1/2, the only rotationally invariant H-bigraphs are
the rotationally invariant CMC spheres. If we suppose the axis of rotation to
be {(0, 0, 1)} × R, the upper half of such a sphere is parametrized by X(r, u) =(
sinh r cosu, sinh r sinu, cosh r, h(r)

)
, where u ∈ R and

h(r) =
4H√

4H2 − 1
arcsin

√
1− (4H2 − 1) sinh2 r

2

4H2
, r ∈

[
0, 2 arcsinh

1√
4H2 − 1

]
(see Figure 1, where some examples are depicted).

On the other hand, we regard the standard model of S2 × R as a submani-
fold of R4, given by S2 × R = {(x, y, z, t) ∈ R4 : x2 + y2 + z2 = 1} with the
induced Riemannian metric. It is well known that a 1-parameter group of ambient
isometries consists only of rotations so, up to an isometry, it may be supposed to
comprise rotations around the axis {(0, 0, 1, t) : t ∈ R}. Hence, the orbit space can
be identified with the totally geodesic surface {(x, y, z, t) ∈ S2×R : x = 0} ∼= S1×R,
and we will take the generating curve as

γ(t) =
(
0, sin r(t), cos r(t), h(t)

)
for some functions r, h defined on some interval of the real line. Pedrosa [12]
showed that the generated surface has constant mean curvature H ∈ R if and only
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Figure 1. On the left, rotationally invariant CMC spheres (the horizontal axis represents
the intrinsic length in H

2 and the vertical one is the real line) and, on the right, CMC
cylinders invariant under hyperbolic translations, where we see their intersection with the
plane y = 1 in the halfspace model. In both cases, the represented values of H are 0.54,
0.6, 0.7, 0.8, 0.9 and 1.

if certain system of ODEs is satisfied. In fact, he proved that in the intervals
where r is invertible, we can take it as the parameter and the corresponding ODE
system becomes

(2.1)

⎧⎨⎩
h′(r) = cot(σ(r)),

σ′(r) =
2H + cot(r) cos(σ(r))

sin(σ(r))
,

for an auxiliary function σ. The second equation can be solved easily, as it only
depends on r and σ, and we obtain

σ(r) = arccos
(
2H(c0 + cos r) csc r

)
for some c0 ∈ R, where r ∈ [a(c0), b(c0)] ⊆ [−π, π] is the maximal interval in
which σ is defined. By plugging this expression into the first equation in (2.1), we
arrive at

(2.2) h(r) =

∫ r

a(c0)

2H(c0 + cos s) csc s√
1− 4H2(c0 + cos s)2 csc2 s

ds.

The only two cases which lead to H-bigraphs are the following:

• For c0 = −1, rotationally invariant spheres are obtained. More explicitly,

h(r) =
4H√

1 + 4H2
arccosh

(√1 + 4H2

2H
cos

r

2

)
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Figure 2. On the left, rotationally invariant CMC spheres and, on the right, rotationally
invariant CMC tori, in S

2 ×R. In both cases, the represented values of H are 0.05, 0.12,
0.331372, 0.6, 1 and 2. The horizontal axis measures the intrinsic distance in S

2 while the
vertical one is the real line. The maximum height is attained for H ≈ 0.331372, which is
drawn as a dashed line.

where r lies in the interval [−2 arctan(1/(2H)), 2 arctan(1/(2H))]. Thus,
the maximum height is attained for r = 0 and the corresponding sphere is
a bigraph over a domain whose boundary has constant geodesic curvature
equal to −H+1/(4H), in S2, with respect to the outer conormal vector field.

• For c0 = 0, we obtain rotationally invariant tori instead. In this case,

h(r) =
2H√

1 + 4H2
arccosh

(√1 + 4H2

2H
sin r

)
,

where r ∈ [π/2 − arctan(1/(2H)), π/2 + arctan(1/(2H))]. The maximum
height is attained when r = π/2 and the boundary of the domain over which
the torus is a bigraph has two connected components which have constant
geodesic curvature 1/(2H) in S2 × R (with respect to the outer conormal
vector field).

These two families are represented in Figure 2. We remark that the maximum
height of a CMC torus is exactly half that of the corresponding sphere for the
same mean curvature.

2.2. Surfaces invariant under hyperbolic translations in H2 × R

In this section, we will work with the upper half-plane model H2×R = {(x, y, t) ∈
R3 : y > 0} endowed with the metric (dx2 + dy2)/y2 + dt2. Up to conjugation
by an ambient isometry, the 1-parameter group of hyperbolic translations may be
considered to be {Φh

s}s∈R, where

Φh
s : H2 × R → H

2 × R, Φh
s (x, y, t) = (xes, yes, t).

First we observe that, as the orbit of any point is the horizontal Euclidean straight
line which joins the point to a point in the axis x = y = 0, we can consider the
plane y = 1 as the orbit space of this group of transformations.

