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The twisting representation of the

L-function of a curve

Francesc Fité and Joan-C. Lario

Abstract. Let C be a smooth projective curve defined over a number field
and let C′ be a twist of C. In this article we relate the �-adic represen-
tations attached to the �-adic Tate modules of the Jacobians of C and C′

through an Artin representation. This representation induces global rela-
tions between the local factors of the respective Hasse–Weil L-functions.
We make these relations explicit in a particularly illustrative situation. For
all but a finite number of Q-isomorphism classes of genus 2 curves defined
over Q with Aut(C) � D8 or D12, we find a representative curve C/Q such
that, for every isomorphism φ : C′ → C satisfying some mild condition, we
are able to determine either the local factor Lp(C

′/Q, T ) or the product
Lp(C

′/Q, T ) · Lp(C
′/Q,−T ) from the local factor Lp(C/Q, T ).

1. Introduction

Let C and C′ be smooth projective curves of genus g ≥ 1 defined over a number
field k that become isomorphic over an algebraic closure of k (that is, they are
twists of each other). The aim of this article is to relate the �-adic representations
attached to the Q�-vector spaces V�(C) and V�(C

′). Here, for a prime �, V�(C)
stands for Q�⊗T�(C), where T�(C) denotes the �-adic Tate module of the Jacobian
variety J(C) attached to C (and similarly for C′).

The case of quadratic twists of elliptic curves is well known. If E and E′ are el-
liptic curves defined over k that become isomorphic over a quadratic extension L/k,
then there exists a character χ of Gal(L/k) such that

(1.1) V�(E
′) � χ⊗ V�(E) .

This translates into a relation of local factors of the corresponding Hasse–Weil
L-functions. Indeed, one has that, for every prime p of k unramified in L,

(1.2) Lp(E
′/k, T ) = Lp(E/k, χ(Frobp)T ) .
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Hence, from now on we will assume that the genus of C (and C′) is g ≥ 2, and
we will focus on obtaining a generalization of relation (1.1).

Let us fix some notation. Hereafter, Q denotes a fixed algebraic closure of Q
that is assumed to contain k and all of its algebraic extensions. For any algebraic
extension F/k, we will write GF := Gal(Q/F ). For abelian varieties A and B
defined over k, denote by HomF (A,B) the Z-module of homomorphisms from A
to B defined over F , and by EndF (A) the ring of endomorphisms of A defined
over F . Write Hom0

F (A,B) for the Q-vector space Q⊗HomF (A,B), and End0F (A)
for the algebra Q ⊗ EndF (A). We write A ∼F B to denote that A and B are
isogenous over F .

1.1. Relating �-adic representations of twisted curves

Let Aut(C) be the group of automorphisms defined overQ ofC, and let Isom(C′, C)
be the set of all isomorphisms from C′ to C. Throughout the paper, L/k (re-
spectively K/k) will denote the minimal extension of k where all the elements
in Isom(C′, C) (respectively in Aut(C)) are defined. By a theorem of Hurwitz,
Aut(C) has order less than or equal to 84(g− 1). Since the isomorphism φ induces
a bijection between Aut(C) and Isom(C′, C), we have, in particular, that these two
sets are finite. Thus, the extensions K/k and L/k are finite. Since the curves C
and C′ are defined over k, the extensions K/k and L/k are Galois extensions.
Clearly, K/k is a subextension of L/k. We can now state the principal result of
Section 2.

Theorem 1.1. The representation

θC : GC := Aut(C)�λC Gal(K/k) → AutQ(End
0
K(J(C))) ,

defined by equation (2.2) and called the twisting representation of C, satisfies that,
for every θC-twist φ : C

′ → C, there is an inclusion of Q�[Gk]-modules

(1.3) V�(C
′) ⊆ (θC ◦ λφ)⊗ V�(C) .

Here λφ : Gal(L/k) → GC stands for the monomorphism defined by equation (2.1).

This result encompasses Remark 2.1, Proposition 2.3 and Theorem 2.1, and we
refer to the remaining results of Section 2 for proofs that the objects involved in
the statement are well defined. Requiring a twist C′ of C to be a θC -twist is a
mild condition that we make precise in Definition 2.1. In Proposition 2.4, we show
that (1.3) indeed generalizes (1.1).

1.2. Applications

In the particular cases that we will consider, one can in fact compute the whole
decomposition of (θC ◦ λφ)⊗ V�(C). This leads to a relation between local factors
of C and C′ of the style of (1.2), that is, a relation written in terms of an Artin
representation. Such global relations have proved to be most useful when one is
interested in the study of the behaviour of the local factor at a varying prime (e.g.,
generalized Sato–Tate distributions; see Section 4 of [5] and especially [6]).
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The essential feature of the cases considered in which one can perform the
computation of the decomposition of (θC ◦ λφ) ⊗ V�(C) is the splitting of the
Jacobian J(C) over K as the power of an elliptic curve E/K (what we call the
completely split Jacobian case). In this article we restrict to the case in which E
does not have complex multiplication (CM), and we refer to [6] for a treatment of
the case in which E has CM.

