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Pseudo-differential operators on fractals

and other metric measure spaces

Marius Ionescu, Luke G. Rogers and Robert S. Strichartz

Abstract. We define and study pseudo-differential operators on a class
of fractals that include post-critically finite (p.c.f.) self-similar sets and
Sierpiński carpets. Using sub-Gaussian estimates for the heat operator
we prove that our operators have kernels that decay and, in the constant
coefficient case, are smooth off the diagonal. Our analysis can be extended
to products of fractals. While our results are applicable to a larger class
of metric measure spaces with Laplacian, we use them to study elliptic,
hypoelliptic, and quasi-elliptic operators on p.c.f. fractals, answering a few
open questions posed in a series of recent papers. We extend our class of
operators to include the so called Hörmander hypoelliptic operators and
we initiate the study of wavefront sets and microlocal analysis on p.c.f.
fractals.

1. Introduction

In this paper we define and study pseudo-differential operators on metric mea-
sure spaces endowed with a nonpositive self-adjoint Laplacian such that the heat
operator satisfies sub-Gaussian estimates. The motivating examples for our work
are metric measure spaces constructed from p.c.f. fractals ([21], [37], [34]). How-
ever, our results capture known facts from classical harmonic analysis on Rn and
Riemannian manifolds and can be used to define pseudo-differential operators on
other metric measure spaces. For example, the hypotheses of our main theorems
apply to the operators defined in [16].

Analysis on fractals from either the probabilistic or the analytic viewpoint has
been the focus of intense study recently (see, for example, [15], [4], [21], [39] and
references therein). Several recent papers have studied properties of spectral op-
erators on fractals. For example, [38] shows some new convergence properties of
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Fourier series on fractals with spectral gaps and establishes a Littlewood–Paley
inequality for such fractals. In [20] a kernel formula for the resolvent of the Lapla-
cian on any p.c.f. fractal is given; this generalizes Kigami’s result for the Green
function on p.c.f. fractals ([21]). These results have been extended to infinite blow-
ups of fractals in [24]. Numerical results suggest that this result might hold for
other spectral operators on fractals [1], [7]. The main result of [19] says that if a
spectral operator on a p.c.f. fractal is given by integration with respect to a ker-
nel that is smooth and has a specific type of decay off the diagonal, then it is a
Calderón–Zygmund operator in the sense of [31] (Section I.6.5). In particular, the
authors show that the Riesz and Bessel potentials and, more generally, the Laplace
type operators are Calderón–Zygmund operators. On the other hand, in [11], [28],
the authors show that spectral multiplier operators on metric measure spaces and
products of such spaces are bounded on Lq as long as the heat operator satisfies
specific estimates. The Laplacian defined on some p.c.f. fractals and some highly
symmetric Sierpiński gaskets satisfies these assumptions.

We begin by presenting the standing hypotheses for our results in Section 2.
We also briefly review the definition and main properties of p.c.f. fractals and the
Laplacians defined on them.

The pseudo-differential operators with constant coefficients that are studied in
Section 3 generalize the class of spectral multipliers studied in the papers men-
tioned above. We justify symbolic calculus for these operators and show that they
are given by integration with respect to kernels that are smooth and decay off
the diagonal, extending some of the results of [19]. Moreover, pseudo-differential
operators of order 0 on p.c.f. fractals are Calderón–Zygmund operators, and thus
extend to bounded operators on Lq, for all 1 < q < ∞. In this context we therefore
recover the results of [11] and [28]. We extend our analysis to products of such
spaces in Section 5.

We define Sobolev spaces on spaces built out of p.c.f. fractals in Section 4 and
prove that pseudo-differential operators with constant coefficients are bounded on
them. We study elliptic and hypoelliptic operators on fractals in Section 6. Namely,
we prove that a pseudo-differential operator satisfies the pseudo-local properties
and that an elliptic operator is hypoelliptic. This gives positive answers to some
open questions posed in [39], [6], [25]. An interesting class of operators that can
be defined on fractals with spectral gaps are the so called quasi-elliptic operators
([6], [28]). We show that every quasi-elliptic operator is equal to an elliptic pseudo-
differential operator, though there are quasi-elliptic differential operators which are
not elliptic as differential operators.

In Section 7 we extend the class of pseudo-differential operators to include
operators for which the derivatives of the symbols have a slower rate of decay.
As an application we show that the Hörmander type hypoelliptic operators are
hypoelliptic. This extends one side of the classical result of [41] (Theorem 2.1 in
Chapter III). The converse is false in general, as is exemplified by the quasi-elliptic
operators (see Subsection 6.1).

Section 8 introduces the wavefront set and microlocal analysis on products of
compact spaces built out of fractals. We show that pseudo-differential operators
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may decrease the wavefront set and that elliptic operators preserve the wavefront
set, extending results from classical harmonic analysis (see, for example, [29]). We
also describe the wavefront set for a few specific examples.

In the last section, we study properties of pseudo-differential operators with
variable coefficients on compact fractafolds. The main results of the section are the
continuity off the diagonal of the kernels of such operators and the Lq-boundedness
of these operators. These results cannot be obtained using the methods of [11]
and [28]. We also conjecture that the pseudo-differential operators with variable
coefficients of order 0 are Calderón–Zygmund operators.

Some of the results proved here are extensions of the corresponding results from
classical harmonic analysis (see, for example [41], [30], [31]). However the proofs of
our results are very different. The main reason for this difference is that the product
of smooth functions is, in general, no longer in the domain of the Laplacian [5].
Therefore techniques that are essential in real analysis like multiplication with a
smooth bump are not available to us. We frequently use the Borel type theorem
proved in [26] to decompose a smooth function in a sum of smooth functions.

Acknowledgements. The authors would like to thank Camil Muscalu and Ale-
xander Teplyaev for many useful conversations during the preparation of the
manuscript. They also thank the referee for various suggestions, including pointing
out the relevance of [16] to this topic. The authors express their thanks to Yin-Tat
Lee for pointing out an error in an earlier draft of this article.

2. Background

For the main results of Sections 3 and 5 we need a metric space (X,R) with a Borel
measure μ and a negative self-adjoint Laplacian Δ. We assume that X satisfies
the doubling condition, that is, there is a constant C > 0 such that

(2.1) μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ X and r > 0.

We also assume that the heat operator etΔ has a positive kernel ht(x, y) that
satisfies the sub-Gaussian upper estimate

(2.2) ht(x, y) ≤ c1 t
−β exp

(
− c2

(R(x, y)d+1

t

)γ)
,

where c1, c2 > 0 are constants independent of t, x and y. In this expression both d
and γ are constants that depend on X and β = d/(d + 1). Moreover we assume
that hz(x, y) is a holomorphic function on {Re z > 0}.

Examples of spaces that satisfy the above hypothesis include the so called
p.c.f. fractals and the highly symmetric Sierpiński carpets. We review some of
the definitions and properties of the p.c.f. fractals and of the Laplacians defined
on them. For more details the reader can consult the books [21] and [39]. Recall
that an iterated function system (i.f.s.) is a collection {F1, . . . , FN} of contractions
on R

d. For such an i.f.s. there exists a unique self-similar set K satisfying (see [18])

K = F1(K) ∪ · · · ∪ FN (K).
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For ω1, ω2, . . . ωn ∈ {1, . . . , N}, ω = ω1ω2 . . . ωn is a word of length n over the
alphabet {1, . . . , N}. The subset Kω = Fω(K) := Fω1 ◦ · · · ◦ Fωn(K) is called a
cell of level n. The set of all finite words over {1, . . . , N} is denoted by W∗. Each
map Fi of the i.f.s. defining K has a unique fixed point xi. We say that K is a
post-critically finite (p.c.f.) self-similar set if there is a subset V0 ⊆ {x1, . . . , xN}
satisfying

Fω(K) ∩ Fω′(K) ⊆ Fω(V0) ∩ Fω′(V0)

for any ω 	= ω′ having the same length. The set V0 is called the boundary of K and
the boundary of a cell Kω is Fω(V0). One defines V1 =

⋃
i Fi(V0), and, inductively,

Vn =
⋃

i Fi(Vn−1) for n ≥ 2. The fractal K is the closure of
⋃

n Vn.

The Laplacian on p.c.f. fractals may be built using Kigami’s construction [21]
from a self-similar Dirichlet energy form E on K with weights {r1, . . . , rN}:

E(u) =
N∑
i=1

r−1
i E(u ◦ Fi).

The existence of such forms is non-trivial, but on a large collection of examples they
may be obtained from the approximating graphs as the appropriate renormalized
limit of graph energies ([21], [39]).

The second ingredient is the existence of a unique self-similar measure

μ(A) =

N∑
i=1

μi μ(F
−1(A)),

where {μ1, . . . , μN} are weights such that 0 < μi < 1 and
∑

μi = 1, see [18].
Then the Laplacian is defined weakly: u ∈ domΔμ with Δμu = f if

E(u, v) = −
∫
X

f v dμ

for all v ∈ domE with v|V0 = 0. The domain of the Laplacian depends on the
assumptions that one makes about f . Kigami ([21]) assumes that f is continuous,
but in this paper it will be more natural to assume that f is in L2(μ), which gives
a Sobolev space (see Section 4). We write u ∈ domLp Δ if f ∈ Lp(μ).

The effective resistance metric R(x, y) on K is defined via

R(x, y)−1 = min
{E(u) : u(x) = 0 and u(x) = 1

}
.

It is known that the resistance metric is topologically equivalent, but not metrically
equivalent to the Euclidean metric ([21], [39]).

The unit interval and the Sierpiński gasket ([21], [39], [13], [5], [23], [35], [42])
are important examples of p.c.f. fractals. Other examples are the affine nested
fractals [12] that in turn are generalizations of the nested fractals [22].

Some of the spaces that we consider in this paper are built from p.c.f. fractals as
in [34], [35]. In those papers the author defines fractal blow-ups of a p.c.f. fractal K
and fractafolds based on K. The former generalizes the relationship between the
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unit interval and the real line to arbitrary p.c.f. self-similar sets, while the latter
is the natural analogue of a manifold. Let w ∈ {1, . . . , N}∞ be an infinite word.
Then

F−1
w1

. . . F−1
wm

K ⊆ F−1
w1

. . . F−1
wm

F−1
wm+1

K.

