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Isoperimetric profile and random walks

on locally compact solvable groups

Romain Tessera

Abstract. We study the large-scale geometry of a large class of amenable
locally compact groups comprising all solvable algebraic groups over a local
field and their discrete subgroups. We show that the isoperimetric profile
of these groups is in some sense optimal among amenable groups. We use
this fact to compute the probability of return of symmetric random walks,
and to derive various other geometric properties.

1. Introduction

Pursuing our study [31] of large-scale Sobolev inequalities on metric measure
spaces, we introduce a notion of large-scale foliation and we prove that if the
space X is large-scale foliated by the space Y , and if Y satisfies a Sobolev inequal-
ity at large scale, then so does X . In particular the Lp-isoperimetric profile of Y
grows faster than that of X . A special case is when Y = H is a closed unimodular
subgroup of a locally compact unimodular group X = G. We apply this gen-
eral fact to a special class of amenable groups, namely geometrically elementary
solvable groups (see the precise definition below). This class of amenable locally
compact groups is stable under quasi-isometries, and contains all compactly gen-
erated unimodular closed subquotients of the group of upper triangular matrices
T(d, k) over a finite product of local fields. If G is a geometrically elementary
solvable group with exponential growth, we prove that the Lp-isoperimetric profile
of G satisfies

(1.1) jG,p(t) ≈ log t,

for every 1 ≤ p ≤ ∞. As a consequence, the probability of return of a symmetric
random walk on such a group decreases like

(1.2) φ(n) ≈ e−n1/3

.
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Keywords: Solvable locally compact groups, isoperimetric profile, random walks on groups, Lp-
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Most results regarding (1.1) and (1.2) over the past 25 years have their source in
the seminal work of Varopoulos ([32]–[40]).

To be more specific, our work generalizes and unifies older results, where (1.1)
and (1.2) had been proved for unimodular amenable connected Lie groups and their
lattices [2], [17], [24], [39] (see also the expository paper [26]), and for some finitely
generated groups such as the lamplighter or solvable Baumslag–Solitar’s groups [9].
Other groups for which these behaviors have been established are finitely generated
solvable torsion-free1 groups with finite Prüfer rank [25].

We prove a stronger statement when the group is either a quotient of a solv-
able algebraic group over a q-adic field (q is a prime), a closed subquotient of an
amenable connected Lie group, or a cocompact lattice in a finite product of such
groups (such as solvable Baumslag–Solitar groups). For these groups, the isoperi-
metric profile inside a ball grows linearly with the radius of the ball. This extends
a previous result [29], where this had been shown for connected solvable Lie groups
(and their lattices).

The rest of the introduction is devoted to a more comprehensive and precise
exposition of the results, together with some of their applications. In more de-
tail, after recalling a few definitions, we shall state our main results about the
Lp-isoperimetric profile, and the Lp-isoperimetric profile in balls. Then we shall
explain how these estimates for the L2-isoperimetric profile can be used to pro-
vide sharp lower bounds on the probability of return of random walks. Our es-
timates on the Lp-isoperimetric profile in balls will then be applied to compute
the Lp-compression of these groups, and to prove that their first reduced Lp-coho-
mology vanishes for all 1 < p < ∞ (confirming a conjecture of Gromov). We
then give a few interesting examples of groups in the class GES. We close the
introduction with a short list of open problems.

Notation and basic definitions. Let G be a locally compact, compactly gener-
ated group equipped with a left Haar measure μ. Let S be a compact symmetric
generating subset of G, i.e., ∪n∈NS

n = G. Equip G with the left-invariant word
metric associated to S, i.e., dS(g, h) = inf{n, g−1h ∈ Sn}. The closed ball of
center g and of radius r is denoted by B(g, r) and its volume by V (r). Let λ be
the action of G by left translations on functions on G, i.e., λ(g)f(x) = f(g−1x).
Restricted to elements of Lp(G), λ is called the left regular representation of G
on Lp(G).

For any 1 ≤ p ≤ ∞, and any subset A of G, the Lp-isoperimetric profile inside A
is denoted by

Jp(A) = sup
f∈Lp(A)

‖f‖p
sups∈S ‖f − λ(s)f‖p ,

where Lp(A) comprises all elements Lp(G) essentially supported in A.

1In fact, in [25] the authors claim to prove this for all finitely generated solvable groups with
finite Prüfer rank, but their proof is based on the wrong idea (last statement of Proposition 4.1
in [25]) that the torsion subgroup of the nilpotent radical of a finite Prüfer rank solvable group
is finite (cf. Hall’s example mentioned at the end of this introduction).
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Isoperimetric profile. (see for instance [7]) The Lp-isoperimetric profile, is the
nondecreasing function

jG,p(v) = sup
μ(A)≤v

Jp(A).

Isoperimetric profile inside balls. [29] The Lp-isoperimetric profile inside balls
is the nondecreasing function

Jb
G,p(r) = Jp(B(1, r)).

We will be interested in the “asymptotic behavior” of these functions which we
now define. Let f, g : R+ → R+ be two monotonic functions. We write f 	 g,
if there exists C > 0 such that f(t) = O(g(Ct)) when t → ∞. We write f ≈ g
if both f 	 g and g 	 f . The asymptotic behavior of f is its class modulo the
equivalence relation ≈.

Main results.

Theorem 1 (see Corollary 4.3). Let G and H be compactly generated unimodular
groups, such that H is either a closed subgroup or a quotient of G. Let 1 ≤ p ≤ ∞.
Then,

jG,p 	 jH,p.

If moreover H is not distorted in G, then

Jb
G,p 	 Jb

H,p.

If the groups are finitely generated, these statements are much easier to prove
(see [14]).

Remark 1.1. If H is a quotient, then the second statement does not require that
the groups are unimodular.

We also show:

Proposition 2 (see Propositions 4.5, 4.6 and 4.7). Let 1 → H → G → Q → 1 be
an exact sequence of compactly generated locally compact groups. Let 1 ≤ p ≤ ∞.
Then, if H is compact, then jG,p ≈ jQ,p, and Jb

G,p ≈ Jb
Q,p. If instead Q is compact,

then jG,p ≈ jH,p, and Jb
G,p ≈ Jb

H,p.

According to a theorem of Coulhon and Saloff-Coste [11], if G is a compactly
generated, locally compact group with exponential growth, then jG,p(t) 	 log t.
On the other hand it is very easy to see that JG,p(t) ≤ 2t.