After some considerations of general type for the completely split Jacobian case
of Section 3, we restrict our attention in Section 4 to the situation in which C is
a genus 2 curve defined over Q with Aut(C) � D8 (resp. D12). Recall that every
such a curve is Q-isomorphic to a curve Cu in the family of (4.3) (resp. in the
family of (4.4)) for some u in Q∗ � {1/4, 9/100} (resp. in Q∗ � {1/4,−1/50}). We
then prove the following result:

Theorem 1.2. Let φ : C′ → C be a twist of C = Cu with Aut(C) � D8 (re-
spectively Aut(C) � D12). Assume that u does not belong to the finite list (4.1)
(respectively (4.2)). If V�(C

′) is a simple Q�[GK ]-module, then for every prime p
unramified in L/Q, we have

Lp(C/Q, θC ◦ λφ, T ) =
{
Lp(C

′/Q, T )4 if f = 1,

Lp(C
′/Q, T )2Lp(C

′/Q,−T )2 if f = 2,

where f denotes the residue class degree of p in K.

In the statement of the theorem, Lp(C/Q, θC ◦ λφ, T ) stands for the Rankin–
Selberg polynomial whose roots are all the products of roots of Lp(C/Q, T ) and
roots of det(1− θC ◦ λφ(Frobp)T ).

2. The twisting representation θC

For any twist C′ of a smooth projective curve C defined over k of genus g ≥ 2,
let K/k and L/k be as in the introduction. We will write the natural action of the
group Gal(L/k) on Aut(C), Isom(C′, C), End0L(J(C)), and Hom0

L(J(C), J(C
′))

using left exponentiation and we will often avoid writing ◦ for the composition of
maps. Then, we have the following monomorphism of groups:

λC : Gal(K/k) → Aut(Aut(C)), λC(σ)(α) =
σα .

Indeed, the minimality of K guarantees that if σ ∈ Gal(K/k) is such that α = σα
for every α ∈ Aut(C), then σ is trivial. We define the twisting group of C as

GC := Aut(C)�λC Gal(K/k) ,

where �λC denotes the semidirect product through the morphism λC . We next jus-
tify the name for GC . First, we fix some notation. Suppose that F ′/k is a Galois ex-
tension and that F/k is a Galois subextension of F ′/k. Let πF ′/F : Gal(F ′/k) →
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Gal(F/k) stand for the canonical projection. For every isomorphism φ : C′ → C,
define the map

(2.1) λφ : Gal(L/k) → GC , λφ(σ) = (φ(σφ)−1, πL/K(σ)) .

Lemma 2.1. The map λφ is a monomorphism of groups.

Proof. Let σ and τ belong to Gal(L/k). Then we have

λφ(στ)= (φ(στφ)−1, πL/K(στ)) = (φ(σφ)−1 ◦ σ(φ(τφ)−1), πL/K(στ))

= (φ(σφ)−1λC(πL/K(σ))(φ(τφ)−1), πL/K(σ) ◦ πL/K(τ))

= (φ(σφ)−1, πL/K(σ))(φ(τφ)−1, πL/K(τ)) = λφ(σ) ◦ λφ(τ) .

Let σ ∈ Gal(L/k) be such that φ(σφ)−1 = id and πL/K(σ) is trivial, i.e., φ = σφ
and σ ∈ Gal(L/K). Let ψ be any element of Isom(C′, C). Since ψφ−1 is an
element of Aut(C), it is fixed by σ. Then, one has

σψ = σ(ψφ−1φ) = σ(ψφ−1)σφ = ψφ−1φ = ψ .

The minimality of L now guarantees that σ is trivial. �

Proposition 2.1. There is a one-to-one correspondence between the elements of
the following sets:

i) The set Twist(C/k) of twists of C up to k-isomorphism;

ii) The set of monomorphisms λ : Gal(F/k) → GC of the form λ = ξ �λC πF/K ,
with ξ a map from Gal(F/k) to Aut(C), where we identify

λ1 : Gal(F1/k) → GC and λ2 : Gal(F2/k) → GC

if there exists α ∈ Aut(C) such that, for every σ ∈ Gal(F1F2/k), one has

λ1 ◦ πF1F2/F1
(σ)(α, 1) = (α, 1)λ2 ◦ πF1F2/F2

(σ) ;

is given by associating to a twist C′ of C the class of the monomorphism λφ,
where φ is any isomorphism from C to C′.

Proof. There is a well-known bijection between the elements of Twist(C/k) and the
elements of the cohomology set H1(Gk,Aut(C)), given by associating to a twist C′

of C the class of the cocycle ξ(σ) = φ(σφ)−1 (see [11], chapter X). Now, associate to
the cocycle ξ the morphism λ̃ : Gk → GC defined by λ̃ = ξ�λC πk/K . Observe that

for σ and τ in Gk, one has that λ̃(στ) = λ̃(σ)λ̃(τ) if and only if ξ(στ) = ξ(σ)◦σξ(τ).
Let GF denote the kernel of λ̃ and let λ : Gal(F/k) → GC satisfy λ̃ = λ ◦ πk/F .
Then λ is injective. Moreover, the cocycles ξ1 and ξ2 are cohomologous if and only
if there exists α in Aut(C) such that for all σ in Gk there holds ξ1(σ)◦σα = α◦ξ2(σ),
which is equivalent to λ̃1(σ)(α, 1) = (α, 1)λ̃2(σ). Finally, this amounts to requiring
that λ1 ◦πF1F2/F1

(σ)(α, 1) = (α, 1)λ2 ◦πF1F2/F2
(σ) for every σ ∈ Gal(F1F2/k). �
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Proposition 2.2. The monomorphism λφ is an isomorphism if and only if the
action of Gal(L/K) on Isom(C′, C) has a single orbit.