The fractal blow-up is

X =
∞⋃

m=1

F−1
w1

. . . F−1
wm

K.

If C is an n cell in K, then F−1
w1

. . . F−1
wm

C is called an (n −m) cell. The blow-up
depends on the choice of the infinite word w. In general there are an uncountably
infinite number of blow-ups which are not homeomorphic. In this paper we assume
that the infinite blow-up X has no boundary. This happens unless all but a finite
number of letters in w are the same. One can extend the definition of the energy E
and measure μ to X . The measure μ will be σ-finite rather than finite. Then one
can define a Laplacian on X by the weak formulation. It is known that, for a large
class of p.c.f. fractals, the Laplacian on an infinite blow-up without boundary has
pure point spectrum ([42], [27]).

One can view a fractal blow-up as a collection of copies of K that are glued
together at boundary points. Every point of X has a neighborhood which is
homeomorphic to a neighborhood of a point in K. A fractafold [35] based on K is
defined to be a set which satisfies this latter property. We will work on a restricted
class of fractafolds, which may be thought of as more like triangulated manifolds.
Specifically we will consider fractafolds X that consist of a finite or infinite union
of copies of K glued together at some of the boundary points. The fractafold X is
compact if and only if we consider a finite number of copies of K. We suppose in
the following that all the copies of K have the same size in X . If all the boundary
points of the copies of K are paired, then the fractafold X has no boundary.
When K is the unit interval this construction produces the unit circle. The next
simplest example is the double cover of the Sierpiński gasket, where one considers
two copies of the fractal with corresponding boundary points paired. One can
extend the definition of energy and Laplacian from K to a fractafold based on K.
An explicit description of the spectral resolution of the fractafold Laplacian for
certain infinite fractafolds is given in [32].

Products of fractals provide another important class of examples for our results.
An important point to keep in mind is that the product of p.c.f. fractals is not a
p.c.f. fractal. Strichartz described in [37] how one can extend the definition of the
Laplacian and energy to products of fractals.

The estimates (2.2) are known to be true for 0 < t < 1 on a large number of
p.c.f. fractals ([12], [4], [14], [15], [40]) and Sierpiński carpets ([2], [3]), with R being
the resistance metric, the constant d being the Hausdorff dimension with respect
to the resistance metric, and γ a constant specific to the fractal. For the Dirichlet
Laplacian on a p.c.f. fractal the estimate for t > 1 is immediate because the heat
kernel decays exponentially at a rate determined by the smallest eigenvalue. In
the case of the Neumann Laplacian one should instead modify the heat kernel by
subtracting its projection onto the zero eigenspace of constant functions, which has
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exponential decay controlled by the first non-zero eigenvalue. This latter change
does not affect the definition of pseudo-differential operators because they act on
the eigenspaces with non-zero eigenvalues; accordingly we will abuse notation and
refer to this modified heat kernel as just the heat kernel. No modification is needed
in the case of blow-ups of p.c.f. fractals. For many fractals, lower bounds on the
heat kernel are also known, but we will not need these in this paper. We also note
that the heat kernel is holomorphic on {Re z > 0} (see [21]).

We mention that estimates of the form (2.2) are also known for sums of even
powers of vector fields on homogeneous groups [16]. However, we will not pursue
these spaces in this paper.

In this paper we write A(y) � B(y) if there is a constant C independent of y,
but which might depend on the space X , such that A(y) ≤ CB(y) for all y. We
write A(y) ∼ B(y) if A(y) � B(y) and B(y) � A(y). If f(x, y) is a function on
X1 ×X2, then we write Δ1f to denote the Laplacian of f with respect to the first
variable and Δ2f to denote the Laplacian of f with respect to the second variable;
repeated subscripts indicate composition, for example Δ21 = Δ2 ◦Δ1. We say that
a function u is smooth if u ∈ DomΔn for all n ≥ 0.

3. Symbols and pseudo-differential operators on fractals

In this section (X,R) is a metric measure space with a Laplacian Δ that satis-
fies the conditions (2.1) and (2.2). We write P (λ) for the spectral resolution of
the positive self-adjoint operator −Δ. Examples of spaces for which the results
of this section apply include compact or infinite blow-ups without boundary or
products of copies of the same fractafold. In the case that X is either a compact
fractafold without boundary or an infinite fractafold without boundary for which
the Laplacian has pure point spectrum ([42], [27]), we write Pλ for the spectral
projection corresponding to the eigenvalue λ. If X is compact or Δ has pure point
spectrum we fix an orthonormal basis {φn }n∈N or {φn }n∈Z of L2(μ) consisting
of eigenfunctions with compact support and write D for the dense set of finite
linear combinations with respect to this orthonormal basis. If X is a product of
such fractals then there is a natural basis of L2(μ) obtained by taking products of
eigenfunctions on each fiber ([37]). The following are the main objects of study in
this paper.

Definition 3.1. For fixed m ∈ R we define the symbol class Sm to be the set of
p ∈ C∞((0,∞)) with the property that for any integer k ≥ 0 there is Ck > 0 such
that ∣∣∣(λ d

dλ

)k
p(λ)

∣∣∣ ≤ Ck (1 + λ)
m

d+1

for all λ > 0, where d is an in (2.2).

Remark 3.2. The rationale for dividing m by d+1 is that the Laplacian behaves
like an operator of order d+ 1.
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If p is any bounded Borel function on (0,∞) then one can define an opera-
tor p(−Δ) via

p(−Δ)u =

∫ ∞

0

p(λ) dP (λ)(u).

This operator extends to a bounded operator on L2(μ) by the spectral theorem.
If p ∈ Sm with m > 0, then q(λ) := (1 + λ)−m/(d+1)p(λ) is bounded and one can
define p(−Δ) = (I −Δ)−m/(d+1) q(−Δ).

Definition 3.3. For fixed m ∈ R define the class ΨDOm of pseudo-differential
operators on X to be the collection of operators p(−Δ) with p ∈ Sm.

If X is a compact fractafold without boundary or Δ has pure point spectrum
then the formula for a pseudo-differential operator is

p(−Δ)u =
∑
λ∈Λ

p(λ)Pλu

for p ∈ Sm and u ∈ D, where Λ is the spectrum of −Δ.

Proposition 3.4 (Symbolic calculus). If p1 ∈ Sm1 and p2 ∈ Sm2 then p1p2 ∈
Sm1+m2 and

p1(−Δ) ◦ p2(−Δ) = p1p2(−Δ).

Proof. Let k ≥ 1. Using Leibniz’s formula we have that

λk dk

dλk
(p1p2)(λ) =

k∑
j=0

(
k

j

)
λj dj

dλj
p1(λ)λ

k−j dk−j

dλk−j
p2(λ).

Therefore

∣∣∣λk dk

dλk
(p1p2)(λ)

∣∣∣ ≤ k∑
j=0

(
k

j

)
(1 + λ)

m1
d+1 (1 + λ)

m2
d+1 = 2k(1 + λ)

m1+m2
d+1 .

Thus p1p2 ∈ Sm1+m2 . Using the identity P (λ)(p(−Δ)u) = p(λ)P (λ)(u) we have
that

p1(−Δ) ◦ p2(−Δ)u =

∫
p1(λ)P (λ)(p2(−Δ)u)

=

∫
p1(λ) p2(λ)P (λ)(u) = (p1p2)(−Δ)u.

�

The main result of this section is Theorem 3.6, which says that if p ∈ S0

then p(−Δ) is given by integration with respect to a kernel that is smooth off
the diagonal and satisfies specific decay estimates off the diagonal. When X is
a fractafold based on a p.c.f. fractal we then obtain from Theorem 1 in [19] that
p(−Δ) is a Calderón–Zygmund operator in the sense of Section I.6.5 in [31]. We
begin with a technical lemma.
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Lemma 3.5. Let α > 0 and R > 0 be fixed. Then

(3.1)
∑
n∈Z

2
nα
d+1

∫
exp

(−cR(d+1)γ 2nγ (1 + ξ2)−
γ+1
2

) 1

(1 + ξ2)j
dξ ≤ CR−α

provided j ≥ α(γ+1)
2γ(d+1) +

1
2 .

Proof. Consider the integral

I =

∫
R

exp
(−A(1 + ξ2)−

γ+1
2

) 1

(1 + ξ2)j
dξ

= 2

∫ ∞

0

exp
(−A(1 + ξ2)−

γ+1
2

) 1

(1 + ξ2)j
dξ.

Since 2(1 + ξ2) ≥ (1 + ξ)2 on (0,∞) we have

I �
∫ ∞

1

exp
(
− A

2
ξ−γ+1

) dξ

ξ2j
� A

1−2j
γ+1

∫ A/2

0

e−t t
2j−1
γ+1

dt

t
≤ C(j, γ)A

1−2j
γ+1

for j > 1/2. We use this bound for A ≥ 1 and the obvious bound by C(j) for
A ≤ 1. Let A = cR(d+1)γ 2nγ and n0 be such that A ≥ 1 if and only if n ≥ n0.
The series in the statement of the lemma is bounded by

C(j)
∑
n<n0

2
nα
d+1 + C(j, γ)R

(d+1)(1−2j)γ
γ+1

∑
n≥n0

2n
(

α
d+1− (2j−1)γ

γ+1

)
,

which converges for j as in the lemma. The estimate follows from the fact that
2n0 � c−1 R−(d+1). �

Theorem 3.6. Let p : (0,∞) → C be an S0-symbol, that is p is smooth and for
all k ≥ 0 there is Ck > 0 such that

(3.2)
∣∣∣λk ∂k

∂λk
p(λ)

∣∣∣ ≤ Ck.

Then p(−Δ) has a kernel K(x, y) that is smooth off the diagonal of X × X and
satisfies

(3.3) |K(x, y)| � R(x, y)−d

and

(3.4) |Δl
x Δ

k
y K(x, y)| � R(x, y)−d−(l+k)(d+1).

Proof. We begin with the Littlewood–Paley dyadic decomposition from [31] (see
page 242). Let η be a C∞ function with η(λ) = 1 if |λ| ≤ 1 and η(λ) = 0 if |λ| ≥ 2
and let δ(λ) = η(λ) − η(2λ). Then supp δ ⊆ {1/2 ≤ |λ| ≤ 2} and∑

n∈Z

δ(2−nλ) = 1,
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where for each λ there are only two nonzero terms in the above sum. Then δ is C∞
c

and we let Dk > 0 for each k ≥ 0 such that

(3.5)
∣∣∣ dk
dλk

δ(λ)
∣∣∣ ≤ Dk.

