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An operator inequality for weighted

Bergman shift operators

Anders Olofsson and Aron Wennman

Abstract. We prove an operator inequality for the Bergman shift opera-
tor on weighted Bergman spaces of analytic functions in the unit disc with
weight function controlled by a curvature parameter α assuming nonnega-
tive integer values. This generalizes results by Shimorin, Hedenmalm and
Jakobsson concerning the cases α = 0 and α = 1. A naturally derived scale
of Hilbert space operator inequalities is studied and shown to be relaxing
as the parameter α > −1 increases. Additional examples are provided in
the form of weighted shift operators.

0. Introduction

By a weight function ω in the open unit disc D in the complex plane we understand
a nonnegative area integrable function ω in D. We shall be concerned with weight
functions ω in D having the additional property that the function

D � z �→ log(ω(z)/(1− |z|2)α)
is subharmonic in D. Here α is a real parameter and log denotes the usual log-
arithm. As a matter of terminology let us call such a weight function ω log-sub-
harmonic of order α. For α = 0 we recover in this way the usual notion of log-
subharmonicity. We mention that weight functions of this type are natural from
the geometric point of view in that log-subharmonicity of order α correspond to a
natural curvature condition for the metric

ds(z)2 = ω(z) |dz|2, z ∈ D,

as has been emphasized by Hedenmalm, Shimorin and others [7], [8], [9], and [21].
For ω as above we denote by A2

ω(D) the Bergman space of functions f analytic
in D with finite norm

‖f‖2ω =

∫
D

|f(z)|2 ω(z) dA(z) < +∞,
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where dA(z) = dx dy/π, z = x + iy, is the usual planar Lebesgue area measure
normalized by a factor 1/π. It is known that the Bergman space A2

ω(D) is a Hilbert
space of analytic functions in D in the usual sense that evaluations at points in D

are continuous linear functionals on A2
ω(D) (see Section 2 of [5] for details). It is

clear that A2
ω(D) contains all analytic polynomials.

We denote by S = Sω the shift operator, which is the operator on A2
ω(D)

defined by

(Sf)(z) = zf(z), z ∈ D,

for f ∈ A2
ω(D). It is evident that the operator S is a contraction on A2

ω(D) which
is pure in the sense that the intersection of the ranges of the positive powers of S
is the zero subspace {0}.

In this paper we show that the shift operator S satisfies the operator inequality

(0.1) ‖f + (α+ 1)Sg‖2ω ≤ (α+ 2) (‖Sf‖2ω + ‖g‖2ω + α‖Sg‖2ω)

for all f, g ∈ A2
ω(D) whenever the weight function ω is log-subharmonic of integer

order α ≥ 0 in the sense explained above (see Theorem 3.3). An interesting feature
of (0.1) is that such an inequality remains stable when passing to restrictions of S to
shift invariant subspaces. For α = 0, inequality (0.1) gives the celebrated inequality

(0.2) ‖f + Sg‖2ω ≤ 2 (‖Sf‖2ω + ‖g‖2ω), f, g ∈ A2
ω(D),

of Hedenmalm, Jakobsson and Shimorin (see Proposition 6.4 in [5]), which is valid
when the weight ω is log-subharmonic in D. The case α = 1 of (0.1) is due to
Shimorin (Proposition 4.7 in [19]). For integers α ≥ 2 the result appears to be
new. The proof of (0.1) is accomplished by applications of Green’s formula and
approximation of weight functions and builds on methods and ideas from [5].

We mention that inequality (0.2) contains a significant portion of Bergman
space theory for the unit disc such as contractive divisor properties for Bergman
inner functions, approximation theorems of wandering subspace type, and struc-
ture formulas for normalized reproducing kernel functions. For information on
such applications we refer to the papers [2], [5], [12], [13] or [19]. We mention also
that related operator identities have found application in the study of Toeplitz
operators [11], [16] and the calculation of operator-valued Bergman inner func-
tions [14], [15]. A principal motivation for these developments has been the ground
breaking paper [3] of Aleman, Richter and Sundberg.

Let α > −1 be a real parameter. Motivated by (0.1) we consider bounded
Hilbert space operators T ∈ L(H) satisfying the inequality

(0.3) ‖x+ (α + 1)Ty‖2 ≤ (α+ 2) (‖Tx‖2 + ‖y‖2 + α‖Ty‖2)

for all x, y ∈ H. Building on work of Shimorin [19] we show that inequality (0.3) has
a certain dual formulation (see Theorem 4.1) which leads to an operator inequality
for the so-called Cauchy dual T ′ = T (T ∗T )−1 of an operator T satisfying (0.3) (see
Theorem 4.3). Furthermore, we show that inequality (0.3) relaxes as the parame-
ter α increases (see Theorem 4.2). In the parameter range −1 < α < 0 this analysis
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gives that the Cauchy dual T ′ of an operator T satisfying (0.3) satisfies an inequal-
ity slightly stronger than the concavity inequality of Richter [18]. In particular this
yields that such an operator T is a contraction (see Proposition 4.5).

In order to increase our supply of examples of operators satisfying (0.3) we
consider the shift operator S = Sw acting on a weighted �2-space of sequences
square summable with respect to a positive weight sequence w = {wk}k≥0. We
characterize in terms of the weight sequence w = {wk}k≥0 when the operator
T = Sw satisfies (0.3) (see Theorem 5.1). Furthermore, using this characterization
of weight sequences, we show that, when the operator T = Sw satisfies (0.3), the
weighted shift operator Sw is a hyponormal contraction with spectrum equal to
the closed unit disc D̄ (see Propositions 5.3 and 5.4).