Proof. One has that λφ is exhaustive if and only if |Aut(C)| = |Gal(L/K)|. This
is equivalent to the fact that the injective morphism

λ : Gal(L/K) → Aut(C), λ(σ) = φ(σφ)−1

is an isomorphism. This happens if and only if for every α ∈ Aut(C) there exists
σ ∈ Gal(L/K) such that αφ = σφ. That is, if and only if for every ψ ∈ Isom(C′, C),
there exists σ ∈ Gal(L/K) such that ψ = σφ. �

Remark 2.1. For any twist C′ of C, the abelian varieties J(C) and J(C′) are
defined over k and are isogenous over L. Let F/k be a subextension of L/k.
Denote by θ(C,C′;L/F ) the representation afforded by the Q[Gal(L/F )]-module
Hom0

L(J(C), J(C
′)). We will write θ(C,C′) := θ(C,C′;L/k). We recall that The-

orem 3.1 of [5] asserts that

V�(C
′) ⊆ θ(C,C′)⊗ V�(C)

as Q�[Gk]-modules.

Every isomorphism φ from C′ to C induces an isomorphism from J(C′) to
J(C), that we will also call φ. Consider the map

θφ : Gal(L/k) → AutQ(End
0
L(J(C))) , θφ(σ)(ψ) = φ(σφ)−1 ◦ σψ ,

where σ is in Gal(L/k) and ψ in End0L(J(C)).

Proposition 2.3. For every isomorphism φ : C′ → C, the map θφ is a rational
representation of Gal(L/k) isomorphic to θ(C,C′).

Proof. It is indeed a representation. For σ and τ in Gal(L/k), one has

θφ(στ)(ψ) = φ(στφ)−1 ◦ στψ

= φ(φσ)−1 ◦ σ(φ(τφ)−1 ◦ τψ)

= (θφ(σ) ◦ θφ(τ))(ψ) .

The map φ̃ : Hom0
L(J(C), J(C

′)) → End0L(J(C)), defined by φ̃(ϕ) = φ ◦ ϕ for
ϕ ∈ Hom0

L(J(C), J(C
′)) is an isomorphism of Q-vector spaces. Now, one deduces

that θ(C,C′) and θφ are isomorphic from the fact that, for every σ in Gal(L/k),
the following diagram is commutative:

Hom0
L(J(C), J(C

′))

φ̃
��

θ(C,C′)(σ) �� Hom0
L(J(C), J(C

′))

φ̃
��

End0L(J(C))
θφ(σ) �� End0L(J(C)) .

�
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Denote also by α the endomorphism of J(C) induced by an automorphism α in
Aut(C). We define the twisting representation of the L-function of C as the map

(2.2) θC : GC → AutQ(End
0
K(J(C))) , θC((α, σ))(ψ) = α ◦ σψ ,

where σ in Gal(K/k) and ψ in End0K(J(C)).

Definition 2.1. We will say that a twist C′ of C is a θC -twist of C if L is such
that End0K(J(C)) = End0L(J(C)).

Theorem 2.1. The map θC is a faithful representation of GC . Moreover, for
every θC-twist C

′ of C and every isomorphism φ : C′ → C, one has θC ◦ λφ = θφ.
That is, the following diagram is commutative:

Gal(L/k)

θφ ����
���

���
���

�
� � λφ �� GC

θC
��

AutQ(End
0
K(J(C))) .

Proof. For ψ1, ψ2 ∈ Aut(C) and σ1, σ2 ∈ Gal(K/k), one has

θC((α1, σ1)(α2, σ2))(ψ) = θC((α1 ◦ σ1α2, σ1σ2))(ψ) = α1 ◦ σ1α2 ◦σ1σ2 ψ

= α1 ◦ σ1(α2 ◦σ2 ψ) = (θC((α1, σ1)) ◦ θC((α2, σ2)))(ψ) .

Let α in Aut(C) and σ in Gal(K/k) be such that θC(α, σ)(ψ) = ψ for every ψ in
End0K(J(C)). In particular, for ψ = α, one obtains that σα = id, which implies
α = id. Then ψ = σψ for all ψ in End0K(J(C)) and the minimality of K implies
that σ is trivial. Finally, there holds

(θC ◦ λφ)(σ)(ψ) = θC(φ(
σφ)−1, πL/K(σ))(ψ) = φ(σφ)−1 ◦ σψ = θφ(σ)(ψ) ,

for σ ∈ Gal(L/k) and ψ ∈ End0L(J(C)). �

As a corollary of the previous results one obtains the desired inclusion

(2.3) V�(C
′) ⊆ (θC ◦ λφ)⊗ V�(C)

for every θC -twist C
′ of C. This inclusion is a generalization of the identity (1.1).

Proposition 2.4. If C′ is a nontrivial twist of C such that End0L(J(C)) � Q,
then the extension L/k is quadratic, the representation θC ◦ λφ is the quadratic
character of Gal(L/k), and one has V�(C

′) � (θC ◦ λφ)⊗ V�(C).

Proof. By the inclusion (2.3), it is enough to prove that L/k is quadratic and that
θ(C,C′) is the quadratic character of L/k. Since Aut(C) injects in End0L(J(C)) =
End0k(J(C)) � Q, we have that Aut(C) injects in C2 and that K = k. Since C′

is nontrivial, Aut(C) is nontrivial and, by Lemma 2.1, we deduce that L/k is a
quadratic extension. Since the 1-dimensional representation θ(C,C′) is faithful, it
corresponds to the quadratic character of Gal(L/k). �
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3. The completely split Jacobian case

In this section we explore the twisting representation θC when the Jacobian J(C)
splits overK as the power Eg of an elliptic curve E defined overK without complex
multiplication (CM). Note that in this case dim θC = g2. We will use the notation
HC = Aut(C) when we view Aut(C) as a subgroup of the twisting group GC . We
will be interested in the following cases:

(I) [K : k] = g2, the elliptic curve E does not have CM, and θC is absolutely
irreducible.