Let us take a curve γ(t) = (x(t), 1, h(t)) for some C2 functions x and h defined
on some interval of the real line. Thus, a surface invariant by {Φh

s}s∈R can be
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parametrized as

(2.3) X(u, t) = (x(t)eu, eu, h(t)) .

It is a straightforward computation to check that the mean curvature of this para-
metrization is given by

(2.4) H =
−xh′((1 + x2)(h′)2 + 2(x′)2) + (1 + x2)(h′x′′ − x′h′′)

2((1 + x2)(h′)2 + (x′)2)3/2
.

In order to simplify this equation, we will reparametrize the curve γ in such a
way that the denominator simplifies. Observe that we can suppose that (h′)2 +
(x′)2/(1 + x2) = 1 so there exists a C1 function α such that h′ = cosα and x′ =√
1 + x2 sinα. Now, we can obtain expressions for x′′ and h′′ just by differentiating

these identities. If we substitute the results in equation (2.4), we get

H =

√
1 + x2 α′ − x cosα

2
√
1 + x2

.

The proof of the following lemma is now trivial.

Lemma 2.1. The parametrized surface defined in (2.3) has constant mean curva-
ture H ∈ R if and only if the functions (x, h, α) satisfy the ODE system

(2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h′ = cosα

x′ =
√
1 + x2 sinα

α′ = 2H +
x cosα√
1 + x2

Furthermore, the energy function E = −2Hx − √
1 + x2 cosα is constant along

any solution.

We consider only the case H > 1/2. Plugging the expression for the energy
into the second equation in (2.5), it is not difficult to conclude that x satisfies the
equation

(x′)2 = (1 − E2)− 4HEx+ (1− 4H2)x2.

As H > 1/2, the right-hand side has two different real roots as a polynomial in x
and, if we factor it, the equation can be expressed, up to a sign, as

x′√
(4H2 + E2 − 1)− ((4H2 − 1)x− 2HE)2

=
±1√

4H2 − 1
,

from which it is easy to deduce that there exists c0 ∈ R such that

(2.6) x(t) =
2HE

4H2 − 1
+

√
4H2 + E2 − 1

4H2 − 1
sin

(
±t

√
4H2 − 1 + c0

)
.
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After a translation and a reflection in the parameter t, we can suppose without
loss of generality that c0 = 0 and the ± sign is positive. Now, we can integrate h
using the identity h′ = cosα = (E + 2H)/

√
1 + x2, and we get

(2.7)

h(t) = h(0) +

∫ t

0

(8H2 − 1)E + 2H
√
4H2 + E2 − 1 sin

(
s
√
4H2 − 1

)√
(1− 4H2)

2
+
(√

4H2 + E2 − 1 sin(s
√
4H2 − 1) + 2HE

)2 ds.

Finally, we are able to characterize the surfaces we were seeking. Some pictures of
them are drawn in Figure 1.

Proposition 2.2. Let (x, h, α) be a solution of (2.5) with energy E ∈ R for some
H > 1/2. Then, the generated invariant surface can be extended to an H-bigraph
if and only if E = 0. In this case, the generating curve can be reparametrized, up
to an ambient isometry, as

x(r) =
1√

4H2 − 1
sin r

h(r) =
2H√

4H2 − 1
arctan

cos r√
4H2 − 1 + sin2 r

⎫⎪⎪⎬⎪⎪⎭, r ∈ R.

Proof. In (2.7) write h(t) = h1(t)+h2(t) by splitting the integrand into two additive
terms which correspond to the two terms in its numerator. The first term does
not vanish unless E = 0, so h1 is monotonic, and the second term is an odd
periodic function in s which vanishes at s = kπ/

√
4H2 − 1 for any k ∈ Z. On

the other hand, if the parametrization interval contains t = 0, from (2.6) we
deduce that |t| ≤ π/(2

√
4H2 − 1), so the surface is a graph and, furthermore, the

points at which the normal vector field is horizontal must satisfy x′ = 0, so the
parametrization interval must be |t| ≤ π/(2

√
4H2 − 1). Now, as the integral of h′2

over [−π/(2√4H2 − 1), π/(2
√
4H2 − 1)] vanishes, we have

h
( π

2
√
4H2 − 1

)
− h

( −π
2
√
4H2 − 1

)
= h1

( π

2
√
4H2 − 1

)
− h1

( −π
2
√
4H2 − 1

)
.

The right-hand side term vanishes if and only if h1 identically vanishes as it is
monotonic and h1 vanishes if and only if E = 0. The expressions given in the
statement follow from a direct computation in (2.6) and (2.7) for E = 0 and from
the substitution r = t

√
4H2 − 1. Observe that there is no restriction in taking

r ∈ R because this parametrization generates the whole bigraph. �

In the parametrization given in the statement of Proposition 2.2, observe that
the maximum height is attained for r = 0 and the surface is a bigraph over a
domain whose boundary consists of two hypercycles which have constant geodesic
curvature equal to −1/(2H) in H2 with respect to the outer conormal vector field.
Furthermore, the maximum height is exactly half that of the corresponding CMC
sphere.
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2.3. Surfaces invariant under parabolic translations

In this case, we also consider the upper half-plane model for H2 so, up to conju-
gation by an ambient isometry, the 1-parameter group of parabolic translations is
{Φp

s}s∈R, where

Φp
s : H2 × R → H

2 × R, Φp
s(x, y, t) = (x + s, y, t).

