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Abstract. This article has three aims. First, we study Hardy spaces,
hp
L(Ω), associated with an operator L which is either the Dirichlet Lapla-

cian ΔD or the Neumann Laplacian ΔN on a bounded Lipschitz domain
Ω in Rn, for 0 < p ≤ 1. We obtain equivalent characterizations of these
function spaces in terms of maximal functions and atomic decompositions.
Second, we establish regularity results for the Green operators, regarded
as the inverses of the Dirichlet and Neumann Laplacians, in the context
of Hardy spaces associated with these operators on a bounded semiconvex
domain Ω in Rn. Third, we study relations between the Hardy spaces as-
sociated with operators and the standard Hardy spaces hp

r(Ω) and hp
z(Ω),

then establish regularity of the Green operators for the Dirichlet problem
on a bounded semiconvex domain Ω in Rn, and for the Neumann prob-
lem on a bounded convex domain Ω in Rn, in the context of the standard
Hardy spaces hp

r(Ω) and hp
z(Ω). This gives a new solution to the conjecture

made by D.-C. Chang, S. Krantz and E.M. Stein regarding the regularity
of Green operators for the Dirichlet and Neumann problems on hp

r(Ω) and
hp
z(Ω), respectively, for all n

n+1
< p ≤ 1.

1. Introduction

Let Ω be a bounded domain in Rn with sufficiently smooth boundary. Consider
the inhomogeneous Dirichlet problem for the Laplacian, i.e.,{

Δu = f in Ω,

u = 0 on ∂Ω.
(1.1)

Denote by GD the Green operator for the Dirichlet problem (1.1), i.e. the solution
operator f �→ GD(f) := u. We also consider the inhomogeneous Neumann problem
for the Laplacian and denote the corresponding Green operator by GN .
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The regularity of the operators GD and GN on the Lp-scale, for 1 < p < ∞,
in the context of a bounded C∞ domain Ω in Rn is well understood. A classical
reference is the paper [4] by S. Agmon, A. Douglis and L. Nirenberg; see also [49].
More recent developments include extensions to Hardy spaces Hp for 0 < p ≤ 1,
due to D-C. Chang, G. Dafni, G. Krantz and E.M. Stein; see [14], [15], [13] and
the references therein.

A natural question is to study the regularity of these Green operators on the
Lp-scale for 1 < p < ∞ on a bounded domain Ω ⊆ Rn under weaker smoothness
hypotheses on ∂Ω. A similar question can be asked when the Lp-scale is replaced
by the scale of Hardy spaces, Hp, for 0 < p ≤ 1. Depending on the nature of the
assumptions regarding the smoothness of the boundary of Ω and the range of the
integrability index p, there are various nuances of the answers presently available
in the literature. The following brief summary gives an overview of the progress
so far in this direction of research.

(i) One early result in this line of work, due to J. Kadlec (cf. [46]) in the 1960’s,
is that the mappings

(1.2) f �→ ∂2GD(f)

∂xi∂xj
, 1 ≤ i, j ≤ n,

are well defined and bounded on L2(Ω) whenever Ω is a bounded convex domain
in Rn. See also [37].

(ii) The mappings in (1.2) were shown to be of weak type (1, 1) by B. Dahlberg,
G. Verchota and T. Wolff [23] in the 1990’s, and by Fromm [33], and to be bounded
on a suitable Hardy space by Adolfsson [2], still under the assumption that the
domain Ω is bounded and convex. By interpolation, these mappings are bounded
on Lp for 1 < p < 2.

(iii) L2-boundedness of the Green operators in the case of the Neumann bound-
ary condition has been known since the mid 1970’s ([36]), but optimal Lp estimates,
valid in the range 1 < p ≤ 2, have only been proved in the 1990’s by Adolfsson
and D. Jerison [3]. Their strategy was to obtain an endpoint estimate for atoms in
a suitable Hardy space H1(Ω), and then to use interpolation with the L2 results.

(iv) For p ≤ 1, the regularity of the Green operators on scales of local Hardy
spaces, hp, have been recently studied in [50] when Ω is a bounded Lipschitz domain
in Rn, and the results were formulated in terms of a pair of Hardy spaces, hpr(Ω)
and hpz(Ω) (see (5.1) and (5.3) for definitions), for the range n

n+ε < p < 1 for
some 0 < ε ≤ 1.

(v) In relation to (ii) and (iii) above, it should be mentioned that the afore-
mentioned Lp continuity of two derivatives on Green potentials may fail in the
class of Lipschitz domains for any p ∈ (1,∞) and in the class of convex domains
for any p ∈ (2,∞) (see [2], [3], [22], [42] and [51] for counterexamples; recall that
every convex domain is Lipschitz).

(vi) Quite recently, in [55], the authors have studied the mapping properties of
operators of the form ∂2GD/∂xi∂xj , 1 ≤ i, j ≤ n, on Besov and Triebel–Lizorkin
scales in a bounded Lipschitz domain satisfying a uniform exterior ball condition
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(henceforth abbreviated as UEBC). When specialized to the class of local Hardy
spaces this gives that ∂2GD/∂xi∂xj is a bounded mapping from hpr(Ω) into itself
whenever n

n+1 < p ≤ 1.

The present paper can be viewed as a continuation of the above body of work.
Our main results answer the question whether the regularity of the Green oper-
ator on the Lp-scale of a semiconvex bounded domain Ω in the case of Dirichlet
condition, and a convex bounded domain Ω in the case of Neumann condition, has
a satisfactory analogue at the level of Hardy spaces hp. Our results also clarify the
nature of these hp spaces as well as the range of p’s for which such regularity results
hold. Here we also report further progress on a question posed by D.-C. Chang,
S. Krantz and E. Stein [14] pertaining to the regularity of Green operators, GD

and GN , associated with the Dirichlet and Neumann Laplacians on Hardy spaces.
As far as this question is concerned, in the class of arbitrary bounded Lipschitz
domains, a solution (which is optimal relative to this class) has been given in [50]
for the range 1 − ε < p ≤ 1, for ε > 0 depending on the domain, while [55] has
addressed the case of the Dirichlet Green potential in a bounded semiconvex do-
main Ω for the scale hpr(Ω) indexed by p ∈ ( n

n+1 , 1]. In the present paper we
explore the range 0 < p ≤ 1 and consider both the Dirichlet and the Neumann
Green potentials.

In order to discuss the strategy adopted in this work, we need to review some
background facts and set some notation. We start by recalling the definition of
the local Hardy spaces introduced by Goldberg (see [35]). Let φ ∈ S (Rn) be
a function with the property that

∫
Rn φ(x) dx = 1 and, for each t > 0, define

φt(x) := t−nφ(x/t). For 0 < p < ∞, the local Hardy space hp(Rn) is defined as
the space of tempered distribution f ∈ S ′(Rn) for which the maximal function

(1.3) Mlocf(x) := sup
0<t≤1

∣∣φt ∗ f(x)∣∣
belongs to Lp(Rn). If this is the case, define

(1.4) ‖f‖hp(Rn) := ‖Mlocf‖Lp(Rn).

An equivalent definition of hp(Rn) involves the non-tangential maximal function
associated with the heat semigroup (or Poisson semigroup) generated by Δ, the
Laplace operator on Rn. If f ∈ S ′(Rn), then (see Theorem 1 in [35])

(1.5) f ∈ hp(Rn) ⇐⇒ sup
|y−x|<t≤1

∣∣e−t2Δf(y)
∣∣ ∈ Lp(Rn).

In this article we are in fact considering two Hardy spaces, namely hpΔD
(Ω) and

hpΔN
(Ω), in the spirit of the work in [9], [30], [7] and [39]. Roughly speaking, for a

reasonable functional f ,

(1.6) f ∈ hpL(Ω) ⇐⇒ sup
y∈Ω: |y−x|<t≤1

∣∣e−t2Lf(y)
∣∣ ∈ Lp(Ω),

where {e−tL} is the heat semigroup generated by L, and L is either the Dirichlet
Laplacian ΔD or the Neumann Laplacian ΔN on Ω, respectively (for more precise
definitions see §2).
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Both spaces hpΔD
(Ω) and hpΔN

(Ω) are useful because they are particularly well
adapted to the Dirichlet and Neumann Laplacians in Ω. For example, their ele-
ments have atomic decompositions with the atoms exhibiting cancellation proper-
ties customized to the specific nature of the partial differential operator in question
(something occasionally referred to as L-cancellation, if a generic operator L is em-
ployed). Such atomic decompositions play an important role in the proofs of the
following regularity results:

Main Result 1.1. Let Ω ⊆ Rn be a bounded, simply connected, semiconvex do-
main.

(i) The operators ∂2
GD

∂xi∂xj
, initially defined on L2(Ω) ∩ hpΔD

(Ω), can be extended

as bounded linear mappings from hpΔD
(Ω) into Lp(Ω) whenever 0 < p ≤ 1. Also, the

operators ∂2
GN

∂xi∂xj
, initially defined on L2(Ω)∩ hpΔN

(Ω), can be extended as bounded

linear mappings from hpΔN
(Ω) into Lp(Ω) whenever 0 < p ≤ 1.

(ii) Both operators ∂2
GD

∂xi∂xj
and ∂2

GN

∂xi∂xj
are of type weak (1, 1). Hence, by Marcin-

kiewicz interpolation, they can be extended from L2(Ω) ∩ Lp(Ω) to bounded linear
mappings on Lp(Ω) whenever 1 < p ≤ 2.

From suitable estimates for heat kernels associated to the semigroups {e−tΔD}
and {e−tΔN}, we prove that for all n

n+1 < p ≤ 1, the spaces hpr(Ω) and hpΔD
(Ω)

coincide as sets1 for any bounded semiconvex domain Ω ⊂ Rn while the spaces
hpz(Ω) and hpΔN

(Ω) coincide for any bounded convex domain Ω ⊂ Rn, and their
norms are equivalent in both cases (See Proposition 5.3). Then, by relying on an
equivalent characterization of the Hardy space hpr(Ω) from [56] as well as atomic
decompositions, we prove the following regularity result for the Dirichlet and Neu-
mann Green potentials for the Laplacian.

Main Result 1.2. (i) Let Ω ⊆ Rn be a bounded, simply connected, semiconvex

domain. Then the operators ∂2
GD

∂xi∂xj
, i, j ∈ {1, . . . , n}, are bounded on hpr(Ω) for all

n
n+1 < p ≤ 1.

(ii) Let Ω ⊆ Rn be a bounded, simply connected, convex domain. Then the

operators ∂2
GN

∂xi∂xj
, i, j ∈ {1, . . . , n}, are bounded linear mappings from hpz(Ω) into

hpr(Ω) whenever n
n+1 < p ≤ 1.

Note that for the Dirichlet problem on a smooth domain Ω in Rn, the mapping

f �→ ∂2
GD(f)

∂xi∂xj
does not extend from hpr(Ω) to hpr(Ω) if 0 < p ≤ n

n+1 (see [15] for a

discussion in this regard). This indicates that hpr(Ω) is the appropriate version of
the Hardy space for the Dirichlet problem only when n

n+1 < p ≤ 1 and that this
range of p’s is sharp. This also substantiates the need to find a suitable replacement
for hpr(Ω) for small values of p.

Part (i) of Main Result 1.2 is essentially the same as that of [55] but obtained
by a different method. As a whole, our main results thus extend and complete the
results in [2], [3], [33], and [15], as well as some of the results in [50] and [55]. Our

1We thank the referee for suggesting the proof of the right-to-left inclusion.
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approach is new and conceptually different from the previously known ones. First,
we develop appropriate machinery to treat operators which fall beyond the scope
of the classical Calderón–Zygmund theory, following the line of study initiated
in [26], [19] and [5]. Indeed, the operators that we are naturally led to consider need
not have Hölder continuous kernels, a regularity condition which often proves too
restrictive for certain applications. For example, the kernel of the operator ∇2L−1

is formally given by ∫ ∞

0

∇2
xpt(x, y) dt,(1.7)

and the second order derivative ∇2
xpt(x, y) of the kernel pt(x, y), associated with

the heat semigroup e−tL, does not satisfy a Hölder condition in the spatial variable.
The loss of Hölder continuity is compensated by a more subtle built-in regularity
property inherited from the semigroup e−tL, and by the availability of certain
regularity estimates for the solutions to the Dirichlet and Neumann problems which
are specific to semiconvex domains (see Section 4 for a discussion). Second, for
the full range 0 < p ≤ 1 of the integrability index p, we prove our results by
making use of the properties of heat semigroups, and the fact that elements of
the Hardy spaces hpΔD

(Ω) and hpΔN
(Ω) have an atomic decomposition with atoms

having sufficient “L-cancellation” property. This provides more flexibility since,
in principle, this method does not differentiate between Dirichlet and Neumann
boundary conditions.

The layout of the paper is as follows. In Section 2, we establish suitable upper
bounds as well as Hölder continuity estimates for the heat kernels of the Dirich-
let and Neumann Laplacians in subdomains of Rn. In Section 3, we introduce the
Hardy spaces hpΔD

(Ω) and hpΔN
(Ω), 0 < p ≤ 1, associated to the Dirichlet and Neu-

mann Laplacians, respectively, and show that the adapted Hardy spaces defined
in terms of atoms, and in terms of maximal functions using the heat semigroups,
are all equivalent, assuming sufficient “L-cancellation” of our atoms. Our Main
Results 1.1 and 1.2 are proved in Sections 4 and 5 by using suitable estimates for
singular integrals with non-smooth kernels and an optimal on-diagonal heat kernel
estimate.

In closing, we wish to note that while the results in Sections 4 and 5 are
based on the Gaussian heat kernel bounds for the Dirichlet Laplacian ΔD and the
Neumann Laplacian ΔN on a domain Ω ⊂ Rn, which are derived in Section 2
for n ≥ 3, only minor modifications of our proofs are required in order to treat the
two-dimensional case.

2. Heat kernels and Green functions

In this section, we assume that Ω is a bounded convex domain in Rn where n ≥ 3,
equipped with Euclidean distance and Lebesgue measure. Note that every bounded
convex domain is a Lipschitz domain, but the Lipschitz property is not sufficient.

We now describe the Dirichlet and Neumann Laplacians on a bounded do-
main Ω in Rn. Denote by W 1,2(Ω) the usual Sobolev space on Ω equipped with
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the norm (‖f‖22 + ‖∇f‖22)1/2, and let W 1,2
0 (Ω) stand for the closure of C∞

0 (Ω) in
W 1,2(Ω). To proceed, let V be a closed subspace of W 1,2(Ω) and denote by Q the
quadratic form on the space V given by

Q(u) :=

∫
Ω

∑
i

∂u

∂xi

∂u

∂xi
dx, u ∈ V.(2.1)

Then Q is closable and the self-adjoint operator Δ associated with the obtained
closed form is called the (minus) Laplacian on Ω. Different choices of the space V
induce different boundary conditions for the operator Δ. Most notably, when
V is W 1,2

0 (Ω) the corresponding boundary condition is Dirichlet, while the choice
V =W 1,2(Ω) corresponds to a Neumann boundary condition. Under Dirichlet and
Neumann boundary conditions, Δ will be denoted in the sequel by ΔD and ΔN ,
respectively. More specifically,

ΔD : D (ΔD) ⊆ L2(Ω) −→ L2(Ω), ΔD(u) := −∑
i ∂

2
i u

for every u ∈ D (ΔD) := {u ∈ W 1,2
0 (Ω) :

∑
i ∂

2
i u ∈ L2(Ω)},(2.2)

and

ΔN : D (ΔN ) ⊆ L2(Ω) −→ L2(Ω), ΔN (u) := −∑
i ∂

2
i u for every

u ∈ D (ΔN ) :=
{
u ∈W 1,2(Ω) :

∑
i ∂

2
i u ∈ L2(Ω) and∫

Ω

∑
i

∂u

∂xi

∂w

∂xi
dx = −

∫
Ω

(∑
i

∂2i u
)
w dx, ∀w ∈ W 1,2(Ω)

}
.

(2.3)

The Dirichlet and Neumann Laplacians on Ω are nonnegative self-adjoint opera-
tors on L2(Ω). Using spectral theory one can define the semigroups {e−tΔD}t>0

and {e−tΔN}t>0 generated by these operators on L2(Ω). It is well known (see
for example, [24]) that for an arbitrary open set Ω ⊆ Rn, the semigroup kernel
pt,ΔD(x, y) associated to e−tΔD satisfies the Gaussian upper bound

(2.4) 0 < pt,ΔD(x, y) ≤ (4πt)−n/2 exp
(
− |x− y|2

4t

)
∀x, y ∈ Ω, ∀ t > 0.

We will say that an open set Ω ⊆ Rn has the extension property if there exists a
bounded linear map E : W 1,2(Ω) → W 1,2(Rn) such that Eu is an extension of u
from Ω to Rn for all u ∈ W 1,2(Ω). Then (see Theorem 3.2.9 in [24]), if Ω has the
extension property, there exists a constant C > 0 such that the kernels pt,ΔN (x, y)
of the semigroup e−tΔN satisfy

(2.5) 0 < pt,ΔN (x, y) ≤
C

|BΩ(x,
√
t)
∣∣ exp(− |x− y|2

4αt

)
for every t > 0, every x, y ∈ Ω and each α > 1, where |E| denotes the Lebesgue
measure of a measurable set E ⊆ Rn, and for x ∈ Rn and r > 0 we have set

(2.6) BΩ(x, r) := {y ∈ Ω : |x− y| < r}.
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It is well known that any open set Ω ⊆ Rn having the extension property also
satisfies the doubling property

(2.7) |BΩ(x, 2r)| ≤ C|BΩ(x, r)|, ∀x ∈ Ω, ∀ r ∈ (0, diam (Ω)).