For n ∈ Z let pn(λ) = p(λ)δ(2−nλ). Then supp pn ⊆ [2n−1, 2n+1] (since we
assume that p is defined on (0,∞)) and

(3.6) p(λ) =
∑
n∈Z

pn(λ).

Moreover we can use (3.2) and the fact that the support of pn has support in

[2n−1, 2n+1] to bound dk

dλk pn by a constant that depends only on k:

∣∣∣ dk
dλk

pn(λ)
∣∣∣ = ∣∣∣ k∑

j=1

(
k

j

)
dj

dλj
p(λ) · 2−n(k−j) dk−j

dλk−j
δ(2−nλ)

∣∣∣
≤ 2−nk

k∑
j=0

(
k

j

)
Cj

λj
Dk−j 2

nj ≤ 2−nk C(k)

k∑
j=1

2j

2nj
2nj = Ck 2

−nk,(3.7)

where C(k) = maxCjDj−k and Ck = 2k+1C(k).

Fix now n ∈ Z and set fn(λ) = pn(2
nλ)eλ. Then supp fn ⊆ [1/2, 2] and for all

k ≥ 0 we have that

dk

dλk
fn(λ) =

k∑
j=0

(
k

j

)
2nj

dj

dλj
pn(2

nλ)eλ.

Using (3.7) and the fact that λ ≤ 2 we obtain

(3.8)
∣∣∣ dk
dλk

fn(λ)
∣∣∣ ≤ k∑

j=0

(
k

j

)
2nj Cj 2

−nj e2 =: Ak.

It follows immediately that there are constants Bk independent of n such that
the Fourier transform f̂n(ξ) of fn satisfies |ξkf̂n(ξ)| ≤ Bk, and thus for each k ∈ Z

(3.9) |f̂n(ξ)| ≤ Dk

(1 + ξ2)k
.

for some constants Dk independent of n.
Now, by Fourier inversion,

pn(λ) = e−λ2−n

fn(λ2
−n) = e−λ2−n 1

2π

∫
f̂n(ξ) e

iλξ2−n

dξ ,

so that

(3.10) pn(−Δ)u =
1

2π

∫
f̂n(ξ) e

Δ(1−iξ)2−n

u dξ
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and the kernel of pn(−Δ) is given by

(3.11) Kn(x, y) =
1

2π

∫
f̂n(ξ)h2−n−iξ2−n(x, y) dξ,

where hz(x, y) is the complex heat kernel, which is holomorphic on {Re z > 0}. A
proof identical with that of Lemma 3.4.6 of [8] shows that there is C > 0 such that

(3.12) |hz(x, y)| ≤ C(Re z)−
d

d+1 .

Using the above estimate together with the heat kernel estimates (2.2), Lemma 9
of [9] implies that

(3.13) |hz(x, y)| ≤ C 2
d

d+1
(|z| cos(θ))− d

d+1 exp
(
− cγ

2
R(x, y)(d+1)γ |z|−γ cos(θ)

)
,

where z = r(cos θ+ i sin θ). For z = 2−n− iξ2−n we have that |z| = 2−n(1+ξ2)1/2,
cos θ = (1 + ξ2)−1/2, and |z| cos θ = 2−n. Thus

(3.14)
∣∣∣h2−n−iξ2−n(x, y)

∣∣∣ ≤ C 2
d

d+1 2
nd
d+1 exp

(
− cγ

2
R(x, y)(d+1)γ2nγ(1+ξ2)−

γ+1
2

)
,

and

|Kn(x, y)| ≤ C(d, j)2
nd
d+1

∫
exp

(
− cγ

2
R(x, y)(d+1)γ2nγ(1 + ξ2)−

γ+1
2

) 1

(1 + ξ2)j
dξ,

for all j ≥ 1, where the constants C(d, j) depend only on d and j. Lemma 3.5 with
α = d and R = R(x, y) implies that if we choose j large enough then K(x, y) =∑

n∈Z
Kn(x, y) is defined and continuous off the diagonal and it satisfies (3.3).

Finally, using (3.6), we see that K(x, y) is the kernel of p(−Δ).

Next we want to prove the K(x, y) is smooth off the diagonal and show that
the estimates (3.4) hold. For simplicity we give the complete argument only in the
case l = 0 and k = 1, i.e., we show that

(3.15) |ΔyK(x, y)| � R(x, y)−2d−1.

Let q(λ) = λp(λ) and qn(λ) = λpn(λ) for all n ∈ Z. By (3.7) we obtain that

|q(k)n (λ)| ≤ C(k) 2(1−k)n for all k ≥ 0. If we set gn(λ) = 2−nqn(2
nλ)eλ, we then

obtain |g(k)n (λ)| ≤ A(k), where A(k) are constants independent of n. Then a
computation similar to (3.9) shows that

(3.16) |ĝn(ξ)| ≤ B(k)

(1 + ξ2)k
,

for all k ≥ 0, with B(k) independent of n. Using the Fourier inversion formula we
have that

qn(λ) =
1

2π
2n

∫
ĝn(ξ) e

−λ(2−n−iξ2−n) dξ,
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and a similar formula holds for qn(−Δ). Hence

ΔyKn(x, y) =
1

2π
2n

∫
ĝn(ξ)h2−n−iξ2−n(x, y) dξ,

and so

|ΔyKn(x, y)| ≤ C(d) 2n 2
nd
d+1

∫
|ĝn(ξ)| exp

(
− c(γ)

R(x, y)(d+1)γ2nγ

(1 + ξ2)
γ+1
2

)
dξ

≤ C(d, j)2
n(2d+1)

d+1

∫
exp

(
− c(γ)

R(x, y)(d+1)γ2nγ

(1 + ξ2)
γ+1
2

) 1

(1 + ξ2)j
dξ,

for all j ≥ 1. Using Lemma 3.5 with α = 2d + 1 we find for j large enough that
ΔyK(x, y) =

∑
n ΔyKn(x, y) is well defined and continuous off the diagonal and

it satisfies (3.15).
To prove (3.4) for general l and k, one can repeat the above steps for the

functions q(λ) = λl+kp(λ), qn(λ) = λl+kpn(λ), and gn(λ) = 2−n(l+k)qn(λ)e
λ and

apply Lemma 3.5 with α = d+ (l + k)(d+ 1). �

Corollary 3.7. Assume that X is a fractafold without boundary or a product of
such fractafolds. If p ∈ S0 then p(−Δ) is a Calderón–Zygmund operator and,
thus, it extends to a bounded operator on Lq(μ) for all 1 < q < ∞ and satisfies
weak 1-1 estimates.

Proof. Using the estimates (3.3) and (3.4) (with l = 0 and k = 1), Theorem 1.1
of [19] implies that p(−Δ) is a Calderón–Zygmund operator. �

Remark 3.8. The boundedness of p(−Δ) on Lq(μ), 1 < q < ∞, can be obtained
also using the results of [11].

Corollary 3.9. If p ∈ Sm then p(−Δ) is given by integration with respect to a
kernel Kp that is smooth off the diagonal.

Proof. If p ∈ Sm then q(λ) = p(λ)(1 + λ)−m ∈ S0 and Theorem 3.6 implies that
q(−Δ) has a kernel Kq that is smooth off the diagonal. Then

Kp(x, y) = (I −Δx)
mKq(x, y)

is smooth off the diagonal and it is the kernel of p(−Δ). �

As a consequence, we obtain that, for Re s ≥ 0, the Bessel potentials

(3.17) (I −Δ)−su =
∑
λ∈Λ

(1 + λ)−sPλu,

and the Riesz potentials

(−Δ)−su =
∑
λ∈Λ

λ−sPλu,

have smooth kernels and are bounded on Lp(μ), for 1 < p < ∞, with operator
norm of at most polynomial growth in Im s (when Re s = 0). These facts were
previously proved in [19].
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4. Sobolev spaces

In this section we assume that X is a compact fractafold without boundary based
on a p.c.f. fractal K, an infinite blow-up of K without boundary, or a product
of copies of the same fractafold without boundary. Moreover, we assume that
if X is non-compact then Δ has pure point spectrum. Therefore we can consider
that L2(μ) is spanned by compactly supported eigenfunctions of −Δ. As before,
we fix an orthonormal basis {φn} of L2(μ) consisting of such eigenfunctions and
we write D for the space of finite linear combinations of φn’s.

Definition 4.1 (L2-Sobolev spaces). For s ≥ 0 and u ∈ L2 define

‖u‖2Hs :=
∑
λ∈Λ

(1 + λ)
2s

d+1 ‖Pλu‖22.

We say that u ∈ Hs if and only if ‖u‖Hs < ∞.
For s ≥ 0 if u ∈ Hs then u ∈ L2(μ). So for s ≥ 0 there is no harm in starting

with u ∈ L2(μ) in Definition 4.1. Moreover if s1 ≤ s2 then Hs2 ⊆ Hs1 .
For s < 0 we define Hs using the distribution theory developed in [25]. Namely,

for s > 0, H−s is the dual of Hs via

〈f, ϕ〉 =
∑

〈f, φn〉〈ϕ, φn〉

for f ∈ H−s and ϕ ∈ Hs. The fact that the above linear functional is bounded is
a consequence of the Cauchy–Schwarz inequality:

〈f, ϕ〉 =
∑
n

λ
−s
d+1
n 〈f, φn〉λ

s
d+1
n 〈ϕ, φn〉 ≤ ‖f‖H−s‖ϕ‖Hs .

Lemma 4.2. For s a positive integer, u ∈ Hs(d+1) if and only if (I−Δ)ku ∈ L2(μ)
for all k ≤ s.

Proof. Notice that

‖u‖2Hs(d+1) =
∑
λ∈Λ

(1 + λ)2s‖Pλu‖22 = ‖(I −Δ)su‖22.

From this equality the statement follows. �

Proposition 4.3. If p ∈ Sm then p(−Δ) : Hs → Hs−m for all s and m.