Hence, the orbit of any point in H2 is a horizontal Euclidean line parallel to the
plane y = 0. Thus, the orbit space may be considered to be the Euclidean plane
x = 0 so the generating curve can be thought as γ(t) = (0, y(t), h(t)) and a surface
invariant by {Φp

s}s∈R can be parametrized as

X(u, t) = (s, y(t), h(t)) .

It is straightforward to check that the mean curvature of this parametrization is

(2.8) H = −y
2
(−h′′y′ + h′y′′ + y(h′)3

)
2 (y2(h′)2 + (y′)2)3/2

.

Furthermore, there is no loss of generality in supposing that the curve γ is para-
metrized by its arc-length, i.e., 1 = ‖α′‖2 = (y′)2/y2 + (h′)2. Hence, we can take
an auxiliary function α, determined by y′ = y sinα, h′ = cosα. Substituting these
equalities in (2.8), it simplifies to the ODE system

(2.9)

⎧⎪⎨⎪⎩
y′ = y sinα,

h′ = cosα,

α′ = −2H − cosα.

Observe that, if we assume an initial condition α(0) = α0 ∈ [0, 2π], the third
equation in (2.9) has a unique solution. Let us focus on the case H > 1/2, which
is the most interesting for our purposes, and for which we can integrate to obtain
the function α as

(2.10) α(t) = 2 arctan
( (2H + 1)√

4H2 − 1
tan

(1
2

√
4H2 − 1(t− c0)

))
,

for some c0 ∈ R depending on α0. We emphasize that this formula defines α
as a strictly increasing diffeomorphism of R to R if we consider all branches of
arctan and extend it by continuity, so the uniqueness of solutions guarantees that
every solution is encompassed in (2.10). We suppose, after a translation in the
parameter t, that c0 = 0. By plugging expression (2.10) into the first two equations
in (2.9), we can integrate h and y to obtain

y(t) = c1
(
cos

(
t
√
4H2 − 1

)
+ 2H

)
,

h(t) = α(t) + 2Ht+ c2,
(2.11)

for some constants c1 > 0 and c2 ∈ R which can be supposed to be c1 = 1 (after a
hyperbolic translation) and c2 = 0 (after a vertical translation).
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Proposition 2.3. There are no embedded bigraphs in H2 × R invariant under
parabolic translations and having constant mean curvature H > 1/2.

Proof. Observe that since such a graph must be given by a triple (y, h, α) satisfy-
ing (2.9), (2.10) and (2.11) are also satisfied. The values of t ∈ R for which y′ = 0
are tk = kπ/

√
4H2 + 1 for any k ∈ Z (these correspond to the points of the surface

where the tangent plane is vertical). Now from (2.10) and (2.11) it is easy to check
that h(tk) �= h(tk+1) for every k ∈ Z, which makes it impossible that the surface
be a bigraph. �

3. Boundary curvature estimates

Throughout this section we suppose that Σ ⊆ M × R is a graph over a domain
Ω ⊆ M with constant mean curvature H > 0. Following the ideas of [1], for any
c ∈ R with c+ 4H2 > 0, we consider g : [−1, 1] → R determined by

(3.1) g′(t) =
4H

4H2 + c(1− t2)
, g(0) = 0,

which is strictly increasing. This allows us to define the smooth function ψ =
h + g(ν) ∈ C∞(Σ), where h and ν are the height and angle functions, respec-
tively. In what follows, K will denote the Gaussian curvature of Σ, KM the Gaus-
sian curvature of M extended to M × R by making it constant along the vertical
geodesics, and A will be the shape operator of Σ. Note that Gauss equation reads
det(A) = K −KMν

2.
As we are interested in applying the boundary maximum principle for the

Laplacian to ψ, we will need to work out Δψ (where the Laplacian is computed
on the surface Σ) and ∂ψ/∂η, where η is some outer conormal vector field to ∂Σ.
The next lemma will be useful.

Lemma 3.1. In the previous situation, the following equalities hold:

i) ∇h = E�
3 .

ii) Δh = 2Hν.

iii) ∇ν = −AE�
3 .

iv) Δν =
(
2K − 4H2 −KM (1 + ν2)

)
ν.