Let us also note here that the operator ΔN conserves probability, that is

(2.8) e−tΔN1 = 1.

This conservative property does not hold for ΔD (see Chapter 4 of [57]).
It is useful to observe that Gaussian upper bounds carry over from heat kernels

to the time derivatives of their kernels. More specifically, we have the following
lemma (see Lemma 2.5 on page 352 in [20]).

Lemma 2.1. Let Ω be an open set in Rn which satisfies the doubling property (2.7).
Let Tt be a uniformly bounded analytic semigroup on L2(Ω) and assume that Tt,
t > 0, has a kernel pt(x, y) satisfying

(2.9) |pt(x, y)| ≤ C

|BΩ(x,
√
t)
∣∣ exp(− |x− y|2

ct

)
.

Then for every k ∈ N, there exist two positive constants ck and Ck such that the
time derivatives of the kernel pt(x, y) satisfy

(2.10)
∣∣∣ dk
dtk

pt(x, y)
∣∣∣ ≤ Ck

tk|BΩ(x,
√
t)
∣∣ exp(− |x− y|2

ckt

)
, ∀x, y ∈ Ω, ∀ t > 0.

2.1. The Dirichlet Laplacian

In this section we establish suitable Hölder continuity estimates for the kernel of
the heat semigroup {e−tΔD}. We begin with the following lemma:

Lemma 2.2. Suppose Ω ⊆ Rn is an open set. Let H(z, x, y) be the complex time
heat kernel of ΔD for z ∈ C with Re z > 0, i.e., H(z, x, y) is the integral kernel of
the semigroup e−zΔD :

(2.11) e−zΔDu(x) =

∫
Ω

H(z, x, y)u(y) dy, for u ∈ L2(Ω), x ∈ Ω.

Then for every ε > 0 there exists Cε > 0 such that the upper bound

(2.12)
∣∣H(z, x, y)

∣∣ ≤ Cε(Re z)
−n/2 exp

{
− Re

( |x− y|2
4(1 + ε)z

)}
holds for all z ∈ C with Rez > 0 and all x, y ∈ Ω.

Proof. Since ΔD generates a holomorphic semigroup e−zΔD , and the kernel pt(x, y)
of the heat semigroup {e−tΔD} satisfies the Gaussian upper bound (2.4), the
bound (2.12) for z ∈ C with Rez > 0 can be obtained by analytic continuation as
in the proof of Theorem 3.4.8 on page 103 in [24]. �
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It is important to have bounds on the heat kernel for the complex number z
in the right half plane because, as we shall see momentarily, this estimate im-
plies bounds on the Green function Gλ(x, y) for complex values of λ with arg λ
arbitrarily small. We now proceed to establish such upper bounds on the Green
function.

Lemma 2.3. Assume that Ω ⊆ Rn is a bounded open set. For each λ ∈ C\(−∞, 0),
let Gλ(·, ·) be the Green function associated with the operator ΔD−λI, i.e., Gλ(x, y)
is the integral kernel of the resolvent (ΔD − λI)−1,

(2.13) (ΔD − λI)−1u(x) =

∫
Ω

Gλ(x, y)u(y) dy, u ∈ L2(Ω), x ∈ Ω.

Fix 0 < μ < π. Then there exist positive constants C and γ, depending only
on Ω, n and μ, such that

(2.14)
∣∣Gλ(x, y)

∣∣ ≤ Ce−γ
√

|λ||x−y| 1

|x− y|n−2
for all x, y ∈ Ω, x �= y,

provided either λ = 0, or 0 < μ < argλ < 2π − μ.

Proof. The existence and uniqueness of the Green function are known from work
in [38]. To deduce the stated bound on the Green function Gλ(x, y) we make use
of the estimates for the heat kernel H(z, x, y) from Lemma 2.2. In the case when
μ < argλ ≤ π, we choose Γ to be the ray {z ∈ C : z = |z|eiθ0}, where θ0 is chosen
such that 0 < θ0 <

π
2 and μ+ θ0 >

π
2 . We then have

(2.15) (ΔD − λI)−1 =

∫
Γ

eλze−zΔD dz.

Hence the kernel Gλ(x, y) of (ΔD − λI)−1 can be written as

(2.16) Gλ(x, y) =

∫
Γ

eλzH(z, x, y) dz.

Since Re (zλ) < 0 and |Re (zλ)| ≤ Cμ|zλ|, it follows that the bound (2.12) holds.
Thus, for x, y ∈ Ω, x �= y, we obtain∣∣Gλ(x, y)

∣∣ ≤ C

∫
Γ

e−c1|zλ| 1

|z|n/2 e
−c2

|x−y|2
|z| d|z|

≤ C

∫
Γ

e−2

√
c1c2|λ||x−y|2

2
1

|z|n/2 e
−b1

|x−y|2
2|z| d|z|

≤ Ce−γ
√

|λ||x−y|
∫
Γ

1

|z|n/2 e
−c2

|x−y|2
2|z| d|z|

≤ Ce−γ
√

|λ||x−y|
∫ ∞

0

r
(n−4)

2 e−c2|x−y|2r dr

≤ Ce−γ
√

|λ||x−y| 1

|x− y|n−2
.(2.17)

This proves Lemma 2.3 in the case when μ < argλ ≤ π. The case when π <
argλ < 2π − μ is similar. �
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Definition 2.4. A set E ⊆ Rn is said to satisfy an exterior ball condition at
x ∈ ∂E if there exist v ∈ Sn−1 and r > 0 such that

(2.18) B(x + rv, r) ⊆ Rn \ E.
Set r(x) := sup {r > 0 : (2.18) holds for some v ∈ Sn−1}, whenever E satisfies an
exterior ball condition at x ∈ ∂E.

We say that E satisfies a uniform exterior ball condition with radius r > 0
provided

(2.19) inf
x∈∂E

r(x) ≥ r,

and the value of r in (2.19) will be referred to as the UEBC constant. We say
that E satisfies a UEBC provided there exists r > 0 with the property that E
satisfies a uniform exterior ball condition with radius r.

The following lemma establishes the Hölder continuity of the Green functions.

Lemma 2.5. Let Ω ⊆ Rn be an open set satisfying a UEBC. Fix μ ∈ (0, π) and
λ ∈ C. Then the Green function Gλ(x, y) satisfies the following estimate:

(2.20)
∣∣∇yGλ(x, y)

∣∣ ≤ C
{ 1

|x− y|n−1
+

√|λ|
|x− y|n−2

}
, ∀x, y ∈ Ω, x �= y.

Also, for every α ∈ (0, 1), there exist positive constants C and β such that, for
every x, y1, y2 ∈ Ω with x �= yj, j = 1, 2, there holds∣∣Gλ(x, y1)−Gλ(x, y2)

∣∣
≤ C max

i=1,2
e−β

√
|λ||x−yi||y1 − y2|α

{ 1

|x− yi|n−2+α
+

|λ|α/2
|x− yi|n−2

}
(2.21)

for all λ with |argλ| ≥ μ > 0. The constant C depends on the value μ, the
dimension n, diamΩ, and the UEBC constant of Ω, and β depends on μ and α.

Proof. Given that Ω satisfies a UEBC, Grüter and Widman have proved (see [38])
that the Green function G(x, y) (:= G0(x, y)) satisfies

(2.22)
∣∣∇yG(x, y)

∣∣ ≤ C

|x− y|n−1
, ∀x, y ∈ Ω, x �= y.

To obtain the bounds for Gλ(x, y), we use the resolvent identity which implies

(2.23) Gλ(x, y) = G(x, y) + λ

∫
Ω

G(z, y)Gλ(x, z) dz, ∀x, y ∈ Ω, x �= y.

Hence by (2.22) and (2.14), we have that for every x, y ∈ Ω, x �= y,∣∣∇yGλ(x, y)
∣∣ ≤ ∣∣∇yG(x, y)

∣∣ + |λ|
∫
Ω

∣∣∇yG(z, y)
∣∣∣∣Gλ(x, z)

∣∣ dz(2.24)

≤ C

|x− y|n−1
+ C|λ|

∫
Ω

e−γ
√

|λ||x−z|

|x− z|n−2

1

|z − y|n−1
dz.
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To estimate the second term, break the integral over the domain Ω into two parts,
an integral over Ω1 and an integral over Ω2, where

(2.25) Ω1 :=
{
z ∈ Ω : |x− z| ≤ |y − z|} and Ω2 :=

{
z ∈ Ω : |x− z| > |y − z|}.

Corresponding to this, we have∫
Ω1

e−γ
√

|λ||x−z|

|x− z|n−2

1

|z − y|n−1
dz ≤ 2

∫
Ω1

e−γ
√

|λ||x−z|

|x− z|n−2

1

|x− y|n−1
dz

=
2

|x− y|n−1

∫
Ω1

e−γ
√

|λ||x−z|

|x− z|n−2
dz ≤ C

|x− y|n−1

1

|λ| ,(2.26)

and ∫
Ω2

e−γ
√

|λ||x−z|

|x− z|n−2

1

|z − y|n−1
dz ≤ 2

∫
Ω2

e−γ
√

|λ||x−z|

|x− z|n−2

1

|z − y|n−1
dz

≤ 2

|x− y|n−2

∫
Ω2

e−γ
√

|λ||z−y|

|z − y|n−1
dz ≤ C

|x− y|n−2

1√|λ| .(2.27)

These estimates, in combination with (2.24), show that (2.20) holds. To ob-
tain (2.21), fix x, y1, y2 ∈ Ω, with x �= yj , j = 1, 2, and, without loss of generality,
suppose that |x− y1| ≤ |x− y2|. It follows from Lemma 2.3 that

∣∣Gλ(x, y1)−Gλ(x, y2)
∣∣ ≤ C

2∑
i=1

e−γ
√

|λ||x−yi| 1

|x− yi|n−2

≤ C1e
−γ

√
|λ||x−y1| 1

|x− y1|n−2
.(2.28)

Also, from (2.20) and the Mean Value Theorem we have that

∣∣Gλ(x, y1)−Gλ(x, y2)
∣∣ ≤ C|y1 − y2|

{ 2∑
i=1

( 1

|x− yi|n−1
+

√|λ|
|x− yi|n−2

)}
≤ C2|y1 − y2|

{ 1

|x− y1|n−1
+
√
|λ| 1

|x− y1|n−2

}
.(2.29)

Therefore, for every α ∈ (0, 1), it follows from (2.28) and (2.29) that∣∣Gλ(x, y1)−Gλ(x, y2)
∣∣ ≤ {

C2|y1 − y2|
( 1

|x− y1|n−1
+
√
|λ| 1

|x− y1|n−2

)}α

×
{
C1e

−γ
√

|λ||x−y1| 1

|x− y1|n−2

}1−α

≤ C3e
−β

√
|λ||x−y1||y1 − y2|α

{ 1

|x− y1|n−2+α
+

|λ|α/2
|x− y1|n−2

}
.(2.30)

This proves (2.21) and completes the proof of Lemma 2.5. �
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Next, we augment the previous result with estimates on the kernels of powers
of the resolvents.

Lemma 2.6. Let Ω ⊆ Rn be a bounded open set satisfying a UEBC. Fix μ ∈ (0, π)
and λ ∈ C with |argλ| ≥ μ > 0. Then for every α ∈ (0, 1) and large enough integer
m ∈ N, (ΔD − λI)−m has a kernel Rλ,m(x, y) which satisfies

(2.31)
∣∣Rλ,m(x, y1)− Rλ,m(x, y2)

∣∣ ≤ C max
i=1,2

|λ|−m+n
2 +α

2 |y1 − y2|αe−γ
√

|λ||x−yi|

for every x, y1, y2 ∈ Ω, x �= y1, x �= y2. The constant C depends on μ, α, the
dimension n, diam (Ω), and the UEBC constant of Ω, while γ depends on μ and α.

Proof. For all λ with |argλ| ≥ μ > 0, it is known (see for instance Theorem 1
on page 37 in [28]) that for all large enough integers m ∈ N (say, for example,
m > n/2), (ΔD − λI)−m has a kernel Rλ,m(x, y) which, for some c > 0, satisfies

(2.32)
∣∣Rλ,m(x, y)

∣∣ ≤ C|λ|−m+n
2 e−c

√
|λ||x−y|, ∀x, y ∈ Ω, x �= y.

To obtain the bounds for Rλ,m(x, y) stated in (2.31), we use the resolvent identity
which implies

(2.33) Rλ,m+1(x, y) =

∫
Ω

Rλ,m(x, z)Gλ(z, y) dz, x, y ∈ Ω, x �= y.

It follows from the above equality and the estimates (2.32) and (2.21) that for
every α ∈ (0, 1),∣∣Rλ,m+1(x, y1)−Rλ,m+1(x, y2)

∣∣
=

∣∣∣ ∫
Ω

Rλ,m(x, z)
(
Gλ(z, y1)−Gλ(z, y2)

)
dz

∣∣∣
≤ C|λ|−m+n

2 |y1 − y2|α
∫
Ω

e−c
√

|λ||x−z|e−β
√

|λ||z−y1| 1

|z − y1|n−2+α
dz

+ C|λ|−m+ n
2 |y1 − y2|α

∫
Ω

e−c
√

|λ||x−z|e−β
√

|λ||z−y1| |λ|α/2
|x− y1|n−2

+ C|λ|−m+ n
2 |y1 − y2|α

∫
Ω

e−c
√

|λ||x−z|e−β
√

|λ||z−y2| 1

|z − y2|n−2+α
dz

+ C|λ|−m+ n
2 |y1 − y2|α

∫
Ω

e−c
√

|λ||x−z|e−β
√

|λ||z−y2| |λ|α/2
|x− y2|n−2

=: I + II + III + IV,(2.34)

for every x, y1, y2 ∈ Ω with x �= y1 and x �= y2.
To estimate term I, we set γ := min(c, β/2) (with c > 0 as in (2.32)), and use

the fact that

|x− z|+ |z − y1| ≥ |x− y1| and e−|x| ≤ ck|x|−k for all k > 0,
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to obtain∫
Ω

e−c
√

|λ||x−z| e−β
√

|λ||z−y1| 1

|z − y1|n−2+α
dz

≤
∫
Ω

e−γ
√

|λ|
(
|x−z|+|z−y1|

)
e−

1
2β
√

|λ||z−y1| 1

|z − y1|n−2+α
dz

≤ e−γ
√

|λ||x−y1|
∫
Ω

e−
1
2β
√

|λ||z−y1| 1

|z − y1|n−2+α
dz

≤ C1e
−γ

√
|λ||x−y1||λ|−1+α

2

∫
Ω

e−
1
2β|z−y1| 1

|z − y1|n−2+α
dz

≤ C2e
−γ

√
|λ||x−y1||λ|−1+α

2 .(2.35)

This, in turn, gives

(2.36) I ≤ C|λ|−(m+1)+n
2 +α

2 |y1 − y2|αe−γ
√

|λ||x−y1|.

The estimates for II, III and IV are similar. Combining all the estimates ob-
tained, (2.31) follows. Hence, the proof of Lemma 2.6 is complete. �

Finally, we prove the following Hölder continuity estimate for the heat kernel
of the semigroup {e−tΔD} (see [8]).

Lemma 2.7. Let Ω ⊆ Rn be an open bounded set satisfying a UEBC. Then for
each α ∈ (0, 1), there exist positive constants C and c depending only on α and n,
such that the kernel pt,ΔD(x, y) of the heat semigroup e−tΔD satisfies the following
Hölder continuity estimate:

(2.37)
∣∣pt,ΔD(x, y1)− pt,ΔD(x, y2)

∣∣ ≤ Ct−n/2
(
max
i=1,2

e−c
|x−yi|2

t

)( |y1 − y2|√
t

)α

for all t > 0 and x, y1, y2 ∈ Ω.

Proof. Fix some small μ ∈ (0, π) and for each θ ∈ [−π, π) \ (−μ, μ) and R > 0
define

(2.38)
Γ1 := {re−iθ : r ≥ R}, Γ2 := {Reiφ : φ ∈ [−π, π)\(−θ, θ)},
Γ3 := {reiθ : r ≥ R}.

Furthermore, assume that m ∈ N is a large integer (e.g., m ≥ n+3
2 will do). Then

using the inverse Laplace transform we have that for each fixed x, y ∈ Ω, x �= y,
and t > 0,

(2.39) pt,ΔD(x, y) = (−1)m
(m− 1)!

2πitm−1

∫
ΓR

eλtRλ,m(x, y) dλ,

where

(2.40) R ≥ R(x, y, t) := max
{1

t
,
|x− y|2
t2

}
and ΓR := Γ1 ∪ Γ2 ∪ Γ3.
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Fix x, y1, y2 ∈ Ω such that x �= y1 and x �= y2, as well as t > 0, and choose
R ≥ max {R(x, y1, t), R(x, y2, t)}. Using estimate (2.31) in Lemma 2.6, we obtain
that for some constants C and γ independent of R one has

∣∣pt,ΔD(x, y1) − pt,ΔD(x, y2)
∣∣ = ∣∣∣∣(m− 1)!

2πitm−1

∫
ΓR

eλt
(
Rλ,m(x, y1)−Rλ,m(x, y2)

)
dλ

∣∣∣∣
≤ C

tm−1
|y1 − y2|α

∫
ΓR

eRe(λt)|λ|−m+n
2 +α

2 e−γ
√

|λ||x−y1| d|λ|

+
C

tm−1
|y1 − y2|α

∫
ΓR

eRe(λt)|λ|−m+ n
2 +α

2 e−γ
√

|λ||x−y2| d|λ|

=: I + II.(2.41)

Observe that

1

tm−1

∫
Γ1∪Γ3

eRe(λt)|λ|−m+n
2 +α

2 e−γ
√

|λ||x−y1| d|λ|

≤ C

t
n+α

2

∫ ∞

R

e−c′|λ|t(|λ|t)−m+n
2 +α

2 +1
e−γ

√
|λ||x−y1| d|λ|

|λ|

≤ C

t
n+α

2

e−γ
√
R|x−y1|e−

1
2 c

′Rt

∫ ∞

1

e−
1
2 c

′ss−m+n
2 +α

2 ds

≤ C

t
n+α

2

e−γ
√
R|x−y1|e−

1
2 c

′Rt.(2.42)

Using the fact that R ≥ max (1t ,
|x−y1|2

t2 ), the last term is dominated by

(2.43)
C

t
n+α

2

e−c
|x−y1|2

t .