(II) [K : k] = g2/2, the elliptic curve E does not have CM, and θC �Q θ1 ⊕ θ2
for θ1 and θ2 absolutely irreducible non-isomorphic representations such that
ResGC

HC
θ1 = ResGC

HC
θ2.

Lemma 3.1. Suppose that J(C) ∼K Eg, for E an elliptic curve defined over K
without CM. One has:

ResGC

HC
θC � g · � ,

where � is a rational representation of HC of dimension g.

Proof. Consider the isomorphism

Φ: End0K(J(C)) � End0K(Eg) →
g⊕

i=1

Hom0
K(E,Eg) ,

defined by Φ(ϕ) = (ϕ◦ ι1, . . . , ϕ◦ ιg), where ιi : E → Eg is the inclusion of E as the
i-th component of Eg. The action of HC = Aut(C), which is by right composition,
clearly restricts to each Hom0

K(E,Eg). The rational representation � afforded by
Hom0

K(E,Eg) satisfies ResGC

HC
θC � g · �, and has dimension g provided that E has

no CM. �

Proposition 3.1. Suppose that J(C) ∼K Eg, for E an elliptic curve defined
over K. Suppose we are in either case (I) or (II). Let � be as in Lemma 3.1. Then
one has

IndGC

HC
� � [K : k]

g
· θC .

Proof. Let (·, ·)GC and (·, ·)HC denote the scalar products on complex-valued func-
tions on GC and HC , respectively. For the case (I), by Frobenius reciprocity, the
multiplicity of θC in IndGC

HC
� is

(Tr IndGC

HC
�,Tr θC)GC = (Tr �,TrResGC

HC
θC)HC = g · (Tr �,Tr �)HC ≥ g .

Since [K : k] = g2, the dimensions of IndGC

HC
� and g · θC equal g3, and the result

follows.
For the case (II), observe that ResGC

HC
θ1 = ResGC

HC
θ2 implies that ResGC

HC
θ1 =

g/2 · �. Then, the multiplicity of θ1 in IndGC

HC
� is

(Tr IndGC

HC
�,Tr θ1)GC = (Tr �,TrResGC

HC
θ1)HC =

g

2
· (Tr �,Tr �)HC ≥ g

2
,
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from which one sees that g/2 · θ1 is a subrepresentation of IndGC

HC
�. Similarly, one

proves that g/2 · θ2 is a subrepresentation of IndGC

HC
�. Therefore, g/2 · θC is a

subrepresentation of IndGC

HC
� and, since they both have dimension equal to g3/2,

they are isomorphic. �

Corollary 3.1. Suppose that J(C) ∼K Eg, for E an elliptic curve defined over K.
Suppose we are in either case (I) or (II). Then one has

IndGC

HC
ResGC

HC
θC � [K : k] · θC .

In what follows we will be particularly interested in the structure of V�(C) as a
Q�[GK ]-module. First, we define some notation. For an isomorphism φ : C′ → C,
denote by

Resλφ : Gal(L/K) → Aut(C)

the restriction of the morphism λφ to the subgroup Gal(L/K). Observe that

ResGC

HC
θC ◦ Resλφ � θ(C,C′;L/K) .

Theorem 3.1. Suppose that J(C) ∼K Eg, for E an elliptic curve defined over K.
Let C′ be a θC-twist of C. Suppose that V�(C

′) is a simple Q�[GK ]-module. Then,
one has:

θ(C,C′)⊗ V�(C) �
⎧⎨
⎩
Q[Gal(K/k)]⊗ V�(C

′) if (I),

2 ·Q[Gal(K/k)]⊗ V�(C
′) if (II).

Proof. For the case (I), recall that by Theorem 3.1 in [5] there is an inclusion of
Q�[GK ]-modules

V�(C
′)⊆ θ(C,C′;L/K)⊗ V�(C)� (ResGC

HC
θC ◦ Resλφ)⊗ V�(C)

� g2 · (� ◦ Resλφ)⊗ V�(E) .

Since V�(C
′) is a simple Q�[GK ]-module, we obtain that

(3.1) V�(C
′) � (� ◦ Resλφ)⊗ V�(E) .

Tensoring both sides of the previous isomorphism with g ·Q[Gal(K/k)] we get

g ·Q[Gal(K/k)] ⊗ V�(C
′) � g · IndkK(� ◦ Resλφ)⊗ V�(E)

� IndkK(� ◦ Resλφ)⊗ V�(C) � (IndGC

HC
� ◦ λφ)⊗ V�(C)

� g · (θC ◦ λφ)⊗ V�(C) � g · θφ ⊗ V�(C) � g · θ(C,C′)⊗ V�(C) ,

where we have used that IndGC

HC
� = g · θC , as follows from Proposition 3.1. For

the case (II), everything is as for case (I) until equation (3.1). Then, tensoring by
2g ·Q[Gal(K/k)], we get

2g ·Q[Gal(K/k)] ⊗ V�(C
′) � 2g · IndkK(� ◦Resλφ)⊗ V�(E)

� 2 IndkK(� ◦ Resλφ)⊗ V�(C) � 2(IndGC

HC
� ◦ λφ)⊗ V�(C)

� g · (θC ◦ λφ)⊗ V�(C) � g · θ(C,C′)⊗ V�(C) . �
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Corollary 3.2. Assume the hypotheses of Theorem 3.1, and that one of the
cases (I) or (II) holds. Let p a prime of good reduction for both C and C′ un-
ramified in L/k. Write ap = Tr �C(Frobp) and a

′
p = Tr �C′(Frobp). Then:

i) If Frobp ∈ GK , one has

sgn(ap · Tr(θ(C,C′)(Frobp))) = sgn(a′p) .

ii) If Frobp �∈ GK , one has

Tr θ(C,C′)(Frobp) = 0 .