To conclude the paper we consider weight functions of the form

ωθ,β(z) =
Γ(θ + β + 2)

Γ(θ + 1)Γ(β + 1)
|z|2θ (1 − |z|2)β , z ∈ D,

where θ, β > −1 are real parameters and Γ is the gamma function. The nor-
malization factor is inserted to ensure that

∫
D
ωθ,β dA = 1. As an application of

our analysis of weight sequences we show that the shift operator Sθ,β = Sωθ,β
on

the space A2
θ,β(D) = A2

ωθ,β
(D) satisfies the inequality (0.1) if and only if β ≤ α

and θ + 1 ≥ (β + 1)/(α + 1) (see Proposition 5.5). This extends the supply of
weights for which inequality (0.1) can be efficiently checked and exemplifies the
fact that inequality (0.3) singles out distinct classes of operators for distinct values
of the parameter α > −1.

1. Properties of weight functions

We shall consider in this section weight functions ω in D such that the func-
tion ω(z)/(1 − |z|2)α is log-subharmonic in D. We call such weight functions
log-subharmonic of order α. We shall first establish pullback invariance of such
weights. We denote by Δ = ∂∂̄ the normalized Laplacian, where

∂z =
1

2

( ∂

∂x
+

1

i

∂

∂y

)
and ∂̄z =

1

2

( ∂

∂x
− 1

i

∂

∂y

)

are the usual complex derivatives.

Lemma 1.1. Let ϕ be an analytic function mapping the unit disc D into itself.
If the weight ω is log-subharmonic of real order α ≥ 0, then so is ω ◦ ϕ.
Proof. By straightforward calculation we find that

Δz log
( ω(ϕ(z))

(1− |z|2)α
)
= Δz log

( ω(ϕ(z))

(1− |ϕ(z)|2)α
)

(1.1)

+ α
( 1

(1 − |z|2)2 − |ϕ′(z)|2
(1− |ϕ(z)|2)2

)
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for z ∈ D. The first term on the right-hand side in (1.1) is nonnegative by pullback
invariance of subharmonic functions (see Theorem 2.7.4 in [17]). Since α ≥ 0, the
second term on the right-hand side in (1.1) is nonnegative by the invariant form of
the Schwarz lemma which says that |ϕ′(z)|/(1 − |ϕ(z)|2) ≤ 1/(1− |z|2) for z ∈ D

(see Section IX.2 of [4]). �

For a weight ω in D and 0 < r < 1 the dilated weight ωr is the weight in D

defined by

(1.2) ωr(z) = ω(rz), z ∈ D.

In particular, it follows from Lemma 1.1 that if the weight ω is log-subharmonic
of real order α ≥ 0, then so is ωr.

Lemma 1.2. Let ω be a weight function in D of the form

ω(z) = (1− |z|2)α u(z), z ∈ D,

where u is subharmonic in D and α > −1. Then

lim
r→1

∫
D

∣∣(1 − |z|2)α u(rz)− ω(z)
∣∣ dA(z) = 0.

Proof. It is well known that the integral means of a subharmonic function increase
with the radius (see Theorem 2.6.8 in [17]). By this we have that

∫
D

(1− |z|2)α u(rz) dA(z) ≤
∫
D

ω(z) dA(z)

for 0 < r < 1. The conclusion of the lemma now follows by a well-known approxi-
mation result from integration theory (see Lemma 3.17 in [6]). �

We now devise a method for the approximation of log-subharmonic real non-
negative order weight functions.

Theorem 1.3. Let ω be a weight function in D which is log-subharmonic of real
order α ≥ 0. Then for every ε > 0 there exists a weight function ω̃ in D of the
form

(1.3) ω̃(z) = (1− |z|2)α ωα(z), z ∈ D,

with ωα log-subharmonic in D and C∞-smooth in the closed disc D̄ such that∫
D
|ω − ω̃| dA < ε.

Proof. Let ε > 0 be given. Following Section 4 of [5], we can approximate ω in
the L1(D, dA)-norm with a weight function of the form

w(z) =

∫
aut(D)

Φ(ϕ)ω ◦ ϕ(z) |ϕ′(z)|2 dϕ,
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where aut(D) is the automorphism group of the unit disc, dϕ is the Haar measure
on aut(D), and Φ is an appropriate nonnegative smooth function on aut(D). The
smoothness of w in D is inherited from the smoothness of Φ. In particular, we can
arrange that

∫
D
|ω−w| dA < ε/2 with such a weight w. By Lemma 1.1 and the well-

known fact that log-subharmonic functions constitute a cone (see Corollary 1.6.8
in [10]), the function w constructed in this way is log-subharmonic of order α ≥ 0.
Applying the regularization procedure from Lemma 1.2 we obtain a weight ω̃ of
the desired form (1.3) such that

∫
D
|ω̃ − w| dA < ε/2. Now

∫
D
|ω − ω̃| dA < ε. �

The approximation result Theorem 1.3 is inspired by the developments in
Hedenmalm, Jakobsson and Shimorin (see Section 4 of [5]) and is a convenient
device to have available for the proof of inequality (0.1).

2. Calculation of Laplacians

In this section we have collected some calculations needed for the proof of inequal-
ity (0.1). In order to explain matters more carefully we proceed in more generality
and discuss the case of real α > −1, when this is possible.

Recall that the Laplacian of a radial function

u(z) = h(|z|2), z ∈ D \ {0},
takes the form

Δu(z) = |z|2 h′′(|z|2) + h′(|z|2), z ∈ D \ {0},
where Δ = ∂∂̄.

Lemma 2.1. Let α ∈ R be real and consider the function

u(z) = (1− |z|2)α+2, z ∈ D.

Then
Δu(z) = (α+ 2)(1− |z|2)α ((α + 2)|z|2 − 1), z ∈ D.

Proof. Straightforward calculation. �

We next introduce a family of functions fα,n that will be useful in our investi-
gations.

Lemma 2.2. Let α > −1 be real and n ≥ 1 a positive integer. Consider the
function

fα,n(x) = xn

∫ 1

0

tα+1

(1 − t(1− x))n+1
dt, 0 < x < 1,

and set

u(z) = (1− |z|2)α+2 fα,n(|z|2)
zn

, z ∈ D \ {0}.
Then

Δu(z) = (α+ 1)
1

zn
(1− |z|2)α, z ∈ D \ {0}.
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Proof. We shall solve the differential equation

Δz(v(|z|2)/zn) = (1− |z|2)α/zn, z ∈ D \ {0},

with boundary conditions v(1) = 0 and v′(1) = 0. Differentiating we have

∂̄z(v(|z|2)/zn) = v′(|z|2)/zn−1, z ∈ D \ {0},

and

Δz(v(|z|2)/zn) = (|z|2 v′′(|z|2)− (n− 1) v′(|z|2))/zn, z ∈ D \ {0}.