Again we can bound the third term (i.e.,
∫
Γ2
) in the term I of (2.41) by

(2.44)
C

t
n+α

2

∫
|λ|=R

e−c′Rt
(
Rt

)−m+n
2 +α

2 +1
e−γ

√
R|x−y1| d|λ|

|λ| .

This term is clearly dominated by Ct−(n+α)/2
(
Rt

)−m+n
2 +α

2 +1
e−γ

|x−y1|2
t which, in

light of the fact that −m+ n
2 + α

2 + 1 < 0, yields the following bound on term I:

(2.45) I ≤ Ct−n/2e−c
|x−y1|2

t

( |y1 − y2|√
t

)α

, for some c > 0.

Given the goal we have in mind, this is of the right order. Term II is estimated in
a similar fashion. When these estimates are combined, (2.37) follows, completing
the proof of Lemma 2.7. �
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2.2. The Neumann Laplacian

In this subsection we quote without proof from [64] the following estimate for the
spatial derivatives of the heat kernel of the semigroup {e−tΔN}.
Lemma 2.8 ([64]). Let Ω ⊆ Rn be a bounded convex domain. Then the heat
semigroup e−tΔN has a kernel pt(x, y) which, for some positive constants C and c,
satisfies

(2.46)
∣∣∇xpt,ΔN (x, y)

∣∣ ≤ C√
t
∣∣BΩ(x,

√
t)
∣∣ exp{− |x− y|2

ct

}
for all t > 0 and all x, y ∈ Ω.

Remark. The proof in [64] is based on reflecting Brownian motion.

3. Hardy spaces associated with the Dirichlet and Neumann
Laplacians

Hardy spaces associated with operators were studied by many authors recently,
see for examples [6], [7], [9], [30], [39], [40], [41], [45] and [65]. More specifically, we
refer the reader to [9] for an extensive study of the Hardy space h1L(Ω) adapted to
an operator L which is either the Dirichlet or Neumann Laplacian on a Lipschitz
domain Ω of Rn. In this section, we introduce Hardy spaces hpL(Ω) for the range
0 < p ≤ 1, where L is either the Dirichlet or Neumann Laplacian on a doubling
open subset Ω of Rn which can be regarded as a space of homogeneous type when
equipped with the Euclidean distance and the n-dimensional Lebesgue measure.
While many of the results in this section are already known from [9] in the case
p = 1, our study here extends the range of p to 0 < p < 1 which is essential for
our work on boundedness of the Green operators. While the estimates for Hardy
spaces hpL(Ω) with p being close enough to 1 might not be much different from
those of the case p = 1, estimates for the case p being close to 0 need to be carried
out carefully because we have to work with distributions rather than functions. To
overcome this difficulty, we use certain techniques developed recently in [39].

3.1. Hardy spaces via atoms

Let L be either the operator ΔD or ΔN on some open subset Ω of Rn. The aim of
this section is to define for each index p ∈ (0, 1] a Hardy space, hpL(Ω), associated
with the operator L on Ω. In what follows, we assume that 0 < p ≤ 1 and that

(3.1) M ∈ N and M >
[n
2

(1
p
− 1

)]
,

where [a] is the integer part of a ∈ R. Let us denote by D(T ) the domain of an
unbounded operator T , and by T k the k-fold composition of T with itself, in the
sense of unbounded operators. To simplify notation we shall often just use BΩ for
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B(xB , rB) ∩Ω. Also given λ > 0, we shall write λBΩ for the λ-dilated ball, which
is the ball with the same center as BΩ and with radius rλB := λrB . Set

(3.2) UΩ
0 (B) := BΩ, and UΩ

j (B) := 2jBΩ\2j−1BΩ for j = 1, 2, . . .

Fix a bounded open set Ω ⊆ Rn and fix κo ∈ (0, diam(Ω)/10). We first in-
troduce the notion of a local (p, 2,M)-atom, 0 < p ≤ 1, associated with a gen-
eral nonnegative, (possibly unbounded) self-adjoint operator L on L2(Ω) with do-
main D(L).

Definition 3.1. Let 0 < p ≤ 1. A bounded, measurable function a supported in Ω
is called a local (p, 2,M)-atom if there exists a ball B of Rn centered in Ω (but
not necessarily included in Ω) with radius rB ≤ 2 diam(Ω) such that ‖a‖L2(Rn) ≤
|B ∩ Ω|1/2−1/p and either

(i) rB > κo; or

(ii) rB ≤ κo and a is a (p, 2,M)-atom, that is, there exists a function b ∈ D(LM )
such that a = LMb, supp (Lkb) ⊂ B ∩ Ω, k = 0, 1, . . . ,M , and

(3.3)
∥∥(r2BL)kb∥∥L2(Rn)

≤ r2MB |B ∩ Ω|1/2−1/p for all k = 0, 1, . . . ,M .

In the sequel we always assume that κo = 1 which can be arranged via an appro-
priate dilation.

Generally speaking, the elements in the space hp(Rn) with p < 1 (see, for
instance, [35] for a definition), are not functions but rather tempered distributions
in Rn. A similar phenomenon occurs for the type of Hardy spaces we have in mind,
so it is necessary to introduce an appropriate space of linear functionals prior to
defining these Hardy spaces.

Definition 3.2. If α ≥ 0 and we consider an integer s ≥ [
nα
2

]
, then an L2-

integrable function on Ω is said to belong to Λα,s
L (Ω) if

‖‖Λα,s
L (Ω) := sup

B(xB,rB)

0<rB<1,xB∈Ω

[
1

|B ∩ Ω|1+2α

∫
B∩Ω

∣∣(I − (I + r2BL)
−1)s(x)

∣∣2 dx]1/2

+ sup
B(xB,rB)

rB≥1,xB∈Ω

[
1

|B ∩ Ω|1+2α

∫
B∩Ω

∣∣(x)∣∣2 dx]1/2 <∞.(3.4)

In the sequel, we will often write bmoL(Ω) in place of Λ0,1
L (Ω), the adapted space

of functions with bounded mean oscillations on Ω.

Remark. We caution the reader that our Λα notation differs from the classical one:
the “order of smoothness” of our Λα,s

L space is nα, not α.

In this case the mapping  �→ ‖‖Λα,s
L (Ω) is a norm and, as such, Λα,s

L (Ω)
is a normed space. Compared to the classical definition (see, for example, [12]
and [43])) the resolvent (I + r2BL)

−1 plays the role of averaging over the ball, and
the power M >

[
n
2

(
1
p − 1

)]
provides the necessary “L-cancellation”.
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Assume that 0 < p < 1 and that a is a local (p, 2,M)-atom supported in a
ball B in Rn which is centered at a point in Ω and has radius rB ≤ 2 diam(Ω).
When rB < 1, observe that

(3.5)
(r2BL)

M(
I − (

1 + r2BL
)−1)M = (I + r2BL)

M =

M∑
k=0

M !

(M − k)! k!

(
r2BL

)M−k
,

which, together with the condition a = LMb and the fact that L is self-adjoint,
gives ∣∣〈, a〉∣∣ = r−2M

B

∣∣〈, (r2BL)Mb〉∣∣
≤ Cr−2M

B

M∑
k=0

∣∣∣ ∫
B∩Ω

(I − (I + r2BL)
−1)M (x)(r2BL)

M−kb(x) dx
∣∣∣

≤ Cr−2M
B

M∑
k=0

( ∫
B∩Ω

|(I − (I + r2BL)
−1)M (x)|2 dx

)1/2

·
(∫

B∩Ω

|(r2BL)M−kb(x)|2 dx
)1/2

≤ C‖‖
Λ

1/p−1,M
L (Ω)

.(3.6)

Above, 〈·, ·〉 denotes the duality pairing in Ω which is compatible with the
inner product in L2(Ω), and we have used Cauchy–Schwarz’s inequality and the
L2-normalization of a. In the case when rB ≥ 1, it is clear that we have∣∣〈, a〉∣∣ ≤ C‖‖

Λ
1/p−1,M
L (Ω)

.

That is, the mapping  �→ ∫
Ω
a dx is a bounded linear functional on Λ

1/p−1,M
L (Ω)

with norm not exceeding a fixed constant C.

We are now ready to introduce the atomic Hardy space hpL,at,M (Ω), for 0 <
p ≤ 1, associated to the operator L, considered to be as before.

Definition 3.3. Given p ∈ (0, 1] and M >
[
n
2

(
1
p − 1

)]
, let f ∈ (

Λ
1/p−1,M
L (Ω)

)∗
.

An atomic (p, 2,M)-representation of f is a series f =
∑

j λjaj where the sequence
{λj}∞j=0 belongs to p, aj is a local (p, 2,M)-atom for each nonnegative integer j,

and the sum converges in L2(Ω). Set

S p
L,at,M (Ω) :=

{
f ∈ L2(Ω) : f has an atomic (p, 2,M)-representation

}
,

with the “norm” (it is a true norm only when p = 1), given by

||f ||S p
L,at,M (Ω) = inf

{(∑∞
j=0 |λj |p

)1/p

: f =
∑∞

j=0 λjaj is an atomic
(p, 2,M)-representation

}
.

The atomic Hardy space hpL,at,M (Ω) is then defined as the completion of the space

S p
L,at,M (Ω) in (Λ

1/p−1,M
L (Ω))∗ with respect to the metric induced by ||f ||S p

L,at,M (Ω).

In the above setting the mapping h �→ ‖h‖hp
L,at,M (Ω), 0 < p < 1, clearly fails

to be a norm, but d(h, g) := ‖h− g‖hp
L,at,M (Ω) is, nonetheless, a metric. For p = 1,
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the mapping h �→ ‖h‖hp
L,at,M (Ω) is indeed a norm. A straightforward argument

shows that hpL,at,M (Ω) is complete. In particular, h1L,at,M (Ω) is a Banach space.
It also follows easily from the above definitions that

hpL,at,M2
(Ω) ⊆ hpL,at,M1

(Ω)(3.7)

if 0 < p ≤ 1 and M1,M2 ∈ N satisfy the condition [n2 (
1
p − 1)] < M1 ≤M2 <∞.

3.2. Hardy spaces via the maximal function

Here the goal is to characterize our previously introduced Hardy spaces by means
of the maximal function. Fix an open, bounded subset Ω of Rn and consider
an operator L as before. Given a function f ∈ L2(Ω), consider the following local
version of the non-tangential maximal operator associated with the heat semigroup
generated by the operator L:

(3.8) Nloc,hf(x) := sup
y∈Ω, |y−x|<t≤1

|e−t2Lf(y)|, x ∈ Ω.

For 0 < p ≤ 1, the space hpL,Nloc,h
(Ω) is then defined as the completion of L2(Ω)

in the quasi-norm

‖f‖hp
L,Nloc,h

(Ω) := ‖Nloc,hf‖Lp(Ω).(3.9)

Before stating our first result in this section, we remind the reader of the
definition of the class of Lipschitz domains.

Definition 3.4. Let Ω be a nonempty, proper open subset of Rn. Also, fix
x0 ∈ ∂Ω. Call Ω a Lipschitz domain near x0 if there exist b, c > 0 with the
following significance. There exist an (n − 1)-dimensional affine variety H ⊂ Rn

passing through x0, a choice N of the unit normal to H , and an open set

(3.10) C = C(x0, H,N, b, c) := {x′ + tN : x′ ∈ H, |x′ − x0| < b, |t| < c},
called a local coordinate cylinder near x0 (with axis along N), such that

(3.11) C ∩ Ω = C ∩ {x′ + tN : x′ ∈ H, t > ϕ(x′)},
for some Lipschitz function ϕ : H → R satisfying

(3.12) ϕ(x0) = 0 and |ϕ(x′)| < c/2 if |x′ − x0| ≤ b.

We shall call a bounded open set Ω ⊆ Rn a bounded Lipschitz domain if it is a
Lipschitz domain near every point x ∈ ∂Ω.

Then the following result holds:

Theorem 3.5. Let Ω be a bounded Lipschitz domain in Rn and let L be one of
the operators ΔD and ΔN . Then for every 0 < p ≤ 1 and every M ∈ N with
M >

[
n
2

(
1
p − 1

)]
, the spaces hpL,at,M (Ω) and hpL,Nloc, h

(Ω) coincide (algebraically

and topologically). In particular,

(3.13) ‖f‖hp
L,at,M (Ω) ≈ ‖f‖hp

L,Nloc,h
(Ω).
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To prove Theorem 3.5, we need the following lemma. Its proof is similar to
that of Lemma 4.3 in [39] and we omit it here.

Lemma 3.6. Suppose that Ω is an open set in Rn which satisfies the doubling
property (2.7). Let 0 < p ≤ 1 and fix an integer M >

[
n
2

(
1
p − 1

)]
. Assume that T

is a bounded nonnegative sublinear (resp. linear) operator on L2(Ω) which, for
every (p, 2,M)-atom a, satisfies

(3.14) ‖Ta‖Lp(Ω) ≤ C,

with constant C independent of a. Then T extends to a bounded sublinear (resp.
linear) operator from hpL,at,M(Ω) to Lp(Ω), and

(3.15) ‖Tf‖Lp(Ω) ≤ C‖f‖hp
L,at,M(Ω).

Proof of Theorem 3.5. We proceed in two steps, starting with:

Step I. Proof of the inclusion of hpL,at,M (Ω) ⊆ hpL,Nloc, h
(Ω) in the case when M >

[n(1−p)
2p ]. By Lemma 3.6, it suffices to show that there exists C > 0 such that for

every (p, 2,M) atom a associated to a ball B = B(xB , rB) in Rn centered in Ω, we
have

(3.16) ‖Nloc,ha‖Lp(Ω) ≤ C.

From condition (2.4) (or (2.5)), we have that Nloc,ha(x) ≤ CMΩa(x) for almost
every x ∈ Ω, where MΩ denotes the Hardy–Littlewood maximal operator on Ω.
By Hölder’s inequality,

(3.17) ‖Nloc,ha‖pLp(4B) ≤ |4B|1−p/2‖MΩa‖pL2(Ω) ≤ C|B|1−p/2‖a‖pL2(B) ≤ C.

We now proceed to estimate Nloc,ha(x) with x �∈ 4B by examining several cases.
Introduce ε := 2M+n(1− 1

p ) > 0. To facilitate the subsequent presentation, define

N
(1)
loc,hf(x) := sup

|x−y|<t
0<t≤rB

|e−t2Lf(y)|,(3.18)

N
(2)
loc,hf(x) := sup

|x−y|<t
rB<t<|x−xB|/4

|e−t2Lf(y)|,(3.19)

N
(3)
loc,hf(x) := sup

|x−y|<t
t≥|x−xB|/4

|e−t2Lf(y)|.(3.20)

Case 1. 0 < t ≤ rB . In this scenario we note that for x �∈ 4B, if we have
|x − y| ≤ t < |x− xB |/4 and z ∈ B, then necessarily |y − z| ≥ |x− xB |/2. This
permits us to estimate

N
(1)
loc,ha(x) ≤ C sup

|x−y|<t≤1
0<t≤rB

∫
B

t−n exp
(
− |y − z|2

ct2

)
|a(z)| dz

≤ C sup
0<t≤rB

t−n exp
(
− |x− xB |2

ct2

)
‖a‖L1(B) ≤ C

rεB
|x− xB |np+ε

.(3.21)



Regularity for the inhomogeneous Dirichlet and Neumann problems 201

Case 2. rB < t < |x − xB |/4. Since a is a (p, 2,M)-atom, we can write a = LMb
for some b ∈ D(LM ) satisfying (ii) and (iii) of Definition 3.1. It follows that

‖b‖L1(B) ≤ Cr
2M+n(1−1/p)
B . On account of (2.10) we then have

N
(2)
loc,ha(x) = sup

|x−y|<t≤1
rB<t<|x−xB|/4

t−2M |(t2L)Me−t2Lb(y)|

≤ C sup
|x−y|<t≤1

rB<t<|x−xB|/4

t−2M

∫
B

t−n exp
(
− |y − z|2

ct2

)
|b(z)| dz

≤ C‖b‖L1(B) sup
rB<t<|x−xB|/4

t−2M−n exp
(
− |x− xB |2

ct2

)

≤ C
r
2M+n(1− 1

p )

B

|x− xB |np+2M+n(1− 1
p )

= C
rεB

|x− xB |np +ε
.(3.22)

Case 3. t ≥ |x−xB|/4. In this case, t−n ≤ C|x−xB|−n for every z ∈ B, and then
by (2.10) again,

N
(3)
loc,ha(x) = sup

|x−y|<t≤1
t≥|x−xB|/4

|LMe−t2Lb(y)|

≤ C sup
t≥|x−xB|/4

t−2M |x− xB |−n‖b‖L1(B) ≤ C
rεB

|x− xB |np+ε
.(3.23)

Combining the estimates obtained in Cases 1, 2 and 3, we therefore con-
clude that

(3.24) Nloc,ha(x) ≤ C
rεB

|x− xB |np+ε
.

Integrating both sides of (3.24) over Ω yields (3.16). This concludes the proof of the
fact that the inclusion hpL,at,M (Ω) ⊆ hpL,Nloc, h

(Ω) is well defined and continuous.