Proof. Recall that Pλ(p(−Δ)u) = p(λ)Pλu. Then

‖p(−Δ)u‖2Hs−m =
∑
λ∈Λ

(1 + λ)
2(s−m)

d+1 ‖Pλ(p(−Δ)u)‖22

=
∑
λ∈Λ

(1 + λ)
2(s−m)

d+1 |p(λ)|2‖Pλu‖22 �
∑
λ∈Λ

(1 + λ)
2s

d+1 ‖Pλu‖22 = ‖u‖2Hs .

Thus p(−Δ)u ∈ Hs−m whenever u ∈ Hs. �
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Proposition 4.4. For s ≥ 0, Hs equals the image of L2(μ) under (I−Δ)−s/(d+1).

Proof. Let u, f ∈ L2(μ) such that u = (I −Δ)−s/(d+1)f . Then

Pλu =
1

(1 + λ)s/(d+1)
Pλf.

Therefore,

‖u‖2Hs =
∑
λ∈Λ

(1 + λ)
2s

d+1
1

(1 + λ)2s/(d+1)
‖Pff‖22 = ‖f‖22 < ∞.

Now let u ∈ Hs and define f = (I −Δ)s/(d+1)u, that is,

f =
∑

(1 + λ)
s

d+1Pλu.

Then

‖f‖22 =
∑
λ∈Λ

(1 + λ)
2s

d+1 ‖Pλu‖22 = ‖u‖2Hs < ∞.

Hence f ∈ L2(μ) and u = (I −Δ)−s/(d+1)f . �

We extend next the definition of Sobolev spaces to Lp spaces, using Proposi-
tion 4.4 as the starting point. Namely, we are going to replace L2(μ) by Lp(μ) ([30]).

Definition 4.5. We define the Lp Sobolev space Lp
s for s ≥ 0 and 1 < p < ∞ to

be the image of Lp under (I −Δ)−s/(d+1) with the norm

‖(I −Δ)−s/(d+1)f‖Lp
s
= ‖f‖Lp(μ).

Note that by Corollary 3.7 we may regard Lp
s as a closed subspace of Lp, with

‖u‖p ≤ c‖u‖Lp
s
. For s = 0 we have Lp

0 = Lp and for p = 2 we have L2
s = Hs.

Proposition 4.6. If 0 < s0 ≤ s1 < ∞ and 1 < p0, p1 < ∞ then the complex
interpolation space

[
Lp0
s0 , L

p1
s1

]
θ
may be identified with Lp

s where 0 < θ < 1, s =
(1− θ)s0 + θs1, and 1/p = (1− θ)/p0 + θ/p1.

Proof. The proof is as in the Euclidean case, using the comments following Propo-
sition 3.7. �

Proposition 4.7. If p ∈ Sm then p(−Δ) is a bounded operator from Lp
s into Lp

s−m.

Proof. Let f ∈ Lp
s. Then there is g ∈ Lp such that f = (I −Δ)−s/(d+1)g. Then

p(−Δ)f = p(−Δ)(I −Δ)−s/(d+1)g. By Proposition 3.4 and Corollary 3.7

(I −Δ)(s−m)/(d+1)p(−Δ)(I −Δ)−s/(d+1)g ∈ Lp.

This is equivalent to p(−Δ)f = (I −Δ)−(s−m)/(d+1)g ∈ Lp
s−m. �

Lemma 4.8. The Sobolev space Lp
d+1 equals domLp(Δ).

Proof. Let u ∈ domLp(Δ). Then u ∈ dom(E) and there is f ∈ Lp such that f =
−Δu. That is, ∫

f v dμ = E(u, v) for all v ∈ dom(E).
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If v = φλ, where φλ is any eigenfunction corresponding to λ, then λ
∫
uφλdμ =∫

fφλdμ. This implies that (I −Δ)−1(f + u) = u.
For the converse, notice first that if λ1, λ2 ∈ Λ and φλi is any eigenfunction

corresponding to λi, i = 1, 2, then E(φλ1 , φλ2) = λ1δ(λ1, λ2). Let u = (I −Δ)−1g
for some g ∈ Lp. Set f = g − u ∈ Lp. For any λ ∈ Λ we have∫

f φλ dμ =

∫
(g − u)φλ dμ =

λ

λ+ 1

∫
g φλ dμ.

Also

E(u, φλ) =
1

1 + λ

∫
g φλ dμ E(φλ, φλ) =

λ

1 + λ

∫
g φλ dμ.

It follows by linearity and density that
∫
fvdμ = E(u, v) for all v ∈ dom(E). Thus

−Δu = f . �

Theorem 4.9 (Sobolev embedding theorem). If s < d
p then Lp

s ⊆ Lq for 1
q = 1

p− s
d .

Proof. We have all the ingredients needed to use the same proof as in Theorem 3.11
of [36]. �

5. Pseudo-differential operators on products of fractals

In this section we extend the definition of pseudo-differential operators to products
of metric measure spaces that satisfy the hypotheses of Section 2. Let N ≥ 2
be fixed and let (X1, R1), . . . , (XN , RN ) be N metric spaces such that Xi has
measure μi and Laplacian Δi. In the case thatXi is a fractafold, then we take Δi as
defined using a self-similar Dirichlet energy Ei. We assume that the heat kernel h(i)

associated with Δi satisfies the estimates (2.2) with d = di, γ = γi, R = Ri, for all
i = 1, . . . , N . Let X = X1×· · ·×XN be the product space and let μ = μ1×· · ·×μN

be the product measure on X . We write x = (x1, . . . , xn) for elements in X ,
λ = (λ1, . . . , λN ) for elements in (0,∞)N and Δ = (Δ1, . . . ,ΔN ). Recall that
there is a unique spectral decomposition Pλ such that

(5.1) Pλu1 × u2 × · · · × uN = Pλ1 ⊗ Pλ2 ⊗ · · · ⊗ PλNu1 × · · · × uN ,

where u1 × · · · × un(x) = u1(x1)u2(x2) . . . uN(xN ),

Pλ1⊗Pλ2⊗· · ·⊗PλNu1(x1)u2(x2) . . . uN(xN ) = Pλ1u1(x1)Pλ2u2(x2) . . . PλNuN (xN ),

and Pλi is the spectral projection corresponding to the eigenvalue λi of −Δi.
Recall from [37] that if {φi

n} is an orthonormal basis for L2(μi) consisting of
compactly supported eigenfunctions of −Δi, then

φk1,...,kN (x) = φ1
k1
(x1) · · ·φN

kN
(xN ),

where ki ∈ Z for all i = 1, . . . , N , form an orthonormal basis for L2(μ). In this
case we write DN for the set of finite linear combinations of the φk1,...,kN .
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Definition 5.1. For m ∈ Z we define the symbol class Sm on X to consist of the
set of smooth functions p : (0,∞)N → C that satisfy the property that for every
α = (α1, . . . , αN ) ∈ NN there is a positive constant Cα such that

(5.2) λα
∣∣∣ ∂α

∂λα
p(λ)

∣∣∣ ≤ Cα(1 + λ)
m

d+1 ,

where λα = λα1
1 λα2

2 · · ·λαN

N , and

∂α

∂λα
p(λ) =

∂α1

∂λα1
1

· · · ∂αN

∂λαN

N

p(λ1, . . . , λN ).

Remark 5.2. Note that each λi is positive and we omit the absolute values of λ
in the above definition. Notice also that if p satisfies the condition (5.2) then it
also satisfies the condition

(5.3) |λ||α|
∣∣∣ ∂α

∂λα
p(λ)

∣∣∣ ≤ Cα(1 + λ)
m

d+1 ,

where |λ| = (λ2
1 + · · ·+ λ2

N )1/2 if λ ∈ (0,∞)N , and |α| = α1 + · · ·+ αN if α ∈ NN .
Condition (5.2) is usually called the Marcinkiewicz condition while (5.3) is the
Hörmander condition. Many authors define pseudo-differential operators on Eu-
clidean spaces or manifolds using the Hörmander condition. We chose to use
Marcinkiewicz condition in the definition because it is more general and it makes
the proof of the main theorem in this section more transparent.

If p : (0,∞)N → C is a bounded Borel function then we can define an opera-
tor p(−Δ) acting on L2(μ) via

(5.4) p(−Δ)u =

∫
(0,∞)N

p(λ)Pλ(u),

where Pλ is defined as in (5.1).

Definition 5.3. Form ∈ Z define the class ΨDON
m of pseudo-differential operators

on X to be the collection of operators p(−Δ) with p ∈ Sm.

The spectral theorem implies that, if m = 0, then p(−Δ) extends to L2(μ).
Moreover we will show that, as in the single variable case, these operators are
given by integration with respect to kernels that are smooth off the diagonal and,
if X is a product of fractafolds, they are Calderón–Zygmund operators on X . The
following is the main theorem of this section.

Theorem 5.4. Suppose that p ∈ S0, that is, p is smooth and

(5.5) λα
∣∣∣ ∂α

∂λα
p(λ)

∣∣∣ ≤ Cα

for all α = (α1, . . . , αN ) ∈ NN . Then p(−Δ), where Δ = (Δ1, . . . ,ΔN ), is given by
integration with respect to a kernel Kp that is smooth off the diagonal and satisfies

(5.6) |Kp(x, y)| �
N∏

k=1

Rk(xk, yk)
−dk
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and

(5.7)
∣∣Δβ1

x,iΔ
β2

y,jKp(x, y)
∣∣ � Ri(xiyi)

−β1(di+1)Rj(xj , yj)
−β2(dj+1)

N∏
k=1

R(xk, yk)
−dk ,

for all i, j = 1, . . . , N , where x = (x1, . . . , xN ), y = (y1, . . . , yN ) and Δx,i is the
Laplacian with respect to xi and Δy,j is the Laplacian with respect to yj.

Proof. For simplicity we prove the result for N = 2. The difference between
this and the general case is a matter of notation. We use the Littlewood–Paley
decomposition from [31], page 242, in each variable. Let δ be the smooth function
from the proof of Theorem 3.6 and let Dk be the bounds from (3.5). For n,m ∈ Z

define
pn,m(λ) = p(λ) δ(2−nλ1) δ(2

−mλ2),

where λ = (λ1, λ2) ∈ (0,∞)2. Then pn,m is a smooth function with

(5.8) supp pn,m ⊆ [2n−1, 2n+1]× [2m−1, 2m+1] for all n,m ∈ Z.

