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Revisiting the multifractal analysis of measures

Fathi Ben Nasr and Jacques Peyrière

Abstract. New proofs of theorems on the multifractal formalism are
given. They yield results even at points q for which Olsen’s functions b(q)
and B(q) differ. Indeed, we provide an example of a measure for which
the functions b and B differ and for which the Hausdorff dimensions of
the sets Xα (the level sets of the local Hölder exponent) are given by the
Legendre transform of b and their packing dimensions by the Legendre
transform of B.

1. Introduction

The multifractal formalism aims at expressing the dimension of the level sets of the
local Hölder exponent of some set function μ in terms of the Legendre transform
of some “free energy” function (see [7], [5], and [6] for early works). If such a
formula holds, one says that μ satisfies the multifractal formalism. At first, the
formalism used “boxes”, or in other terms took place in a totally disconnected
metric space. In this context, the closeness to large deviation theory is patent.
To get rid of these boxes and have a formalism meaningful in geometric measure
theory, Olsen [8] introduced a formalism which is now commonly used. See also
Pesin’s monograph [9] on multifractality and dynamical systems. At this stage of
the theory, whether it dealt with boxes or not, the formalism was proven to hold
when there exists an auxiliary measure, a so-called Gibbs measure. Later, it was
shown that this formalism holds under the condition that Olsen’s Hausdorff-like
multifractal measure be positive (see [2] in the totally disconnected case, [3] in
general). So, the situation when b(q) = B(q) (in Olsen’s notation) is fairly well
understood.

Here, we elaborate on the previous proofs. There is a vector version of Olsen’s
constructions [10], and, in particular, of the functions b and B. However, in this
setting b and B are functions of several variables. In this work, we show that the
restriction of these functions to a suitable affine subspace can be used to estimate
the Hausdorff and Tricot dimensions of some level sets. In particular, this gives
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some results even in the case when b �= B. Although notation is inherently compli-
cated, we provide a simple proof of already known results, and we obtain some new
estimates. In particular, we provide an example of a measure on the interval [0, 1]
for which the functions b and B differ and for which the Hausdorff dimensions of
the sets Xα (the level sets of the local Hölder exponent) are given by the Legendre
transform of b, and their packing dimensions by the Legendre transform of B.

2. Notations and definitions

We deal with a metric space (X, d) having the Besicovitch property:

There exists an integer constant CB such that one can extract CB countable fam-
ilies

{{Bj,k}k
}
1≤j≤CB

from any collection B of balls so that

1.
⋃

j,k Bj,k contains the centers of the elements of B,
2. for any j and k �= k′, Bj,k ∩ Bj,k′ = ∅.

Notations

B(x, r) stands for the open ball B(x, r) = {y ∈ X ; d(x, y) < r}. The letter B
with or without a subscript will implicitly stand for such a ball. When dealing
with a collection of balls {Bi}i∈I , the notation Bi = B(xi, ri) will implicitly be
assumed.

By a δ-cover of E ⊂ X, we mean a collection of balls of radii not exceeding δ
whose union contains E. A centered cover of E is a cover of E consisting of balls
whose centers belong to E.

By a δ-packing of E ⊂ X, we mean a collection of disjoint balls of radii not
exceeding δ centered in E.

By a Besicovitch δ-cover of E ⊂ X, we mean a centered δ-cover of E which can
be decomposed into CB packings.

If E is a subset of X, dimH E stands for its Hausdorff dimension and dimP E
for its packing dimension (introduced by Tricot [12]).

Let B stand for the set of balls of X and F for the set of maps from B
to [0,+∞).