Step II. Proof of the inclusion hpL,Nloc,h
(Ω) ⊆ hpL,at,M (Ω). To get started, we

first review some preliminary results. Given a function f ∈ L2(Ω), consider the
following local version of the quadratic operator associated with the heat semigroup
generated by the operator L:

(3.25) Sloc,hf(x) :=
( ∫ 1

0

∫
y∈Ω, |y−x|<t

|t2Le−t2Lf(y)|2 dy dt
tn+1

)1/2

, x ∈ Ω.

Then for every f ∈ L2(Ω),

(3.26) ‖Sloc,hf‖Lp(Ω) ≤ C‖Nloc,hf‖Lp(Ω).

The proof of (3.26) follows from an argument analogous to the one given in the
proof of Proposition 19 of [9] for the case p = 1 (see also [32], [39] and [40])). We
omit the details but we wish to stress that it is here that we use the fact that Ω is
a bounded Lipschitz domain.
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Let us recall that, if L is a nonnegative and self-adjoint operator on L2(Ω),
and EL(λ) denotes its spectral decomposition, then for every bounded Borel func-
tion F : [0,∞) → C, one defines the bounded operator F (L), mapping L2(Ω) into
L2(Ω), by the formula

(3.27) F (L) :=

∫ ∞

0

F (λ) dEL(λ).

In particular, the operator cos(t
√
L) is then well defined and bounded on L2(Ω).

Moreover, it follows from Theorem 3 of [21] and conditions (2.4) and (2.5) that
there exists a finite, positive constant c0 with the property that the Schwartz kernel
Kcos(t

√
L) of cos(t

√
L) satisfies

(3.28) suppKcos(t
√
L) ⊆

{
(x, y) ∈ Ω× Ω : |x− y| ≤ c0t

}
.

See also [16] and [61]. By the Fourier inversion formula, whenever F is an even,
bounded, Borel function with F̂ ∈ L1(R), we can write F (

√
L) in terms of cos(t

√
L).

Concretely, by recalling (3.27) we have

(3.29) F (
√
L) = (2π)−1

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt,

which, when combined with (3.28), gives

(3.30) KF (
√
L)(x, y) = (2π)−1

∫
|t|≥c−1

0 |x−y|
F̂ (t)Kcos(t

√
L)(x, y) dt, ∀x, y ∈ Ω.

Above, F̂ denotes the Fourier transform of F .

Going further, we state the following useful result (see Lemma 3.5 in [39]).

Lemma 3.7. Suppose that Ω is an open set in Rn which satisfies the doubling
property (2.7). Let ϕ ∈ C∞

0 (R) be an even function satisfying
∫
ϕ = 2π and

suppϕ ⊂ (−c−1
0 , c−1

0 ), where c0 is the constant in (3.28). For every m = 0, 1, 2, . . . ,
set

Φ(m)(ξ) :=
dm

dξm
Φ(ξ) where Φ(ξ) := ϕ̂(ξ).

Then for every integers κ,m = 0, 1, 2, . . . , and for every t > 0, the kernel
K(t

√
L)2κ+mΦ(m)(t

√
L) of (t

√
L)2κ+mΦ(m)(t

√
L) satisfies

(3.31) suppK(t
√
L)2κ+mΦ(m)(t

√
L) ⊆

{
(x, y) ∈ Ω× Ω : |x− y| ≤ t

}
.

Proof. For all κ,m = 0, 1, 2, . . . , we set Ψ
(m)
κ,t (ζ) := (tζ)2κ+mΦ(m)(tζ). Using the

definition of the Fourier transform, it can be verified that

̂
Ψ

(m)
κ,t (s) = (−1)m+κ 1

t
ψ(m)
κ

(s
t

)
,

where we have set ψ
(m)
κ (s) = d2κ+m

ds2κ+m

(
smϕ(s)

)
. Observe that for all numbers κ,m =

0, 1, 2, . . . , the function Ψ
(m)
κ,t ∈ S (R) is an even function.
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It follows from formula (3.30) that

K(t
√
L)2κ+mΦ(m)(t

√
L)(x, y)

= (−1)m+κ 1

2π

∫
|st|≥c−1

0 d(x,y)

d2κ+m

ds2κ+m

(
smϕ(s)

)
Kcos(st

√
L)(x, y) ds.

Since ϕ ∈ C∞
0 (R) and suppϕ ⊂ (−c−1

0 , c−1
0 ), the claim (3.31) follows readily from

this. �

Next we include a brief review of tent spaces on Ω following [17] (see also [58]).

If O is an open subset of Ω, then the “tent” over O, denoted by Ô, is defined as

(3.32) Ô := {(x, t) ∈ Ω× (0,∞) : d(x,Oc) ≥ t}.
For a measurable function F defined on Ω× (0,∞), consider

(3.33) AF (x) :=
( ∫ ∞

0

∫
y∈Ω, |y−x|<t

|F (y, t)|2 dy dt

t|BΩ(y, t)|
)1/2

, x ∈ Ω.

Given 0 < p < ∞, the “tent space” T p
2 (Ω) is defined as the space of measurable

functions F on Ω×(0,∞), for which AF ∈ Lp(Ω). This space is equipped with the
quasi-norm ‖F‖Tp

2 (Ω) := ‖AF‖Lp(Ω). Observe that T p
2 (Ω) is a Banach space when

p ∈ [1,∞), and if 0 < p <∞ then T p
2 (Ω)∩T 2

2 (Ω) is dense in T
p
2 (Ω). A measurable

function A on Ω × (0,∞) is said to be a T p
2 -atom if there exists a ball BΩ ⊆ Ω

such that A is supported in B̂Ω (defined in (3.32)) and

(3.34)

∫∫
Ω×(0,∞)

|A(x, t)|2 dxdt
t

≤ |BΩ|1− 2
p .

By [58] (which extends the results of [17] to the setting of spaces of homogeneous
type), every F ∈ T p

2 (Ω) has an atomic decomposition. For further reference, we
formally state this result below.

Lemma 3.8. Let Ω be an open set in Rn which satisfies the doubling property (2.7)
and let p ∈ (0, 1]. Then for every element F ∈ T p

2 (Ω), there exist a numerical
sequence {λj}∞j=0 and a sequence of T p

2 -atoms {Aj}∞j=0 such that

(3.35) F =

∞∑
j=0

λjAj in T p
2 (Ω)

and

(3.36)

∞∑
j=0

|λj |p ≤ C‖F‖p
Tp
2 (Ω)

.

For a proof, we refer the reader to Theorem 1.2 in [58].
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After this preamble, we begin in earnest the proof of the inclusion hpL,Nloc, h
(Ω)

⊆ hpL,at,M (Ω). Let f ∈ hpL,Nloc, h
(Ω) ∩L2(Ω). For every M ≥ 1, we shall show that

there exist a family of local (p, 2,M)-atoms {aj}∞j=0 and a sequence of numbers

{λj}∞j=0 such that f can be represented in the form f =
∑∞

j=0 λjaj, with

(3.37) ‖f‖p
hp
L,at,M (Ω)

≤ C
∞∑
j=0

|λj |p ≤ C‖Sloc,hf‖pLp(Ω) ≤ C‖f‖p
hp
L,Nloc,h

(Ω)
,

where C is independent of f .
Next, let ϕ, c0, and Φ be as in Lemma 3.7; recall that

∫
ϕ = 2π, and thus Φ(0) =

ϕ̂(0) = 1. Using the Faà di Bruno formula (see [63]), we have, for every m ∈ Z+,

(3.38)
dm

dsm
e−s2 = e−s2

[m/2]∑
j=0

(−1)m−j 2m−2j m!

(m− 2j)! j!
sm−2j ,

where [m/2] denotes the integer part of m/2. The equality (3.38), together with
the fact that

sm
dm

dsm
(
Φ(s)e−s2

)
= sm

m∑
�=0

m!

(m− )! !

d�

ds�
Φ(s)

dm−�

dsm−�
e−s2 ,

shows that

sm
dm

dsm

(
Φ(s)e−s2

)
=

m∑
�=0

[
m−�

2

]∑
j=0

(−1)m−�−j2m−�−2j m!

(m− )! !

(m− )!

(m− − 2j)! j!

×(
s2(m−j)−� d

�

ds�
Φ(s)

)
e−s2

=

m∑
�=0

[
m−�

2

]∑
j=0

c1(m, , j)Ψ
(�)
m,j(s)e

−s2 ,(3.39)

where

(3.40) c1(m, , j) := (−1)m−�−j2m−�−2j m!

(m− )! !

(m− )!

(m−  − 2j)! j!

and

(3.41) Ψ
(�)
m,j(s) := s2(m−j)−� d

�

ds�
Φ(s).

A direct computation based on integration by parts, further shows that for
every M ∈ N, we have

(3.42)

∫ 1

0

(
s2(M+1) d

2(M+1)

ds2(M+1)

(
Φ(s)e−s2

))∣∣∣
s=tz1/2

dt

t

=

2M+1∑
m=0

2M+1−m∑
�=0

[
2M+1−m−�

2

]∑
j=0

c2(M + 1,m, , j)Ψ
(�)
2M+1−m,j(z

1/2)e−z + (2M + 1)! ,
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valid for all z �= 0 in a sector |argz| < μ with μ ∈ (0, π), and

(3.43) c2(M + 1,m, , j) = (−1)m
(2M + 1)!

(2M + 1−m)!
c1(2M + 1−m, , j).

Then we have the following result:

Lemma 3.9 (Inhomogeneous Calderón type reproducing formula). For every
M ∈ N and every f ∈ L2(Ω), we have

f =
1

(2M + 1)!

(
f1 − f2

)
,

where

(3.44) f1 :=

∫ 1

0

(
s2(M+1) d

2(M+1)

ds2(M+1)

(
Φ(s)e−s2

))∣∣∣
s=tL1/2

dt

t

=

2(M+1)∑
�=0

[
2(M+1)−�

2

]∑
j=0

c1(2M+2, , j)×
∫ 1

0

(t2L)MΨ
(�)
2M+2, j+M+1

(
tL1/2

)
t2Le−t2Lf

dt

t

and

(3.45) f2 :=

2M+1∑
m=0

2M+1−m∑
�=0

[
2M+1−m−�

2

]∑
j=0

c2(M + 1,m, , j)Ψ
(�)
2M+1−m,j(L

1/2)e−Lf.

Here, c1(2M +2, , j) and c2(M +1,m, , j) are the constants in (3.40) and (3.43),
respectively.

Proof. The proof of the lemma is a consequence of (3.39) and (3.42), by making
use of the L2-functional calculus for L([52]), and is omitted here. �

Also, define

F (y, t) :=

{
t2Le−t2Lf(y) for 0 < t ≤ 1 and y ∈ Ω,

0 for t > 1 and y ∈ Ω.
(3.46)

Then suppF ⊆ Ω×(0, 1]. Since f ∈ hpL,Nloc, h
(Ω)∩L2(Ω), we have that F ∈ T p

2 (Ω).

By Lemma 3.8, F has a T p
2 -atomic decomposition, say

(3.47) F =
∞∑
i=0

λiAi,

where λi ∈ C,

∞∑
i=0

|λi|p ≤ C‖F‖p
Tp
2 (Ω)

≤ C‖Sloc,hf‖pLp(Ω) ≤ C‖f‖p
hp
L,Nloc,h

(Ω)
,
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and Ai are T
p
2 -atoms, i.e., functions supported in B̂Ω

i and

(3.48)

∫
Ω×(0,∞)

|Ai(x, t)|2dxdt/t ≤ |Bi|1− 2
p .

Therefore, by (3.44)

f1 =

2(M+1)∑
�=0

[
2(M+1)−�

2

]∑
j=0

∞∑
i=0

c1(2M + 2, , j)λi

×
∫ 1

0

(t2L)MΨ
(�)
2M+2, j+M+1

(
t
√
L
)(
Ai(·, t)

)dt
t

=

2(M+1)∑
�=0

[
2(M+1)−�

2

]∑
j=0

∞∑
i=0

c1(2M + 2, , j)λi a�,j,i,(3.49)

where we have set

(3.50) a�,j,i := LMb�,j,i

and

(3.51) b�,j,i :=

∫ 1

0

t2MΨ
(�)
2M+2, j+M+1

(
t
√
L
)(
Ai(·, t)

)dt
t
.

We claim that, up to normalization by a fixed multiplicative constant, the a�,j,i’s
are (p, 2,M)-atoms for L. To get started with the proof of the claim, we note that
for every k = 0, 1, . . . ,M , there holds

(3.52) Lkb�,j,i =

∫ 1

0

t2MLkΨ
(�)
2M+2, j+M+1

(
t
√
L
)(
Ai(·, t)

)dt
t
.

By Lemma 3.7, the integral kernel K
(t2L)kΨ

(�)
2M+2,j+M+1(t

√
L)
(x, y) of the operator

(t2L)kΨ
(�)
2M+2,j+M+1(t

√
L) satisfies

(3.53) suppK
(t2L)kΨ

(�)
2M+2, j+M+1(t

√
L)

⊆ {
(x, y) ∈ Ω× Ω : |x− y| < t

}
.

This, together with (3.32) and the fact that suppAi ⊂ B̂Ω
i , shows that

(3.54) supp (Lkb�,j,i) ⊆ BΩ
i , for every k ∈ {0, 1, . . . ,M}.

To continue, for each ball BΩ
i consider h ∈ L2(BΩ

i ) such that ‖h‖L2(BΩ
j ) = 1. Then
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for every k = 0, 1, . . . ,M there holds∣∣∣ ∫
Ω

(r2Bi
L)kb�,j,i(x)h(x) dx

∣∣∣
=

∣∣∣ ∫
Ω×(0,∞)

t2M (r2Bi
L)kΨ

(�)
2M+2, j+M+1

(
t
√
L
)(
Ai(·, t)

)
(x)h(x)

dx dt

t

∣∣∣
≤ Cr2MBi

∫
Ω×(0,∞)

∣∣∣Ai(x, t)(t
2L)kΨ

(�)
2M+2, j+M+1

(
t
√
L
)
(h)(x)

∣∣∣ dx dt
t

≤ Cr2MBi

( ∫∫
Ω×(0,∞)

∣∣Ai(x, t)
∣∣2 dx dt

t

)1/2

×
(∫∫

Ω×(0,∞)

∣∣(t2L)kΨ(�)
2M+2, j+M+1

(
t
√
L
)
(h)(x)

∣∣2 dx dt
t

)1/2

≤ Cr2MBi
|BΩ

i |
1
2− 1

p ‖h‖L2(Ω) ≤ Cr2MBi
|BΩ

i |
1
2− 1

p .(3.55)

Above, the first inequality is obtained by using the condition 0 < t < rBi , the fact

that Ai is a T
p
2 -atom supported in B̂Ω

i and property (3.48). Since h was arbitrary,

this estimate entails ‖(r2Bi
L)kb�,j,i‖L2(Ω) ≤ Cr2MBi

|BΩ
i |

1
2− 1

p . Together with (3.54)
this shows that each a�,j,i is, up to a fixed multiplicative constant, a (p, 2,M)-atom
for L. This proves our earlier claim.

We now deal with the term f2 in (3.45). Let Q0 be the smallest cube contain-
ing Ω. We split Q0 into subcubes, say

(3.56) Q0 =

2Kn⋃
i=1

Qi
0

such that each Qi
0 has side-length (Qi

0) =
1

2
√
n
(when K is sufficiently large) and

Qi
0 and Qj

0 are disjoint for any i �= j. Suppose Q1
0, · · · , QN

0 are all cubes which
intersect the domain Ω; then Ω ⊂ ∪N

i=1Q
i
0. Let {ηi}Ni=1 be a family of smooth

functions satisfying ηi = 1 in Qi
0, and ηi = 0 outside 2Qi

0 for each i, and such that∑N
i=1 ηi = 1 in Ω̃ = {x : dist(x,Ω) < 1/2}. For each cube Qi

0, we take a point
xQi

0
∈ Qi

0 ∩ Ω. Then f2 can be further decomposed as

f2 =

2M+1∑
m=0

2M+1−m∑
�=0

[
2M+1−m−�

2

]∑
j=0

N∑
i=1

c2(M + 1,m, , j)Ψ
(�)
2M+1−m,j(L

1/2)
(
ηi e

−Lf
)

(3.57) =

2M+1∑
m=0

2M+1−m∑
�=0

[
2M+1−m−�

2

]∑
j=0

N∑
i=1

γi am,�,j,i,

where

(3.58) γi :=
∣∣BΩ(xQi

0
, 2)

∣∣ 1
p− 1

2 sup
y∈2Qi

0

∣∣ηie−Lf(y)
∣∣
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and

(3.59) am,�,j,i := γ−1
i c2(M + 1,m, , j)Ψ

(�)
2M+1−m,j(L

1/2)
(
ηi e

−Lf
)
.

It follows by the spectral theorem that∥∥am,�,j,i

∥∥
L2(Ω)

≤ Cγ−1
i

∥∥ηi e−Lf
∥∥
L2(Ω)

≤ C
∣∣BΩ(xQi

0
, 2)

∣∣ 1
2− 1

p ,

since each Qi
0 has side-length (Qi

0) = 1
2
√
n
. Then it follows from an argument

as in (3.54) that up to a multiplication by a harmless constant, each am,�,j,i is a
(p, 2,M) atom with suppam,�,j,i ⊆ BΩ(xQi

0
, 2). Thus, it remains to check that∑

i |γi|p <∞. Note that

(3.60) sup
y∈2Qi

0∩Ω

∣∣e−Lf(y)
∣∣ ≤ min

x∈2Qi
0∩Ω

sup
y∈Ω: |x−y|<1

∣∣e−Lf(y)
∣∣.