Let n,m ∈ Z be fixed. We use Leibniz’s formula to estimate the bounds on the
derivatives of pn,m. If α = (α1, α2) ∈ N2 then we have

∂α

∂λα
pn,m(λ) =

∂α1

∂λα1
1

∂α2

∂λα2
2

(
p(λ)δ(2−nλ1)δ(2

−mλ2)
)

=
∂α1δ(2−nλ1)

∂λα1
1

( α2∑
k=0

(
α2

k

)∂kp(λ)

∂λk
2

2−m(α2−k)δ(α2−k)(2−mλ2)
)

=

α1∑
j=0

α2∑
k=0

[(
α1

j

)(
α2

k

)( ∂(j,k)

∂λ(j,k)
p(λ)

)
2−n(α1−j)2−m(α2−k)

· δ(α1−j)(2−nλ1)δ
(α2−k)(2−mλ2)

]
.

Therefore, using (5.5) we obtain that∣∣∣ ∂α

∂λα
pn,m(λ)

∣∣∣ ≤ 2−nα12−mα2

∑
j,k

(
α1

j

)(
α2

k

)C(j,k) 2
nj 2mk

λj
1 λ2

k

≤ C(α) 2−nα1 2−mα2

∑
j,k

( α1

j

)( α2

k

)2nj2mk 2j+k

2nj 2mk

≤ C(α) 2−nα1 2−mα2

∑
j,k

( α1

j

)( α2

k

)
2j+k

= 3α1+α2 C(α) 2−nα1 2−mα2 =: Cα 2−nα1 2−mα2 ,(5.9)

where C(α) = maxC(j,k) and, in going from the first line to the second, we used

that λ1 ≥ 2n−1 and λ2 ≥ 2m−1. Define now fn,m(λ) = pn,m(2nλ1, 2
mλ2)e

λ1+λ2 .
Then

(5.10) supp fn,m(λ) ⊆ [1/2, 2]× [1/2, 2].
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If α = (α1, α2) ∈ N2 then using Leibniz’s rule one more time we obtain that

∂α

∂λα
fn,m(λ) =

∂α1

∂λα1

∂α2

∂λα2
2

(
pn,m(2nλ1, 2

mλ2)e
λ1+λ2

)
=

∂α1

∂λα1

( α2∑
k=0

(
α2

k

)
2mk

( ∂k

∂λk
2

pn,m(2nλ1, 2
mλ2)

)
eλ1+λ2

)

=

α1∑
j=0

α2∑
k=0

( α1

j

)( α2

k

)
2nj2mk ∂(j,k)

∂λ(j,k)
pn,m(2nλ1, 2

mλ2)e
λ1+λ2 .

Thus, using (5.9) and (5.10) we obtain that

∣∣∣ ∂α

∂λα
fn,m(λ)

∣∣∣ ≤
α1∑
j=0

α2∑
k=0

( α1

j

)( α2

k

)
2nj 2mk C(j,k) 2

−nj 2−mk e4

≤ C(α) 2α1+α2 e4 =: Aα.(5.11)

Therefore the Fourier transform of fn,m satisfies

∣∣∣( ∂α

∂λα
fn,m

)∧
(ξ)

∣∣∣ ≤ Bα

for all α ∈ N2, where Bα > 0, and, thus,

(5.12)
∣∣f̂n,m(ξ)

∣∣ ≤ Dα

(1 + ξ21)
α1(1 + ξ22)

α2

for all ξ = (ξ1, ξ2) ∈ R2 and α ∈ N2, where Dα are positive constants depending
only on α. Using the inverse Fourier transform we have

pn,m(2nλ1, 2
mλ2)e

λ1+λ2 =
1

2π

∫
f̂n,m(ξ) eiξ·λ dξ1 dξ2.

Therefore

pn,m(λ1, λ2) =
1

2π

∫
f̂n,m(ξ) e−λ1(2

−n−iξ12
−n) e−λ2(2

−m−iξ22
−m) dξ1 dξ2.

Thus by spectral theory we have

pn,m(−Δ)u1(x1)u2(x2)

=
1

2π

∫
f̂n,m(ξ) eΔ1(2

−n−iξ12
−n) u(x1) e

Δ2(2
−m−iξ22

−m) u(x2) dξ.

Hence the kernel of pn,m(−Δ) is

Kn,m(x, y) =
1

2π

∫
f̂n,m(ξ) h

(1)

2−n−iξ12−n(x1, y1) h
(2)

2−m−iξ22−m(x2, y2) dξ1 dξ2,
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for all x = (x1, x2), y = (y1, y2) ∈ X , where h(i) is the heat kernel corresponding
to Δi, i = 1, 2. Using inequalities (3.14) and (5.12) we obtain that

∣∣Kn,m(x, y)
∣∣ ≤ C(d, j) 2

nd1
d1+1

∫
exp

(
− cγR1(x, y)

(d1+1)γ2nγ1

2(1 + ξ21)
γ1+1

2

) 1

(1 + ξ21)
j
dξ1

· 2
md2
d2+1

∫
exp

(
− cγ2R2(x, y)

(d2+1)γ22mγ2

2(1 + ξ22)
γ2+1

2

) 1

(1 + ξ22)
k
dξ2,

for all j, k ≥ 1. Lemma (3.5) implies that (if we choose j and k large enough)∣∣Kp(x, y)
∣∣ = ∣∣∣ ∑

m∈Z

∑
n∈Z

Kn,m(x, y)
∣∣∣ ≤ C(d)R1(x1, y1)

−d1R2(x2, y2)
−d2 .

Repeating the above proof for the function qβ1,β2(λ) = λβ1

i λβ2

j p(λ), we obtain that
the kernel Kp(x, y) is smooth off the diagonal and satisfies the following estimates:∣∣Δβ1

x,iΔ
β2

y,jKp(x, y)
∣∣ ≤ C(d, β1, β2)R1(x, y)

−β1(d1+1)−d1R2(x2, y2)
−β2(d2+1)−d2 . �

Corollary 5.5. Assume that X is a product of fractafolds without boundary. If
p ∈ S0 then p(−Δ) is a Calderón–Zygmund operator and, thus, it extends to a
bounded operator on Lq(μ) for all 1 < q < ∞ and satisfies weak 1-1 estimates.

Proof. Theorem 5.4 and Theorem 6.1 of [19] imply that p(−Δ) is a Calderón–
Zygmund operator. �

Remark 5.6. The boundedness of p(−Δ) on Lq(μ) for all 1 < q < ∞ can be
deduced also from the results of [28].

Corollary 5.7. If p ∈ Sm then p(−Δ) is given by integration with respect to a
kernel that is smooth off the diagonal.

Example 5.8. Consider the Riesz potentials (see page 591 of [37])

Riu =
∑ λi

λ1 + · · ·+ λN
Pλ1 ⊗ Pλ2 ⊗ · · · ⊗ PλNu, i = 1, . . . , N.

Clearly pi(λ1, . . . , λN ) = λi/(λ1 + · · ·+ λN ), i = 1, . . .N , are in S0 and thus the
Riesz potentials are bounded on Lp(μ), for 1 < p < ∞, and are given by integration
with respect to smooth kernels.

6. Elliptic and hypoelliptic operators

In this section we specialize the set up of Section 5 to the case when X is the
product of N fractafolds without boundary. If Xi is not compact, we assume
that Δi has pure point spectrum. We still write λ = (λ1, . . . , λN ) ∈ (0,∞)N , x =
(x1, . . . , xN ) ∈ X and Δ = (Δ1, . . . ,ΔN ). We begin by extending the definition of
elliptic operators from Definition 8.2 in [25] to elliptic pseudo-differential operators.
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We show that any pseudo-differential operator satisfies the pseudo-local property
and the converse inclusion is also true for elliptic operators. In other words, we
prove that elliptic operators on fractals are hypoelliptic. These results give a
positive answer to some open questions posed in [36] and [25].

We use the theory of distributions on fractals as developed in [25] for our
definitions and results. Most of the results, however, are true for the more general
metric spaces that we consider in Section 2 if one replaces the word “distribution”
by “function” in what follows.

Recall that the space of test functions D(X) consists of all smooth functions
with compact support. The space of distributions on X is the dual space D′(X) of
D(X) with the weak-star topology (see Definition 4.1 in [25]). A distribution u is
smooth on the open set Ω ⊂ X (see Definition 8.1 in [25]) if there exists a smooth
function f on Ω such that

(6.1) 〈u, φ〉 =
∫

f φ dμ

for all φ ∈ D(Ω). If Ωu is the maximal open set on which u is smooth, then the
singular support of u is (see Definition 8.2 in [25])

sing supp(u) = X \ Ωu.

If p ∈ Sm then one can extend the definition of p(−Δ) to the space of distri-
butions via

〈p(−Δ)u, φ〉 = 〈u, p(−Δ)φ〉, for all φ ∈ D(X).

Definition 6.1. We say that p(−Δ) satisfies the pseudo-local property if

sing supp(p(−Δ)u) ⊆ sing supp(u).

Theorem 6.2. If p is in Sm then p(−Δ) satisfies the pseudo-local property.