We are now led to consider the ODE

xv′′(x)− (n− 1)v′(x) = (1− x)α, 0 < x < 1.

Solving for v′ using v′(1) = 0 we have

v′(x) = −xn−1

∫ 1

x

(1 − t)α

tn
dt, 0 < x < 1.

Solving for v using v(1) = 0 we have

v(x) =

∫ 1

x

(
sn−1

∫ 1

s

(1− t)α

tn
dt
)
ds, 0 < x < 1.

Changing the order of integration gives

(2.1) v(x) =
1

n

∫ 1

x

(
1− xn

tn

)
(1− t)α dt =

xn

α+ 1

∫ 1

x

(1− t)α+1

tn+1
dt,

where the last equality follows by integration by parts. The change of variables
t = 1−s(1−x) gives the representation in the lemma with u(z) = (α+1)v(|z|2)/zn
for z ∈ D \ {0}. �

We mention that the function fα,n is naturally expressed using the hypergeo-
metric function

F (a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt, z ∈ D,

where �c > �b > 0 (see Subsection 15.3.1 in [1]). In fact,

fα,n(x) = xnF (n+ 1, α+ 2;α+ 3; 1− x)/(α + 2)

for 0 < x < 1.

Lemma 2.3. Let fα,n be as in Lemma 2.2. Then limx→0 fα,n(x) = 1/n and
limx→1 fα,n(x) = 1/(α+ 2).
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Proof. By dominated convergence we have that

lim
x→1

fα,n(x) =

∫ 1

0

tα+1 dt =
1

α+ 2
.

Recall next the formula (2.1) from the proof of Lemma 2.2, which gives the repre-
sentation

(1 − x)α+2fα,n(x) =
α+ 1

n

∫ 1

x

(
1− xn

tn

)
(1− t)α dt, 0 < x < 1.

By dominated convergence we have that

lim
x→0

fα,n(x) =
α+ 1

n

∫ 1

0

(1− t)α dt =
1

n
.

This completes the proof of the lemma. �

We next derive a first order differential equation for the function fα,n.

Lemma 2.4. Let fα,n be as in Lemma 2.2. Then

f ′
α,n(x) =

(n
x
+

α+ 2

1− x

)
fα,n(x)− 1

x
− 1

1− x
, 0 < x < 1.

Proof. Recall Lemma 2.2. Differentiating under the integral we have that

(2.2) f ′
α,n(x) =

n

x
fα,n(x) − (n+ 1)xn

∫ 1

0

tα+2

(1− t (1− x))n+2
dt.

An integration by parts now gives

f ′
α,n(x) =

n

x
fα,n(x)− 1

x(1 − x)
+ (α+ 2)

xn

1− x

∫ 1

0

tα+1

(1 − t (1− x))n+1
dt,

which yields the conclusion of the lemma. �

We next estimate the function fα,n.

Lemma 2.5. Let fα,n be as in Lemma 2.2. Then

min(1/n, 1/(2 + α)) ≤ fα,n(x) ≤ max(1/n, 1/(2 + α))

for 0 < x < 1. In particular, if n = α+ 2 is an integer, then fα,n(x) = 1/(α+ 2)
for all 0 < x < 1.

Proof. Recall Lemma 2.3. If x ∈ (0, 1) is a critical point of fα,n, then by Lemma 2.4
we have that

fα,n(x) =
( 1

x
+

1

1− x

)/(n
x
+

α+ 2

1− x

)
=

1

n(1− x) + (α+ 2)x
.
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Observe that

min(1/n, 1/(2 + α)) ≤ 1

n(1− x) + (α+ 2)x
≤ max(1/n, 1/(2 + α))

for 0 < x < 1. This gives the bounds for fα,n(x). The last assertion is an immediate
consequence of these bounds. �

For the sake of completeness we include also the following lemma, which we
have used for the purpose of numerical computation.

Lemma 2.6. Let fα,n be as in Lemma 2.2. Then

f ′
α,n(1) = lim

x→1

fα,n(x)− 1/(α+ 2)

x− 1
=

1

α+ 3

( n

α+ 2
− 1

)
.

Proof. Recall formula (2.2) from the proof of Lemma 2.4. Passing to the limit
using monotone convergence and Lemma 2.3, we have that

lim
x→1

f ′
α,n(x) =

n

α+ 2
− n+ 1

α+ 3
.

This yields the conclusion of the lemma. �

We need to calculate one more Laplacian.

Lemma 2.7. Let fα,n be as in Lemma 2.2 and consider the function

u(z) = (1− |z|2)α+2 fα,n(|z|2)2
|z|2n , z ∈ D \ {0}.

Then

Δu(z) =
(1 − |z|2)α
|z|2(n+1)

gα,n(|z|2), z ∈ D \ {0},

where

gα,n(x) = (lα,n(x)fα,n(x) − 1)2 + (α+ 2)x(fα,n(x)− 1/(α+ 2))2(2.3)

+ 1− x/(α+ 2), 0 < x < 1,

and lα,n is the linear function

lα,n(x) = n(1− x) + (α + 2)x, 0 < x < 1.

Proof. Let

h(x) =
(1− x)α+2

xn
fα,n(x)

2, 0 < x < 1.

We need to show that

xh′′(x) + h′(x) =
(1− x)α

xn+1
gα,n(x), 0 < x < 1.
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Observe first that

d

dx

( (1− x)α+2

xn

)
= − (1− x)α+1

xn+1
lα,n(x)

as follows by straightforward differentiation. Using this observation we now com-
pute using Lemma 2.4 that

h′(x) = − (1− x)α+1

xn+1
lα,n(x)fα,n(x)

2

+
(1− x)α+2

xn
2fα,n(x)

( lα,n(x)

x(1− x)
fα,n(x)− 1

x(1 − x)

)

=
(1− x)α+1

xn+1
(lα,n(x)fα,n(x)

2 − 2fα,n(x)).