This implies that |γi| ≤ Cminx∈2Qi
0∩ΩNloc,hf(x) and, hence, there holds |γi| ≤

C |2Qi
0 ∩ Ω|1/pNloc,hf(x) for all x ∈ 2Qi

0 ∩ Ω. Consequently, we have |γi|p ≤
C
∫
2Qi

0∩Ω

∣∣Nloc,hf(x)
∣∣p dx. We may write

(3.61)

N∑
i=1

|γi|p ≤ C

N∑
i=1

∫
2Qi

0∩Ω

∣∣Nloc,hf(x)
∣∣p dx ≤ C

∫
Ω

∣∣Nloc,hf(x)
∣∣p dx.

Altogether, this shows that the inclusion hpL,Nloc, h
(Ω) ⊆ hpL,at,M (Ω) is well defined

and continuous, thus completing the proof of the theorem. �

As a consequence of the theorem just proved, we may write hpL,at(Ω) in place

of hpL,at,M (Ω) for every integer M ∈ N with M > [n(1−p)
2p ]. In fact, Theorem 3.5

suggests making the following definition:

Definition 3.10. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let L be one of
operators ΔD and ΔN on Ω, and assume that 0 < p ≤ 1. The Hardy space hpL(Ω)
is then defined as

(3.62) hpL(Ω) := hpL,at(Ω) = hpL,at,M (Ω), ∀M >
[n(1− p)

2p

]
.

Finally, we state the following theorem. Its proof is similar to the case p = 1
treated in Theorem 2.7 of [39] (cf. [41] for a proof in the case p < 1 in a slightly
different context, which may also be adapted to the present setting).

Theorem 3.11. Let Ω ⊆ Rn be a bounded domain satisfying the doubling prop-
erty (2.7). If 0 < p < 1 and α = 1/p − 1, then for every integer M ∈ N with

M >
[n(1−p)

2p

]
, Λα,M

L (Ω) is the dual space of hpL,at,M (Ω). That is, each continuous

linear functional on hpL,at,M(Ω) is a mapping of the form h �→ ∑∞
j=1 λj

∫
Ω
aj dx,

where  ∈ Λα,M
L (Ω) and h =

∑∞
j=1 λjaj ∈ hpL,at,M (Ω).
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If p = 1, then bmoL(Ω) is the dual space of h1L,at,M (Ω). More precisely, if

h =
∑∞

j=1 λjaj ∈ h1L,at,M(Ω), then

(3.63) h1L,at,M (Ω) � h �→
∞∑
j=1

λjaj := lim
k→∞

k∑
j=1

λj

∫
Ω

aj dx

is a well defined continuous linear functional for each  ∈ bmoL(Ω), whose norm is
equivalent to ‖‖bmoL(Ω). Moreover, each continuous linear functional on h1L,at,M(Ω)
has this form.

4. Regularity of the inhomogeneous Dirichlet and Neumann
problems in the context of Hardy spaces adapted to the
Dirichlet and Neumann Laplacians

In this section, we assume that Ω is a bounded semiconvex domain in Rn (a concept
defined in §4.2). The aim is to study the regularity of the inhomogeneous Dirichlet
and Neumann problems in the context of the Hardy spaces hpΔD

(Ω) and hpΔN
(Ω),

0 < p ≤ 1, respectively.

4.1. Main results

Given an open, bounded subset Ω of Rn and f ∈ C∞(Ω), we denote by GD(f) the
unique solution in W 1,2

0 (Ω) of the inhomogeneous Dirichlet problem

(4.1)

{
Δu = f in Ω,

u = 0 on ∂Ω,

and refer to GD as the Dirichlet Green operator.

Theorem 4.1. Let Ω be a bounded, simply connected, semiconvex domain in Rn.
Let GD be the Dirichlet Green operator for the problem (4.1). Then the operators

(4.2)
∂2GD

∂xi∂xj
, i, j = 1, . . . , n,

originally defined on L2(Ω) ∩ hpΔD
(Ω), can be extended to bounded operators from

hpΔD
(Ω) to Lp(Ω) for all 0 < p ≤ 1.

If p = 1, then the operators ∂2
GD

∂xi∂xj
, i, j = 1, . . . , n, are also of weak type (1, 1).

Hence by interpolation, they can be extended as operators from L2(Ω) ∩ Lp(Ω) to
bounded operators on Lp(Ω) for 1 < p ≤ 2.

Define the Neumann Green operator GN as the solution operator, mapping
f ∈ C∞(Ω) to u = GN(f) ∈ W 1,2(Ω), for the Neumann problem{

Δu = f in Ω,

∂iu = 0 on ∂Ω,
(4.3)
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where it is also assumed that
∫
Ω f = 0 and the solution is normalized by requiring

that
∫
Ω u = 0. Above, ν(x) denotes the outward unit normal to ∂Ω at x ∈ ∂Ω,

and ∂ν = ∇ · ν stands for the normal derivative.

Theorem 4.2. Let Ω be a bounded, simply connected, semiconvex domain in Rn.
Let GN be the Neumann Green operator for the problem (4.3). Then the operators

(4.4)
∂2GN

∂xi∂xj
, i, j = 1, . . . , n,

originally defined on {f ∈ L2(Ω) ∩ hpΔN
(Ω) :

∫
Ω
f dx = 0}, can be extended to

bounded operators from hpΔN
(Ω) into Lp(Ω) for 0 < p ≤ 1.

If p = 1, then the operators ∂2
GN

∂xi∂xj
, i, j = 1, . . . , n, are also of weak type (1, 1).

Hence by interpolation, they can be extended from Lp(Ω) ∩ Lp(Ω) to bounded op-
erators on L2(Ω) for 1 < p ≤ 2.

The general strategy employed in the proofs of the above theorems is as follows.
To begin with, if Ω is a bounded semiconvex domain, then we use the fact that

for i, j = 1, . . . , n, the operators ∂2
GD

∂xi∂xj
extend to bounded operators on L2(Ω). In

particular, this allows us to define ∂2
GD

∂xi∂xj
on individual local (p, 2,M) atoms asso-

ciated with the Dirichlet Laplacian ΔD, and we then proceed to extend the action
of these operators to hpΔD

(Ω) for all 0 < p ≤ 1 by establishing appropriate bounds.
The strategy for two derivatives on the Neumann Green operator is similar.

Executing this plan requires that we develop a number of auxiliary tools, many
of which have independent interest. More specifically, we first review geometric
preliminaries, and coercive estimates in the L2-setting. Second, we set up ma-
chinery capable of treating operators which fall beyond the scope of the classical
Calderón–Zygmund theory, along the lines of work in [26], [19] and [5]. This is
essential for establishing Lp-boundedness results in the range 1 < p ≤ 2. Third,
estimates for the range 0 < p ≤ 1 are established by making use of the properties
of heat semigroups and the fact that elements of the Hardy spaces hpΔD

(Ω) and
hpΔN

(Ω) have atomic decompositions in which the atoms have cancellation proper-
ties adapted to the operators in question (Dirichlet and Neumann Laplacians).

We wish to emphasize that our approach for estimating singular integrals with
non-smooth kernels is rather flexible since, in principle, it does not differentiate
between Dirichlet and Neumann boundary conditions. In this paper, we could only
obtain regularity of the Neumann Green operators on convex domains instead of
semiconvex domains as in the case of Dirichlet condition, is due to the fact that
for Neumann condition, the gradient estimate for the heat kernels in Lemma 2.8
is known only for convex domains, while for the Dirichlet condition, the gradi-
ent estimate for the resolvents in Lemma 2.5 is known for more general domains
satisfying a uniform exterior ball condition. If one can prove Lemma 2.8 for semi-
convex domains, then the proofs in this paper should give regularity result for the
Neumann Green operators on semiconvex domains.
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4.2. Coercive estimates in semiconvex domains

Here we review a series of definitions and basic results.

Definition 4.3. Let O be an open set in Rn. The collection of semiconvex func-
tions on O consists of continuous functions u : O → R with the property that there
exists C > 0 such that

2u(x)− u(x+ h)− u(x− h) ≤ C|h|2, ∀x, h ∈ Rn with [x− h, x+ h] ⊆ O.
The best constant C above is referred to as the semiconvexity constant of u.

Some of the most basic properties of the class of semiconvex functions are
collected in the next two propositions below. Proofs can be found in, e.g., [11].

Proposition 4.4. Assume that O is an open, convex subset of Rn. Given a
function u : O → R and a finite constant C > 0, the following conditions are
equivalent:

(i) u is semiconvex with semiconvexity constant C;

(ii) u satisfies

(4.5) u(λx+ (1− λ)y)− λu(x) − (1− λ)u(y) ≤ C
λ(1 − λ)

2
|x− y|2,

for all x, y ∈ O and all λ ∈ [0, 1];

(iii) the function O � x �→ u(x) + C|x|2/2 ∈ R is convex in O;

(iv) there exist two functions, u1, u2 : O → R such that u = u1+u2, u1 is convex,
u2 ∈ C2(O) and ‖∇2u2‖L∞(O) ≤ C;

(v) for any v ∈ Sn−1, the (distributional ) second order directional derivative of
u along v, i.e., D2

vu, satisfies D
2
vu ≥ C in O, in the sense that

(4.6)

∫
O
u(x)

(
Hessϕ(x)v

) · v dx ≥ C

∫
O
ϕ(x) dx, ∀ϕ ∈ C∞

0 (O), ϕ ≥ 0,

where

Hessϕ :=
( ∂2ϕ

∂xj∂xk

)
1≤j,k≤n

is the Hessian matrix of the function ϕ;

(vi) the function u can be represented as u(x) = supi∈I ui(x), x ∈ O, where
{ui}i∈I is a family of functions in C2(O) with the property that ‖∇2ui‖L∞(O)

≤ C for every i ∈ I;

(vii) the same as (vi) above except that, this time, each function ui is of the form
ui(x) = ai + wi · x+ C|x|2/2, for some number ai ∈ R and vector wi ∈ Rn.

We also have:

Proposition 4.5. Suppose that O is an open subset of Rn and that the mapping
u : O → R is a semiconvex function. Then the following assertions hold:

(1) The function u is locally Lipschitz in O.
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(2) The gradient of u (which, by Rademacher’s theorem exists a.e. in O), belongs
to BVloc(O,Rn).

(3) The function u is twice differentiable a.e. in O (Alexandroff’s theorem).
More concretely, for a.e. point x0 in O there exists an n × n symmetric
matrix Hu(x0) with the property that

(4.7) lim
x→x0

u(x)−u(x0)− (x−x0) · ∇u(x0) + 2−1
(
Hu(x0)(x−x0)

) · (x−x0)
|x− x0|2

equals zero.

Definition 4.6. A nonempty, proper, bounded open subset Ω of Rn is called
semiconvex provided there exist b, c > 0 with the property that for every x0 ∈ ∂Ω
there exist an (n − 1)-dimensional affine variety H ⊂ Rn passing through x0, a
choice N of the unit normal to H , and cylinder C as in (3.10) and some semiconvex
function ϕ : H → R satisfying (3.11)–(3.12).

It is then clear from Proposition 4.5, Definition 3.4 and Definition 4.6 that
bounded semiconvex domains form a subclass of the class of bounded Lipschitz
domains. The key features which distinguish the former from the latter are de-
scribed in the theorem below, which was proved in [53].

Theorem 4.7. Let Ω ⊆ Rn be a nonempty, bounded, open set. Then the following
conditions are equivalent:

(i) Ω is a Lipschitz domain satisfying a UEBC;

(ii) Ω is a semiconvex domain;

(iii) Ω satisfies a UEBC and ∂Ω is weakly nontangentially accessible. The latter
condition signifies that

(4.8) ∀x ∈ ∂Ω, ∃α > 0 such that x ∈ γΩ,α(x),

where

(4.9) γΩ,α(x) := {y ∈ Ω : |y − x| < (1 + α) dist (y, ∂Ω)}.

The following coercive estimates in semiconvex domains play a basic role in
subsequent developments.

Theorem 4.8. Let Ω ⊆ Rn be a bounded semiconvex domain with outward unit
normal ν. If the scalar function u ∈ W 1,2(Ω) is such that Δu ∈ L2(Ω) and either
u = 0 on ∂Ω, or ∂νu = 0 on ∂Ω, then actually u ∈W 2,2(Ω) and

(4.10) ‖u‖W 2,2(Ω) ≤ C
(‖Δu‖L2(Ω) + ‖u‖L2(Ω)

)
,

where C > 0 depends only on the Lipschitz character and the uniform exterior ball
constant of Ω. Moreover, in either case one also has

(4.11) ‖∇2u‖L2(Ω) ≤ C‖Δu‖L2(Ω).
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The case when u satisfies a homogeneous Dirichlet boundary condition has
been known for a while (cf. [1], which builds on the work in [46]) but the case of
the homogeneous Neumann boundary condition has only recently been dealt with
in [54] (for the case of convex domains see [36]). In fact, in the paper just cited,
a much more general result has been proved, in the setting of differential forms.
More specifically, the following theorem appears in [54].

Theorem 4.9. Let Ω ⊆ Rn be a bounded semiconvex domain with outward unit
normal ν = (ν1, . . . , νn) identified with the 1-form ν1dx1 + · · · + νndxn. Fix
 ∈ {0, 1, . . . , n} and assume that w ∈ L2(Ω,Λ�) has the property that dw ∈
L2(Ω,Λ�+1) and δw ∈ L2(Ω,Λ�−1), in a distributional sense, where d and δ stand,
respectively, for the exterior derivative operator and its formal adjoint. In addi-
tion, with “∧” denoting the exterior product of forms, suppose that ν ∧w = 0 in a
variational sense, i.e., as a functional in the space

W−1/2,2(∂Ω,Λ�+1) :=
(
W 1/2,2(∂Ω,Λ�+1)

)∗
.

Then actually w ∈W 1,2(Ω,Λ�) and

(4.12) ‖w‖W 1,2(Ω,Λ�) ≤ C
{‖dw‖L2(Ω,Λ�+1) + ‖δw‖L2(Ω,Λ�−1) + ‖w‖L2(Ω,Λ�)

}
,

for some finite constant C > 0 which depends only on the Lipschitz character and
the uniform exterior ball constant of Ω.

Furthermore, if in addition to the background hypotheses made on Ω so far, it
is also assumed that bn−�(Ω), the Betti number of order n−, vanishes, then (4.12)
can be strengthened to

(4.13) ‖∇w‖L2(Ω) ≤ C
{‖dw‖L2(Ω,Λ�+1) + ‖δw‖L2(Ω,Λ�−1)

}
.

Theorem 4.8 is, essentially, obtained by specializing Theorem 4.9 to the case
when  = 0 and  = n− 1 (in the latter scenario, an application of the Hodge star
isomorphism is also required).

4.3. The tools: singular integrals and weighted estimates of the spatial
derivative of the heat kernel

The following theorem is Theorem 1 in [26]:

Theorem 4.10. Let T be bounded linear operator from L2(Ω) into L2(Ω) with Ω
satisfying the condition (2.7). Assume that there exists a class of operators At,
t > 0, defined on L2(Ω) which is represented by kernels at(x, y) in the sense that

(a) Atu(x) =
∫
Ω
at(x, y)u(y)dy for any function u ∈ L2(Ω) ∩ L1(Ω), and the

kernels at(x, y) satisfy the following condition:

(4.14) |at(x, y)| ≤ 1

|BΩ(y,
√
t)|(1 + |x−y|√

t

)n+β
, ∀x, y ∈ Ω, ∀ t > 0, β > 0.
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(b) The composite operator T (I − At) has a measurable kernel K̃t(x, y), and
there exist constants C and c > 0 such that

(4.15)

∫
x∈Ω:|x−y|≥c

√
t

∣∣K̃t(x, y)| dx ≤ C, y ∈ Ω.

Moreover, the operator T is of weak type (1, 1). Hence T can be extended from
L2(Ω) ∩ Lp(Ω) to a bounded operator on Lp(Ω) for all 1 < p ≤ 2.

4.3.1. Singular integrals. Let Ω be a bounded semiconvex domain in Rn (hence,
a bounded Lipschitz domain satisfying a UEBC) and let L be one of the operators
ΔD and ΔN on Ω. Let ∇2 denote a generic second order derivative. From Theo-
rem 4.8 it follows that the operator T = ∇2L−1 is bounded on L2(Ω). We use the
formula

(4.16) Tf =

∫ ∞

0

∇2e−tL f dt,

in which the integral converges in the strong operator topology on the space of
linear and bounded operators on L2(Ω). Indeed, observe that

(4.17)

∫ ∞

0

∇2e−tL f dt = ∇2L−1

∫ ∞

0

Le−tL f dt = ∇2L−1

∫ ∞

0

d

dt
(−e−tL f) dt,

then use the facts that ||e−tL f − f ||L2(Ω) → 0 as t → 0 and ||e−tL f ||L2(Ω) → 0
as t→ ∞.

It follows that the associated kernel of T is given by

(4.18)

∫ ∞

0

∇2
xpt,L(x, y) dt ,

where pt,L is the kernel of e−tL. In the sequel, we assume the following condition
(whose validity will be discussed later).

Working assumption: There exists γ > 0 such that the analytic semigroup e−tL

generated by L has kernels pt,L(x, y) satisfying the L1-estimate

(4.19)

∫
x∈Ω: |x−y|≥√

s

∣∣∇2
xpt,L(x, y)

∣∣ dx ≤ Ct−1e−γs/t, ∀y ∈ Ω, s, t > 0,

where C > 0 is a constant independent of y ∈ Ω and s, t > 0.

Then the following proposition holds:

Proposition 4.11. Let Ω be a bounded semiconvex domain in Rn and suppose
that (4.19) holds. Then the operator ∇2L−1 is bounded from hpL(Ω) into Lp(Ω)
if 0 < p ≤ 1 and there exists a finite, positive constant Cp such that

(4.20)
∥∥∇2L−1(f)

∥∥
Lp(Ω)

≤ Cp

∥∥f∥∥
hp
L(Ω)

, ∀ f ∈ hpL(Ω).