Proof. Let u ∈ D′(X) and let Ku = sing supp(u). Then u|Ω is smooth, where
Ω = X \ Ku. We need to show that Pu|Ω is also smooth. Let K be be any
finite union of cells in Ω and let Ω′ the interior of K. We identify u|Ω with the
smooth functions given by (6.1). Then, using Theorem 7.7 in [25], we can find
a smooth function u1 such that u1|K = u|K , and u1|Ωc = 0. We write then
u = u1 + u2, where u2 is supported on Kc. Then Pu = Pu1 + Pu2. Since u1 is
smooth it follows that Pu1 is smooth. Therefore we only need to prove that Pu2|Ω′

is smooth. For this we are going to use the structure theorem for distributions
(Theorem 5.10 in [25]; see also the comments following Assumption 7.2 in the same
paper). Then u2 may be written as a locally finite sum of the form u2 =

∑
Δmjνj

or u2 =
∑

Δmj+1fj , where the νj are Radon measures and the fj are continuous
functions with compact support. Notice that the support of each νj is a subset
of Kc and, respectively, the support of each fj is a subset of Kc.
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Assume first that u2 =
∑

Δmjνj , where the νj are Radon measures, and let
φ ∈ D(Ω′). Then

〈p(−Δ)u2, φ〉 =
∑

j

∫
ΔmjPφ(x)dνj(x) =

∑∫
Δmj

∫
Kp(x, y)φ(y) dμ(y)dνj(x)

=

∫ ∑∫
ΔmjKp(x, y) dνj(x)φ(y) dμ(y),

where Kp is the kernel of p(−Δ) provided by Theorem 5.4. The above expres-
sion makes sense because the support of φ is a subset of Ω′, while the sup-
ports of νj are subsets of Kc. Since Kp is smooth it follows that the function
x �→ ∑∫

ΔmjKp(x, y)dνj(y) is smooth for all x ∈ Ω′. Thus p(−Δ)u2|Ω′ is smooth.
A similar proof shows that p(−Δ)u2|Ω′ is smooth if u2 =

∑
Δmj+1fj. It follows

that p(−Δ)u is smooth on Ω′. SinceK was chosen arbitrarily, we have that p(−Δ)u
is smooth on Ω. �

We turn now to the study of elliptic pseudo-differential operators. The first
part of the following definition is from Definition 8.4 in [25].

Definition 6.3. An elliptic polynomial of degree m on RN is a polynomial q of de-
gree m satisfying the property that there exist positive constants c and A such that

(6.2) |q(λ)| ≥ c |λ| m
d+1 for all λ ∈ R

N
+ such that |λ| ≥ A.

An elliptic differential operator on X is an operator q(−Δ) for some elliptic poly-
nomial q(λ). More generally, an elliptic pseudo-differential operator of order m
on X is a pseudo-differential operator p(−Δ) whose symbol p ∈ Sm satisfies (6.2).

Remark 6.4. Notice that we only require that condition (6.2) holds for nonneg-
ative values of λ1, . . . , λN . In particular, the polynomial p(λ) = λ1 + · · · + λN is
elliptic according to our definition.

Theorem 6.5. An elliptic pseudo-differential operator p(−Δ) is hypoelliptic, mea-
ning that

sing supp(p(−Δ)u) = sing supp(u).

Proof. Since p is elliptic the set of its zeros is compact and p(λ) 	= 0 for all λ ∈ RN

with |λ| ≥ A. Let ξ ∈ C∞ be a cut-off function which is 0 on a neighborhood
of the zeros of p and is 1 for |λ| ≥ A. Define p1(λ) = ξ(λ)/p(λ), so that p1(λ)
is zero on a neighborhood of the zeros of p. Then p(λ)p1(λ) = 1 if |λ| ≥ A.
Moreover p1 ∈ S−m, since for |λ| ≥ A we have that (see, for example, the proof of
Theorem 1.3 in [41])

∂α

∂λα
p1(λ) =

∑
α1+α2+···+αμ=α

∂α1

∂λα1 p(λ) · · ·
∂αμ

∂λαμ p(λ) · p(λ)1−μ.

Using Lemma 3.4 and Theorem 5.4 we have that

p1(−Δ)p(−Δ)u = u+Ru,

where R ∈ S−∞ has a smooth compactly supported symbol r(λ). Hence R is
infinitely smoothing. It follows that if Ω is an open set such that p(−Δ)u|Ω is
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smooth, then u|Ω = p1(−Δ)p(−Δ)u|Ω−Ru|Ω is smooth. Therefore sing supp(u) ⊆
sing supp(p(−Δ)u). Since the converse is provided by Theorem 6.2, it follows that
p(−Δ) is hypoelliptic. �

6.1. Quasi-elliptic operators

It is known ([6], [10]) that for some fractals the set of ratios of eigenvalues of the
Laplacian has gaps. That is, there are α < β such that λ/λ′ /∈ (α, β) for all λ 	= λ′

in the spectrum of −Δ. Consider the product X = X1 ×X2 of two copies of the
same fractafold without boundary that has a spectral gap (α, β). Let Δ1 and Δ2

be the Laplacian on the fractafold viewed as acting on X1 and, respectively, on X2.
As before, we write Δ = (Δ1,Δ2). For a real number a in (α, β) and ε > 0 define
the cone

Γa,ε =
{
(λ1, λ2) ∈ R

2
+ : |λ1 − aλ2| < ελ2

}
.

If a ∈ (α, β) then there is ε > 0 such that Γa,ε does not contain any pair of
eigenvalues of −Δ. Let G be the collection of such cones. Denote by G the
collection of cones in R2

+ that do not intersect any cone in G. Thus any pair
of eigenvalues of −Δ lies in some cone in G. Moreover, any pseudo-differential
operator will “live” on G, as we will make precise in Lemma 6.9.

Definition 6.6. We say that an m-symbol p is quasi-elliptic if it satisfies (6.2) for
all λ ∈ Γ and Γ ∈ G, with the constant A depending on Γ. A pseudo-differential
operator p(−Δ) is called a quasi-elliptic operator if p is a quasi-elliptic symbol.

Example 6.7. If a ∈ (α, β) then the operator Δ1−aΔ2 is a quasi-elliptic operator
([6], [28]). An intriguing consequence of the existence of spectral gaps is that, if
a ∈ (α, β), then the operator 1/(Δ1− aΔ2) is bounded on Lp(μ) for all 1 < p < ∞
(see [28]). The next proposition show that the quasi-elliptic operators are, in fact,
elliptic operators.

Proposition 6.8. A quasi-elliptic pseudo-differential operator p(−Δ) is equal to
an elliptic pseudo-differential operator.

This proposition follows immediately from the following lemma which says
that a quasi-elliptic symbol equals an elliptic symbol outside a cone contained in
the spectral gaps. Note that even if p(−Δ) is a differential operator, the elliptic
operator is only a pseudo-differential operator.

Lemma 6.9. Let p be a quasi-elliptic m-symbol. Then there is an elliptic m-symbol
p̃ such that p(λ) = p̃(λ) for all λ ∈ Γ and all Γ ∈ G.
Proof. Let a ∈ (α, β) and ε > 0 be such that the cone Γa,ε is a maximal cone in G
and let Γ = R2

+ \Γa,ε. Then Γ is a union of two simply connected cones. Since p is
quasi-elliptic, there are c > 0 and A > 0 such that |p(λ)| ≥ c|λ| for all λ ∈ Γ with
|λ| > A. Since ΓA := {λ ∈ Γ : |λ| > A} is a union of two disjoint simply connected
sets, we can define the function q(λ) = log p(λ). Let r(λ) and s(λ) be the real part
and the imaginary part, respectively, of q(λ). By hypothesis, r(λ) ≥ m

d+1 log |λ| for
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all λ ∈ ΓA. Let r̃(λ) and s̃(λ) be two smooth extensions of r(λ) and s(λ) such
that r̃(λ) ≥ m

d+1 log |λ| for all λ ∈ R
2
+ with |λ| > A. Let p̃(λ) = exp(r̃(λ) + is̃(λ))

and extend it so that p̃(λ) = p(λ) for all λ ∈ Γ. Then p̃ is the desired elliptic
m-symbol. �

Proof of Proposition 6.8. Let q be an elliptic symbol q such that p(λ) = q(λ) for
all λ ∈ Γ and all Γ ∈ G. Then q(−Δ) is an elliptic pseudo-differential operator.
Moreover, since p(λ) = q(λ) for all λ ∈ Λ1×Λ2 (where Λi is the spectrum of −Δi),
it follows from the definition that p(−Δ) = q(−Δ). Therefore p(−Δ) is equal to
an elliptic pseudo-differential operator. �

As an immediate consequence of the above proposition and Theorem 6.5 we
obtain the following corollary, which answers an open question posed in [25].

Corollary 6.10. A quasi-elliptic operator is hypoelliptic.

7. ρ-type symbols and pseudo-differential operators

In this section we define and study pseudo-differential operators for which the
derivatives of the symbols have lower rates of decay. These operators still have
kernels that are smooth off the diagonal, even though they might not be bounded
on Lq-spaces, as well-known examples in the Euclidean setting show. As an appli-
cation, we study the so called Hörmander type hypoelliptic operators and prove
that they are hypoelliptic in this more general setting. In the following we use
the set up of Section 3. The definitions and main theorem of this section can
be extended without difficulty to the product setting so we omit the details (see
Remark 7.5). In Subsection 7.1 we will use the fact that a result equivalent to
Theorem 7.3 holds for products of measure metric spaces.

Definition 7.1. For fixed m ∈ R and 0 ≤ ρ ≤ 1 define the symbol class Sm
ρ to be

the set of p ∈ C∞((0,∞)) with the property that for any k ≥ 0 there is Ck(ρ) > 0
such that ∣∣∣(λρ d

dλ

)k
p(λ)

∣∣∣ ≤ Ck(ρ)(1 + λ)
m

d+1 for all λ > 0.

Definition 7.2. Define the operator class ΨDOm
ρ by

p(−Δ)u =

∫ ∞

0

p(λ)P (λ)u for p ∈ Sm
ρ and u ∈ D.

Theorem 7.3. Let 1
γ+1 < ρ ≤ 1 and let p : (0,∞) → C be an S0

ρ-symbol, that is,

for each k ≥ 0 there is Ck(ρ) > 0 such that

(7.1)
∣∣∣λρk ∂k

∂λk
p(λ)

∣∣∣ ≤ Ck(ρ).

Then p(−Δ) has a kernel K(x, y) that is smooth off the diagonal of X ×X.

Proof. The proof of this theorem follows the lines of the proof of Theorem 3.6. We
will present the main steps of the proof skipping the computations, as they are very
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similar. Let δ be the function from the Littlewood–Paley decomposition and let
pn(λ) = p(λ)δ(2−nλ). Then supp pn ⊆ [2n−1, 2n+1] and∣∣∣ dk

dλk
pn(λ)

∣∣∣ � 2−nρk for all k ≥ 0.

Define p̃n(λ) = pn(2
nρλ). Then supp p̃n ⊆ [2n(1−ρ)−1, 2n(1−ρ)+1] and for each

k ≥ 0 there is a constant Ck(ρ) > 0 such that∣∣∣dkp̃n(λ)
dλk

∣∣∣ ≤ Ck(γ).