The set of μ ∈ F such that μ(B) = 0 implies μ(B′) = 0 for all B′ ⊂ B will be
denoted by F ∗. For such a μ, one defines its support Sμ to be the complement of
the set ⋃

{B ∈ B ; μ(B) = 0} .
Multifractal measures and separator functions

For μ = (μ1, . . . , μm) ∈ Fm, E ⊂ X, q = (q1, . . . , qm) ∈ R
m, t ∈ R, and δ > 0,

one sets

P
q,t

μ,δ(E) = sup
{ ∗∑

rtj

m∏
k=1

μk(Bj)
qk ; {Bj} a δ-packing of E

}
,
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where ∗ means that one only sums the terms for which
∏

k μk(Bj) �= 0,

P
q,t

μ (E) = lim
δ↘0

P
q,t

μ,δ(E),

Pq,t
μ (E) = inf

{∑
P

q,t

μ (Ej) ; E ⊂
⋃
Ej

}
,

and

H
q,t

μ,δ(E) = inf
{ ∗∑

rtj

m∏
k=1

μk(Bj)
qk ; {Bj} a centered δ-cover of E

}
,

H
q,t

μ (E) = lim
δ↘0

H
q,t

μ,δ(E),

H q,t
μ (E) = sup

{
H

q,t

μ (F ) ; F ⊂ E
}
,

It is known that H
q,t

μ is σ-subadditive, and that Pq,t
μ and H q,t

μ are outer

measures. When d is an ultrametric, then H q,t
μ = H

q,t

μ .
When m = 1, these measures have been defined by Olsen [8]. When μ is

identically 1 these quantities do not depend on q. They will be simply denoted

by P
t

δ(E), P
t
(E), Pt(E), H

t

δ(E), H
t
(E), and H t(E), respectively. They are

the classical packing pre-measures and measures introduced by Tricot [12], and
the Hausdorff centered pre-measures and measures [11]. The centered Hausdorff
measures also define the Hausdorff dimension.

It will prove convenient to use the following notations, when m = 1:

μδ = H
1,0

μ,δ, μ = H
1,0

μ , and μ� = H 1,0
μ .

Also, as usual, one considers the following functions:

τμ,E(q) = inf{t ∈ R ; P
q,t

μ (E) = 0} = sup{t ∈ R ; P
q,t

μ (E) = ∞}
Bμ,E(q) = inf{t ∈ R ; Pq,t

μ (E) = 0} = sup{t ∈ R ; Pq,t
μ (E) = ∞},

bμ,E(q) = inf{t ∈ R ; H q,t
μ (E) = 0} = sup{t ∈ R ; H q,t

μ (E) = ∞}.
It is well known [8], [10] that τ and B are convex and that b ≤ B ≤ τ . Let Jτ , JB,
and Jb stand for the interiors of the sets where respectively τ , B, and b are finite.

When μ is identically 1 we will denote these quantities by dimBE, dimP E,
and dimH E. The first one is the Minkowski–Bouligand dimension (or upper box-
dimension), the second is the Tricot (packing) dimension [12], and the last the
Hausdorff dimension.

Here is an alternate definition of τμ,E . Fix λ < 1 and define

P̃q,t
μ,δ(E) = sup

{ ∗∑
rtj

m∏
k=1

μk(Bj)
qk ; {Bj} a packing of E with λδ < rj ≤ δ

}
,

P̃q,t
μ (E) = lim

δ↘0
P̃q,t

μ,δ(E),

τ̃μ,E(q) = sup
{
t ∈ R ; P̃q,t

μ (E) = +∞
}
.
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Lemma 2.1. One has τ̃μ,E = τμ,E.

Proof. Obviously P̃q,t
μ (E) ≤ P

q,t

μ (E), so τ̃μ,E ≤ τμ,E . To prove the converse
inequality, one only has to consider the case τμ,E(q) > −∞.

Choose γ < τμ,E(q) and ε > 0 such that γ + ε < τμ,E(q). There exists n0 such
that, for all n > n0, there exists a λn-packing {Bj} of E such that

∑
rγ+ε
j

m∏
k=1

μk(Bj)
qk > 1.