Proof. The identities for the gradient and the Laplacian of h are easy to check as h
is the restriction to Σ of the height function inM ×R (see also Lemma 3.1 in [15]).
On the other hand, the gradient of ν = 〈N,E3〉 satisfies

〈∇ν,X〉 = X(〈N,E3〉) = 〈∇XN,E3〉 = 〈−AX,E3〉 = 〈X,−AE�
3 〉

for any vector field X on Σ, so∇ν = −AE�
3 . Finally, since the vertical translations

are isometries of M × R, ν is a Jacobi function, i.e., ν lies in the kernel of the
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linearized mean curvature operator L = Δ+ |A|2+Ric(N) on Σ so we can compute
its Laplacian from Lν = 0 and obtain

Δν = − (|A|2 +Ric(N)
)
ν =

(
2K − 4H2 −KM (1 + ν2)

)
ν,

where we have used the Gauss equation and the well-known identities |A|2 =
4H2 − 2 det(A) and Ric(N) = KM (1− ν2). �

On the other hand, in the case M = M
2(c) we need to obtain some suitable

expression for the modulus of the Abresch–Rosenberg differential. If we take a
conformal parametrization (U, z) in Σ, this quadratic differential can be written as

Q = (2Hp− ch2z) dz
2

(see [5]), where p dz2 = 〈−∇∂zN, ∂z〉dz2 is the Hopf differential and hz = ∂h/∂z.
Although this expression depends on the parametrization, we may consider the
function q = 4|Q|2/λ2, which can be developed as

q = 4
λ2

(
4H2|p|2 + c2|hz|4 − 2cH(ph2z̄ + p̄h2z)

)
= 4H2(H2 − det(A)) + c2

4 (1− ν2)2 − c(‖∇ν‖2 − (2H2 − det(A))(1 − ν2)),(3.2)

where λ is the conformal factor of the induced metric in Σ. Then, q is well defined
and smooth on the whole Σ.

Remark 3.2. If Σ is a constant mean curvature surface in M
2(c) × R whose

Abresch–Rosenberg differential vanishes identically, then Σ is (locally) invariant
under a 1-parameter subgroup of isometries of M2(c) × R which acts trivially on
the vertical lines (see Lemma 6.1 in [4]). Moreover, if M is a Riemannian quotient

of M2(c) and Σ ⊂M ×R is such that Q = 0, then the lifted surface Σ̃ ⊂ M2(c)×R

also satisfies Q = 0.

Returning to the computation of Δψ and taking into account the formulas in
Lemma 3.1 and the identity (3.2), we get

Δψ = Δh+ g′(ν)Δν + g′′(ν)‖∇ν‖2(3.3)

=
−8Hqν

(4H2 + c(1− ν2))
2 − 4Hν

(
1− ν2

)
(KM − c)

4H2 + c(1− ν2)
.

Finally, we are interested in calculating ∂ψ/∂η along ∂Σ, where we consider
the outer conormal vector field to ∂Σ in Σ given by η = −E�

3 (it does not matter
which outer conormal vector field is chosen as the only information needed is the
sign of ∂ψ/∂η). Hence,

∂h

∂η
= 〈∇h, η〉 = 〈E�

3 ,−E�
3 〉 = −‖E�

3 ‖2,
∂ν

∂η
= 〈∇ν, η〉 = 〈−AE�

3 ,−E�
3 〉 = 〈∇E�

3
E�

3 , N〉.
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However, if we parametrize ∂Σ by γ with ‖γ′‖ = 1, then {E�
3 /‖E�

3 ‖, γ′} is an
orthonormal basis of TΣ, and it is clear that

2H =
〈 1

‖E�
3 ‖2∇E�

3
E�

3 +∇γ′γ′, N
〉
,

so ∂ν/∂η = 2H‖E�
3 ‖2 + ‖E�

3 ‖3κg. Here, κg denotes the geodesic curvature of
∂Ω = ∂Σ in the base M with respect to −‖E�

3 ‖−1(N − νE3), the outer conormal
vector field to ∂Ω in M . Finally, we obtain

(3.4)
∂ψ

∂η
=
∂h

∂η
+ g′(ν)

∂ν

∂η
= ‖E�

3 ‖2 (−1 + g′(ν)(2H + ‖E�
3 ‖κg)

)
.

Note that any outer conormal vector field to ∂Ω in M is a linear combination
of N and E3, which is the key property for relating the geometries of Σ and M .

Moreover, these computations allow us to give an optimal bound for the geo-
desic curvature of the boundary of the domain of a compact H-graph with a
capillarity boundary condition. Theorem 3.3 deals with the case where the angle
along the boundary is identically zero (see Remark 3.4 for the general case).

In order to state the theorem in a more convenient way, observe that if Σ ⊆
M × R is a compact embedded H-surface, then Σ is a symmetric bigraph with
respect to some slice M × {t0}, as follows by applying the Alexandrov reflection
principle [2] to vertical reflections (this slice may be supposed to beM×{0} after a
vertical translation). Now it is obvious that Σ intersects such a slice orthogonally,
and it splits Σ into two parts to which the computations in this section can be
applied.