Let fn(λ) = p̃n(λ)e
λ

2n(1−ρ) . Since e
λ

2n(1−ρ) ≤ e2 for all λ ∈ [2n(1−ρ)−1, 2n(1−ρ)+1],
it follows that for each k ≥ 0 there is a constant Ak(γ) > 0 independent of n such
that ∣∣∣dkfn(λ)

dλk

∣∣∣ ≤ Ak(γ).

Therefore
|ξkf̂n(ξ)| � 1 for all k ≥ 0.

In particular we have that for each k ≥ 0 there is a constant Dk(γ) independent
of n such that

(7.2) |f̂n(2n(ρ−1)ξ)| ≤ Dk(γ)2
2nk(1−ρ)

(1 + ξ2)k
for all k ≥ 0.

Using the Fourier inversion formula we have that

pn(2
nρλ)e

2nρλ
2n =

1

2π

∫
f̂n(ξ) e

iλξ dξ.

Therefore

pn(λ) =
1

2π

∫
f̂n(ξ) e

−λ(2−n−iξ2−nρ) dξ =
1

2π

∫
f̂n(ξ) e

−λ2−n (1−iξ2−n(ρ−1)) dξ,

which, using the substitution u = ξ 2−n(ρ−1), becomes

pn(λ) =
2n(ρ−1)

2π

∫
f̂n

(
2n(1−ρ)ξ

)
e−λ2−n(1−iξ)dξ.

Thus the kernel of pn(−Δ) equals

Kn(x, y) =
2n(ρ−1)

2π

∫
f̂n

(
2n(1−ρ)ξ

)
h2−n−iξ2−n(x, y) dξ.

Using the estimates (3.14) and (7.2) we obtain that

|Kn(x, y)| � 2
n

d+1 (d+(1−ρ)(d+1)(2j−1))

·
∫

exp
(
− cγ

2
R(x, y)(d+1)γ 2nγ (1 + ξ2)−

γ+1
2

) 1

(1 + ξ2)j
dξ,
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for all j ≥ 0. Lemma 3.5 implies that if we pick j such that

j ≥ (d+ (1− ρ)(d+ 1)(2j − 1)(γ + 1)

2γ(d+ 1)
+

1

2

then K(x, y) =
∑

n Kn(x, y) converges. We can pick a positive j in the equation
above provided that ρ > 1/(γ + 1). Then it follows that the kernel K satisfies the
estimates

|K(x, y)| � R(x, y)−
dγ

ρ(γ+1)−1 .

A similar argument for q(λ) = λjp(λ), j ≥ 1, shows that K is smooth off the
diagonal. �

Corollary 7.4. If 1/(γ + 1) < ρ ≤ 1 and p ∈ Sm
ρ then the kernel of p(−Δ) is

smooth off the diagonal.

Proof. The proof is very similar to that of Corollary 3.9. �

Remark 7.5. Note that for ρ < 1 the operators p(−Δ) are not Calderón–Zygmund
operators and they might not extend to Lq for all values of q. Also, one can easily
extend the definition to product of fractals and adapt the proof of Theorem 5.4 to
show that the kernel of a pseudo-differential operator of type ρ with 1/(γ + 1) <
ρ ≤ 1 is smooth off the diagonal.

7.1. Hörmander type hypoelliptic operators

Let X be a product of N measure metric space as in Section 5. Recall that we
write Δ = (Δ1, . . . ,ΔN ).

Definition 7.6. ([17]) We say that a smooth map p : (0,∞)N → C is a Hörmander
type hypoelliptic symbol if there are ε > 0 and A > 0 such that

(7.3)
∣∣∣ ∂α

∂λα p(λ)

p(λ)

∣∣∣ ≤ cα|λ|−ε|α| for |λ| ≥ A,

where cα are positive constants for all α ∈ NN .

Theorem 7.7. Suppose that p is a Hörmander type hypoelliptic symbol with ε >
1/(γ + 1). Then p(−Δ) is hypoelliptic.

Proof. We know from (7.3) that the set of zeros of p is compact. Let ϕ be a smooth
function that is 0 on a neighborhood of the zeros of p and ϕ(λ) = 1 if |λ| ≥ A. Set
q(λ) = ϕ(λ)p(λ)−1. Then, if |λ| ≥ A,

∂α

∂λα
q(λ) =

∑
α1+···+αμ=α

∂α1

∂λα1
p(λ) · · · ∂αμ

∂λαμ
p(λ) · p(λ)1−μ,

It follows that q ∈ S0
ε . Since q(λ)p(λ) = 1 if |λ| ≥ A we have that

q(−Δ)p(−Δ) = u+Ru,

where R is an infinitely smoothing operator. Theorem 7.3 implies that p(−Δ) is
hypoelliptic. �
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8. Wavefront set and microlocal analysis

In this section we initiate the study of microlocal analysis on fractals. Namely,
we define the wavefront sets on fractals and provide a few concrete examples.
As in classical harmonic analysis, the wavefront sets contain information about
the singularities of distributions. We show that, in general, a pseudo-differential
operator reduces the wavefront set. If the operator is elliptic, then the wavefront
set remains unchanged. This is just a beginning of this study. We expect that
the wavefront set will play an important role in the future, but we cannot expect
analogues of classical results showing that the wavefront set controls propagation
of singularities for space-time equations, as there are localized eigenfunctions which
prevent singularities from propagating at all. We continue to assume the set up
and notations of Section 6. Namely, X is the product of N fractafolds without
boundary, μ is the product measure on X , and Δ = (Δ1, . . . ,ΔN ). In addition,
we assume in this section that each fractafold Xi is compact.

Definition 8.1. Let Γ denote an open cone in RN
+ and Ω an open set in X . We

use ϕαk
to denote L2 normalized eigenfunctions corresponding to eigenvalues λαk

,
and set λα = λα1 + · · · + λαN . A distribution u is defined to be C∞ in Ω × Γ if
it can be written on Ω as a linear combination of eigenfunctions with coefficients
having faster than polynomial decay over the eigenvalues in Γ. More precisely,
there is a sequence bn and a function v with v|Ω = u that has the form

(8.1) v =
∑
α

cα ϕα1 ⊗ ϕα2 ⊗ · · · ⊗ ϕαN ,

for values cα such that |cα| ≤ bn(1+λα)
−n/(d+1) for all n and all {λα1 , . . . , λαN } ∈ Γ.

We define the wavefront set of u, WF(u), to be the complement of the union of
the sets where u is C∞.

Remark 8.2. If u is a smooth function onX then WF(u) is empty. More generally,
sing suppu is the projection of WF(u) onto X .

Remark 8.3. If the fractals Xi have gaps in the set of ratios of eigenvalues, then
there are special cones Γ for which every u is C∞ on X ×Γ because Γ contains no
eigenvalues (see Subsection 6.1).

Proposition 8.4. If p ∈ Sm then WF(p(−Δ)u) ⊆ WF(u). If in addition p(−Δ)
is elliptic then WF(p(−Δ)u) = WF(u).

Proof. Let u be a distribution on X and suppose that Ω is an open subset of X
and Γ is an open cone in RN

+ such that u is C∞ in Ω × Γ. Let v be as in (8.1).
Then Pv|Ω = Pu and

Pv =
∑
α

cα p(λα1 , . . . , λαN )ϕα1 ⊗ · · · ⊗ ϕαN ,

with |cαp(λα1 , . . . , λαN )| ≤ bn(1 + λα)
−(n−m)/(d+1) for all {λα1 , . . . , λαN } ∈ Γ.

Thus Pu is C∞ in Ω× Γ and, since Ω and Γ were arbitrary, WF(Pu) ⊆ WF(u).
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If P is elliptic then we can write, as in the proof of Theorem 6.5, u = P1Pu+Ru,
where P1 is a pseudo-differential operator of order −m and R is a smoothing
operator. The conclusion follows immediately from this. �

Example 8.5. Let N = 2 and let u = u1⊗u2 be a tensor product of distributions.
From the definition u is C∞ on

(
(sing suppu1)

c × (sing suppu2)
c
) × R

+
2 , thus

WF(u) is a subset of the complement of this set. It is also easy to check that(
sing supp(u1)× sing supp(u2)

)× R
+
2 ⊆ WF(u).

Let x1 ∈ X1 and x2 ∈ X2 and suppose that u1 is smooth near x1 but x2 ∈
sing supp(u2). Then there is a smooth function v1 on X1 and a neighborhood Ω1

of x1 such that u1 = v1 on Ω1. Moreover we can write v1 =
∑

j cjϕj with the
Fourier coefficients cj decaying faster than any polynomial (Theorem 3.5 in [25]).
Therefore for any n ∈ N there is bn,j > 0 such that

|cj | ≤ bn,j (1 + λj)
−n.

Also u2 =
∑

k c
′
kϕk, where the coefficients c′k = 〈u2, ϕk〉 have at most polynomial

growth (Lemma 4.4 in [25]). Thus for every k ∈ N there are mk ∈ N and b′k > 0
such that

|c′k| ≤ b′k (1 + λk)
mk .

Define
v = v1 ⊗ u2 =

∑
cj c

′
k ϕj ⊗ ϕk

and let Γ be a cone in R2
+ \ {y − axis}. Then there is M > 0 such that for all

(λ′, λ′′) ∈ Γ we have that |λ′′| ≤ M |λ′|. Therefore
|cj c′k| ≤ bn,j (1 + λj)

−n b′k (1 + λk)
mk

≤ Mmk bn,j b
′
k (1 + λj)

−n+mk ≤ C(M, j, k)(1 + λj + λk)
−n+mk ,

and thus u is C∞ on (Ω1 ×X2)× Γ.
Similarly, one can show that if x1 ∈ sing suppu1 and u2 is smooth near x2,

then u is C∞ on (X1 × (sing supp(u2))
c) × Γ for all cones Γ in R2

+ \ {x − axis}.
Therefore,

WF(u) =
(
sing supp(u1)× sing supp(u2)

)× R
2
+⋃(

(sing supp(u1))
c × sing supp(u2)

)× {y − axis}⋃(
sing supp(u1)× (sing supp(u2))

c
)× {x− axis}.