As ∑
rγ+ε
j

m∏
k=1

μk(Bj)
qk =

∑
i≥0

∑
λ<rjλ−(n+i)≤1

rγ+ε
j

m∏
k=1

μk(Bj)
qk ,

there exists i ≥ 0 such that

∑
λ<rjλ−(n+i)≤1

rγ+ε
j

m∏
k=1

μk(Bj)
qk > λiε(1− λε),

from which it follows∑
λ<rjλ−(n+i)≤1

rγj

m∏
k=1

μk(Bj)
qk > λ−(n+i)ελiε(1− λε) = λ−n(1 − λε),

and P̃q,γ
μ (E) = +∞. �

Corollary 2.2. For any λ < 1, one has

τμ,E(q) = lim
δ↘0

−1

log δ
log sup

{ ∗∑ m∏
k=1

μk(Bj)
qk ;

{Bj} a packing of E with λδ < rj ≤ δ
}
.

Level sets of local Hölder exponents

Let μ be an element of F ∗. For α, β ∈ R, one sets

Xμ(α) =
{
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

≤ α
}
,

Xμ(α) =
{
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

≥ α
}
,

Xμ(α, β) = Xμ(α) ∩Xμ(β),

and

Xμ(α) = Xμ(α) ∩Xμ(α).
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3. Results

First, we revisit the Billingsley and Tricot lemmas [4], [12].

Lemma 3.1. Let E be a subset of X and ν an element of F .

a) If Bν,E(1) ≤ 0, then

dimH E ≤ sup
x∈E

lim
r↘0

log ν
(
B(x, r)

)
log r

,(3.1)

dimP E ≤ sup
x∈E

lim
r↘0

log ν
(
B(x, r)

)
log r

.(3.2)

b) If ν�(E) > 0, then

dimH E ≥ ess sup
x∈E, ν�

lim
r↘0

log ν
(
B(x, r)

)
log r

,(3.3)

dimP E ≥ ess sup
x∈E, ν�

lim
r↘0

log ν
(
B(x, r)

)
log r

,(3.4)

where
ess sup
x∈E, ν�

χ(x) = inf
{
t ∈ R; ν�

(
E ∩ {χ > t}) = 0

}
.

Proof. Take

γ > sup
x∈E

lim
r↘0

log ν
(
B(x, r)

)
log r

and η > 0. Since Bν,E(1) ≤ 0 there exists a partition E =
⋃
Ej such that∑

P
1,η/2

ν (Ej)<1. Therefore we have that
∑

P
1,η

ν (Ej)=0.

Let F be a subset of Ek and let δ be a positive number. For all x ∈ F , there
exists r ≤ δ such that ν

(
B(x, r)

) ≥ rγ . By the Besicovitch property, there exists a
centered δ-cover {Bj} of F , which can be decomposed into CB packings, such that
ν(Bj) ≥ rγj . We then have∑

rγ+η
j ≤

∑
rηj ν(Bj) ≤ CBP

1,η

ν,δ (Ek).

Therefore we have H
γ+η

(F ) = 0, H γ+η(Ek) = 0, and finally H γ+η(E) = 0.
Then (3.1) easily follows.

To prove (3.2), take

γ > sup
x∈E

lim
r↘0

log ν
(
B(x, r)

)
log r

and η>0. As previously, there exists a partition E=
⋃
Ej such that

∑
P

1,η

ν (Ej)=0.
For all x ∈ E, there exists δ > 0 such that, for all r ≤ δ, one has ν

(
B(x, r)

) ≥ rγ .
Consider the set

E(n) =
{
x ∈ E ; ∀r ≤ 1/n, ν

(
B(x, r)

) ≥ rγ
}
.
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Let {Bj} be a δ-packing of Ek ∩ E(n), with δ ≤ 1/n. One has∑
rγ+η
j ≤

∑
j

rηj ν(Bj) ≤ P
1,η

ν,δ (Ek),

from which P
γ+η(

Ek ∩ E(n)
)
= 0 follows.