We will now combine these stability results with the following central result
of [31] in order to define a large class of groups satisfying the converse inequalities.

Theorem 3. Let (G,S) and (H,T ) be two compactly generated, locally compact
groups, equipped with symmetric generating subsets S and T respectively. Then,
the asymptotic behavior of jG,p, J

b
G,p, for any 1 ≤ p ≤ ∞ does not depend on S.

Moreover, if G and H are both unimodular, and if G is quasi-isometric to H, then

jG,p ≈ jH,p and Jb
G,p ≈ Jb

H,p.
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Geometrically Elementary Solvable groups. The class GES of geometrically
elementary solvable groups is the smallest class of (compactly generated) locally
compact groups

• comprising all unimodular closed compactly generated subgroups of the group
T(d, k), for any integer d and any local field k;

• stable under taking finite (direct) products, quotients, and unimodular closed
compactly generated subgroups;

• stable under quasi-isometry.

As we will see below, this class contains as particular examples solvable Baum-
slag–Solitar groups, lamplighter groups, and polycyclic groups. Let us now state
our main result about this class.

Theorem 4. Let G be a GES group. Then, for every 1 ≤ p ≤ ∞,

jG,p(t) 
 log t.

This result was already known for polycylic groups [23], connected amenable Lie
groups [24], and for the lamplighter and other particular examples [9]. To prove
Theorem 4, we establish a stronger result for the group of triangular matrices
T(d, k) over a local field k, i.e., that Jb

G,p(t) 
 t. Indeed, note that JG,p(r) ≤
jG,p(V (r)). So, in particular, if the group has exponential growth, Jb

G,p(t) 
 t
implies jG,p 
 log t. The stability under finite product being trivial, we obtain all
geometric elementary solvable groups using Theorems 1, 2 and 3.

Restricting to groups with exponential growth, we obtain:

Corollary 5. Let G be a geometrically elementary solvable group with exponential
growth. Then, for every 1 ≤ p ≤ ∞,

jG,p(t) ≈ log t.

It is natural to ask whether a geometrically elementary solvable group satisfies
the stronger property Jb

G,p(t) 
 t. Since its variable is the radius of a ball, Jb
G,p is

sensitive to distortion of the metric. Note that this is reflected in the statement of
Theorem 1.

Theorem 6. Let q be a prime and let k be a q-adic field. Let G be either a
quotient of a compactly generated algebraic group over k, or a subquotient of a
closed compactly generated subgroup of an almost connected amenable Lie group.
Then, for every 1 ≤ p ≤ ∞,

Jb
G,p(t) ≈ t.

In particular these groups have controlled Følner sequences (see [30]).

In [29], we proved this statement for connected amenable Lie groups, lamp-
lighter groups, and solvable Baumslag–Solitar groups. These are not special cases
of Theorem 6, but will be of Theorem 5.3 (which is a little too technical to state
in this introduction).
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Application to random walks. Let G be a locally compact, compactly gener-
ated group. Using Theorem 9.2 of [31] (which is a straightforward generalization
of Theorem 7.1 in [7]), we obtain the following result.

Theorem 7 (see Theorem 6.2). Let G be a geometrically elementary solvable
group with exponential growth, and let μ be a symmetric probability measure whose
support is compact and generates G. Then, for every compact neighborhood U of
the neutral element,

μ2n(U) ≈ e−n1/3

.

As already mentioned, this fact was known for connected unimodular amenable
Lie groups [24], for finitely generated torsion-free solvable groups with finite Prüfer
rank [25], and for the lamplighter group F � Z, where F is a finite group in [8].
Using a probabilistic approach, Mustapha [22] was able to prove it for certain p-adic
analytic unimodular groups (which are particular cases of geometrically elementary
solvable groups).

Application to Lp-compression.

Equivariant Lp-compression. Recall that the equivariant Lp-compression rate
Bp(G) of a locally compact compactly generated group is the supremum of 0 ≤
α ≤ 1 such that there exists a proper isometric affine action σ on some Lp-space
satisfying, for all g ∈ G,

‖σ(g).0‖p ≥ C−1 |g|αS − C,

for some constant C < ∞, |g|S being the word length of g with respect to a compact
generating subset S.

It follows from Corollary 13 of [29] that a group with linear Lp-isoperimetric
profile inside balls satisfies Bp(G) = 1. Hence, we obtain:

Theorem 8. The groups appearing in Theorem 6 (or more generally Theorem 5.3)
satisfy Bp(G) = 1 for any 1 ≤ p ≤ ∞.

Nonequivariant Lp-compression. Recall that the Lp-compression rate of a
metric space (X, d) is the supremum of all 0 ≤ α ≤ 1 such that there exists a
map F from X to some Lp-space satisfying, for all x, y ∈ X ,

C−1d(x, y)α − C ≤ ‖F (x)− F (y)‖p ≤ d(x, y),

for some constant C < ∞.
Another theorem of Mustapha [21] says that an algebraic compactly generated

subgroup of GL(d, k), where k is a q-adic field, is non distorted in GL(d, k). As
T(d, k) is cocompact in GL(d, k) and satisfies Bp(T(d, k)) = 1, we obtain:

Theorem 9. Let k be a q-adic field. Let G be an algebraic compactly generated
subgroup of GL(d, k). Then, the Lp-compression rate of G satisfies Rp(G) = 1 for
any 1 ≤ p ≤ ∞.
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Application to the first reduced Lp-cohomology. Recall that a conjecture of
Gromov [15] states that all amenable discrete groups have trivial reduced Lp-coho-
mology, in degree at least 1, and for any 1 < p < ∞. Cheeger and Gromov proved
it when p = 2 [8]. The question is obviously relevant in the more general setting of
locally compact groups. In [30], we were able to settle the conjecture in degree 1
for the class of amenable groups with linear isoperimetric profile in balls. The
present paper therefore extends the class of groups satisfying Gromov’s conjecture
in degree 1.

Theorem 10. Let G be as in Theorem 6 (or more generally Theorem 5.3). Then

for every 1 < p < ∞, H
1
(G, λG,p) = 0.

Some remarks about the class GES. As solvable connected Lie groups embed
as closed subgroups of T(d,C), we deduce that unimodular amenable connected
Lie groups, hence polycyclic groups are in GES (see the discussion at the beginning
of Section 5).