Furthermore, if p = 1 then ∇2L−1 is of weak type (1, 1). Hence, by interpolation,
this operator can be extended to a bounded mapping on Lp(Ω) whenever 1 < p ≤ 2.
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Proof. Set T := ∇2L−1, assume that 0 < p ≤ 1, and fix an arbitrary f ∈ hpL(Ω).
Relying on the atomic decomposition results established for the space hpL(Ω) we
may write

(4.21) f =
∑
rB≤1

λBaB +
∑
rB>1

λ̃B ãB =: f1 + f2,

with

(4.22)
∑
rB≤1

|λB |p +
∑
rB>1

|λ̃B|p < +∞.

Next, the L2-theory (cf. the discussion at the beginning of this subsection) shows
that for each atom ãB supported in a ball B ⊆ Ω with rB > 1, we have

(4.23) T (ãB) ∈ L2(Ω) and ‖T (ãB)‖L2(Ω) ≤ C.

In particular, T (f2) ∈ Lq(Ω) for all 0 < q ≤ 2, plus a natural estimate.
There remains to study the action of T on f1 (in which case the fact that each

atom supported in a ball B with rB ≤ 1 enjoys an “L-cancellation” property is
going to be essential). By Lemma 3.6, it is therefore enough to show that for each
(p, 2,M) atom a, 0 < p ≤ 1, associated to a ball B as in Definition 3.1, one has
T (a) ∈ Lp(Ω), and

(4.24)
∥∥T (a)∥∥

Lp(Ω)
≤ C

with C independent of a. The verification of (4.24) constitutes much of the bulk
of the remaining of the proof. By Hölder’s inequality, we can write
(4.25)∥∥T (a)∥∥p

Lp(Ω)
=

∞∑
j=0

∥∥∥∣∣T (a)∣∣p∥∥∥
L1(UΩ

j (BΩ))
≤ |BΩ|1−p

∞∑
j=0

2jn(1−p)
∥∥T (a)∥∥p

L1(UΩ
j (BΩ))

,

where the annuli UΩ
j (BΩ) are defined in (3.2). Since the operator T is bounded on

L2(Ω), we have that for j = 0, 1, 2,

(4.26)
∥∥T (a)∥∥

L1(UΩ
j (BΩ))

≤ C|BΩ|1/2‖a‖L2(BΩ) ≤ C|B|1− 1
p .

Fix j ≥ 3. Since

(4.27) T (a) = ∇2L−1(a) = 2

∫ ∞

0

∇2e−2tL(a) dt,

one can write for each j ≥ 3,∥∥T (a)∥∥
L1(UΩ

j (BΩ))

≤ 2
∥∥∥∫ r2B

0

∇2e−2tL(a) dt
∥∥∥
L1(UΩ

j (BΩ))
+ 2

∥∥∥∫ ∞

r2B

∇2e−2tL(a)dt
∥∥∥
L1(UΩ

j (BΩ))
(4.28)

=: I + II.
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We first estimate I. Since j ≥ 3, we have that dist (UΩ
j (BΩ), BΩ) ≥ 2j−2rB. Thus,

making use of (4.19), we obtain∥∥∇2e−2tL(a)
∥∥
L1(UΩ

j (BΩ))
=

∫
UΩ

j (BΩ)

∣∣∣ ∫
B

∇2
xp2t,L(x, y)a(y) dy

∣∣∣ dx
≤ ‖a‖L1(BΩ)

∫
x∈Ω: |x−y|≥2j−2rB

∣∣∣∇2
xp2t,L(x, y)

∣∣∣ dx ≤ C|B|1− 1
p t−1e−γ

(2jrB)2

2t .(4.29)

Therefore, for every M0 > 0,

I ≤ C|B|1− 1
p

∫ r2B

0

e−γ
22jr2B

2t
dt

t

≤ C|B|1− 1
p

∫ r2B

0

( t

22jr2B

)M0 dt

t
≤ C(M0)2

−2jM0 |B|1− 1
p .(4.30)

To estimate II, we need the following lemma:

Lemma 4.12. Retain the same background hypotheses as above; in particular,
suppose (4.19) holds. Then for every k ∈ N, there exists γk > 0 such that the k-th

order time derivative dk

dtk
pt,L(x, y) of the heat kernel pt,L satisfies

(4.31)

∫
x∈Ω: |x−y|≥√

s

∣∣∣∇2
x

( dk
dtk

pt,L(x, y)
)∣∣∣ dx ≤ Ct−(k+1)e−γks/t,

for all y ∈ Ω and s, t > 0, where C > 0 is a constant independent of y ∈ Ω and
s, t > 0.

Proof. We use the commutativity of the semigroup {e−tL}t>0 to obtain that for
every k ∈ N,

dk

dtk
e−2tL = (−2L)ke−2tL = 2ke−tL

( dk
dtk

e−tL
)
.

For each fixed y ∈ Ω this gives∫
x∈Ω: |x−y|≥√

s

∣∣∣∇2
x

( dk
dtk

p2t,L(x, y)
)∣∣∣ dx

= 2k
∫
x∈Ω: |x−y|≥√

s

∣∣∣ ∫
Ω

∇2
xpt,L(x,w)

( dk
dtk

pt,L(w, y)
)
dw

∣∣∣ dx
≤ C

∫
x∈Ω: |x−y|≥√

s

∫
w∈Ω: |w−y|≥

√
s

2

∣∣∣∇2
xpt,L(x,w)

( dk
dtk

pt,L(w, y)
)∣∣∣ dw dx

+ C

∫
x∈Ω: |x−y|≥√

s

∫
w∈Ω: |w−y|≤

√
s

2

∣∣∣∇2
xpt,L(x,w)

( dk
dtk

pt,L(w, y)
)∣∣∣ dw dx

=: J
(1)
s,t (y) + J

(2)
s,t (y).(4.32)
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For the term J
(1)
s,t (y), we invoke (4.19) and (2.10) in order to write

J
(1)
s,t (y) ≤ C

∫
w∈Ω: |w−y|≥

√
s

2

(∫
Ω

∣∣∣∇2
xpt,L(x,w)

∣∣∣ dx)∣∣∣ dk
dtk

pt,L(w, y)
∣∣∣ dw

≤ Ct−1

∫
w∈Ω: |w−y|≥

√
s

2

∣∣∣ dk
dtk

pt,L(w, y)
∣∣∣ dw ≤ Ct−(k+1)e−γks/t(4.33)

for some γk > 0. On the other hand, observe that if |x − y| ≥ √
s and |w − y|

≤ √
s/2, then |x − w| ≥ √

s/2. The same argument as above also gives that

J
(2)
s,t (y) ≤ Ct−(k+1)e−γks/t, and so the desired estimate readily follows. The proof

of Lemma 4.12 is complete. �

Back to the proof of Proposition 4.11. Let us consider term II. PickM0 ∈ (n(1−p)
2p , M)

where M > n(1−p)
2p . Since a = LMb, with the help of Lemma 4.12 we may write

II ≤ C

∫ ∞

r2B

∥∥∥∇2
x

( dM
dtM

e−2tLb
)∥∥∥

L1(UΩ
j (BΩ))

dt

≤ C ‖b‖L1(BΩ)

∫ ∞

r2B

( ∫
|x−y|≥2j−2rB

∣∣∣∇2
x

( dM
dtM

p2t,L(x, y)
∣∣∣ dx) dt

≤ C ‖b‖L1(BΩ)

∫ ∞

r2B

e−γM
22jr2B

2t
dt

tM+1
≤ C r2MB |B|1− 1

p

∫ ∞

r2B

( t

22jr2B

)M0 dt

tM+1

≤ C 2−2jM0 |B|1− 1
p ,(4.34)

where in the last inequality in (4.34) we have used the condition M > n(1−p)
2p .

Collecting the estimates obtained for terms I and II, we arrive at the conclusion

that for every M0 ∈ (n(1−p)
2p , M) and j ≥ 3,

(4.35)
∥∥T (a)∥∥

L1(UΩ
j (BΩ))

≤ C 2−2jM0 |B|1− 1
p .

In turn, when combined with the estimates for the case when j ∈ {0, 1, 2}, this
gives

(4.36)
∥∥T (a)∥∥p

Lp(Ω)
≤ C + C

∞∑
j=3

2j(n(1−p)−2M0p) ≤ C.

This finishes the proof of (4.24). As a result, T is bounded from hpL(Ω) to L
p(Ω)

for 0 < p ≤ 1.
We now turn to the proof of the fact that T is of weak type (1, 1). The idea is

to make use of Theorem 4.10 above. Consider the composite operator T (I−e−tL),
t > 0, whose associated integral kernel is denoted by K̃t(x, y). Since

(4.37) T = ∇2L−1 =

∫ ∞

0

∇2e−sL ds,
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it follows that

(4.38) T (I − e−tL) =

∫ ∞

0

(
∇2e−sL −∇2e−(s+t)L

)
ds =

∫ t

0

∇2e−sL ds

where, in the last step, we have decoupled the integrands and made a change of
variables. Thus, by once again invoking (4.19),∫

x∈Ω, |x−y|≥√
t

∣∣K̃t(x, y)| dx ≤
∫
x∈Ω, |x−y|≥√

t

∣∣∣ ∫ t

0

∇2ps,L(x, y) ds
∣∣∣ dx

≤
∫ t

0

( ∫
x∈Ω, |x−y|≥√

t

∣∣∇2ps,L(x, y)
∣∣dx) ds ≤ C

∫ t

0

s−1e−γt/s ds ≤ C′(4.39)

for some finite, positive constant C′ which is independent of y ∈ Ω and t > 0.
With this in hand, and having already established the L2-boundedness of T ,
Theorem 4.10 applies and yields that T is of weak type (1, 1). This completes
the proof of Proposition 4.11. �

4.3.2. Weighted estimates of the spatial derivative of the heat kernel.
A key element in the proof of Theorems 4.1 and 4.2 is to verify the “working
assumption” (4.19) and in this section we give a condition on the kernel of T
guaranteeing that (4.19) holds. We begin by stating the following lemma (see also
Lemma 2.1 in [19]).

Lemma 4.13. Suppose Ω ⊆ Rn is a bounded open set satisfying the doubling
condition (2.7). Then, for each γ > 0 there exists a finite positive constant Cγ ,
which is allowed to depend on γ but which is independent of Ω and y ∈ Ω, with the
property that

(4.40)

∫
x∈Ω, |x−y|≥√

s

e−2γ |x−y|2
t dx ≤ Cγ e

−γs/t |BΩ(y,
√
t)|, ∀ s ≥ 0, ∀ t > 0.

Proof. We have∫
x∈Ω, |x−y|≥√

s

e−2γ |x−y|2
t dx ≤ e−γs/t

∫
Ω

e−γ |x−y|2
t dx

≤ e−γs/t

∫
BΩ(y,

√
t)

e−γ |x−y|2
t dx

+ e−γs/t
∞∑
k=0

∫
x∈Ω, 2k

√
t≤|x−y|<2k+1

√
t

e−γ |x−y|2
t dx

≤ e−γs/t|BΩ(y,
√
t)|+ e−γs/t

∞∑
k=0

e−γk |BΩ(y, 2k+1
√
t)|

≤ Cγ e
−γs/t|BΩ(y,

√
t)|,(4.41)

by the doubling property of Ω in Rn. �
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Note that if L is one of the operators ΔD and ΔN on Ω, then for all γ ∈ (0, 1/4)
we can apply Lemma 4.13 with s = 0 in order to obtain that the kernel pt,L(x, y)
of the semigroup e−tL satisfies

(4.42)

∫
Ω

∣∣pt,L(x, y)∣∣2eγ |x−y|2
t dx ≤ Cγ∣∣BΩ(y,

√
t)
∣∣ , ∀ y ∈ Ω, ∀ t > 0.

By Lemma 2.3 in [19], we also have the following weighted estimate for the first
spatial derivative of the heat kernel.

Lemma 4.14. Let Ω be a bounded open set in Rn. If L = ΔD and Ω satisfies the
doubling property (2.7) or L = ΔN and Ω has the extension property, then for all
γ ∈ (0, 1/4), the kernel pt,L(x, y) of the semigroup e−tL satisfies

(4.43)

∫
Ω

∣∣∇xpt,L(x, y)
∣∣2eγ |x−y|2

t dx ≤ Cγ

t
∣∣BΩ(y,

√
t)
∣∣ , ∀ y ∈ Ω, ∀ t > 0,

with a constant Cγ > 0 dependent on γ, but independent of Ω or y ∈ Ω.

We now prove the following proposition:

Proposition 4.15. Let Ω be a bounded domain in Rn and let L be one of the
operators ΔD and ΔN . Suppose also that when L = ΔD then Ω also satisfies the
doubling property (2.7), while if L = ΔN then Ω has the extension property. In
addition, assume that for some γ > 0 there exists a positive constant Cγ , which is
allowed to depend on γ but which is independent of Ω and y ∈ Ω, with the property
that the second order spatial derivatives of the heat kernel pt,L(x, y) of e

−tL satisfy
the L2-estimate

(4.44)

∫
Ω

∣∣∣∇2
xpt,L(x, y)

∣∣∣2eγ |x−y|2
t dx ≤ Cγ t

−2|BΩ(y,
√
t)|−1, ∀ y ∈ Ω, ∀ t > 0.

Then (4.19) holds. More precisely, we have the L1-estimate

(4.45)

∫
|x−y|≥√

s

∣∣∇2
xpt,L(x, y)

∣∣ dx ≤ C′
γt

−1e−γs/(4t), ∀ y ∈ Ω, ∀ s, t > 0,

for some positive constant C′
γ which may depend on γ but which is independent

of Ω and y ∈ Ω.

Proof. Fix s, t > 0 and y ∈ Ω. Then using Cauchy–Schwarz’s inequality and
Lemma 4.13 we obtain∫

|x−y|≥√
s

∣∣∇2
xpt,L(x, y)

∣∣ dx
≤

(∫
Ω

∣∣∇2
xpt,L(x, y)

∣∣2eγ |x−y|2
t dx

)1/2(∫
|x−y|≥√

s

e−γ |x−y|2
t dx

)1/2

≤ C′
γ t

−1 e−γs/(4t).(4.46)

This concludes the proof of Proposition 4.15. �
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4.4. Proofs of Theorems 4.1 and 4.2

In this section we shall employ Propositions 4.11 and 4.15 in order to prove Theo-
rems 4.1 and 4.2. As already pointed out, ∇2L−1 is bounded on L2(Ω) when L is
one of the operators ΔD and ΔN . The strategy used in the proofs of Theorems 4.1
and 4.2 is to check that either (4.19) or (4.44) holds.

4.4.1. The inhomogeneous Dirichlet problem. Fix a bounded semiconvex
domain Ω ⊂ Rn and recall that pt,ΔD(x, y) denotes the heat kernel of the semi-
group e−tΔD . Then pt,ΔD(·, y) and their time derivatives d

dtpt,ΔD(·, y) belong to the
domain of ΔD. In particular, pt,ΔD(·, y) ∈ W 1,2(Ω) and so pt,ΔD(·, y) = 0 on ∂Ω
for every fixed y ∈ Ω and ∇pt,ΔD(·, y) ∈ L2(Ω). Hence, for each fixed y ∈ Ω, the

function u := pt,ΔD(·, y) ∈ W 1,2
0 (Ω) is the unique solution of the inhomogeneous

Dirichlet problem (4.1) with datum f := − d
dtpt,ΔD(·, y), i.e.,{

Δu = − d
dtpt,ΔD(·, y) in Ω

u = 0 on ∂Ω.
(4.47)

Given that Ω is a bounded semiconvex domain, it follows from Theorem 4.8 that
u ∈W 2,2(Ω), so that ∇2

xpt,ΔD(x, y) ∈ L2(Ω). Moreover, there exists a constant C
independent of y ∈ Ω such that, ∀ t > 0,

(4.48)
∥∥∥∇2

xpt,ΔD(·, y)
∥∥∥
L2(Ω)

≤ C
∥∥∥ d
dt
pt,ΔD(·, y)

∥∥∥
L2(Ω)

≤ Ct−1
∣∣BΩ(y,

√
t)
∣∣−1/2

,

where the last step uses the estimate

(4.49)
∣∣∣ d
dt
pt,ΔD(x, y)

∣∣ ≤ C

t
∣∣BΩ(y;

√
t)
∣∣ exp(− |x− y|2

4t

)
,

and (4.40). We next prove the following weighted version of estimate (4.48):

Proposition 4.16. Let Ω be a semiconvex, bounded open subset of Rn. Then for
all γ ∈ (0, 1/8), there exists a positive constant Cγ , dependent on γ, but indepen-
dent of Ω or y ∈ Ω such that

(4.50)

∫
Ω

∣∣∇2
xpt,ΔD(x, y)

∣∣2eγ |x−y|2
t dx ≤ Cγt

−2
∣∣BΩ(y,

√
t)
∣∣−1

for all t > 0.

Before we prove Proposition 4.16, we first apply Theorem 4.9 to obtain the
following result:

Lemma 4.17. Let Ω be a bounded, simply connected, semiconvex, domain in Rn,
and assume that f ∈ L2(Ω). Then the unique solution u ∈ W 1,2

0 (Ω) of the partial
differential equation Δu = f in Ω belongs to W 2,2(Ω) and has the property that for
any ψ ∈ C∞(Rn),

(4.51)

∫
Ω

ψ2
∣∣∇2u

∣∣2 dx ≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx+ C

∫
Ω

ψ2f2 dx,
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for some finite constant C > 0 independent of f . Moreover,

(4.52)

∫
Ω

∣∣∇2u
∣∣2 dx ≤ C

∫
Ω

f2 dx.