So we have Pγ+η
(
E(n)

)
= 0. Since E =

⋃
n≥1E(n), one has dimP E ≤ γ + η,

and hence (3.2).

To prove (3.3), take

γ < ess sup
x∈E, ν�

lim
r↘0

log ν
(
B(x, r)

)
log r

and consider the set F =
{
x ∈ E ; limr↘0

log ν
(
B(x,r)

)
log r > γ

}
. We have ν�(F ) > 0.

For all x ∈ F , there exists δ > 0 such that, for all r ≤ δ, one has ν
(
B(x, r)

) ≤ rγ .
Consider the set

F (n) =
{
x ∈ F ; ∀r ≤ 1/n, ν

(
B(x, r)

) ≤ rγ
}
.

We have F =
⋃

n≥1 F (n). Since ν
�(F ) > 0, there exists n such that ν�

(
F (n)

)
> 0,

and therefore there is a subset G of F (n) such that ν(G) > 0. Then for any
centered δ-cover {Bj} of G, with δ ≤ 1/n, one has

νδ(G) ≤
∑

ν(Bj) ≤
∑

rγj .

Therefore,

νδ(G) ≤ H
γ

δ (G), and 0 < ν(G) ≤ H
γ
(G) ≤ H γ(G),

which implies dimH E ≥ dimH G ≥ γ.

To prove (3.4), take

γ < ess sup
x∈E, ν�

lim
r↘0

log ν
(
B(x, r)

)
log r

and consider the set F =
{
x ∈ E ; limr↘0

log ν
(
B(x,r)

)
log r > γ

}
. We have ν�(F ) > 0,

so there exists a subset F ′ of F such that ν(F ′) > 0. Let G be a subset of F ′. Then,
for all x ∈ G, for all δ > 0, there exists r ≤ δ such that ν

(
B(x, r)

) ≤ rγ . Then for
all δ, by using the Besicovitch property, there exists a collection {{Bj,k}j}1≤k≤CB

of δ-packings of G which together cover G and such that ν(Bj,k) ≤ rγj,k. Then one
has

νδ(G) ≤
∑
j,k

ν(Bj,k) ≤
∑

rγj,k.
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This implies that there exists k such that
∑

j r
γ
j,k ≥ 1

CB
νδ(G). So we have

P
γ

δ (G) ≥ 1
CB

νδ(G). This implies P
γ
(G) ≥ 1

CB
ν(G). Hence, if F ′ =

⋃
Gj ,

one has ∑
P

γ
(Gj) ≥ 1

CB

∑
ν(Gj) ≥ 1

CB
ν(F ′) > 0,

so Pγ(F ′) > 0. Therefore, dimP F ≥ γ. Then (3.4) easily follows. �

Lemma 3.2. Let μ and ν be elements of F ∗ and F respectively. Set ϕ(t) =
B(μ,ν),Sμ

(t, 1) and assume that ϕ(0) = 0 and ν�(Sμ) > 0. Then one has

ν�
(
CXμ

(−ϕ′
r(0),−ϕ′

l(0)
))

= 0,

where ϕ′
l and ϕ

′
r are the left-hand and right-hand derivatives of ϕ.

The same result holds with ϕ(t) = τ(μ,ν),Sμ
(t, 1).

Proof. Take γ > −ϕ′
l(0), and choose γ′ and t > 0 such that γ > γ′ > −ϕ′

l(0)

and ϕ(−t) < γ′t. Then P
(−t,1),γ′t
(μ,ν) (Sμ) = 0, so there exists a countable partition

Sμ =
⋃
Ej of Sμ such that ∑

j

P
(−t,1),γ′t
(μ,ν) (Ej) ≤ 1 ,

and therefore P
(−t,1),γt

(μ,ν) (Ej) = 0 for all j.

Consider the set

E(γ) =
{
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

> γ
}
.