In particular,

(2.4) xh′(x) =
(1− x)α+1

xn

(
lα,n(x)fα,n(x)

2 − 2fα,n(x)
)

for 0 < x < 1.
We shall next differentiate (2.4). Observe first that

(2.5)
d

dx

( (1− x)α+1

xn

)
= − (1− x)α

xn+1
lα,n(x) +

(1− x)α

xn
,

which follows by straightforward differentiation. By Lemma 2.4 we have that

(lα,nf
2
α,n − 2fα,n)

′(x)(2.6)

= (α+ 2− n)fα,n(x)
2 + 2 (lα,n(x)fα,n(x) − 1)f ′

α,n(x)

= (α+ 2− n)fα,n(x)
2 +

2

x(1 − x)
(lα,n(x)fα,n(x) − 1)2

for 0 < x < 1. Now differentiating (2.4) using (2.5) and (2.6) we have that

xh′′(x) + h′(x)

=
(
− (1 − x)α

xn+1
lα,n(x) +

(1− x)α

xn

) (
lα,n(x)fα,n(x)

2 − 2fα,n(x)
)

+
(1− x)α+1

xn

(
(α+ 2− n)fα,n(x)

2 +
2

x(1− x)
(lα,n(x)fα,n(x)− 1)2

)

=
(1 − x)α

xn+1
gα,n(x)

for 0 < x < 1, where

gα,n(x) = (−lα,n(x) + x) (lα,n(x)fα,n(x)
2 − 2fα,n(x))

+ (α+ 2− n)x(1 − x) fα,n(x)
2 + 2 (lα,n(x)fα,n(x) − 1)2

for 0 < x < 1.
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Straightforward calculations now give that

gα,n(x) = −(lα,n(x)
2fα,n(x)

2 − 2lα,n(x)fα,n(x)) + xlα,n(x)fα,n(x)
2 − 2xfα,n(x)

+ (α+ 2− n)x(1 − x)fα,n(x)
2 + 2(lα,n(x)fα,n(x) − 1)2

= (lα,n(x)fα,n(x)− 1)2 + 1

+ (xlα,n(x) + (α+ 2− n)x(1 − x))fα,n(x)
2 − 2xfα,n(x)

= (lα,n(x)fα,n(x)− 1)2 + (α+ 2)xfα,n(x)
2 − 2xfα,n(x) + 1

= (lα,n(x)fα,n(x)− 1)2 + (α+ 2)x(fα,n(x) − 1/(α+ 2))2 + 1− x/(α+ 2)

for 0 < x < 1. This completes the proof of the lemma. �

We next specialize to the case when n = α+ 2 is an integer.

Corollary 2.8. Let gα,n be as in Lemma 2.7 and assume that n = α + 2 is an
integer. Then

gα,n(x) = 1− x/(α + 2), 0 < x < 1.

Proof. By Lemma 2.5 the function fα,n is identically 1/(α + 2). The result now
follows by Lemma 2.7. �

Numerical experiments suggest that the quadratic terms in (2.3) are negligible
compared to the linear term 1 − x/(α + 2) when n is close to α + 2. For the
purpose of numerical experiments we have used the computer software package
Octave, which is freely available under the GNU license agreement.

3. The operator inequality for non-radial weights

In this section we shall prove the operator inequality (0.1) for a general weight func-
tion ω which is log-subharmonic of integer order α ≥ 0. For such a weight
function ω we denote by P 2

ω(D) the closure in A2
ω(D) of the space of analytic

polynomials. It is apparent that P 2
ω(D) is invariant under the shift operator.

Theorem 3.1. Let α be a nonnegative integer and let ω be a weight function
in D which is log-subharmonic of order α. Then the shift operator S = Sω on the
weighted Bergman space P 2

ω(D) satisfies the operator inequality

(3.1) ‖f + Sf1‖2ω ≤ (α+ 2) ‖Sf‖2ω +
α+ 2

(α+ 1)2
‖f1‖2ω +

α(α+ 2)

(α+ 1)2
‖Sf1‖2ω

for all f, f1 ∈ P 2
ω(D).

Proof. We consider first a weight function ω of the form

ω(z) = (1− |z|2)α ωα(z), z ∈ D,

where ωα ∈ C∞(D̄) is log-subharmonic in D and smooth in the closed disc D̄.
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Let f and f1 be polynomials and let n ≥ 1 be a positive integer. By log-subhar-
monicity we have that

Δz

(|f(z)− λzn+1f1(z)|2 ωα(z)
) ≥ 0, z ∈ D,

for all λ ∈ C. Expanding this inequality we get

Δz(|f(z)|2ωα(z))− 2�(λΔz(z
n+1f1(z)f(z)ωα(z))+|λ|2Δz(|zn+1f1(z)|2ωα(z)) ≥ 0

for all λ ∈ C, where the symbol � denotes the real part. Now set λ = cfα,n(|z|2)/zn,
where fα,n is as in Lemma 2.2 and c ∈ R is a real constant to be specified below.
Integration gives∫

D

(1− |z|2)α+2Δz(|f(z)|2ωα(z)) dA(z)(3.2)

− 2c�(
∫
D

(1− |z|2)α+2fα,n(|z|2)/znΔz(z
n+1f1(z)f(z)ωα(z)) dA(z))

+ c2
∫
D

(1− |z|2)α+2fα,n(|z|2)2/|z|2nΔz(|zn+1f1(z)|2ωα(z)) dA(z) ≥ 0.

Notice that the integrands of the rightmost two integrals are both continuous at
the origin as follows by cancellation and Lemma 2.3. We proceed to analyze the
individual terms in (3.2).