Theorem 3.3. Let Σ ⊆ M × R be a compact embedded H-surface with H > 0.
Then, after a vertical translation, it is an H-bigraph over a compact regular domain
Ω ⊆M with value zero on ∂Ω. Let us suppose that c = inf{KM(p) : p ∈ Ω} satisfies
4H2 + c > 0. Then,

(3.5) κg ≥ −4H +
c

4H
,

where κg is the geodesic curvature of ∂Ω in M with respect to the outer conormal
vector field.

Furthermore, if there exists p ∈ ∂Ω such that equality holds in (3.5), then Ω
has constant curvature and Σ has zero Abresch–Rosenberg differential.

Proof. Let us consider the function ψ = h+ g(ν), defined in terms of (3.1). Since
ν ≤ 0 andKM ≥ c in Σ, equation (3.3) ensures that Δψ ≥ 0 in Σ. As Ω is compact
and ψ is constant along ∂Ω, the maximum principle on the boundary guarantees
that ∂ψ/∂η ≥ 0. By using equation (3.4), this inequality is equivalent to (3.5).
Equality holds at some point of ∂Ω if and only if ψ is constant so, from (3.3), we
get that q = 0 and KM = c in Ω. �

Remark 3.4. The same argument as that in the proof of Theorem 3.3 works if
we assume Σ is an H-graph over a regular domain with h = 0 and ν = ν0 in ∂Ω
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for some −1 < ν0 ≤ 0. In this case, the lower bound for the geodesic curvature
becomes

(3.6) κg ≥ −4H2 + c(1− ν20 )

4H
√
1− ν20

,

which coincides with (3.5) for ν0 = 0. If equality holds at some point p ∈ ∂Ω,
then Ω has constant curvature and Σ has zero Abresch–Rosenberg differential.

Observe that if we suppose that −1 < ν ≤ ν0 in ∂Ω for some ν0 ≤ 0 (rather
than ν = ν0 in ∂Ω) and there exists a point p ∈ ∂Ω such that ν(p) = ν0 and at
which (3.6) becomes an equality, then Ω has constant curvature and Q = 0 in Σ.
In the case M = M2(c), equality holds if and only if Σ is a spherical cap of a
standard round sphere.

We now adjust the value of H for which the lower bound is exactly zero, which
provides a characterization of the rotationally invariant spheres in S2(c)× R.

Corollary 3.5. Let M be a orientable complete Riemannian surface with KM ≥
c > 0 inM . Then, each compact embedded H-surface inM×R with 0 < H <

√
c/2

is an H-bigraph over a connected domain Ω and M �Ω is a finite union of curves
of nonnegative geodesic curvature. Furthermore, either

• their geodesic curvatures are strictly positive, or

• M = S2(c), Ω is a closed hemisphere and Σ is a rotationally invariant H-
sphere for H =

√
c/2 (in this case κg vanishes identically).

Observe that, since Ω is a connected domain with regular boundary and M
is topologically a 2-sphere under the assumptions of the corollary, the connected
components of M �Ω are topological disks. When M = S2(c), each of these disks
is geodesically convex (i.e., every minimizing geodesic joining a pair of points of its
boundary lies in its interior) since it is bounded by a curve whose geodesic curvature
does not change sign. In particular, such a disk must lie in a hemisphere of S2(c).

4. Further boundary curvature estimates

In this section, we will obtain better estimates for the geodesic curvature of the
boundary by assuming restrictions on the maximum height that the surface can
attain. In order to achieve this, we will use a technique which has its origins in
a paper by Payne and Philippin [11] and which has also been used by Ros and
Rosenberg in [14].

Let Σ ⊆M ×R be a constant mean curvature H > 0 surface which is a graph
over a domain Ω ⊆M and extends continuously to be zero on the boundary of Ω.
For any m > 0, consider the function gm : [−1, 1] → R determined by

(4.1) g′m(t) =
4mH

4H2 + c(1− t2)
, g(0) = 0,
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which is strictly increasing and satisfies m · α(c,H, ν0) = gm(ν0)− gm(−1). More-
over,

X =
2Hν(2m− 1)

m(1− ν2)
E�

3 − 2Hνg′m(ν)

m(1− ν2)
AE�

3

is a smooth vector field on Σ�V , where V = {p ∈ Σ : ν(p) = −1} is the subset of Σ
with vertical Gauss map. We will consider the second order elliptic operator L on
C∞(Σ�V ) given by Lf = Δf+X(f), and the function ψm = h+gm(ν) ∈ C∞(Σ).
We are now interested in calculating Lψm. By using Lemma 3.1 and the identity
A2 = 2HA− det(A) · id in TΣ, we obtain

(4.2) Lψm = −4H(m− 1)(m− 1
2 )ν

m
− 4Hmν(1− ν2)(KM − c)

4H2 + c(1− ν2)
.