The class GES contains the solvable Baumslag–Solitar groups BS(1, n) = 〈t, x |
txt−1 = xn〉, for any integer n with |n| ≥ 1. This group can be described as
BS(1, n) = Z[1/n] � Z, where Z acts on Z[1/n] by multiplication by n. It has a
faithful matrix representation

BS(1, n) =

{(
nk P
0 1

)
, k ∈ Z, P ∈ Z[1/n]

}
.

Let Qp denote the p-adic field, and define the ring Qn as the direct product of
all Qp when p ranges over the set of distinct prime divisors of n. Then the natural
diagonal embedding of Z[1/n] into Qn ⊕ R has discrete and actually cocompact
image (see Chap. IV, §2 in [41]). Accordingly, BS(1, n) can be seen as a cocompact
lattice inside the group (Qn ⊕R)�Z, where Z acts (diagonally) by multiplication
by powers of n.

Similarly if p is a prime integer, the lamplighter group Fp � Z = (⊕ZFp) � Z

admits a faithful matrix representation

Fp � Z =

{(
Xk P
0 1

)
, k ∈ Z, P ∈ Fp[X,X−1]

}
,

and sits as a cocompact lattice inside Fp((X)) ⊕ Fp((X
−1))� Z, where Z acts by

multiplication by powers of X .
Note that the class GES also contains groups which are not virtually solvable.

Indeed the lamplighter group F �Z = F (Z)�Z, where F is any finite group belongs
to GES. Namely, such a group is quasi-isometric to any F ′ � Z where F ′ has same
cardinality as F , [13]. Hence one can take F ′ to be a product of Fq for finitely
many primes q, which then implies that F ′ � Z is a subgroup in a finite product of
lamplighter groups Fq � Z.

Finally, let us mention that the class GES contains finitely generated groups
which are not residually finite (hence not linear) as shown by the following example
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due to Hall, [16]. Fix a prime q and consider the group of upper triangular 3 by 3
matrices:

G =

{( 1 x z
0 qn y
0 0 1

)
; x, y, z ∈ Z[1/q]; n ∈ Z

}
.

Taking the quotient by the central infinite cyclic subgroup of unipotent matrices
I + mE1,3 where m ∈ Z, we obtain an elementary solvable group which is non-
residually finite since its center is isomorphic to Z[1/q]/Z.

Open problems.

Conjecture 1.2. We conjecture that all GES groups and all compactly gener-
ated closed subgroups of triangulable groups over a product of local fields satisfy
JG,p(t) ≈ t (to prove the last statement, one needs to study the distortion of such
subgroups).

Question 1.3. Are the classes of groups satisfying jG,p ≈ log t, resp. JG,p(t) ≈ t,
stable under extension?

Question 1.4. Conversely, does every group satisfying jG,p 
 log t belong to the
class GES?

Organization of the paper. In Section 2, we briefly recall the notions of Sobolev
inequalities at scale h and the results of [31] that we need here. We also discuss
some subtleties occurring when the group is not unimodular. In Section 3, we prove
our main technical result about large-scale foliations of metric measure spaces.
This is the main ingredient of the proof of Theorem 1. In Section 4, we work out
the case of closed subgroups and quotients. In Section 5, we prove Theorems 4
and 6. Finally, in Section 6, we prove Theorem 7.

Acknowledgments. I am grateful to Yves de Cornulier for pointing out to me
the group constructed by Hall [16], and for his useful remarks and corrections.
I would also like to thank the referee for pointing out missing references.

2. Preliminaries: functional analysis at a given scale

The purpose of this section is to briefly recall the notions introduced in [31]. By
a metric measure space (X, d, μ) we mean a metric space (X, d) equipped with a
Borel measure μ on X such that bounded measurable subsets have finite measure.
The volume of the closed ball BX(x, r) is denoted by VX(x, r) (or simply V (x, r)
if only one space is involved).

2.1. The locally doubling property

The metric measure spaces that we will consider satisfy a very weak property of
bounded geometry introduced in [10] in the context of Riemannian manifolds.
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Definition 2.1. We say2 that a space X is locally doubling at scale r > 0 if there
exists a constant Cr such that

V (x, 2r) ≤ Cr V (x, r) ∀x ∈ X.

If it is locally doubling at every scale r > 0, then we just say that X is locally
doubling.

Example 2.2. Let X be the vertex set of a connected graph with degree bounded
by d, equipped with the counting measure. The volume of balls of radius r satisfies

1 ≤ V (x, r) ≤ dr ∀x ∈ X.

In particular, X is locally doubling.

Example 2.3. Let (X, d, μ) be a metric measure space and let G be a locally
compact group acting by measure-preserving isometries. If G acts cocompactly,
then X is locally doubling.

2.2. Local norm of the gradient at scale h

The purpose of this section is to define a notion of “local norm of the gradient”
(whose infinitesimal analogue is the modulus of the gradient of a smooth func-
tion on a Riemannian manifold), which captures the local variations of a function
defined on a metric measure space (X, d, μ).

For every h > 0, we define an operator |∇|h on L∞(X) by

|∇f |h(x) = sup
{|f(y)− f(x)|, d(x, y) ≤ h

}
, ∀f ∈ L∞(X).

2.3. Sobolev inequalities

Let ϕ : R+ → R+ be an increasing function and let p ∈ [1,∞]. The following formu-
lation of Sobolev inequality was first introduced in [6] in the context of Riemannian
manifolds.

Definition 2.4. One says that X satisfies a Sobolev inequality (Sp
ϕ) at scale at

least h if there exist C,C′ > 0 such that

‖f‖p ≤ C ϕ(C′|Ω|) ‖|∇f |h‖p,

where Ω ranges over all compact subsets of X , |Ω| denotes the measure μ(Ω), and
f ∈ L∞(Ω), L∞(Ω) being the set of elements of L∞(X) with support in Ω. We
say that X satisfies a large-scale Sobolev inequality (Sp

ϕ) if it satisfies a Sobolev
inequality at scale h for h large enough.

2In [10] and in [28], the local doubling property is denoted (DV)loc.
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2.4. Isoperimetric profiles

Let A be a measurable subset of X , and let h > 0. We define

Jh,p(A) = sup
f

‖f‖p∥∥|∇f |h
∥∥
p

,

where the supremum is taken over functions f ∈ L∞(A).

Definition 2.5 ([31]). The Lp-isoperimetric profile jX,h,p (respectively, inside
balls: Jb

X,h,p) is a nondecreasing function defined by

jX,h,p(v) = sup
|A|≤v

Jh,p(A).