Proof. Theorem 3.1 implies

Tr(θ(C,C′)(Frobp)) · ap = a′p · Tr(Q[Gal(K/k)](Frobp)) .

Part i) follows from the fact that if Frobp ∈ GK , then

Tr(Q[Gal(K/k)](Frobp)) = |Gal(K/k)| .
For part ii), suppose that Frobp �∈ GK . Corollary 3.1 implies that Tr θC(σ) = 0

for any σ �∈ HC . Then, Tr θ(C,C
′)(Frobp) = Tr θC ◦ λφ(Frobp) = 0. �

4. The genus 2 case

Throughout this section, C denotes a genus 2 curve defined over Q. Let us recall
some basic facts that may be found in [2]. It is well known that C admits an affine
model given by a hyperelliptic equation Y 2 = f(X), where f(X) ∈ Q[X ]. Any
element α ∈ Aut(C) can then be written in the form

α(X,Y ) =

(
mX + n

pX + q
,
mq − np

(pX + q)3
Y

)
,

for unique m, n , p , q ∈ K. Moreover, the map

Aut(C) → GL2(K) , α �→
(
m n
p q

)

defines a 2-dimensional faithful representation of Aut(C). We will often identify an
automorphism of C with its corresponding matrix. Note that w(X,Y ) = (X,−Y )
is always an automorphism of C, called the hyperelliptic involution of C, which
lies in the center Z(Aut(C)) of Aut(C).

The group Aut(C) is isomorphic to one of the groups

C2, C2 × C2, D8, D12, 2D12, S̃4, C2 × C5 ,

where 2D12 and S̃4 denote certain double covers of the dihedral group of 12 ele-
mentsD12 and the symmetric group on 4 letters S4. Completing the study initiated
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by Clebsch and Bolza, Igusa [8] computed the 3-dimensional variety M2 of moduli
of genus 2 curves defined over Q. Generically, the only nontrivial automorphism
of a curve in M2 is the hyperelliptic involution and, thus, Aut(C) � C2. The
curves with Aut(C) containing C2 × C2 constitute a surface in M2. The moduli
points corresponding to curves such that Aut(C) contains D8 or D12 describe two
curves contained in this surface. The curves with Aut(C) � 2D12, S̃4, or C2 × C5

correspond to three isolated points of M2.
In this section, we will explicitly compute the twisting representation θC of C

and the decomposition of θ(C,C′) ⊗ V�(C) when Aut(C) � D8 or D12. In both
cases, the irreducible characters of GC will be denoted χi, even though they refer
to different groups (we will always refer the reader to the corresponding character
table in Section 5). We will denote by �i a representation of character χi.

Lemma 4.1. If Aut(C) is nonabelian, then J(C) ∼K E2, where E is an elliptic
curve defined over K.

Proof. It is straightforward to check that Aut(C) contains a nonhyperelliptic in-
volution u. Then the quotient E = C/〈u〉 is an elliptic curve defined over K (see
Lemmas 2.1 and 2.2 in [2]). The injection E ↪→ J(C) is also defined over K and
the Poincaré Decomposition Theorem ensures the existence of an elliptic curve E′

defined over K such that J(C) ∼K E × E′. Since EndK(J(C)) contains Aut(C),
it is non-abelian and so EndK(J(C)) � M2(EndK(E)), from which E ∼K E′. �

Remark 4.1. Henceforth, for the cases Aut(C) � D8 or D12, we will make the
assumption that the elliptic quotient E does not have complex multiplication, i.e.,
End0K(J(C)) � M2(Q). This only excludes a finite number of Q-isomorphism
classes. Indeed, curves with Aut(C) � D8 or D12 defined over Q are parame-
terized by rational values of the absolute invariant u (see subsections 4.1 and 4.2
for details). According to Proposition 8.2.1 of [1], the j-invariant of the elliptic
quotient E has two possible forms:

j(E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

26(3∓ 10
√
u)3

(1 ∓ 2
√
u)(1± 2

√
u)2

if Aut(C) � D8,

2833(2∓ 5
√
u)3(±√

u)

(1∓ 2
√
u)(1± 2

√
u)3

if Aut(C) � D12.

Since the degree of the extension Q(j(E))/Q is 1 or 2 and the number of quadratic
imaginary fields of class number 1 or 2 is finite, we deduce that there exists only a
finite number of rational absolute invariants u for which E has CM. According to
the table on page 112 of [1], for Aut(C) � D8 these values of u are:

(4.1)
81

196
,
3969

16900
,
−81

700
,
1

5
,
9

32
,
12

49
,
81

320
,
81

325
,
2401

9600
,
9801

39200
,
6480

25920
,
194481

777925
,
96059601

384238400
.