The second term in the right-hand side is nonnegative since KM ≥ c. Moreover,
for m ≥ 1 or m ≤ 1/2, the first term is also positive so the function ψm satisfies
Lψm ≥ 0 in Σ � V . Thus, it is possible to apply the maximum principle for the
operator L in Σ� V , which ensures that ψm cannot achieve an interior maximum
in Σ� V unless it is constant.

Lemma 4.1. Let Σ ⊆ M × R be a constant mean curvature H > 0 graph over a
(not necessarily compact) domain Ω ⊆ M and suppose that c = inf{KM (p) : p ∈
Ω} > −4H2. If ψm is constant in Σ for some m ≤ 1/2, then

(a) m = 1/2 and KM is constant in Ω,

(b) Σ is invariant by a 1-parameter group of isometries which preserve the height
function.

In particular, if c > 0 and M = S2(c), then Σ is a compact rotationally invariant
torus, and if c ≤ 0 and M = H2(c), then Σ is an invariant horizontal cylinder,
both described in Section 2.

Proof. If ψm is constant, then Lψm = 0, so from (4.2) we get that (m−1)(m−1/2)
≤ 0, which is only possible if m = 1/2. Then, as equality holds in (4.2), KM must
be constant in Σ�V , so it is constant in Σ as KM is continuous and V has empty
interior.

Now, suppose thatm = 1/2 and ψ1/2 is constant. On one hand, from∇ψ1/2 = 0

we obtain AE�
3 = 1

g′
1/2

(ν)E
�
3 so E�

3 must be a principal direction and 1/g′1/2(ν) its

corresponding principal curvature. We also deduce the following expressions:

det(A) =
1

g′1/2(ν)

(
2H − 1

g′1/2(ν)

)
, ‖∇ν‖2 = 〈AE�

3 , AE
�
3 〉 = 1− ν2

g′1/2(ν)
2
.(4.3)

If we consider the differentiable function f : ]− 1, 1[ → R determined by

f ′(t) =
1√

(1− t2)(4H2 + c(1− t2))
, f(0) = 0,
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and take into account (4.3) and Lemma 3.1, it is easy to check that

Δ(f(ν)) = f ′′(ν)‖∇ν‖2 + f ′(ν)Δν

=
f ′′(ν)
g′1/2(ν)

2
(1 − ν2) + f ′(ν)(2 det(A)− 4H2 − c(1− ν2))ν = 0,

where we have also used that KM is constant by item (a). As f(ν) is a nonconstant
harmonic function on Σ� V , we can (at least locally) take a conformal parameter
z = x + iy on Σ � V with x = f(ν). Now, by repeating the arguments given
in Lemma 6.1 of [4], we conclude that Σ is invariant by a 1-parameter group of
isometries of M2(c)× R.

Since all the fundamental data depend only on x, this group can be understood
as translations in the y-direction. Thus, if we show that hy, the derivative of the
height function with respect to y, vanishes, (b) will have been checked. As the
parameter is conformal, hy = 〈∇h, ∂y〉 = −〈JE�

3 , ∂x〉, but ∂x has the same direc-
tion as ∇ν = −AE�

3 because x = f(ν) and AE�
3 = 1

g′
1/2

(ν)E
�
3 from ∇ψ1/2 = 0,

so hy = 0.
Finally, just by checking all the surfaces invariant under 1-parameter groups

of isometries preserving the height function (cf. Section 2), it is easy to see that
those mentioned in the statement of the lemma are the only ones for which ψ1/2

is constant. �

Theorem 4.2. Let Σ ⊆ M × R be a H-bigraph over a compact regular domain
Ω ⊂ M and suppose that c = inf{KM (p) : p ∈ Ω} satisfies 4H2 + c > 0. If there
exists 0 < m ≤ 1/2 such that |h| ≤ m · α(c,H, 0), then the following lower bound
for the geodesic curvature of ∂Ω in M (with respect to the outer conormal vector
field) holds:

κg ≥ (4− 8m)H2 + c

4mH
.

Proof. We suppose that ν = ν0 for some −1 < ν0 ≤ 0 along ∂Σ, so the theorem
will follow from making ν0 = 0 (see also Remark 4.4 below). Let us consider the
function ψm = h + gm(ν) ∈ C∞(Σ), which satisfies Lψm ≥ 0 in view of (4.2).
As Σ is compact, there exists a point p0 ∈ Σ where ψm attains its maximum. We
distinguish three possibilities:

• If p0 is an interior point of Σ � V , then ψm is constant in Σ, which implies
that the maximum is also attained in ∂Σ.

• If p0 ∈ ∂Σ, then such a maximum is attained on the whole boundary ∂Σ
since (ψm)|∂Σ is constant. Then the boundary maximum principle for the
operator L guarantees that ∂ψm/∂η ≥ 0 along ∂Σ. Using (3.4), it is straight-
forward to check that this is equivalent to the inequality in the statement of
the theorem.