Proof. Fix an arbitrary f ∈ L2(Ω) along with some ψ ∈ C∞(Rn). The fact
that the solution u ∈ W 1,2

0 of the problem Δu = f in Ω belongs to W 2,2(Ω)
is contained in Theorem 4.8. Having established that, we next invoke (the last
part of) Theorem 4.9 for the vector field w := ψ∇u, canonically identified with
a 1-form. Note that w ∈ W 1,2(Ω,Λ1) and

(4.53) ν ∧ w = ψ
∑

1≤j<k≤n

(νj∂k − νk∂j)u dxj ∧ dxk = 0,

since u = 0 on ∂Ω and νj∂k − νk∂j is a tangential differential operator on ∂Ω for
each j, k. Given that we have |ψ∇2u| ≤ |∇ψ||∇u|+ |∇w|, this yields∫

Ω

ψ2
∣∣∇2u

∣∣2 dx ≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx+ C

∫
Ω

|∇w|2 dx(4.54)

≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx+ C

∫
Ω

|δw|2 dx+ C

∫
Ω

|dw|2 dx.

On the other hand, since d(∇u) = d2u = 0 and δ(∇u) = −Δu, we have

(4.55) |δw| ≤ |ψΔu|+ |∇ψ||∇u| and |dw| ≤ |∇ψ||∇u| in Ω.

When combined with (4.54) this readily yields (4.51), after recalling that Δu = f .
Finally, (4.52) follows from (4.51) by taking ψ ≡ 1. �

We are ready to prove Proposition 4.16.

Proof of Proposition 4.16. Fix a γ ∈ (0, 1/8) and y ∈ Ω. We apply Lemma 4.17
with

(4.56) u := pt,ΔD(·, y), f :=
d

dt
pt,ΔD(·, y), and ψ := eγ

|·−y|2
2t ,

to obtain (for some fixed γ′ ∈ (0, γ))∫
Ω

∣∣∇2
xpt,ΔD(x, y)

∣∣2eγ |x−y|2
t dx ≤ C

t

∫
Ω

∣∣∇xpt,ΔD(x, y)
∣∣2eγ′ |x−y|2

t dx

+ C

∫
Ω

∣∣∣ d
dt
pt,ΔD(x, y)

∣∣∣2eγ |x−y|2
t dx

=: J1
t (y) + J2

t (y).(4.57)

By Lemma 4.14, we have that J1
t (y) ≤ Ct−2

∣∣BΩ(y;
√
t)
∣∣−1

. For the term J2
t (y),

we use the estimate (4.49) in order to obtain, as in (4.42),

(4.58) J2
t (y) ≤ Ct−2

∣∣BΩ(y;
√
t)
∣∣−1

.

The desired estimate (4.50) now follows, proving Proposition 4.16. �
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At this stage, it is routine to complete the

Proof of Theorem 4.1. In concert, Propositions 4.16, 4.15 and 4.11 justify Theo-
rem 4.1. �

4.4.2. The inhomogeneous Neumann problem. The proof of Theorem 4.2
follows the lines of the proof of Theorem 4.1 so we will only indicate the main
changes. First, we have the following result (for convex domains, this appears as
Theorem 2.1 in [3]):

Lemma 4.18. Let Ω be a bounded, simply connected, semiconvex domain in Rn.
Fix f ∈ L2(Ω) with

∫
Ω f dx = 0 and let u be the unique function in W 1,2(Ω)

satisfying Δu = f in Ω, ∂νu = 0 on ∂Ω and
∫
Ω
u dx = 0. Then u ∈ W 2,2(Ω) and

for any ψ ∈ C∞(Rn) there holds

(4.59)

∫
Ω

ψ2
∣∣∇2u

∣∣2 ≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx+ C

∫
Ω

ψ2f2 dx,

for some finite constant C > 0 independent of f . In addition, we also have

(4.60)

∫
Ω

∣∣∇2u
∣∣2 ≤ C

∫
Ω

f2 dx.

Proof. The fact that, under the hypotheses stipulated in the statement of the
lemma, we have u ∈ W 2,2(Ω) follows from Theorem 4.8. Once this has been
established, given a function ψ ∈ C∞(Rn), we consider the (n − 1)-form w :=
ψδ(u dx1 ∧ · · · ∧ dxn) ∈ W 1,2(Ω,Λn−1) or, more explicitly,

(4.61) w = ψ
n∑

j=1

(−1)j∂ju dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn.

Note that this choice of w ensures that ν ∧w = ψ(∂νu) dx1 ∧ · · · ∧ dxn = 0 on ∂Ω.
Also, since dδ(u dx1 ∧ · · · ∧ dxn) = (Δu) dx1 ∧ · · · ∧ dxn = f dx1 ∧ · · · ∧ dxn and
δ2 = 0, we obtain

(4.62) |δw| ≤ |∇ψ||∇u| and |dw| ≤ |ψf |+ |∇ψ||∇u| in Ω.

On the other hand, |ψ∇2u| ≤ |∇ψ||∇u| + |∇w| which, in concert with (4.13)
and (4.62), allows us to estimate∫

Ω

ψ2
∣∣∇2u

∣∣2 dx ≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx + C

∫
Ω

|∇w|2 dx

≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx + C

∫
Ω

|δw|2 dx+ C

∫
Ω

|dw|2 dx

≤ C

∫
Ω

∣∣∇ψ∣∣2∣∣∇u∣∣2 dx + C

∫
Ω

ψ2f2 dx.(4.63)

This proves (4.59) and (4.60) follows by specializing this to the case when ψ ≡ 1.
�
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Let us now consider the task of estimating the second order spatial derivatives
of the heat kernel associated with the Neumann Laplacian. First, it follows from

the boundedness of the operators dk

dtk e
−tΔN = (−1)kΔk

Ne
−tΔN , k ∈ {0, 1}, on

L2(Ω) that the heat kernel pt,ΔN (·, y) and its time derivative d
dtpt,ΔN (·, y) belong

to the domain of the operator ΔN . In particular, pt,ΔN (·, y) ∈ W 1,2(Ω). When Ω
is a bounded, simply connected, semiconvex domain, it follows from Theorem 4.8
that for each fixed y ∈ Ω, the function u := pt,ΔN (·, y) ∈ W 2,2(Ω) is the unique
solution of the Neumann problem (4.3) with f := − d

dtpt,ΔN (·, y), i.e.,{
Δu = − d

dtpt,ΔN (·, y) in Ω,

∂νu = 0 on ∂Ω.
(4.64)

In particular, ∇2
xpt,ΔN (x, y) ∈ L2(Ω). Granted Proposition 4.11, the key step in

the proof of Theorem 4.2 is establishing the following result:

Proposition 4.19. Let Ω be a bounded, simply connected, semiconvex domain
in Rn. Then there exists γ > 0 and a positive constant Cγ such that for each y ∈ Ω

(4.65)

∫
Ω

∣∣∇2
xpt,ΔN (x, y)

∣∣2eγ |x−y|2
t dx ≤ Cγt

−2
∣∣BΩ(y;

√
t)
∣∣−1

, for every t > 0.

Proof. The proof is similar to that of Proposition 4.16, using this time Lemma 4.18
in place of Lemma 4.17. We omit the details. �

We finally present the endgame in the

Proof of Theorem 4.2. This is a consequence of Proposition 4.19, Proposition 4.15,
and Proposition 4.11. �

5. Regularity of the inhomogeneous Dirichlet and Neumann
problems in the context of the standard Hardy spaces

For 0 < p ≤ 1 we let hp(Rn) denote the classical (local) Hardy space in Rn. We
consider two versions of this space adapted to an arbitrary open subset Ω of Rn.
Let D(Ω) denote the space of C∞ functions with compact support in Ω, and let
D ′(Ω) denote its dual, the space of distributions on Ω. The first adaptation of the
local Hardy space to Ω, denoted by hpr(Ω), consists of elements of D ′(Ω) which are
the restrictions to Ω of elements of hp(Rn). That is, for 0 < p ≤ 1 we set

hpr(Ω) :=
{
f ∈ S ′(Rn) : there exists F ∈ hp(Rn) such that F |Ω = f

}
= hp(Rn)/

{
F ∈ hp(Rn) : F = 0 in Ω

}
,(5.1)

which is equipped with the quasi-norm

(5.2) ‖f‖hp
r(Ω) := inf

{‖F‖hp(Rn) : F ∈ hp(Rn) such that F |Ω = f
}
.

The second adaptation of the local Hardy space to Ω, denoted by hpz(Ω), consists
of distributions f in Ω with the property that (informally speaking) the extension
of f by zero to Rn belongs to hp(Rn).



224 X.T. Duong, S. Hofmann, D. Mitrea, M. Mitrea and L.X. Yan

More specifically, for 0 < p ≤ 1 we define

(5.3) hpz(Ω) := hp(Rn) ∩ {
f ∈hp(Rn) : f=0 on (Ω̄)c

}
/
{
f ∈hp(Rn) : f=0 on Ω

}
.

We can identify hpz(Ω) with a set of distributions in D ′(Ω) which, when equipped
with the natural quotient norm, becomes a subspace of hpr(Ω) (see [15], [13] and [56]
for more details).

Definition 5.1. Let Ω be an open subset of Rn and assume that 0 < p ≤ 1. A
bounded, measurable function a : Ω → R is called a type (a) local p-atom if it is
supported on a cube Q ⊂ Ω with side-length Q ≤ 1 and such that 4Q ∩ ∂Ω = ∅,
and which has the property that ‖a‖L2 ≤ |Q|1/2−1/p and

∫
Q
a(x)xαdx = 0 for all

multi-indices α with |α| ≤ [n(1/p− 1)].

We call a measurable function a : Ω → R a type (b) local p-atom provided there
exists a cube Q ⊆ Rn with the property that a ≡ 0 on Ω \Q and for which either
Q > 1, or 2Q∩∂Ω = ∅ and 4Q∩∂Ω �= ∅ and the size condition ‖a‖L2 ≤ |Q|1/2−1/p

(but not necessarily the moment condition) is satisfied.

Various atomic decomposition of Hardy spaces in domains in Rn have been
established in the literature; see [15], [13] and [56]. For example, in the case of
hpr(Ω), the following result holds.

Proposition 5.2. Let Ω ⊂ Rn be a bounded Lipschitz domain and assume that
n/(n+ 1) < p ≤ 1. Then the following are equivalent:

(i) f ∈ hpr(Ω);

(ii) f has an atomic decomposition

f =
∑

type (a) atoms

λQaQ +
∑

type (b) atoms

λQbQ

with ∑
type (a) atoms

|λQ|p +
∑

type (b) atoms

|λQ|p <∞.

5.1. Relations between the Hardy spaces

Suppose that Ω is a bounded semiconvex domain in Rn and assume that n
n+1 < p

≤ 1. In this subsection we explore the interplay between the spaces hpr(Ω), h
p
ΔD

(Ω),
hpz(Ω) and h

p
ΔN

(Ω). It is known that the operator ΔN conserves probability, that

is e−tΔN1 = 1 (see Chapter 4 of [57]). From Lemma 9.1 in [39], we have that for
every (p, 2,M)-atom a associated with ΔN , we have

(5.4)

∫
Ω

a(x) dx = 0.

As a consequence,

(5.5) hpΔN
(Ω) ⊆ hpz(Ω) ⊆ hpr(Ω) whenever

n

n+ 1
< p ≤ 1.

We wish to augment this with the following result.
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Proposition 5.3. (i) Let Ω be a bounded convex domain in Rn. Then hpz(Ω) =
hpΔN

(Ω) for n/(n+ 1) < p ≤ 1.

(ii) Let Ω be a bounded semiconvex domain in Rn. Then hpr(Ω) = hpΔD
(Ω) for

n/(n+ 1) < p ≤ 1.

Proof. First, based on the regularity of pt,ΔN (x, y) discussed in Lemma 2.8 and
a standard argument (as in, e.g., [60]), whenever n/(n + 1) < p ≤ 1 we have
the inclusion hpz(Ω) ⊆ hpΔN

(Ω) on a bounded convex domain Ω in Rn. In concert
with (5.5) this shows that hpz(Ω) = hpΔN

(Ω) if n/(n+ 1) < p ≤ 1.
Let us now prove the inclusion hpr(Ω) ⊆ hpΔD

(Ω) for n/(n+ 1) < p ≤ 1. From
the atomic decomposition in Proposition 5.2 it suffices to prove that if a : Ω → R is
either a type (a) local p-atom or a type (b) local p-atom in hpr(Ω) with n/(n+ 1) <
p ≤ 1 (cf. Definition 5.1) then

(5.6) Nloc,ha(x) := sup
y∈Ω, |y−x|<t≤1

|e−tΔDa(y)| ∈ Lp(Ω) and ‖Nloc,ha‖Lp(Ω) ≤ C,

for some finite constant C > 0 independent of the atom in question. We shall do
so by considering two separate cases.

Case 1. Assume that a : Ω → R is a type (a) local p-atom. In particular, this
function is supported in a cube Q ⊂ Ω, of center xQ and side-length Q ≤ 1, such
that 4Q∩∂Ω = ∅, and which satisfies ‖a‖L2 ≤ |Q|1/2−1/p and

∫
Q a(x) dx = 0. The

latter condition allows us to write for each fixed x �∈ 4Q

sup
y∈Ω, |y−x|<t≤1

|e−tΔDa(y)|(5.7)

= sup
y∈Ω, |y−x|<t≤1

∣∣∣∣ ∫
Ω

(
pt,ΔD(y, z)− pt,ΔD(y, xQ)

)
a(z) dz

∣∣∣∣.
Given that n/(n+ 1) < p ≤ 1, we may choose the parameter α from Lemma 2.7 so
that α ∈ (n( 1p −1), 1). Using the regularity of pt,ΔD(x, y) established in Lemma 2.7

we obtain from (5.7) that for each x �∈ 4Q,

(5.8) sup
y∈Ω, |y−x|<t≤1

|e−tΔDa(y)| ≤ C
αQ

|x− xQ|n+α
.

In turn, this decay estimate gives that ‖Nloc,ha‖Lp(Ω\4Q) ≤ C, so this piece is of
the right order. As far as the contribution from 4Q is concerned, we use Hölder’s
inequality and the L2 theory to estimate it to the same effect. See for example,
Chapter 3 in [60]. This completes the treatment in Case 1.

Case 2. Suppose a : Ω → R is a type (b) local p-atom. Hence, there exists a
cube Q ⊆ Rn, with center xQ and side-length Q, having the property that the
atom in question is supported in Q∩Ω and for which either Q > 1 or 2Q∩∂Ω = ∅
and 4Q ∩ ∂Ω �= ∅. In the latter scenario, pick zQ ∈ 4Q ∩ ∂Ω. Instead of using the
moment condition of the atom (as we did before) we now make use of the Dirichlet
boundary condition in the form of pt,ΔD(y, zQ) = 0, since zQ ∈ ∂Ω. Hence,

(5.9) e−tΔDa(y) =

∫
Ω

(
pt,ΔD(y, z)− pt,ΔD(y, zQ)

)
a(z) dz.
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It follows from the regularity of pt,ΔD(x, y) proved in Lemma 2.7 that (5.8) holds.
Then, once again, (5.6) follows. Finally, in the case when Q > 1, a direct,
crude estimate shows that (5.8) is valid. This completes the proof of the inclusion
hpr(Ω) ⊆ hpΔD

(Ω) when n/(n+ 1) < p ≤ 1.

The identification between the spaces h1r(Ω) and h1ΔD
(Ω) was proved in The-

orem 1 of [9]. Following a suggestion of the referee, we now prove the inclusion
hpΔD

(Ω) ⊆ hpr(Ω) for n/(n+ 1) < p < 1. Let us take an atom a as in Definition 3.1

with support in Q ∩Ω with a cube Q centered in Ω.

Case 1. In case (i), a is immediately a type (b) local p-atom.

Case 2. In case (ii), one can take M = 1 and write a = ΔDb for some function
b ∈ D(L). If 4Q ⊂ Ω, then it is a type (a) local p-atom. Indeed, pick ϕ ∈ C∞

0 (Ω)
such that ϕ = 1 on 2Q with support in Ω. From the condition b ∈ D(ΔD), we
have ∫

Q

a(y)dy =

∫
Ω

a(y)ϕ(y)dy = −
∫
Ω

∇b(y)∇ϕ(y)dy = 0.

If 4Q ∩ ∂Ω �= ∅, then we may decompose a into a series of type (b) local p-atoms
via a Whitney decomposition as in the proof of Proposition 1.5 in [15]; we omit
the details here. Hence, Theorem 3.11 and Proposition 5.2 may be used in order
to complete the proof of the inclusion hpΔD

(Ω) ⊆ hpr(Ω) for n/(n+ 1) < p < 1.
The proof of Proposition 5.3 is therefore finished. �

Remark 5.4. It should be noted that the proof of the case p ∈ (
n

n+1 , 1) in part (ii)
of Proposition 5.3 is also valid for p = 1 and, as such, it simplifies the corresponding
argument in [9]. (We owe this observation to the referee.)

5.2. Main results

The main goal of this section is to establish regularity results for the Green oper-
ators associated with the inhomogeneous Dirichlet and Neumann problems in the
context of the standard Hardy spaces hpr(Ω) and h

p
z(Ω) when n/(n+ 1) < p ≤ 1.

Theorem 5.5. Let Ω be a bounded, simply connected, semiconvex domain in Rn

and recall that GD stands for the Green operator associated with the inhomogeneous
Dirichlet problem (4.1). Then the operators

(5.10)
∂2GD

∂xi∂xj
, i, j = 1, . . . , n,

originally defined on L2(Ω) ∩ hpΔD
(Ω), extend as bounded linear mappings from

hpr(Ω) to hpr(Ω) whenever n/(n+ 1) < p ≤ 1.