We calculate the first integral in (3.2) using Green’s formula and Lemma 2.1 as

I1 =

∫
D

(1− |z|2)α+2Δz(|f(z)|2ωα(z)) dA(z)(3.3)

=

∫
D

Δz((1 − |z|2)α+2)|f(z)|2ωα(z) dA(z)

= (α+ 2)

∫
D

(1− |z|2)α((α + 2)|z|2 − 1)|f(z)|2ωα(z) dA(z)

= (α+ 2)((α+ 2)‖Sf‖2ω − ‖f‖2ω).
Observe that the boundary terms vanish since the function (1− |z|2)α+2 vanishes
on T = ∂D to order α+ 2 > 1.

We next calculate the middle integral in (3.2) using Lemma 2.2 and Green’s
formula. Removing a small disc around the origin we have that

I2 =

∫
D\εD

(1− |z|2)α+2fα,n(|z|2)/znΔz(z
n+1f1(z)f(z)ωα(z)) dA(z) + o(1)

=

∫
D\εD

Δz((1 − |z|2)α+2fα,n(|z|2)/zn)zn+1f1(z)f(z)ωα(z) dA(z) + o(1)

= (α+ 1)

∫
D\εD

(1− |z|2)α/zn · zn+1f1(z)f(z)ωα(z) dA(z) + o(1)

= (α+ 1)

∫
D

zf1(z)f(z)ω(z) dA(z) = (α+ 1)〈Sf1, f〉ω

as ε → 0.
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By polarization we have that

(3.4) 2�(I2) = (α+ 1)(‖f + Sf1‖2ω − ‖f‖2ω − ‖Sf1‖2ω).
To analyze the third integral in (3.2) we again apply Green’s formula and

calculate using Lemma 2.7 that

I3 =

∫
D\εD

(1− |z|2)α+2fα,n(|z|2)2/|z|2nΔz(|zn+1f1(z)|2ωα(z)) dA(z) + o(1)

=

∫
D\εD

Δz((1 − |z|2)α+2fα,n(|z|2)2/|z|2n)|zn+1f1(z)|2ωα(z) dA(z) + o(1)

=

∫
D

(1− |z|)α/|z|2n+2 · gα,n(|z|2)|zn+1f1(z)|2ωα(z) dA(z)

=

∫
D

gα,n(|z|2)|f1(z)|2ω(z) dA(z)

as ε → 0, where gα,n is as in Lemma 2.7. For n = α+ 2 we have that

(3.5) I3 =

∫
D

(1− |z|2/(α+ 2))|f1(z)|2ω(z) dA(z) = ‖f1‖2ω − ‖Sf1‖2ω/(α+ 2)

by Corollary 2.8.
By (3.2) and (3.3)–(3.5) we have

(α+ 2)((α + 2)‖Sf‖2ω − ‖f‖2ω)− c(α+ 1)(‖f + Sf1‖2ω − ‖f‖2ω − ‖Sf1‖2ω)
+ c2(‖f1‖2ω − ‖Sf1‖2ω/(α+ 2)) ≥ 0,

which by a rearrangement of terms leads to the inequality

c(α+ 1)‖f + Sf1‖2ω ≤ (α+ 2)2‖Sf‖2ω + (c(α+ 1)− (α + 2))‖f‖2ω(3.6)

+ c2‖f1‖2ω + c((α+ 1)− c/(α+ 2))‖Sf1‖2ω
We now set c = (α+ 2)/(α+ 1) to arrive at (3.1).

The passage to a general weight function ω in inequality (3.1) follows by ap-
proximation using Theorem 1.3. By another approximation the inequality (3.1)
remains true for f, f1 ∈ P 2

ω(D). �

Remark 3.2. The exact value of the constant c �= 0 in (3.6) is irrelevant with
respect to the strength of the resulting inequality of the form (3.1). Indeed, in
expanded form (3.6) reads as

2c(α+ 1)�〈f, Sf1〉ω
≤ (α+ 2)2‖Sf‖2ω − (α+ 2)‖f‖2ω + c2(‖f1‖2ω − ‖Sf1‖2ω/(α+ 2)),

which makes evident that the constant c can be incorporated in the function f1.
Another natural choice is c = (α+2)(α+1) in (3.6) which leads to the equivalent
form

‖f + Sf1‖2 ≤ α+ 2

(α+ 1)2
‖Sf‖2 + α(α + 2)

(α+ 1)2
‖f‖2 + (α+ 2)‖f1‖2

of (3.1).



An operator inequality for weighted Bergman shift operators 801

We next extend the validity of inequality (3.1) to the full Bergman space A2
ω(D).

Theorem 3.3. Let ω be a weight function in D which is log-subharmonic of integer
order α ≥ 0, and denote by S = Sω the shift operator on A2

ω(D). Then

‖f + (α+ 1)Sg‖2ω ≤ (α+ 2)(‖Sf‖2ω + ‖g‖2ω + α‖Sg‖2ω) for all f, g ∈ A2
ω(D).

Proof. Let 0 < r < 1 and fix f, g ∈ A2
ω(D). By Lemma 1.1 the dilated weight ωr

defined by (1.2) is log-subharmonic of integer order α ≥ 0. Applying Theorem 3.1
with the weight ωr in place of ω, the dilated function fr in place of f , and f1 =
(α+ 1)gr we have that

∫
D

|f(rz) + (α+ 1)zg(rz)|2ω(rz) dA(z)

≤ (α+ 2)

∫
D

|zf(rz)|2ω(rz) dA(z) + (α + 2)

∫
D

|g(rz)|2ω(rz) dA(z)

+ α(α+ 2)

∫
D

|zg(rz)|2ω(rz) dA(z).