• If p0 ∈ V , then ν(p0) = −1. Observe that h ≤ m · α(c,H, ν0) = gm(ν0) −
gm(−1), so ψm ≤ ψm(p0) = h(p0) + gm(−1) = h(p0) − m · α(c,H, ν0) +
gm(ν0) ≤ gm(ν0) and, since ψm is equal to gm(ν0) on ∂Σ, the maximum is also
attained on the boundary, which reduces this case to the previous one. �
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We now adjust the constant 0 < m ≤ 1/2 to guarantee the convexity of the
boundary, as we did in Corollary 3.5.

Corollary 4.3. Let Σ ⊆M×R be an H-bigraph over a compact regular domain Ω
with H > 0. Suppose that c = inf{KM (p) : p ∈ Ω} satisfies 4H2 + c > 0. In either
of the situations:

i) c ≥ 0 and h ≤ 1
2α(c,H, 0) in Σ, or

ii) c < 0 and h ≤ 4H2+c
8H2 α(c,H, 0) in Σ,

the boundary ∂Ω is convex in M with respect to the outer conormal vector field.

Remark 4.4. The proof of Theorem 4.2 is also valid when Σ is an H-graph,
H > 0, over a compact regular domain Ω ⊂ M with h = 0 and ν = ν0 in ∂Ω for
some −1 < ν0 ≤ 0. In this case, if we suppose that |h| ≤ m · α(c,H, ν0), then the
lower bound for the geodesic curvature can be improved to

κg ≥ (4 − 8m)H2 + c(1− ν20 )

4mH
√
1− ν20

.

Moreover, the situations in which we can guarantee that ∂Ω is convex with respect
to the outer conormal vector field (as in Corollary 4.3) become the following ones
under these new capillarity assumptions:

i) c ≥ 0 and h ≤ 1
2α(c,H, ν0) in Σ, or

ii) c < 0 and h ≤ 4H2+c(1−ν2
0)

8H2 α(c,H, ν0) in Σ.

We investigate finally whether the compactness hypothesis for the domain of
the graph can be removed. In order to achieve this, we will restrict ourselves to the
homogeneous ambient space M2(c) × R and ν0 = 0 (that is, Σ is an H-bigraph),
where the technique developed by Ros and Rosenberg in [14] can be adapted.

Theorem 4.5. Let Σ ⊆ M2(c) × R be a properly embedded H-bigraph over a
domain Ω ⊆ M2(c) with 4H2 + c > 0, symmetric with respect to M2(c)× {0}, and
suppose that there exists 0 < m ≤ 1/2 such that |h| ≤ m · α(c,H, 0) in Σ. Then,
the following lower bound for the geodesic curvature of ∂Ω in M2(c) (with respect
to the outer conormal vector field ) holds:

κg ≥ (4− 8m)H2 + c

4mH
.

Furthermore, if there exists a point in ∂Ω where equality is attained, then:

i) Σ is a rotationally invariant torus (see Section 2.1) if c > 0,

ii) Σ is a cylinder invariant under horizontal translations if c = 0, and

iii) Σ is a cylinder invariant under hyperbolic translations (see Section 2.2)
if c < 0.
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Proof. Let us consider the same function ψm ∈ C∞(Σ) as before. If ψm attained
its maximum or supΣ ψm ≤ 0, we could reason in the same way we did for the
compact case and the proof would be finished. Otherwise, let us take a sequence
{pn} ⊆ Σ+ = {p ∈ Σ : h(p) > 0} such that {ψm(pn)} converges to supψm, and
distinguish two cases.

• If lim{h(pn)} = 0, then ψm(pn) = h(pn) + gm(ν(pn)) ≤ h(pn) → 0 from
which supΣ ψm ≤ 0, and we are done.

• If {h(pn)} does not converge to zero, we can suppose, without loss of gener-
ality, that {h(pn)} → a > 0 and h(pn) > a/2 for all n ∈ N . Given 0 < ε < a/2,
as Σ+ is stable and the distance from pn to ∂Σ+ is bounded away from zero, the
surface Σε = {p ∈ Σ : h(p) > ε} has bounded second fundamental form. Ambi-
ent isometries allow us to translate Σε horizontally so that pn is over some fixed
point q0 ∈ M

2(c) and standard convergence arguments make it possible to con-
sider Σ∞(ε), the limit H-graph of a subsequence of these translated surfaces. The
corresponding function in Σ∞(ε), given by ψm,∞ = h∞ + gm(ν∞) ∈ C∞(Σ∞(ε)),
attains its maximum at the interior point p0 = (q0, a) ∈ Σ∞(ε) (observe that there
is convergence in the Cm topology on compact subsets for every m ∈ N). As ψm,∞
is subharmonic on Σ∞(ε), we have that it is constant because of the maximum
principle, and Lemma 4.1 implies that, up to a vertical translation, Σ∞(ε) can be
extended to the upper half of one of the bigraphs listed in the statement of the
theorem, which will be denoted by Σ̃∞. Note that Σ̃∞ can be supposed indepen-
dent of ε by standard diagonal arguments (because decreasing ε just increases the
size of the surfaces involved in the limit process). In this situation, supΣ ψm is the

height in M2(c)× R of a point p̃ ∈ ∂Σ̃∞ satisfying ν∞(p̃) = 0.
Now we prove that h(p̃) ≤ 0 (which finishes the proof since h(p̃) = supΣ ψm).