(respectively, Jb
X,h,p(t) = supx∈X Jh,p(B(x, t)).) In the sequel, we will generally

omit the scale, and only denote jX,p instead of jX,h,p.

Remark 2.6. One can check that jX,p 	 jX,q is always true when p ≤ q < ∞.
Moreover, in most cases (e.g., all known examples of groups), jX,p ≈ jX,q.

2.5. Link between Sobolev inequalities and isoperimetric profiles

Sobolev inequalities (Sp
ϕ) can also be interpreted as Lp-isoperimetric inequalities.

Clearly, the space X always satisfies the Sobolev inequality (Sp
ϕ) with ϕ = jX,p.

Conversely, if X satisfies (Sp
ϕ) for a function ϕ, then

jX,p 
 ϕ.

2.6. L2-profile and probability of return of random walks

The case p = 2 is of particular interest as it contains some probabilistic information
on the space X . Indeed, it was shown in [8] that for manifolds with bounded
geometry, there is a good correspondence between upper bounds of the large-
time on-diagonal behavior of the heat kernel and Sobolev inequality (S2

ϕ). In
the survey [7], a similar statement is proved for the standard random walk on a
weighted graph. In Theorem 9.1 of [31], we give a discrete-time version of this
theorem for general metric measure spaces.

Let (X, d, μ) be a metric measure space. Consider a measurable family of
probability measures P = (Px)x∈X such that the operator on L2(X,μ) defined
by Pf(x) =

∫
X f(y)dPx(y) is self-adjoint. This is equivalent to saying that the

random walk with transition probabilities P = (Px)x∈X is reversible with respect
to the measure μ. We will also ask P to focus on the geometry at scale h > 0
in the following sense: there exist a “large” constant 1 ≤ A < ∞ and a “small”
constant c > 0 such that for (μ-almost) every x ∈ X :

(i) Px � μ;

(ii) px = dPx/dμ is supported in B(x,Ah);

(iii) px is larger than c on B(x, h).
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We will need the following particular case of Theorem 9.2 in [31]:

Theorem 2.7. Let X = (X, d, μ) be a metric measure space. Then, the large-scale
isoperimetric profile satisfies

jX,2(t) ≈ log t

if and only if, for any reversible random walk at a large enough scale, we have

sup
x∈X

p2nx (x) ≈ e−n1/3 ∀n ∈ N.

2.7. Large-scale equivalence between metric measure spaces

Definition 2.8. Let (X, d, μ) and (X ′, d′, μ) two spaces satisfying the locally dou-
bling property. Let us say that X and X ′ are large-scale equivalent if there is a
function F from X to X ′ with the following properties:

(a) There exist two unbounded increasing functions ρ1, ρ2 : R+ → R+ such that
for all x, y ∈ X ,

ρ1(dX(x, y)) ≤ dX′(F (x), F (y)) ≤ ρ2(dX(x, y)).

(b) F is almost onto, i.e., there exists a constant C such that [F (X)]C = X ′.

(c) For r > 0 large enough, there is a constant Cr > 0 such that for all x ∈ X

C−1
r VX(x, r) ≤ VX′(F (x), r) ≤ C VX(x, r).

Remark 2.9. Note that being large-scale equivalent is an equivalence relation
between metric measure spaces with the locally doubling property.

Remark 2.10. If X and X ′ are quasi-geodesic, then (a) and (b) imply that F is
roughly bi-Lipschitz: there exists C ≥ 1 such that

C−1d(x, y)− C ≤ d(F (x), F (y)) ≤ C d(x, y) + C.

In this case, (a) and (b) correspond to the classical definition of a quasi-isometry.

Example 2.11 ([31]). Consider the subclass of metric measure spaces including
graphs with bounded degree, equipped with the countable measure; Riemannian
manifolds with bounded geometry3, equipped with the Riemannian measure; com-
pactly generated, locally compact groups equipped with a left Haar measure and
a word metric associated to a compact, generating subset. In this class, quasi-
isometries are always large-scale equivalences.

The following theorem generalizes [10], which was established in the context of
graphs and Riemannian manifolds with bounded geometry.

3Classically, this means: with Ricci curvature bounded from below, and with bounded radius
of injectivity. These assumptions are generally used in order to perform some discretization of
functional inequalities (see for instance [19]).
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Theorem 2.12 (Theorem 8.1 in [31]). Let F : X → X ′ be a large-scale equivalence
between two spaces X and X ′ satisfying the locally doubling property. Assume that
for h > 0 fixed, the space X satisfies a Sobolev inequality (Sp

ϕ) at scale h, then there
exists h′, depending only on h and on the constants of F such that X ′ satisfies (Sp

ϕ)
at scale h′. In particular, large-scale Sobolev inequalities are invariant under large
scale equivalence.

3. Large-scale foliation of a metric measure space and mono-
tonicity of the isoperimetric profile

Definition 3.1. Let X = (X, dX , μ) and Y = (Y, dY , λ) be two metric measure
spaces satisfying the locally doubling property. We say that X is large-scale fo-
liated (respectively, normally large-scale foliated) by Y if it admits a measurable
partition X = �z∈ZYz satisfying the first two (respectively, three) of the following
conditions:

• (measure decomposition) There exists a measure ν on Z and a measure λz

on ν-almost every Yz such that for every continuous compactly supported
function f on X ,∫

X

f(x)dμ(x) =

∫
Z

(∫
Yz

f(t)dλz(t)
)
dν(z).

The subsets Yz are called the leaves, and the space Z is called the base of the
foliation.

• (large-scale control) For ν-almost every z in Z, there exists αz > 0 and a
large scale equivalence hz : (Y, dY , λ) → (Yz , dX , αzνz), which is uniform
with respect to z ∈ Z.

• (measure normalization) For all r > 0, there exists Cr ≥ 1 such that for all
z ∈ Z and all x ∈ Yz ,

C−1
r VYz (x, r) ≤ VX(x, r) ≤ Cr VYz (x, r).

In particular, we can take αz = 1.

Recall that the compression of a map F between two metric space X and Y is
the function ρ defined by

ρ(t) = inf
dX(x,x′)≥t

dY (F (x), F (x′)), ∀t > 0.

Definition 3.2. We call the compression of a large-scale foliation of X by Y the
function

ρ(t) = inf
z∈Z

ρz(t),

where ρz is the compression function of the large-scale equivalence hz.