By a change of variables we obtain∫
rD

|f(z)+(α+ 1)(z/r)g(z)|2ω(z) dA(z)

≤ (α + 2)

∫
rD

|(z/r)f(z)|2ω(z) dA(z) + (α+ 2)

∫
rD

|g(z)|2ω(z) dA(z)

+ α(α + 2)

∫
rD

|(z/r)g(z)|2ω(z) dA(z)

after cancellation of a factor 1/r2. A passage to the limit as r → 1 now yields the
result. �

4. Dual considerations

Let α > −1 be a real parameter. We shall discuss in this section some general
observations concerning a bounded Hilbert space operator T ∈ L(H) such that

(4.1) ‖x+ (α+ 1)Ty‖2 ≤ (α + 2)(‖Tx‖2 + ‖y‖2 + α‖Ty‖2)
for all x, y ∈ H.

We first provide a dual reformulation of (4.1).

Theorem 4.1. Let α > −1, and let T ∈ L(H) be a bounded Hilbert space operator.
Then (4.1) holds if and only if the operator T is left-invertible, the operator I +
αT ∗T is positive and invertible and

(4.2) (T ∗T )−1 + (α + 1)2 T (I + αT ∗T )−1 T ∗ ≤ (α+ 2)I

in L(H), where I is the identity operator.
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Proof. Assume first that (4.1) holds. Setting y = 0 in (4.1) we have ‖x‖2 ≤
(α + 2)‖Tx‖2 for x ∈ H, which shows that T is left-invertible. Setting x = 0
in (4.1) we see that

(α + 1)2 ‖Ty‖2 ≤ (α+ 2) 〈(I + αT ∗T )y, y〉
for y ∈ H. Since T is left-invertible this gives that I + αT ∗T is positive and
invertible by standard spectral theory.

We now proceed to prove (4.2). Substituting x = (T ∗T )−1/2x1 and y = (I +
αT ∗T )−1/2y1 in (4.1) we obtain

∥∥(T ∗T )−1/2x1 + (α+ 1)T (I + αT ∗T )−1/2 y1
∥∥2 ≤ (α+ 2)

(‖x1‖2 + ‖y1‖2
)

for all x1, y1 ∈ H, where the superscript 1/2 indicates a positive square root. This
last inequality equivalently means that the operator

X(x, y) = (T ∗T )−1/2 x+ (α+ 1)T (I + αT ∗T )−1/2 y, x, y ∈ H,

is bounded from H⊕H into H with norm bound ‖X‖2 ≤ α+2. A straightforward
calculation shows that the adjoint operator X∗ from H into H⊕H acts as X∗x =
(y1, y2), where y1 = (T ∗T )−1/2x and y2 = (α + 1)(I + αT ∗T )−1/2T ∗x. It is now
clear that

XX∗ = (T ∗T )−1 + (α+ 1)2 T (I + αT ∗T )−1 T ∗ ≤ (α+ 2)I

in L(H), which gives (4.2).
It is straightforward to check that the above argument is reversible to the extent

that (4.2) implies (4.1). �

We next show that the operator inequality (4.1) relaxes as α increases.

Theorem 4.2. Assume that T ∈ L(H) satisfies (4.1) for some α = α0 > −1.
Then T satisfies (4.1) for all α ≥ α0.

Proof. Recall Theorem 4.1. Consider the operator-valued function

f(α) = αI − (α + 1)2 T (I + αT ∗T )−1 T ∗, α ≥ α0.

Observe that f is well-defined since the operator I+αT ∗T is positive and invertible
for α ≥ α0. To prove the theorem it suffices to show that f is increasing on the
half-axis [α0,∞). Differentiating we have that

f ′(α) = I − 2(α+ 1)T (I + αT ∗T )−1 T ∗ + (α+ 1)2 T (I + αT ∗T )−2 T ∗ T T ∗

for α ≥ α0. Another differentiation gives that

f ′′(α) = −2T (I + αT ∗T )−1T ∗ + 2(α+ 1)T (I + αT ∗T )−2T ∗TT ∗

+ 2(α+ 1)T (I + αT ∗T )−2T ∗TT ∗ − 2(α+ 1)2T (I + αT ∗T )−3(T ∗T )2T ∗

= −2T (I + αT ∗T )−1T ∗ + 4(α+ 1)T (I + αT ∗T )−2T ∗TT ∗

− 2(α+ 1)2T (I + αT ∗T )−3(T ∗T )2T ∗
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for α ≥ α0. A further calculation gives that

f ′′(α) = −2T (I + αT ∗T )−1
(
I − 2(α+ 1)(I + αT ∗T )−1T ∗T

+ (α + 1)2(I + αT ∗T )−2(T ∗T )2
)
T ∗

= −2T (I + αT ∗T )−1
(
I − (α+ 1)(I + αT ∗T )−1T ∗T

)2
T ∗

for α ≥ α0. By this last formula it is evident that f ′′(α) ≤ 0 for α ≥ α0. In par-
ticular, the function f ′ is decreasing on (α0,∞). A limit calculation shows that

lim
α→∞ f ′(α) = I − 2T (T ∗T )−1 T ∗ + T (T ∗T )−2 T ∗ T T ∗ = I − T (T ∗T )−1T ∗.

It is straightforward to check that the operator P = I−T (T ∗T )−1T ∗ is the orthog-
onal projection onto the wandering subspaceH�T (H) for T (see Section 2 of [19]).
Indeed, the operator T (T ∗T )−1T ∗ is self-adjoint, idempotent and has range equal
to T (H), which proves the claim. As a consequence we have that f ′(α) ≥ P ≥ 0
for α ≥ α0. This shows that the function f is increasing. �

Let T ∈ L(H) be a left-invertible operator. The so-called Cauchy dual T ′ of T
is the operator defined by T ′ = T (T ∗T )−1.

Theorem 4.3. Let α > −1 and let T ∈ L(H) be an operator satisfying (4.1).
Then the Cauchy dual T ′ of T satisfies the operator inequality

(4.3) (T ′∗)2 T ′2 − 2T ′∗ T ′ + I ≤ α(T ′∗ T ′ + αI)−1(T ′∗ T ′ − I)2 in L(H).

Proof. Recall Theorem 4.1. Observe that T ′∗T ′ = (T ∗T )−1 and also that

(I + αT ∗ T )−1 = T ′∗ T ′ (T ′∗ T ′ + αI)−1.