For Aut(C) � D12 the values of u for which E has CM are:

(4.2)
4

25
,
−4

11
,
1

20
,
1

2
,
27

100
,
4

17
,
125

484
,
20

81
,
256

1025
,
756

3025
,
62500

250001
.



The twisting representation of the L-function of a curve 759

Remark 4.2. By Lemma 4.1, if Aut(C) � D8 or D12, then for every twist C′

of C, one has that

End0L(J(C)) = End0K(J(C)) � M2(EndK(E)) .

In other words, every twist C′ of C is a θC-twist of C.

4.1. Aut(C) � D8

Proposition 4.1 (Proposition 2.1 of [3]). There is a bijection between the Q-isomor-
phism classes of genus 2 curves defined over Q with Aut(C) � D8 and the open
set of the affine line Q∗ � {1/4, 9/100}, given by associating to each u ∈ Q∗ �

{1/4, 9/100} the projective curve of equation

Y 2Z3 = X5 +X3Z2 + uXZ4 .

As follows from Proposition 4.4 of [3], the curve in the previous proposition is
Q-isomorphic to

(4.3) C = Cu : Y
2Z4 = X6 − 8X5Z +

3

u
X4Z2 +

3

u2
X2Z4 +

8

u2
XZ5 +

1

u3
Z6 .

where we have chosen parameters z = 0, s = 1 and v = 1/u. Its group of
automorphisms is computed in Proposition 3.3 of [3], and it is generated by

U =

(
1/

√
2 1/

√
2u√

u/2 −1/
√
2

)
, V =

(
0 −1/

√
u√

u 0

)
,

from which we see that K = Q(
√
u,

√
2). Note that U and V satisfy the relations

U2 = 1, V 4 = 1 and UV = V 3U . For the character table of the group GC , see in
Section 5 Table 1 if u and 2u �∈ Q∗2; Table 2 if u ∈ Q∗2; and Table 3 if 2u ∈ Q∗2.

Proposition 4.2. One has

Tr θC =

⎧⎪⎨
⎪⎩
χ11 if u and 2u �∈ Q∗2,
χ9 + χ10 if u ∈ Q∗2,
χ6 + χ7 if 2u ∈ Q∗2.

Moreover, ResGC

HC
χ9 = ResGC

HC
χ10 in the second case, and ResGC

HC
χ6 = ResGC

HC
χ7

in the third case.

Proof. The dimension of θC is 4. Suppose that u and 2u �∈ Q∗2. By looking at the
column of the conjugacy class 2A in Table 1, one sees that �11 is the only faithful
representation of dimension 4 of GC .

One can also directly compute the representation θC . Denote by α∗ the image
of α ∈ Aut(C) under the inclusion Aut(C) ↪→ End0K(J(C)). We will prove that
End0K(J(C)) = 〈1∗, U∗, V ∗, U∗V ∗〉Q . Indeed, it is enough to see that 1∗, U∗, V ∗

and U∗V ∗ are linearly independent. Suppose that for certain λi in Q, one has
λ11

∗+λ2U∗+λ3V ∗+λ4U∗V ∗ = 0 . Conjugating by V ∗ one obtains λ11
∗−λ2U∗+

λ3V
∗ − λ4U

∗V ∗ = 0 , which implies λ11
∗ + λ3V

∗ = 0 and thus λ1 = λ3 = 0.
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Similarly, one has λ2U
∗+λ4U

∗V ∗ = 0, that is λ21
∗ +λ4V

∗ = 0, which implies
λ2 = λ4 = 0. Let σ, τ ∈ Gal(K/Q) be such that σ(

√
u) = −√

u and τ(
√
2) = −√

2.
Now, θC can be computed by observing that σU = UV , σV = V 3, τU = UV ,
and τV = V .

Suppose that u ∈ Q∗2. By looking at the column of the conjugacy class 2A in
Table 2, one sees that either �9 or �10 is a constituent of θC , since otherwise θC
would not be faithful. Since �9 = �10, we deduce that θC = �9 + �10. Moreover,
by Lemma 3.1, ResGC

HC
θC = 2 · �, where � is a representation of HC � D8. Since

the only faithful representation of D8 is irreducible, it follows that ResGC

HC
�9 =

ResGC

HC
�10 = �. The case 2u ∈ Q∗2 is analogous. �

As a consequence of the previous proposition and Theorem 3.1, we obtain the
following result:

Corollary 4.1. If C′ is a twist of C such that V�(C
′) is a simple Q�[GK ]-module,

then

θ(C,C′)⊗ V�(C) �
{
Q[Gal(K/Q)]⊗ V�(C

′) if u and 2u �∈ Q∗2.
2 ·Q[Gal(K/Q)]⊗ V�(C

′) if u or 2u ∈ Q∗2.

Proof. If u ∈ Q∗2, the fact that Tr θC = χ9+χ10 together with g
2/2 = [K : Q] = 2,

guarantees that we are in case (II) of Theorem 3.1. The case 2u ∈ Q∗2 is analogous.
If u and 2u �∈ Q∗2, then we are in case (I). �

4.2. Aut(C) � D12

Proposition 4.3 (Proposition 2.2 of [3]). There is a bijection between the Q-iso-
morphism classes of genus 2 curves defined over Q with Aut(C) � D12 and the
open set of the affine line Q∗ � {1/4,−1/50}, given by associating to each u ∈
Q∗ � {1/4,−1/50} the projective curve of equation

Y 2Z4 = X6 +X3Z3 + uZ6 .