726 R. Tessera

A crucial example that we will consider in some details in the next section is
the case where Y = H is a closed subgroup of a locally compact group G = X
such that G/H carries a G-invariant measure.

Theorem 3.3. Let X = (X, d, μ) and Y = (Y, δ, λ) be two metric measure spaces
satisfying the locally doubling property. Assume that X is normally large-scale
foliated by Y . Then if Y satisfies a Sobolev inequality (Sp

ϕ) at scale h, then X
satisfies (Sp

ϕ) at scale h′, for h′ large enough. In other words, if jX,p and jY,p
denote respectively the Lp-isoperimetric profiles of X and Y at the scales h and h′,
then

jY,p 
 jX,p.

Moreover, if ρ is the compression of the large-scale equivalence, then

Jb
Y,p 
 Jb

X,p ◦ ρ.
The last result is true under the weaker assumption that X is merely large-scale
foliated by Y .

The main difficulty comes from the fact that we need to control the measure of
the support of the restriction to a leaf of a function defined on X . On the contrary,
the control on the diameter of the support follows trivially from the definition of ρ
(and does not require the normalization condition). Hence the second inequality
(Jb

Y,p 
 Jb
X,p ◦ ρ) is much easier than the first one, and therefore left to the reader.

Definition 3.4. A subset A of a metric space is called h-thick if it is a union of
closed balls of radius h.

The following lemma implies that we can restrict to functions with thick sup-
port.

Lemma 3.5 (Proposition 8.3 in [31]). Let X = (X, d, μ) be a metric measure
space. Fix some h > 0 and some p ∈ [1,∞]. There exists a constant C > 0 such
that for any f ∈ L∞(X), there is a function f̃ ∈ L∞(X) whose support is included
in an h/2-thick subset Ω such that

μ(Ω) ≤ μ(Supp(f)) + C

and for every p ∈ [1,∞],

‖|∇f̃ |h/2‖p
‖f̃‖p

≤ C
‖|∇f |h‖p
‖f‖p .

On the other hand, the locally doubling property “extends” to thick subsets in
the following sense:

Lemma 3.6. Let X be a metric measure space satisfying the locally doubling prop-
erty. Fix two positive numbers u and v. There exists a constant C = C(u, v) < ∞
such that for any u-thick subset A ⊂ X, we have

μ([A]v) ≤ Cμ(A),

where [A]v := {x ∈ X, d(x,A) ≤ v}.
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Proof. Since A is u-thick, it can be written as a union
⋃

i∈I B(xi, u). Take a
maximal subset J ⊂ I such that the balls B(xj , u), with j ∈ J are disjoint. By
maximality of J , A ⊂ [A]v ⊂ ∪jB(xj , 4u + v). Indeed, let x ∈ [A]v, then the ball
B(x, v+3u) contains a ball B(xi, u) for some i ∈ I. Therefore maximality implies
that this ball must meet B(xj , u) for some j ∈ J , which implies the statement.
The lemma now follows from the locally doubling condition. �

The following statement says that large-scale equivalences roughly preserve the
volume of big sets.

Lemma 3.7 (Proposition 8.5 (2) in [31]). Let X = (X, d, μ) and X ′ = (X ′, d′, μ′)
be two spaces satisfying the locally doubling property. Let F : X → X ′ be a large-
scale equivalence. Then there exists C ≥ 1 such that for all A ⊂ X,

μ(A) ≤ C μ′([F (A)]1
)
.

Finally, we will need:

Lemma 3.8. Assume that X is normally large-scale foliated by Y . For a.e. z ∈ Z,
let [Yz]1 be the 1-neighborhood of Yz in X. The inclusion map (Yz , dX , λz) →
([Yz ]1, dX , μ) is a large-scale equivalence, uniformly with respect to z.

Proof of Lemma 3.8. The two metric conditions (a) and (b) for being a large-
scale equivalence (see Definition 2.8) are trivially satisfied here. It remains to
compare the volume of balls of fixed radius, which follows from the third condition
of Definition 3.1, and from the fact that X is doubling. �

Proof of Theorem 3.3. Throughout the proof, we will use the letter C as a generic
constant, which might possibly take different values. Assume that Y satisfies the
Sobolev inequality (Sp

ϕ). Let Ω be a compact subset of X and f ∈ L∞(Ω). We
want to prove that there exists h′, depending only on h and the spaces such that f
satisfies (Sp

ϕ) at scale h′. By Lemma 3.5, we can assume that Ω is 1-thick. For
every z ∈ Z, denote by fz the restriction of f to Yz and Ωz = Ω ∩ Yz .

Claim 3.9. There exists C < ∞ such that, for every z ∈ Z, λz(Ωz) ≤ Cμ(Ω).

Proof. Lemmas 3.8 and 3.7 imply that λz(Ωz) is less than a constant times μ([Ωz]1),
which is obviously less than μ([Ω]1), which by Lemma 3.6 is less than a constant
times μ(Ω). �

By Theorem 2.12, there exists h′ > 0 such that Yz satisfies (Sp
ϕ) at scale h′,

uniformly with respect to z ∈ Z. So for every z ∈ Z,

‖fz‖p ≤ C ϕ
(
Cλz(Ωz)

) ∥∥|∇fz|h′
∥∥
p
.

Since λz(Ωz) ≤ Cμ(Ω) and ϕ is nondecreasing, we have

‖fz‖p ≤ C ϕ
(
Cμ(Ω)

) ∥∥|∇fz|h′
∥∥
p
.

Moreover, we have

‖f‖pp =

∫
Z

‖fz‖pp dν(z).
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Clearly, since Yz is equipped with the induced distance, for every z ∈ Z and
every x ∈ Yz ,

|∇f |h′(x) ≥ |∇fz|h′(x).

Therefore, ∥∥|∇f |h′
∥∥p
p
≥
∫
Z

∥∥|∇fz|h′
∥∥p
p
dν(z).

We then have
‖f‖p ≤ C ϕ

(
Cμ(Ω)

) ∥∥|∇f |h′
∥∥
p
,

and we are done. �

4. Application to locally compact groups

4.1. The case of groups: left and right translations

Let G be a locally compact, compactly generated group, and let S be a generating
set. Let g ∈ G and let f ∈ Lp(G) for some 1 ≤ p ≤ ∞. We have

|∇f |1(g) = sup
s∈S

|f(gs)− f(g)|.