By (4.2) we have that

T ′∗ T ′ + (α + 1)2 T T ′∗ T ′ (T ′∗ T ′ + αI)−1 T ∗ ≤ (α+ 2)I

in L(H). We now multiply this last inequality from the left by T ′∗ and from the
right by T ′ to obtain

(4.4) (T ′∗)2 T ′2 + (α+ 1)2 (T ′∗T ′ + αI)−1 T ′∗ T ′ ≤ (α+ 2)T ′∗ T ′

since T ∗T ′ = I. The calculation

I + αT ′∗T ′ − (α+ 1)2(T ′∗T ′ + αI)−1T ′∗T ′ = α(T ′∗T ′ + αI)−1(T ′∗T ′ − I)2

shows that (4.4) is equivalent to (4.3). This completes the proof of the theorem. �

Remark 4.4. It is easy to see that condition (4.3) relaxes as α increases. Letting
α → ∞, we obtain in the limit the operator inequality T ′∗2 T ′2 ≤ (T ′∗ T ′)2 for T ′.

Observe that for −1 < α < 0, the inequality (4.3) is a stronger form of the
concavity inequality

T ′∗2 T ′2 + I ≤ 2T ′∗ T ′∗

for T ′.
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The interest in concave operators originates from an approximation result by
Richter [18], later elaborated on in the papers [13] and [19].

Proposition 4.5. Let T ∈ L(H) be an operator satisfying (4.1) for some α in the
range −1 < α ≤ 0. Then T is a contraction.

Proof. By Theorem 4.3 we have that T ′ is concave. It is well known that every con-
cave operator is expansive (see for instance Proposition 2.1 in [13]). Expansiveness
of T ′ is equivalent to T being a contraction (see Proposition 1.1 in [13]). �

It should be mentioned here that for the parameter values α = 0, 1 the results
of Theorems 4.1 and 4.3 above are from Shimorin (see the proof of Theorem 3.6
in [19] and Lemma 4.8 in [19]).

5. Weighted shifts

In this section we shall study inequality (0.3) in the context of weighted shift
operators. Let w = {wk}k≥0 be a positive weight sequence and denote by �2(w)
the standard Hilbert space of complex sequences a = {ak}k≥0 with finite norm

(5.1) ‖a‖2w =
∑
k≥0

|ak|2 wk.

The shift operator S = Sw on the space �2(w) is defined by Sa = {bk}k≥0, where
b0 = 0, bk = ak−1 for k ≥ 1 and a = {ak}k≥0 ∈ �2(w). Notice that the operator S
is bounded on �2(w) if and only if the quotients qk = wk/wk−1 are bounded and
that in this case the operator norm of Sw is given by ‖Sw‖2 = supk≥1 wk/wk−1.
We proceed to investigate when the operator S = Sw satisfies the inequality

(5.2) ‖a+ (α+ 1)Sb‖2w ≤ (α+ 2)(‖Sa‖2w + ‖b‖2w + α‖Sb‖2w) for a, b ∈ �2(w).

Theorem 5.1. Let α > −1 and let w = {wk}k≥0 be a positive weight sequence.
Then the shift operator S = Sw satisfies (5.2) if and only if the inequalities

wk−1/(α+ 2) ≤ wk ≤ (α+ 2)wk−1(5.3)

and
1

wk−1
+

1

wk+1
− 2

wk
≤ α

( 1

wk
− wk

wk−1wk+1

)
(5.4)

hold for all k ≥ 1.

Proof. We shall use the well-known fact that a quadratic form

Q(x, y) = Ax2 − 2Bxy + Cy2, x, y ∈ R,

is positive semidefinite if and only if A ≥ 0, C ≥ 0 and B2 ≤ AC, which follows
by completion of squares. Evaluating norms we see that (5.2) is equivalent to

(5.5) |a0|2w0 +
∑
k≥1

{|ak|2wk + (α+ 1)2|bk−1|2wk + 2(α+ 1)�(akb̄k−1)wk

}

≤ (α + 2)|a0|2w1 + (α+ 2)
∑
k≥1

{|ak|2wk+1 + |bk−1|2(wk−1 + αwk)
}
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whenever {ak}k≥0, {bk}k≥0 ∈ �2(w). Varying the ak’s and bk’s we see that (5.5)
holds if and only if w0 ≤ (α+ 2)w1 and the quadratic form

Qk(x, y) = ((α+ 2)wk+1 − wk)x
2 − 2(α+ 1)wkxy + ((α+ 2)wk−1 − wk) y

2,

x, y ∈ R, is positive semidefinite for every k ≥ 1. By the above criterion for positive
semidefiniteness we have that Qk is positive semidefinite if and only if

(5.6) (α + 2)wk+1 − wk ≥ 0, (α+ 2)wk−1 − wk ≥ 0

and
(α+ 1)2 w2

k ≤ ((α + 2)wk+1 − wk) ((α + 2)wk−1 − wk).

A straightforward calculation shows that this last inequality is equivalent to (5.4).
The remaining conditions (5.6) for k ≥ 1 and w0 ≤ (α+2)w1 are equivalent to (5.3)
for k ≥ 1. This completes the proof of the theorem. �

Remark 5.2. We observe that for α ≥ 0 inequality (5.4) implies that wk−1/(α+2)
≤ wk for k ≥ 2 and wk ≤ (α+2)wk−1 for k ≥ 1. Indeed, writing (5.4) in the form

1

wk−1
+

1

wk+1

(
1 + α

wk

wk−1

)
≤ (α+ 2)

1

wk

an estimation gives 1/wk+1 + 1/wk−1 ≤ (α+ 2)/wk, which yields the claim.

When the lower limit R2 = lim infk→∞ w
1/k
k is positive the space �2(w) is nat-

urally identified by means of Fourier transformation with the Hilbert space A2
w =

F�2(w) of functions

f(z) =

∞∑
k=0

ak z
k, z ∈ DR,

analytic in the disc DR = {z ∈ C : |z| < R} with finite norm ‖f‖2w =
∑

k≥0|ak|2wk

given by (5.1). It is straightforward to check that the kernel function Kw for A2
w

has the form Kw(z, ζ) = kw(ζ̄z), where kw(z) =
∑

k≥0 z
k/wk for z ∈ DR.