As follows from Proposition 4.9 of [3], the curve of the previous proposition is
Q-isomorphic to

(4.4)
C = Cu : Y

2Z4 = 27 uX6 − 2916 u2X5Z + 243 u2X4Z2 + 29160 u3X3Z3

+729 u3X2Z4 − 26244 u4XZ5 + 729 u4Z6 .

This curve corresponds to the curve appearing in Proposition 4.9 of [3], with the
choice of parameters z = 0, s = u and v = u/3. Its group of automorphisms is
computed in Proposition 3.5 of [3], and is generated by

U =

(
0

√
u/3

3/
√
u 0

)
, V =

(
1/2 −√

u/
√
12

3
√
3/
√
4u 1/2

)
,

from which we see that K = Q(
√
u,

√
3) (observe the change of two signs in the

matrix V with respect [3]). Note that U and V satisfy the relations U2 = 1, V 6 = 1
and UV = V 5U . For the character table of the group GC , see in Section 5 Table 4
if u and 3u �∈ Q∗2; Table 5 if u ∈ Q∗2; and Table 6 if 3u ∈ Q∗2 .
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Proposition 4.4. One has

Tr θC =

⎧⎪⎨
⎪⎩
χ15 if u and 3u �∈ Q∗2,
χi + χj , for i �= j ∈ {10, 11, 12} if u ∈ Q∗2,
χ8 + χ9 if 3u ∈ Q∗2.

Moreover, ResGC

HC
χi = ResGC

HC
χj in the second case, and ResGC

HC
χ8 = ResGC

HC
χ9 in

the third case.

Proof. The dimension of θC is 4. Suppose that u and 3u �∈ Q∗2. By Lemma 4.2,
and by looking at the column of the conjugacy class 2A in Table 4, one sees that
�13, �14 and �15 are the only possible constituents of θC . We deduce that θC � �15
from the fact that none of the representations 2 ·�13, 2 ·�14 and �13⊕�14 is faithful.

One can also directly compute the representation θC . Analogously to the case
Aut(C) � D8 one has End0K(J(C)) = 〈1∗, U∗, V ∗, U∗V ∗〉Q. Moreover, since the
algebra 〈1∗, V ∗〉 has no zero divisors, one deduces that V ∗2 = V ∗ − 1. Let σ, τ ∈
Gal(K/Q) be such that σ(

√
u) = −√

u and τ(
√
3) = −√

3. Then σU = UV 3,
σV = V 5, τU = U , and τV = V 5.

Suppose that u ∈ Q∗2. By Lemma 3.1, ResGC

HC
θC = 2 · �. The only faithful

representation of HC � D12 is irreducible. This, together with the fact that the
dimension of an irreducible representation of GC is at most 2 (see Table 5), implies
that θC is the sum of two irreducible representations of dimension 2. The only
sums of two irreducible representations of dimension 2 of GC which are faithful
are χ10 + χ11, χ11 + χ12, or χ10 + χ12. The case 3u ∈ Q∗2 is analogous. �

Lemma 4.2. Let C be a smooth projective hyperelliptic curve. Let w be the hyper-
elliptic involution of C. Then, one has

Tr θC((w, id)) = − dimEnd0K(J(C)) .

Proof. Observe that for ψ ∈ End0K(J(C)), one has θC((w, id))(ψ) = −ψ. �

As a consequence of the previous proposition and Theorem 3.1, we obtain the
following result:

Corollary 4.2. If C′ is a twist of C such that V�(C
′) is a simple Q�[GK ]-module,

then

θ(C,C′)⊗ V�(C) �
{
Q[Gal(K/Q)]⊗ V�(C

′) if u and 3u �∈ Q∗2.
2 ·Q[Gal(K/Q)]⊗ V�(C

′) if u or 3u ∈ Q∗2.

Proof. If u and 3u �∈ Q∗2, the fact that Tr θC = χ15 together with g
2 = [K : Q] = 4,

guarantees that we are in case (I) of Theorem 3.1. If u or 3u ∈ Q∗2, then we are
in case (II). �

4.3. L-functions of twisted genus 2 curves

Now the proof of Theorem 1.2 is immediate. If p is an unramified prime in L/Q,
then the reciprocal of the characteristic polynomial of Frobp acting on the Q�[GQ]-
module on the left-hand side of the isomorphism of Corollary 4.1 or Corollary 4.2
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is Lp(C/Q, θC ◦λφ, T ). Recall that f denotes the residue class degree of p in K/Q.
The result follows from the fact that the right-hand side of the isomorphism of
Corollary 4.1 or Corollary 4.2 is of the form �⊗V�(C

′), where � is a 4-dimensional
representation of Gal(K/Q) such that �(Frobp) has four eigenvalues equal to 1
if f = 1, and two eigenvalues equal to 1, and two equal to −1 if f = 2.

Observe that thanks to Theorem 1.2, from the local factor Lp(C/Q, T ) and
the representation θ(C,C′) � θC ◦ λφ, either the polynomial Lp(C

′/Q, T ) or the
product Lp(C

′/Q, T ) ·Lp(C
′/Q,−T ) can be determined. The indeterminacy of the

sign of a′p which follows from the product Lp(C
′/Q, T ) ·Lp(C

′/Q,−T ), can not be
handled with the relation

sgn(Tr(θ(C,C′)(Frobp)) = sgn(ap · a′p)
from Proposition 3.2, since this relation only holds for f = 1.