In other words, if ρ is the action ofG by right translation on functions, i.e., ρ(g)f(x)
= f(xg), the isoperimetric profiles are therefore given by

jG,p(m) = sup
|Supp(f)|≤m

‖f‖p
‖ sups∈S |f − ρ(s)f |‖p ,

and

Jb
G,p(r) = sup

Supp(f)⊂B(1,r)

‖f‖p
‖ sups∈S |f − ρ(s)f |‖p .

Proposition 4.1. We have

jG,p ≈ sup
|Supp(f)|≤m

‖f‖p
sups∈S ‖f − ρ(s)f‖p ,

and

Jb
G,p(r) ≈ sup

Supp(f)⊂B(1,r)

‖f‖p
sups∈S ‖f − ρ(s)f‖p .

Proof. Let us prove it for jG,p (the proof for Jb
G,p is similar). Note that

∥∥∥ 1

|S|
(∫

S

|f − ρ(s)f |pds
)1/p∥∥∥p

p
=

1

|S|
∫
S

∥∥f − ρ(s)f |∥∥p
p
ds

≤ sup
s∈S

‖f − ρ(s)f‖pp ≤ ∥∥ sup
s∈S

|f − ρ(s)f |∥∥p
p
,
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so we get

jG,p ≤ sup
|Supp(f)|≤m

‖f‖p
sups∈S ‖f − ρ(s)f‖p

≤ sup
|Supp(f)|≤m

‖f‖p∥∥ 1
|S|
( ∫

S |f − ρ(s)f |pds)1/p∥∥
p

.(4.1)

However, in Section 7 of [31] it was proved that

(4.2) jG,p ≈ sup
|Supp(f)|≤m

‖f‖p∥∥ 1
|S|
( ∫

S
|f − ρ(s)f |pds)1/p∥∥

p

So combining (4.1) and (4.2) proves the proposition. �

Left or right?

One may wonder why we chose to define the isoperimetric profiles with left transla-
tions in the introduction, since according to the previous proposition, it seems that
the correct definition should be with right translations. Indeed, since the metric
is left-invariant, we have for all s ∈ S, d(g, gs) = 1, whereas in general d(s−1g, g)
is not even bounded. Here are the reasons for this choice:

- If the group G is unimodular, then the isoperimetric profiles are the same,
whether we define them by left translations, or by right translations.

- Suppose that the group G is non-unimodular. Then if we define the profiles
with left translations and if the group is amenable, jG,p = ∞. On the other
hand, if we define them with right translations, then both jG,p and Jb

G,p are
bounded and therefore behave as for a non amenable group.

- Finally, if we define Jb
G,p with left translations and if the group is amenable,

then it is always a non bounded increasing function.

In conclusion, we see that if the group is non-unimodular, then the asymp-
totic behavior of jG,p does not contain any interesting information on the group,
whereas Jb

G,p is interesting only if it is defined with left translations.
In the following sections, we will not change our notation but rather indicate

whether we consider a “left-profile” or a “right-profile” on G.

4.2. Closed subgroups

Proposition 4.2. Let H be a closed compactly generated subgroup of a locally
compact, compactly generated group G. Assume that the quotient G/H carries a
G-invariant Borel measure, then G is normally large-scale foliated by H.

Proof. Let ν be a G-invariant σ-finite measure on the quotient Z = G/H . Since ν
is G-invariant, up to normalization, one can assume that for every continuous
compactly supported function f on G,∫

G

f(g)dμ(x) =

∫
Z

(∫
H

f(gh)dλ(h)
)
dν(gH).
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We claim that the partition G = �gH∈ZgH satisfies the three conditions of Defini-
tion 2.8. Clearly, the first one follows from the above decomposition of μ. For every
g ∈ G, the left translation by g is an isometry of G, so that all the left cosets of H
are isometric (we consider these cosets equipped with the distance induced from
that of G). On the other hand, since H is a closed subgroup, the inclusion map
H → G is a uniform embedding, i.e., satisfies (a) of Definition 2.8. This proves
the second condition. Finally, the last condition follows from the left-invariance of
both ν and μ. Namely, the left-invariance of ν implies that, for every g ∈ G, the
mesure λg on gH is the image of λ under the map h → gh from H to gH . �

In Lemma 4 of [14], it is proved that if H is finitely generated subgroup of a
finitely generated group G, then jH 	 jG. Here is a generalization of this easy
result.

Corollary 4.3. Let H be a closed, compactly generated subgroup of G and let
1 ≤ p ≤ ∞. Assume that G/H carries a G-invariant measure. Then,

• the right-profiles satisfy jG,p 	 jH,p;

• a weaker conclusion holds for the right-profiles inside balls: Jb
G,p 	 Jb

H,p ◦ ρ,
where ρ is the compression of the injection H ↪→ G.

Proof. This follows from Theorem 3.3 and Proposition 4.2. �

Remark 4.4. Corollary 4.3 holds in particular when G and H are both unimodu-
lar. Actually this is the only interesting situation since, by Lemma 11.10 in [31], a
non-unimodular group always has a bounded right-profile, i.e., ‖|∇f |h‖p ≥ c‖f‖p
for some c > 0 depending only on p ≥ 1 and h ≥ 1. On the other hand, if H is
non-unimodular and if G is unimodular and amenable, then, by Proposition 11.11
in [31] all the conclusions of Corollary 4.3 fall apart4.

4.3. Quotients and cocompact subgroups

Proposition 4.5. Let Q = G/H be the quotient of a locally compact, compactly
generated group G by a closed normal subgroup H. Then for all 1 ≤ p ≤ ∞, the
left-profiles in balls satisfy Jb

G,p 	 Jb
Q,p. Moreover if the groups are unimodular,

then the left-profiles satisfy jG,p 	 jQ,p.

Proof. We denote by π the projection on G/H . Let us equip G and H with
left Haar measures μ and ν. Take a Haar measure λ on H such that for every
continuous compactly supported function f on G,∫

G

f(g)dμ(g) =

∫
Q

( ∫
H

f(gh) dλ(h)
)
dν(gH).

4For example, consider the non-unimodular group H of positive affine transformations of R:
this group, equipped with its left-invariant Riemannian metric is isometric to the hyperbolic
plane. In particular, it has a bounded isoperimetric right-profile. On the other hand, it is a
closed subgroup of the solvable unimodular Lie group Sol, whose isoperimetric profile jG,p is
asymptotically equivalent to log t, [24].
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Let S be a symmetric compact generating subset of G and consider its image T un-
der the projection onto Q. The projection π is therefore 1-Lipschitz between (G,S)
and (Q, T ). For every 1 ≤ p < ∞, consider the mapping Ψ : C0(G) → C0(Q)
defined by

Ψ(f)(gH) =
(∫

H

|f(gh)|p dλ(h)
)1/p

.