Arguing by contradiction, if h(p̃) > 0 we could consider 0 < ε < h∞(p̃)/2 and, as

the extended limit surface Σ̃∞ does not depend on ε, we would be able to find a
subsequence of the translated surfaces of Σε converging to the extended graph Σ̃∞.
Thus, Σ̃∞ contains points at height as close to ε as desired, contradicting the fact
that no point in Σ̃∞ has height lower than p̃ and ε < h∞(p̃)/2. �

Remark 4.6. Observe that, if the maximum heights of a sequence {Σn} of such
H-bigraphs tend to zero, then Theorem 4.5 insures that the geodesic curvatures
of the boundaries diverge uniformly, in the sense that the bound only depends on
that maximum height. Thus, the sequence of domains Ωn ⊆ M2(c) over which Σn

is a bigraph cannot eventually omit any set in M2(c) with nonempty interior.

5. Intrinsic length estimates

Let Σ ⊆ M × R be an H-graph over a compact domain Ω ⊆ M which extends
continuously to be zero on the boundary. Suppose that KM ≥ c > −4H2 in Σ for
some c > 0. In Section 3 we proved that ψ = h+g(ν) is subharmonic in Σ, where g
is defined in (3.1) so, if we suppose that ν ≤ ν0 along ∂Σ, then h+ g(ν) ≤ g(ν0),
as a consequence of the fact that g is strictly increasing and h vanishes on ∂Σ.
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Therefore, as g is also an odd function, we obtain that g(−ν) ≥ h − g(ν0). Now
we can invert the function g and square both sides to obtain

(5.1) ν2 ≥ ζ(h, ν0) :=

⎧⎪⎪⎨⎪⎪⎩
c+4H2

c tanh2
(√

c2+4H2c
4H (h− g(ν0))

)
if c < 0,

H2(h− g(ν0))
2 if c = 0,

c+4H2

−c tan2
(√−c2−4H2c

4H (h− g(ν0))
)

if c > 0.

Let γ : [a, b] → Σ be a smooth curve which is parametrized by arc length and
let η be a smooth unit vector field along γ, orthogonal to γ′ and N . Then, as
{N, γ′, η} is an orthonormal frame, we have

E3 = 〈N,E3〉E3 + 〈γ′, E3〉γ′ + 〈η, E3〉η,
and, since 〈N,E3〉 = ν and 〈γ′, E3〉 = h′(γ), we deduce that 1 = ν2 + h′(γ)2 +
〈η, E�

3 〉2. Taking into account that 〈η, E�
3 〉2 ≥ 0, we finally get |h′| ≤ √

1− ν2.
Thus, plugging (5.1) into this inequality, we have

(5.2) Length(γ) ≥
∫ a

0

|h′|√
1− ν2

dt ≥
∫ a

0

−h′√
1− ζ(h, ν0)

dt =

∫ h(0)

h(a)

ds√
1− ζ(s, ν0)

.

Considering all the curves that join a point p with the boundary (along which the
height vanishes), we obtain the following result:

Theorem 5.1. Let Σ ⊆ M × R be an H-graph, H > 0, over a compact do-
main Ω ⊆M extending continuously to be zero on the boundary, and suppose that
inf{KM (p) : p ∈ Ω} > −4H2. If ν ≤ ν0 in ∂Ω for some −1 < ν0 ≤ 0, then

dist(p, ∂Σ) ≥
∫ h(p)

0

ds√
1− ζ(s, ν0)

.

Furthermore, if there exists p ∈ Σ such that equality holds, then Ω has constant
Gaussian curvature and Σ is a spherical cap of a rotationally invariant sphere.

Theorem 5.1 is a comparison result which may be understood in the follow-
ing way: take Σ satisfying the conditions of the statement of the theorem, and
S ⊂ M2(c) × R+ a rotationally invariant spherical cap with the same mean cur-
vature H and making a constant angle ν0 with the slice M2(c) × {0}. Then, for
any p ∈ Σ, the distance d(p, ∂Σ) is at least d(q, ∂S), where q is any point in S
satisfying h(q) = h(p).
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mailto:jmmanzano@ugr.es

	Introduction
	Invariant surfaces in H2R and S2R
	Rotationally invariant surfaces in H2R and S2R
	Surfaces invariant under hyperbolic translations in H2R
	Surfaces invariant under parabolic translations

	Boundary curvature estimates
	Further boundary curvature estimates
	Intrinsic length estimates