5. Appendix: Character tables of twisting groups

In the following tables, the notation GAP(n,m) indicates them-th group of order n
in the ordered list of finite groups of [7].

Class 1A 2A 2B 2C 2D 2E 4A 4B 4C 8A 8B
Size 1 1 2 4 4 4 2 2 4 4 4
χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 −1 1 1 −1 −1 −1 1
χ3 1 1 1 1 −1 −1 1 1 1 −1 −1
χ4 1 1 −1 1 1 −1 1 −1 −1 1 −1
χ5 1 1 −1 −1 1 −1 1 −1 1 −1 1
χ6 1 1 1 −1 −1 −1 1 1 −1 1 1
χ7 1 1 −1 −1 −1 1 1 −1 1 1 −1
χ8 1 1 1 −1 1 1 1 1 −1 −1 −1
χ9 2 2 2 0 0 0 −2 −2 0 0 0
χ10 2 2 −2 0 0 0 −2 2 0 0 0
χ11 4 −4 0 0 0 0 0 0 0 0 0

Table 1. Character table of D8 � (C2 × C2) � GAP(32, 43).

Class 1A 2A 2B 2C 2D 4A 4B 4C 4D 4E
Size 1 1 2 2 2 1 1 2 2 2
χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 1 −1 −1 1 −1 −1
χ3 1 1 −1 −1 −1 −1 −1 1 1 1
χ4 1 1 1 −1 −1 1 1 1 −1 −1
χ5 1 1 1 −1 1 −1 −1 −1 1 −1
χ6 1 1 1 1 −1 −1 −1 −1 −1 1
χ7 1 1 −1 −1 1 1 1 −1 −1 1
χ8 1 1 −1 1 −1 1 1 −1 1 −1
χ9 2 −2 0 0 0 2i −2i 0 0 0
χ10 2 −2 0 0 0 −2i 2i 0 0 0

Table 2. Character table of D8 � C2 � GAP(16, 13)
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Class 1A 2A 2B 2C 4A 8A 8B
Size 1 1 4 4 2 2 2
χ1 1 1 1 1 1 1 1
χ2 1 1 −1 −1 1 1 1
χ3 1 1 −1 1 1 −1 −1
χ4 1 1 1 −1 1 −1 −1
χ5 2 2 0 0 −2 0 0
χ6 2 −2 0 0 0 ζ8 −ζ8
χ7 2 −2 0 0 0 −ζ8 ζ8

Table 3. Character table of D8 � C2 � GAP(16, 7)

Class 1A 2A 2B 2C 2D 2E 2F 2G 3A 4A 4B 6A 6B 6C 12A
Size 1 1 2 2 3 3 6 6 2 2 6 2 4 4 4
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ1 1 1 1 −1 −1 −1 −1 1 1 −1 1 1 1 −1 −1
χ1 1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1
χ1 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1
χ1 1 1 1 1 −1 −1 −1 −1 1 1 −1 1 1 1 1
χ1 1 1 1 −1 1 1 1 −1 1 −1 −1 1 1 −1 −1
χ1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1
χ1 1 1 −1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 1
χ1 2 2 2 2 0 0 0 0 −1 2 0 −1 −1 −1 −1
χ10 2 2 −2 −2 0 0 0 0 −1 2 0 −1 1 1 −1
χ11 2 2 2 −2 0 0 0 0 −1 −2 0 −1 −1 1 1
χ12 2 2 −2 2 0 0 0 0 −1 −2 0 −1 1 −1 1
χ13 2 −2 0 0 −2 2 0 0 2 0 0 −2 0 0 0
χ14 2 −2 0 0 2 −2 0 0 2 0 0 −2 0 0 0
χ15 4 −4 0 0 0 0 0 0 −2 0 0 2 0 0 0

Table 4. Character table of D12 � (C2 × C2) � GAP(48, 38)

Size 1 1 1 1 3 3 3 3 2 2 2 2
Class 1A 2A 2B 2C 2D 2E 2F 2G 3A 6A 6B 6C

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1
χ3 1 −1 1 −1 −1 −1 1 1 1 −1 −1 1
χ4 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1
χ5 1 1 1 1 −1 −1 −1 −1 1 1 1 1
χ6 1 −1 −1 1 −1 1 1 −1 1 −1 1 −1
χ7 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1
χ8 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1
χ9 2 2 2 2 0 0 0 0 −1 −1 −1 −1
χ10 2 −2 −2 2 0 0 0 0 −1 1 −1 1
χ11 2 2 −2 −2 0 0 0 0 −1 −1 1 1
χ12 2 −2 2 −2 0 0 0 0 −1 1 1 −1

Table 5. Character table of D12 � C2 � GAP(24, 14)
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Class 1A 2A 2B 2C 3A 4A 6A 6B 6C
Size 1 1 2 6 2 6 2 2 2
χ1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 −1 1 −1 1 1 1
χ3 1 1 −1 −1 1 1 −1 −1 1
χ4 1 1 −1 1 1 −1 −1 −1 1
χ5 2 2 −2 0 −1 0 1 1 −1
χ6 2 −2 0 0 2 0 0 0 −2
χ7 2 2 2 0 −1 0 −1 −1 −1
χ8 2 −2 0 0 −1 0 −√−3

√−3 1
χ9 2 −2 0 0 −1 0

√−3 −√−3 1

Table 6. Character table of D12 � C2 � GAP(24, 8)
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