Moreover, Ψ preserves the Lp-norm. Take s ∈ S and t = π(s), g ∈ G and q = π(g).
Then,

∣∣Ψ(f)(t−1q)−Ψ(f)(q)
∣∣ = (∫

H

|f(s−1gh)|p dλ(h)
)1/p

−
( ∫

H

|f(gh)|p dλ(h)
)1/p

≤
(∫

H

∣∣f(s−1gh)− f(gh)
∣∣p dλ(h))1/p.

Therefore,

‖λ(t)Ψ(f)−Ψ(f)‖p ≤ ‖λ(s)f − f‖p.
Finally, observe that the support of Ψ(f) is the projection of the support of f , so
the first statement follows. Let us prove the second statement. By Lemma 3.5,
we can suppose that the support of f is 1-thick, so that the projection decreases
volumes (up to a multiplicative constant). �

Proposition 4.6. Let Q = G/K be the quotient of a locally compact, com-
pactly generated group G by a closed normal compact subgroup K. Then, for all
1 ≤ p ≤ ∞, the (left or right) profiles satisfy jG,p ≈ jQ,p and the (left or right)
profiles in balls satisfy Jb

G,p ≈ Jb
Q,p.

Proof. Note that by the previous proposition, we only need to show that jG,p 

jQ,p and Jb

G,p 
 Jb
G,p. Consider compact generating sets S and π(S) in G and Q,

respectively, and suppose that the Haar measures on G and Q are such that
μ(π−1(A)) = ν(A) for every Borel subset A ⊂ Q with finite measure. Note that
composition with π defines a map C0(Q) → C0(G) which induces an isometry
Φ: Lp(Q) → Lp(G). On the other hand since K is normal, one checks easily
that Φ commutes with both the left and right regular representations. Indeed,
λ(s)Φ(f) = Φ(λ(π(s))f) (and the same for ρ). Combining this with the fact
that Φ is an isometry, yields the following equality: for all s ∈ S,

‖λ(s)Φ(f)− Φ(f)‖p = ‖λ(π(s))f − f‖p.

This proves the proposition. �

Proposition 4.7. Let 1 → H → G → Q → 1 be a short exact sequence of
compactly generated locally compact groups such that H is closed and Q is compact.
Then, for all 1 ≤ p ≤ ∞, the profiles satisfy jG,p ≈ jH,p, and the profiles in balls
satisfy Jb

G,p ≈ Jb
H,p.
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Proof. We only need to show the inequalities jG,p 
 jH,p and Jb
G,p 
 Jb

G,p. Let
η : Q → G be a measurable section such that K = η(Q) is relatively compact.
Each element g ∈ G can be uniquely written as η(q)h, with q ∈ Q and h ∈ H ,
and the left Haar measure on G is identified (up to normalization) as the direct
product5 of the left Haar measures of Q and H . Define an isometric embedding
Φ: Lp(H) → Lp(G) by

Φ(f)(kh) = f(h).

Suppose that the Haar measure of Q has total mass equal to 1. Then the measure
of the support of Φ(f) equals the measure of the support of f . On the other hand,
since the inclusion H → G is a quasi-isometry, the diameter of the support of φ(f)
is less than a constant times the diameter of the support of f .

Finally let S be a compact generating subset of G. For all s ∈ S, h ∈ H , q ∈ Q
and f ∈ Lp(H), we have

Φ(f)
(
sη(q)h

)− Φ(f)
(
η(q)h

)
= Φ(f)

(
η(q′)th

)− Φ(f)
(
η(q)h

)
= f(th)− f(h),

where q′ = ḡq ∈ Q, and t = η(q′)−1sη(q) is an element of K−1SK ∩ H which is
relatively compact in H . The proposition now follows trivially. �

5. Geometrically elementary solvable groups

As already mentioned in the introduction, Theorems 4 and 6 will be consequences
of the following facts:

• the stability results: Corollary 4.3, and Propositions 4.5, 4.6 and 4.7;

• the case of algebraic groups over p-adic fields (and T(d, k) for any local field),
treated in the last subsection.

Let us now briefly explain how to deduce Theorem 6. Recall that every con-
nected amenable Lie group has a closed, connected, cocompact, normal solvable
subgroup (namely its solvable radical). Moreover, by a result of Mostow [20], any
closed compactly generated subgroup G of a solvable connected Lie group has a
normal compact subgroup K, such that G/K embeds as cocompact (hence non-
distorted) subgroup of a solvable connected Lie group.

5.1. Følner pairs and isoperimetric profile

The notion of Følner pairs was introduced in [3] in order to produce lower bounds
on the probability of return of symmetric random walks on graphs (or of the heat
kernel on a Riemannian manifold). In [29], we defined a slightly different notion,
called controlled Følner pairs.

5To see this, observe that if g ∈ G, q ∈ Q and h ∈ H, then gη(q)h = η(q′)th, where
q′ = ḡq ∈ Q, and t = η(q′)−1sη(q) ∈ H.
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Definition 5.1. Let G be a locally compact compactly generated group and
let S be a compact symmetric generating subset of G. A sequence (Fn, F

′
n) of

pairs of compact subsets is a sequence of controlled Følner pairs if there is a con-
stant C < ∞ such that, for all n ∈ N,

• μ(F ′
n) ≤ Cμ(Fn);

• SnFn ⊂ F ′
n.

We will need the following easy fact:

Proposition 5.2 (Proposition 4.9 in [29]). If G has a sequence of controlled Følner
pairs, then for all 1 ≤ p ≤ ∞, Jb

G,p(t) 
 t. Moreover, if G is unimodular, then
jG,p(t) 
 log t.

5.2. Algebraic groups over a local non-archimedean field

Recall that an algebraic group over a p-adic field is isomorphic to a semidirect
product U � T , where T � (k∗)d acts semisimply on the unipotent radical U .
Moreover, G is compactly generated if and only if this action is non-degenerate
in the sense that the weights of the action of T on G/[G,G] are nonzero (see
Theorem 13.4 in [5] or Theorem 3.2.3 in [1]). If x is a uniformizer in k, the cyclic
subgroup generated by x is a discrete and cocompact in k∗. Hence G has a normal,
cocompact closed subgroup of the form U � Zd.