We proceed to investigate weighted shifts satisfying (5.2).

Proposition 5.3. Let S = Sw be a weighted shift operator satisfying (5.2) for some
α > −1. Then the weight sequence w = {wk}k≥0 is log-convex: w2

k ≤ wk−1wk+1

for k ≥ 1. As a consequence, the operator Sw is hyponormal.

Proof. By Theorem 4.2 the operator inequality (5.2) relaxes as α increases. Letting
α → ∞ in (5.4) we see that

1

wk
− wk

wk−1wk+1
≥ 0

for k ≥ 1, which yields the log-convexity of the weight sequence. The condition
SS∗ ≤ S∗S of hyponormality means precisely that for a weighted shift S = Sw the
weight sequence {wk}k≥0 is log-convex. �
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We next calculate the limit limk→∞ wk/wk−1.

Proposition 5.4. Let S = Sw be a weighted shift operator satisfying (5.2) for
some α > −1. Then limk→∞ wk/wk−1 = 1. As a consequence, the operator Sw is
a contraction with spectrum equal to the closed unit disc D̄.

Proof. Consider the quotients qk = wk/wk−1 for k ≥ 1. By Proposition 5.3 the
sequence {qk} is increasing: qk ≤ qk+1 for k ≥ 1. By (5.3) we have the upper
bound qk ≤ α+ 2 for k ≥ 1. It is now clear that the limit q = limk→∞ qk exists as
a positive real number. By (5.4) we have that

qk + 1/qk+1 − 2 ≤ α(1 − qk/qk+1)

for k ≥ 1. Letting k → ∞ in this last inequality we obtain q + 1/q − 2 ≤ 0, which
yields that q = 1. Thus the quotients qk = wk/wk−1 increase to 1 as k → ∞.

By the result of the previous paragraph we have that the weight sequence
decreases: wk ≥ wk+1 for k ≥ 0. This shows that Sw is a contraction.

We consider next the spectrum σ(Sw) of Sw. Using that limk→∞ wk/wk−1 = 1
it is straightforward to check that A2

w is a Hilbert space of analytic functions in
the unit disc D. The standard property

S∗
wKw(·, ζ) = ζ̄Kw(·, ζ), ζ ∈ D,

of the kernel function makes evident that every point in D is an eigenvalue for S∗
w

showing that D ⊂ σ(S∗
w). Since S∗

w is a contraction we conclude that σ(S∗
w) = D̄,

which by passage to adjoints gives that σ(Sw) = D̄. �

We shall next evaluate Theorem 5.1 on a weight sequence of the form

wθ,β;k =
Γ(θ + β + 2)

Γ(θ + 1)

Γ(k + θ + 1)

Γ(k + θ + β + 2)
, k ≥ 0,

where θ, β > −1 are real parameters and Γ is the gamma function. The weight
sequence {wθ,β;k}k≥0 is the sequence of moments

wθ,β;k =

∫
D

|z|2k ωθ,β(z) dA(z), k ≥ 0,

for the measure ωθ,β dA, where

ωθ,β(z) =
Γ(θ + β + 2)

Γ(θ + 1)Γ(β + 1)
|z|2θ (1 − |z|2)β , z ∈ D.

Indeed, this latter fact is straightforward to check using the beta integral∫ 1

0

tx−1(1 − t)y−1 dt =
Γ(x) Γ(y)

Γ(x+ y)

for x, y > 0 (see Chapter 6 of [1]). For notation simplicity we write A2
θ,β(D) =

A2
ωθ,β

(D) and Sθ,β = Sωθ,β
. Observe that the space A2

0,β(D) is the standard
weighted Bergman space with weight parameter β > −1.

Proposition 5.5. Let θ, α, β > −1. Then the shift operator S = Sθ,β on A2
θ,β(D)

satisfies inequality (5.2) if and only if β ≤ α and θ + 1 ≥ (β + 1)/(α+ 1).
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Proof. Recall Theorem 5.1. We first investigate condition (5.3). A straightforward
calculation gives that

qk =
wθ,β;k

wθ,β;k−1
=

k + θ

k + θ + β + 1
= 1− β + 1

k + θ + β + 1

for k ≥ 1. In particular, the sequence {qk} is increasing and qk ≤ 1 for k ≥ 1.
Also, qk ≥ q1 = (θ+1)/(θ+β+2) for k ≥ 1. It is straightforward to check that the
inequality (θ+1)/(θ+ β+2) ≥ 1/(α+2) is equivalent to θ+1 ≥ (β+1)/(α+1).

We next analyze condition (5.4). Observe that (5.4) can be equivalently for-
mulated as saying that

qk + 1/qk+1 − 2 ≤ α(1 − qk/qk+1)

for k ≥ 1 using the quotients {qk}. By straightforward calculation we have

qk + 1/qk+1 − 2 =
β(β + 1)

(k + θ + 1)(k + θ + β + 1)

and similarly that

1− qk/qk+1 =
β + 1

(k + θ + 1)(k + θ + β + 1)

for k ≥ 1. By these calculations we see that (5.4) holds if and only if β ≤ α. �

We mention that the kernel function Kθ,β for A2
θ,β(D) is naturally expressed in

terms of the hypergeometric function. In fact,

Kθ,β(z, ζ) = F (θ + β + 2, 1; θ+ 1; ζ̄z), (z, ζ) ∈ D
2,

where

F (a, b; c; z) =
Γ(c)

Γ(a) Γ(b)

∑
k≥0

Γ(a+ k) Γ(b + k)

Γ(c+ k)

zk

k!
, z ∈ D,

is the hypergeometric function (see Chapter 15 of [1]). In this context we wish to
mention also the interesting paper of Shimorin [20] providing an integral represen-
tation for kernel functions in the radially weighted log-subharmonic case.
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