Example 8.6. We continue to assume that N = 2. Let x = (x1, x2) ∈ X and let
{(j, k)} be a sequence such that the maps ϕj ⊗ ϕk are supported in a decreasing
sequence of neighborhoods of x. Let {cjk} be any sequence of real numbers and
define u =

∑
cjkϕj ⊗ϕk. Let Ω be an open subset of X such that there is an open

neighborhood V of x so that Ω
⋂
V = ∅. Then there are only a finite number of

indices (j, k) with the property that suppϕj ⊗ϕk

⋂
Ω 	= ∅. It follows that u is C∞

on Ω×R
2
+. Since Ω was arbitrary, it follows that WF(u) ⊆ {x} ×R

2
+. Let Γ be a

cone in R2
+. Define cjk = 1 if (λj , λk) ∈ Γ and set cjk to be zero otherwise. Then

for u =
∑

cjkϕj ⊗ ϕk we have that WF(u) = {x} × Γ.
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More generally, let K be any compact subset of X2. Let {(j, k)} be a se-
quence such that ϕj ⊗ ϕk is supported in a decreasing sequence of neighborhoods
of K. Then if u =

∑
cjkϕj ⊗ ϕk, with {cjk} an arbitrary sequence, we have that

WF(u) ⊆ K×R2
+. If Γ is a cone in R2

+ and we define cjk as before, we obtain that
WF(u) = K × R2

+.

9. Pseudo-differential operators with variable coefficients

The symbols of the operators studied in the previous section are independent of
the x variable. These symbols are also known as constant coefficient symbols, and
the corresponding operators are the constant coefficient operators. In this section
we extend our study to operators whose symbols depend on both the λ and x
variables. We call them pseudo-differential operators with variable coefficients.
The main difficulty in studying these operators is the fact that for a large class of
fractals the domain of the Laplacian is not closed under multiplication [5]. This
implies in our case that the symbolic calculus is not valid for the pseudo-differential
operators with variable coefficients. Namely, the product of two symbols in the
sense of Definition 9.1 is no longer smooth and it cannot be a symbol of a pseudo-
differential operator. Another consequence of this fact is that the kernels of these
operators cannot be smooth. Nevertheless, we conjecture that these are Calderón–
Zygmund operators in the sense of [31], [19]. We prove, in fact, that the kernels of
these operators are continuous off the diagonal and decay correctly off the diagonal.
Moreover, we show that these operators are bounded on Lq(μ) for all 1 < q < ∞.

We can define the operators if X is either a compact fractafold without bound-
ary based on a self-similar nested fractal K, or an infinite blow-up of K without
boundary. However we prove the main properties in the case when X is compact.
We continue to write D for the set of finite linear combinations of eigenvalues
of −Δ with compact support and Λ for the spectrum of −Δ. We also assume that
the heat kernel satisfies the upper estimate (2.2).

Definition 9.1. For m ∈ R we define the symbol class Sm to consist of the
smooth functions p : X × (0,∞) → C such that for each k ∈ N there is a positive
constant Cj,k such that

(9.1)
∣∣∣(λ ∂

∂λ

)k

Δj
xp(x, λ)

∣∣∣ ≤ Cj,k(1 + λ)
m

d+1 .

For λ ∈ Λ we set Pλ to be the corresponding spectral projection.

Definition 9.2. We define the operator class of pseudo-differential operators with
variable coefficients ΨDOm by

p(x,−Δ)u(x) =
∑
λ∈Λ

∫
p(x, λ)Pλ(x, y)u(y) dy for p ∈ Sm and u ∈ D.

In the remainder of this section we will assume that X is a compact fractafold
without boundary. Recall that the set of eigenvalues is countable and the only
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accumulation point is ∞. Let Λ = {λ1 ≤ λ2 ≤ · · · } be the set of eigenvalues
of −Δ in nondecreasing order (repeated according to multiplicity). Let {φk}k∈N

be an orthonormal basis of L2(μ) consisting of compactly supported eigenfunctions.

Theorem 9.3. Suppose that X is a compact fractafold with no boundary and p∈S0.
Then the operator Tu(x) = p(x,−Δ)u(x) extends to a bounded operator on L2(μ).

Proof. Define

T̃ u(x, z) =
∑
λ∈Λ

∫
p(z, λ)Pλ(x, y)u(y)dy.

Then

|Tu(x)| = |T̃ u(x, x)| ≤ sup
z

|T̃ u(z, x)| ≤ ∥∥(I −Δz)
d

2(d+1) T̃ u(·, x)∥∥
2
,

where the last inequality is the Sobolev inequality. So ‖Tu‖22 ≤ ‖(I −Δz)T̃ u‖22. If
p ∈ S0 then Δzp ∈ L∞ because X is compact. Then the result follows. �

Remark 9.4. The method of proof for the above theorem is adapted from [33].

Let K(x, y) be the distributional kernel of T . Recall that we cannot expect
that K is smooth off the diagonal, because the domain of the Laplacian is not, in
general, closed under multiplication. The best result one can expect is that K is
continuous off the diagonal. We prove that this is true in the following theorem.

Theorem 9.5. Suppose that X is a compact fractafold with no boundary and
p ∈ S0. Then the operator Tu(x) = p(x,−Δ)u(x) is given by integration against
a kernel that is continuous off the diagonal and satisfies the estimate

(9.2) |K(x, y)| � R(x, y)−d.

Proof. Since the map x �→ p(x, λ) is smooth for all λ ∈ R+, it follows that we can
write

(9.3) p(x, λ) =
∞∑
k=0

mk(λ)φk(x),

where mk(λ) = 〈p(·, λ), φk〉, for all λ ∈ R+. We claim that m̃k,n(λ) := λn
kmk(λ) is

a 0-symbol with constant coefficients, for all k, n ∈ N. For j ≥ 0 we have

λj d
jm̃k,n(λ)

dλj
=

∫
λj ∂j

∂λj
p(x, λ)λn

kφk(x) dμ(x)

=

∫
λj ∂j

∂λj
p(x, λ)(−Δ)nφk(x) dμ(x) =

∫
λj(−Δ)n

∂j

∂λj
p(x, λ)φk(x) dμ(x),

using the Gauss–Green formula. The estimates (9.1) imply that

(9.4)
∣∣∣λj d

jm̃k,n(λ)

dλj

∣∣∣ ≤ Cj,n

∫
|φk(x)| dμ(x) ≤ Cj,n μ(X)1/2.

Thus m̃k,n(λ) is a 0-symbol. Notice that the constants in (9.4) are independent
of k. Now Theorem 4.5.4 of [21] (and the comments following it) implies that there
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is a positive constant c and a real number α such that

(9.5) ‖φk‖∞ ≤ cλα
k for all k ≥ 0.

Let n ≥ 0 be such that the series S :=
∑

k λ
α−n
k converges. For u ∈ D we can

write then

Tu(x) =
∑
j

∑
k

mk(λj)φk(x)Pλju(x)

=
∑
k

φk(x)

λn
k

∑
j

m̃k,n(λj)Pλju(x) =
∑
k

φk(x)

λn
k

m̃k,n(−Δ)u(x),

where m̃k,n(−Δ) is the pseudo-differential operator of order 0 attached to m̃k,n.
Theorem 3.6 and the estimates (9.4) imply that m̃k,n(−Δ) is given by integration
with respect to a kernel Kk,n(x, y) that is continuous (and smooth) off the diagonal
and satisfies the estimate

(9.6) |Kk,n(x, y)| ≤ C ·R(x, y)−d,

where C is a positive constant that is independent of k. Then

Tu(x) =

∫ ∑
k

φk(x)

λn
k

Kk,n(x, y)u(y) dμ(y).

Thus it suffices to prove that

K(x, y) =
∑
k

φk(x)

λn
k

Kk,n(x, y)

is well defined and continuous. The estimates (9.6) imply that

|K(x, y)| ≤ C · R(x, y)−d
∑
k

λα
k

λn
k

= CS ·R(x, y)−d.

Thus K(x, y) is continuous off the diagonal and (9.2) holds. �

We conjecture that the kernel K of a pseudo-differential operator p(x,−Δ) of
order 0 is a Calderón–Zygmund operator in the sense of Section I.6.5 in [31]. Even
though we are unable at this point to prove this claim, we can, nevertheless, show
that these operators are bounded on Lq(μ), for all 1 < q < ∞.

Theorem 9.6. Suppose that X is a compact fractafold with no boundary and
p ∈ S0. Then the operator Tu(x) = p(x,−Δ)u(x) extends to a bounded operator
on Lq(μ) for all 1 < q < ∞.

Proof. Fix 1 < q < ∞ and let r be such that 1/q + 1/r = 1. Let u ∈ D and
let m̃k,n be as in the proof of Theorem 9.5. Recall that m̃k,n is a symbol of order 0
with constant coefficients, and

Tu(x) =
∑
k

φk(x)

λn
k

m̃k,n(−Δ)u(x) for all n ≥ 0.
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Recall from inequality (9.5) that there is α such that ‖φk‖∞ ≤ cλα
k for some

positive constant c. Let n ≥ 0 be such that the series S1 =
∑

k λ
r(α−n/2)
k and

S2 =
∑

k λ
−nq/2
k converge. The estimates (9.4) and Corollary 3.7 imply that

m̃k,n(−Δ) is a bounded operator on Lq(μ) with a bound independent of k. Then,
the Hölder inequality implies that

‖Tu‖qq =
∫ ∣∣∣∑

k

φk(x)

λn
k

m̃k,n(−Δ)u(x)
∣∣∣q dμ(x)

≤
∫ (∑

k

∣∣∣φk(x)

λ
n/2
k

m̃k,n(−Δ)u(x)

λ
n/2
k

∣∣∣)q

dμ(x)

≤
∫ (∑

k

|φk(x)|r
λ
nr/2
k

)q/r

·
(∑

k

|m̃k,n(−Δ)u(x)|q
λ
nq/2
k

)
dμ(x)

≤ cq
∫ (∑

k

λ
r(α−n/2)
k

)q/r ∑
k

|m̃k,n(−Δ)u(x)|q
λ
nq/2
k

dμ(x)

= cqS1

∑
k

1

λ
nq/2
k

∫ ∣∣m̃k,n(−Δ)u(x)
∣∣q dμ(x) ≤ C(n)S1S2‖u‖qq.

Thus T extends to a bounded operator on Lq(μ). �
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