Theorem 5.3. Let U = U1 × U2 · · · be a finite direct product of algebraic nilpo-
tent groups over local fields, and let G = U � Zd be such that the action of Zd

on each Ui/[Ui, Ui] is linear and has only nonzero weights. Then G has a con-
trolled sequence of Følner pairs. In particular (see Proposition 5.2), it satisfies
Jb
G,p(t) ≈ t.

Proof. The idea of the construction is the following: Fn (respectively, F ′
n) will be

a product of a ball of radius n (respectively, 2n) in Zd with a certain compact
subset of U . This latter subset will itself be a product of subsets of the Ui’s. If
the field ki is archimedean (see [29] for this case) then this subset will be a ball
of Ui of radius a

n (resp. bn with b >> a > 1), whereas if ki is non-archimedean,
we will take the compact subgroup generated by all elements of Ui of size (in G)
at most Cn with C large enough.

For the sake of concreteness, we will write the proof in the special case where
G = T(d, k) is the group of invertible upper triangular matrices of size d with coef-
ficients in a non-archimedean local field k (since again, the case of archimedean k
is treated in [29]).

Let us assume that d ≥ 2 (the case d = 1 being trivial). Let v be a discrete
valuation on k (with values in Z), and for every x ∈ k, let |x| = e−v(x) be the
corresponding norm. We have

|x+ y| ≤ max{|x|, |y|} and |xy| = |x||y|.
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Let kn be the (compact) subring of k consisting of elements y ∈ k of norm |y| ≤ en.
We fix a uniformizer x0 ∈ k (i.e., such that v(x0) = −1). We have

x0 kn = kn+1.

Let U be the subgroup of G consisting of unipotent elements, and let T � (k∗)d

be the subgroup of diagonal elements. We have a semidirect product

G = T � U.

For every n ∈ N, let Un be the compact normal subgroup of U consisting of
unipotent matrices such that for 1 ≤ i < j ≤ d, the (i, j)-entry lies in k(j−i)n.
We also consider the compact subset Tn of T defined by diagonal matrices whose
diagonal entries and inverses have norms less or equal than en.

Let us identify G with the cartesian product T × U , where the group law is
given by

(t, u)(s, v) = (ts, usv),

where us = s−1us. We define a compact subset S of G by

S = T1 ∪ U0.

Let t ∈ T1. An easy computation shows that, for every n ∈ N,

(5.1) t−1Unt ⊂ Un+1.

Moreover, t0 = (xd−1
0 , xd−2

0 , . . . , 1) ∈ Td−1 satisfies, for every n ∈ N,

(5.2) t−1
0 Unt0 ⊂ Un+1.

Note that since G =
⋃

n Tn × Un, this implies that S is a generating subset
of G. On the other hand, we deduce from (5.2) that

Un ⊂ S2dn+1.

As Tn ⊂ Sn, we have
Tn × Un ⊂ S2dn+n+1.

Claim 5.4. For all n ≥ 1, Sn ⊂ Tn × Un.

Proof. This is true for n = 1. Now, assume that this is true for n ≥ 1, and
take an element g = (t, u) in Tn × Un, and an element h of S. Let us check that
gh ∈ Tn+1 × Un+1. First, assume that h = (s, 1) ∈ T1. Then,

gh = (ts, us) ∈ Tn+1 × s−1Uns
−1

By (5.1), Tn+1 × s−1Uns
−1 ⊂ Tn+1 × Un+1. Now, if h = (1, v) ∈ U0, then gh =

(t, uv) ⊂ Tn × Un. �

Now, let Fn = Tn × U2n and F ′
n = T2n × U2n. We claim that (Fn, F

′
n) is a

sequence of Følner pairs. As F ′
n ⊂ S4dn+2n+1 and |F ′

n| = 2|Fn|, we just need to
check that SnFn ⊂ F ′

n. Let g = (t, u) ∈ Sn ⊂ Tn ×Un and g′ = (s, v) ∈ Fn. By an
immediate induction, (5.1) implies that s−1Uns

n ⊂ U2n. Hence,

(t, u)(s, v) = (ts, usv) ∈ T2n × U2nUn = T2n × U2n,

which finishes the proof. �
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6. Random walks

We will prove a slightly more general result than the one stated in the introduction.
Let G be a locally compact, compactly generated group and let S be a compact
generating set of G. Let (X,μ, d) be a measure space, equipped with a measurable
metric, on which G acts measurably by isometries, and such that for every x ∈ X
the orbit map from G to X : g → gx is a large-scale equivalence. If X satisfies
these assumptions, we will call it a geometric G-space. A typical example is if G
acts continuously, properly, and cocompactly on X .

Let x0 be a point in X , and r0 be such that every x ∈ X lies at distance < r0
from the orbit Gx0.

For every x ∈ X , let νx be a probability measure on X which is absolutely
continuous with respect to μ. We assume moerover that

• (bounded support) there exists r1 > 0 such that νx is supported in B(x, r1)
for all x ∈ X ,

• (non-degeneracy) there exists c > 0 such that px(y) := dνx/dμ(y) ≥ c for all
y ∈ SB(x, r0).

Denote by P the Markov operator on L2(X) defined by

Pf(x) =

∫
f(gy) dνx(y).

Definition 6.1. Under the previous assumptions, we call (X,P ) a geometric
G-random walk. Moreover, if P is self-adjoint, then (X,P ) is called a symmet-
ric geometric G-random walk.

Let dPx(y) = dνx(y) = px(y)dμ(y) and dPn
x (y) = pnx(y)dμ(y).

Theorem 6.2. Let G be a unimodular elementary solvable group with exponential
growth. Then for every symmetric geometric G-random walk (X,P ), we have

sup
x∈X

pnx(x) ≈ e−n1/3

.

Proof. Since X and G are large-scale equivalent, Theorem 2.12 implies that their
large-scale isoperimetric profiles are asymptotically equivalent. Therefore jX,2 ≈
log t. Theorem 2.7 then implies that the probability of return of any reversible

random walk at large enough scale, decreases like e−n1/3

. To apply this to our
random walk P , we just need to check that for k large enough, P k satisfies the
conditions (i) to (iii) of Section 2.6, with h as big as we want. This follows easily
from the definition of r0, r1 and c, and the fact that S generates G. �
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