Now we state the corresponding result for the Neumann problem.

Theorem 5.6. Let Ω be a bounded, simply connected, convex domain in Rn and
recall that GN stands for the Green operator associated with the inhomogeneous
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Neumann problem (4.3). Then the operators

(5.11)
∂2GN

∂xi∂xj
, i, j = 1, . . . , n,

originally defined on {f ∈ L2(Ω)∩hpΔN
(Ω):

∫
Ω
f dx = 0}, extend as bounded linear

mappings from hpz(Ω) to h
p
r(Ω) whenever n/(n+ 1) < p ≤ 1.

5.2.1. The regularity of the inhomogeneous Dirichlet problem in hp
r(Ω)

on a bounded semiconvex domain. Let φ ∈ C∞
0 (B(0, 1)) be a nonnegative

radial function with the property that
∫
Rn φdx = 1. Given an open set Ω ⊆ Rn, for

every point x ∈ Ω we denote d(x) := dist(x,Ωc), where Ωc := Rn\Ω. As a preamble
to the proof of Theorem 5.5, we first record the following characterization of the
membership to the space hpr(Ω) from [56].

Proposition 5.7. Assume that Ω ⊆ Rn is open. A distribution f is in the Hardy
space hpr(Ω), 0 < p ≤ 1, if and only if the radial maximal function

(5.12) f+(x) := sup
0<t<d(x)/2

∣∣f ∗ φt(x)
∣∣ ∈ Lp(Ω)

belongs to Lp(Ω).

Proof of Theorem 5.5. The first part of the proof largely follows [62] and we include
it here primarily for the reader’s convenience. Recall that the standard (radial)
fundamental solution the Laplace operator Δ =

∑n
j=1 ∂

2
j in Rn is given by

(5.13) Γ(x) :=

{
1
2π ln |x| if n = 2,

cn
|x|n−2 if n ≥ 3,

where cn :=
[
(2−n)ωn

]−1
, and ωn denotes the area of the unit sphere in Rn. This

allows us to solve the Poisson problem for the Laplacian in the whole space via
integral operators. Indeed, as is well-known, the Newtonian potential

(5.14) E(f)(x) :=

∫
Ω

Γ(x− y)f(y) dy, x ∈ Ω,

satisfies Δ
(
E(f)

)
= f in Ω, at least if f is reasonably well-behaved.

Next, let Ω be a bounded semiconvex domain in Rn. For each y ∈ Ω, we let
U(·, y) be the solution of the Dirichlet problem

(5.15)

{
ΔU(·, y) = 0 in Ω,

U(x, y) = Γ(y − x) for x ∈ ∂Ω.

Then the Green function for ΔD on Ω (which is the integral kernel of the Dirichlet
Green potential GD) can be expressed as

(5.16) GD(x, y) = Γ(x− y)− U(x, y), x, y ∈ Ω, x �= y.
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As a consequence, the solution of the inhomogeneous Dirichlet problem (4.1) is
given by the formula

GD(f)(x) =

∫
Ω

GD(x, y)f(y) dy =

∫
Ω

Γ(x− y)f(y) dy −
∫
Ω

U(x, y)f(y) dy

= E(f)(x) − U(f)(x),(5.17)

where we have set

(5.18) U(f)(x) :=

∫
Ω

U(x, y)f(y) dy, x ∈ Ω.

To prove Theorem 5.5, by Proposition 5.2 it therefore suffices to show that each
atom a ∈ hpr(Ω) (cf. Definition 5.1) satisfies the estimate

(5.19)
∥∥∥∂2GD(a)

∂xi∂xj

∥∥∥
hp
r(Ω)

≤ C(p, n), i, j = 1, . . . , n,

with a constant independent of the actual atom. Hence, the discussion naturally
branches out into two separate cases.

Case 1. Assume that a : Ω → R is a type (b) atom supported in a cube Q ⊂ Rn.
On the one hand, when Q ≥ 1, it follows from the L2 theory that (5.19) holds.
On the other hand, if 2Q ∩ ∂Ω = ∅ and 4Q ∩ ∂Ω �= ∅, let xQ be the center of
Q and let Q be the side-length of the cube Q. In particular, 3Q/2 ≤ d(xQ) ≤√
nQ/2. Consider a family of the dyadic cubes {Qk}k which make up a Whitney

decomposition of Ω (cf., e.g., [60]). It follows that for any x ∈ Qk, we have

(5.20) 1 +
|x− xQ|
Q

≈ 1 +
|xQk

− xQ|
Q

.

We claim that if n( 1p − 1
2 ) < s < n+2

2 , then

(5.21)

∫
Ω

∣∣∇2
xGD(a)(x)

∣∣2(1 + |x− xQ|
Q

)2s

dx ≤ C|Q|1− 2
p .

Let us temporarily assume this claim and show how this is used to obtain (5.19).
The details are as follows. Denoting by 1k be the characteristic function of Qk, we
have

(5.22) ∇2
xGD(a) =

∑
k

∇2
xGD(a)1k =

∑
k

λkak,

where, for each k, we have set

(5.23) λk := |Qk| 1p− 1
2

∥∥∇2
xGD(a)1k

∥∥
L2(Ω)

, ak := λ−1
k · ∇2

xGD(a)1k

‖∇2
xGD(a)1k‖L2(Ω)

.

Obviously, ak is a type (b) atom. Note that s ∈ (
n( 1p − 1

2 ),
n+2
2

)
and thus 2sp

2−p > n.
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Based on this, (5.22) and Hölder’s inequality, we then obtain∑
k

|λk|p =
∑
k

(∫
Ω

∣∣∇2
xGD(a)(x)1k(x)

∣∣∣2 dx)p/2

|Qk|1−
p
2

≤ C
∑
k

{∫
Qk

∣∣∇2
xGD(a)(x)

∣∣2(1 + |x− xQ|
Q

)2s

dx
}p/2

×

×
(
1 +

|xQk
− xQ|
Q

)−ps

|Qk|1−
p
2

≤ C
{∫

Ω

∣∣∇2
xGD(a)(x)

∣∣2(1 + |x− xQ|
Q

)2s

dx
}p/2

×
{∫

Ω

(
1 +

|x− xQ|
Q

)− 2sp
2−p

dx
}1− p

2

≤ C|Q| p2−1|Q|1− p
2 < +∞,(5.24)

as desired.
There remains to prove our claim in (5.21). Set E0 := 2Q ∩ Ω and, for every

j ≥ 1, introduce

(5.25) Ej :=
{
x ∈ Ω : 2j−1d(xQ) ≤ |x− xQ| ≤ 2jd(xQ)

}
.

Next, pick ϕ ∈ C∞
0 (R+) satisfying ϕ(t) = 0 if t ≤ 1/2 or t ≥ 4, and ϕ ≡ 1 if

1 ≤ t ≤ 2. Going further, for j ≥ 1, set ϕj(x) := ϕ
( |x−xQ|

2j�Q

)
for each x ∈ Rn.

Hence, based on support considerations,

(5.26) ϕja = 0 for each j ≥ 3.

Also, a calculation gives that for each j ≥ 1 we have

Δ
(
ϕjGD(a)

)
= (Δϕj)GD(a) + 2∇ϕj∇(GD(a)) + ϕjΔ(GD(a))

= (Δϕj)GD(a) + 2∇ϕj∇(GD(a)) + ϕja.(5.27)

Recall from Theorem 4.7 that our domain Ω satisfies a UEBC. Granted this condi-
tion, Grüter and Widman have proved (see [38]) that the Green function GD(x, y)
associated with the operator ΔD obeys the following estimate

(5.28)
∣∣GD(x, y)

∣∣+ ∣∣∇xGD(x, y)
∣∣|x− y| ≤ C

d(y)

|x− y|n−1
, ∀x, y ∈ Ω.

For each j ≥ 3 we may then estimate∫
Ej

∣∣∇2
xGD(a)(x)

∣∣2 dx ≤
∫
Ω

∣∣∇2
xGD

(
Δ
(
ϕjGD(a)

))
(x)

∣∣2 dx(5.29)

≤ C

∫
Ω

∣∣Δ(
ϕjGD(a)

)
(x)

∣∣2dx ≤ C

∫
Ω

(∣∣GD(a)(Δϕj)
∣∣2+∣∣∇ϕj∇GD(a)

∣∣2)dx.
The first inequality uses the fact that ϕjGD(a) = GD

(
Δ
(
ϕjGD(a)

))
and ϕj ≡ 1

on Ej . The second inequality is a consequence of (4.11), while the third inequality
relies on (5.27) and (5.26).
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Next, consider

(5.30) GD(a)(x) =

∫
Q

GD(x, y)a(y) dy for x ∈ suppϕj .

For each x ∈ suppϕj and y ∈ Q we have |x − y| ≈ 2jq and d(y) ≤ CQ, which
when used in combination with (5.28) and the normalization of the atom yields

(5.31) |GD(a)(x)| ≤ C(2jQ)
1−n

n+1−n
p

Q , for x ∈ suppϕj .

Similarly,

(5.32) |∇GD(a)(x)| ≤ (2jQ)
−n

n+1−n
p

Q , for x ∈ suppϕj .

Given that

(5.33) |∇ϕj | ≤ C(2jQ)
−1 and |Δϕj | ≤ C(2jQ)

−2,

we may further combine (5.31), (5.32) and (5.33) in order to further estimate the
last term in (5.29) to obtain∫

Ej

∣∣∇2
xGD(a)(x)

∣∣2 dx ≤ C
(
2jQ

)n|Q|2(1− 1
p )

{
2Q(2

jQ)
2(1−n)(

2jQ
)4 +

2Q(2
jQ)

−2n(
2jQ

)2 }
= C2−j(2+n)|Q|1− 2

p .(5.34)

It can be verified relying on (4.11) and the normalization of the atom that the
above estimate also holds for j = 0, 1, 2. Ultimately, this permits us to compute∫
Ω

∣∣∇2
xGD(a)(x)

∣∣2(1 + |x−xQ|
Q

)2s

dx =
∞∑
j=0

∫
Ej

∣∣∇2
xGD(a)(x)

∣∣2(1 + |x−xQ|
Q

)2s

dx

≤
∞∑
j=0

2j(2s−2−n)|Q|1− 2
p = C|Q|1− 2

p ,(5.35)

which gives estimate (5.21). This completes the proof of (5.19) in Case 1.

Case 2. Assume that a : Ω → Rn is a type (a) atom. It is then clear
from (5.5) that, when extended by zero outside of its support, this function satisfies∥∥a∥∥

hp(Rn)
≤ C. Given that n/(n+ 1) < p ≤ 1, we therefore obtain

(5.36)
∥∥∥(∂2E(a)

∂xi∂xj

)∣∣∣
Ω

∥∥∥
hp
r(Ω)

≤ ∥∥∂2E(a)

∂xi∂xj

∥∥∥
hp(Rn)

≤ Cp,n

∥∥a∥∥
hp(Rn)

≤ C′
p,n

by classical results in [32] (cf. also [35]). Hence, the proof of (5.19) has been reduced
to showing that for i, j = 1, . . . , n,

(5.37)
∥∥Hij(a)

∥∥
hp
r(Ω)

≤ Cp,n, where Hij(f) :=
∂2U(f)

∂xi∂xj
.
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From (5.15) and (5.18) we know that Hij(a) is a harmonic function in Ω. Conse-
quently, if we now employ Proposition 5.7 in which we take the function φ to be
radial, the Mean Value Theorem for harmonic functions gives that

(5.38)
(
Hij(a)

)+
(x) = sup

0<t<d(x)/2

∣∣∣ ∫
Ω

Hij(a)(y)φt(x− y) dy
∣∣∣ = ∣∣Hij(a)(x)

∣∣.
This, in combination with Proposition 5.7, shows that∥∥Hij(a)

∥∥
hp
r(Ω)

=
∥∥∥(Hij(a)

)+∥∥∥
Lp(Ω)

= ‖Hij(a)‖Lp(Ω) =
∥∥∥∂2U(a)

∂xi∂xj

∥∥∥
Lp(Ω)

≤
∥∥∥∂2E(a)

∂xi∂xj

∥∥∥
Lp(Ω)

+
∥∥∥∂2GD(a)

∂xi∂xj

∥∥∥
Lp(Ω)

.(5.39)

For the first term in the last line of (5.39), we once again make use of the results
of [32] in order obtain (recall that n

n+1 < p ≤ 1)

(5.40)
∥∥∥∂2E(a)

∂xi∂xj

∥∥∥
Lp(Ω)

≤
∥∥∥∂2E(a)

∂xi∂xj

∥∥∥
Lp(Rn)

≤ Cp,n.

Consider the second term in the last line of (5.39). Since n
n+1 < p ≤ 1, Propo-

sition 5.3 applies and gives that a ∈ hpr(Ω) ⊆ hpΔD
(Ω) as well as the estimate

‖a‖hp
ΔD

(Ω) ≤ ‖a‖hp
r(Ω) ≤ c, for some c = c(Ω, n, p) > 0, finite constant. By Theo-

rem 4.1, we therefore see that for all i, j = 1, 2, . . . , n, and n
n+1 < p ≤ 1,

(5.41)
∥∥∥∂2GD(a)

∂xi∂xj

∥∥∥
Lp(Ω)

≤ Cp,n‖a‖hp
ΔD

(Ω) ≤ C′
p,n,

which suits our purpose. The desired estimate (5.19) now readily follows. Hence,
the proof of Theorem 5.5 is complete. �

5.2.2. The regularity of the inhomogeneous Neumann problem in hp
z(Ω)

on a bounded convex domain. We first prove the following result:

Theorem 5.8. Assume that Ω is a bounded, simply connected, semiconvex domain
in Rn. Then the operators (5.11), originally defined on the space {f ∈ L2(Ω) ∩
hpΔN

(Ω) :
∫
Ω
f dx = 0}, extend as bounded linear mappings from hpΔN

(Ω) into
hpr(Ω) whenever n/(n+ 1) < p ≤ 1.

Proof. For each y ∈ Ω, we let V (·, y) be the solution of the Neumann problem

(5.42)

{
ΔV (·, y) = |Ω|−1 in Ω,

∂ν(x)[V (x, y)] = ∂ν(x)[Γ(x− y)] for x ∈ ∂Ω.

Then a convenient way of expressing the Green function for ΔN in Ω (i.e., the
integral kernel of the Neumann Green potential GN ) is

GN (x, y) = Γ(x − y)− V (x, y), x, y ∈ Ω, x �= y.(5.43)



232 X.T. Duong, S. Hofmann, D. Mitrea, M. Mitrea and L.X. Yan

The Neumann problem (4.3) has a unique solution, up to an additive constant,
given by the formula

GN(f)(x) =

∫
Ω

GN (x, y)f(y) dy =

∫
Ω

Γ(x − y)f(y) dy −
∫
Ω

V (x, y)f(y) dy

= E(f)(x) − V (f)(x),(5.44)

where E(f) is the Newtonian potential introduced in (5.14) and we have set

V (f)(x) :=

∫
Ω

V (x, y)f(y) dy, x ∈ Ω.(5.45)

To prove Theorem 5.8, by Lemma 3.6 it suffices to show that for every (p, 2,M)-
atom a associated with ΔN (cf. Definition 3.1) satisfies∥∥∥∂2GN(a)

∂xi∂xj

∥∥∥
hp
r(Ω)

≤ C(p, n), i, j = 1, . . . , n,(5.46)

with a constant independent of the actual atom. With this in mind, we proceed
as in Case 2 of the proof of Theorem 5.5 and obtain

(5.47)
∥∥∥∂2GN (a)

∂xi∂xj

∥∥∥
hp
r(Ω)

≤
∥∥∥∂2E(a)

∂xi∂xj

∥∥∥
hp
r(Ω)

+
∥∥∥∂2V (a)

∂xi∂xj

∥∥∥
hp
r(Ω)

≤C′
p,n+

∥∥∥∂2V (a)

∂xi∂xj

∥∥∥
hp
r(Ω)

.

Recall from (5.42) that ∂2V (a)
∂xi∂xj

is harmonic in Ω. Hence, an application of Propo-

sition 5.7 in which we take the function φ to be radial yields, on account of the
Mean Value Property for harmonic functions, that

(5.48)
(∂2V (a)

∂xi∂xj

)+

(x) = sup
0<t<d(x)/2

∣∣∣ ∫
Ω

∂2V (a)

∂yi∂yj
(y)φt(x− y)dy

∣∣∣ = ∣∣∣∂2V (a)

∂xi∂xj
(x)

∣∣∣.
This, in combination with Proposition 5.7, shows that∥∥∥∂2V (a)

∂xi∂xj

∥∥∥
hp
r(Ω)

=
∥∥∥(∂2V (a)

∂xi∂xj

)+∥∥∥
Lp(Ω)

=
∥∥∥∂2V (a)

∂xi∂xj

∥∥∥
Lp(Ω)

≤
∥∥∥∂2E(a)

∂xi∂xj

∥∥∥
Lp(Ω)

+
∥∥∥∂2GN(a)

∂xi∂xj

∥∥∥
Lp(Ω)

.(5.49)

Given that n
n+1 < p ≤ 1, (5.40) holds and this takes care of the first term. Consider

the second term. It follows from Theorem 4.2 that∥∥∥∂2GN(a)

∂xi∂xj

∥∥∥
Lp(Ω)

≤ Cp,n, 0 < p ≤ 1,(5.50)

which is of the right order. The desired estimate, (5.46), therefore follows and,
hence, the proof of Theorem 5.8 is finished. �

Finally, it is now easy to complete the

Proof of Theorem 5.6. From (i) of Proposition 5.3 and Theorem 5.8, Theorem 5.6
readily follows. �
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