If x ∈ E(γ), for all δ > 0, there exists r ≤ δ such that μ
(
B(x, r)

) ≤ rγ . Let F
be a subset of E(γ). Set Fj = F ∩ Ej .

For δ > 0, for all j, one can find a Besicovitch δ-cover {Bj,k} of Fj such that
μ(Bj,k) ≤ rγj,k.

We have,

νδ(Fj) ≤
∑
k

ν(Bj,k) =
∑
k

μ(Bj,k)
−tμ(Bj,k)

tν(Bj,k) ≤
∑
k

μ(Bj,k)
−trγtj,kν(Bj,k),

which, together with the Besicovitch property, implies

νδ(Fj) ≤ CBP
(−t,1),γt

(μ,ν),δ (Ej).

so

ν(Fj) ≤ CBP
(−t,1),γt

(μ,ν) (Ej) = 0.

This implies ν(F ) = 0, and ν�(E(γ)) = 0.
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We conclude that

ν�
({
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

> −ϕ′
l(0)

})
= 0.

In the same way, one proves that

ν�
({
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

< −ϕ′
r(0)

})
= 0.

�

Corollary 3.3. With the same notations and hypotheses as in Lemma 3.2, one
has

dimH Xμ

(−ϕ′
r(0),−ϕ′

l(0)
) ≥ inf

{
lim
r↘0

log ν
(
B(x, r)

)
log r

; x ∈ Xμ

(−ϕ′
r(0),−ϕ′

l(0)
)}

and

dimP Xμ

(−ϕ′
r(0),−ϕ′

l(0)
) ≥ inf

{
lim
r↘0

log ν
(
B(x, r)

)
log r

; x ∈ Xμ

(−ϕ′
r(0),−ϕ′

l(0)
)}
.

Note that statements in Corollary 3.3 are weaker than what can be deduced
from Lemma 3.2 and Lemma 3.1-b.

The previous lemmas contain the now classical results on multifractal analy-
sis [8], [3], [10]. Indeed, let μ be a element of F ∗. Until the end of this section,
we will write b, τ , and B instead of bμ,Sμ , τμ,Sμ , and Bμ,Sμ . For q ≥ 0, take

ν(B) = μ(B)qrB(q). Then the corresponding ϕ of Lemma 3.2 is B(μ,ν),Sμ
(t, 1) =

B(q + t)−B(q) and, for x ∈ Xμ(α), one has

lim
r↘0

log ν
(
B(x, r)

)
log r

= q lim
r↘0

logμ
(
B(x, r)

)
log r

+B(q) ≤ qα+B(q).

So, by (3.2) of Lemma 3.1, one gets

dimP Xμ(α) ≤ inf
q≥0

qα+B(q).

In the same way, we get

dimP Xμ(α) ≤ inf
q≤0

qα+B(q).

If moreover we assume that H
q,B(q)
μ (Sμ) > 0, we have ν�(Sμ) > 0, and there-

fore, by Lemma 3.2,

ν�
({
Xμ

(−B′
r(q),−B′

l(q)
)})

> 0.

Therefore, by (3.3) of Lemma 3.1, we have

dimH

{
Xμ

(−B′
r(q),−B′

l(q)
)} ≥

{−q B′
r(q) +B(q) if q ≥ 0,

−q B′
l(q) +B(q) if q ≤ 0.
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Recall that the Legendre transform of a function χ is defined to be χ∗(α) =
infq∈R qα+ χ(q).

All this gives a new proof of the following theorem (see [2] in the totally dis-
connected case, [3] in general).

Theorem 3.4. If B has a derivative at some point q ∈ JB and if H
q,B(q)
μ (Sμ) > 0,

then
dimH Xμ

(−B′(q)
)
= B∗(−B′(q)

)
.

The same statement holds with τ instead of B.

In [3] it is shown that if B′(q) exists and if dimH Xμ

(−B′(q)
)
= B∗(−B′(q)

)
,

then b(q) = B(q).

We now deal with the case when b(q) �= B(q). The following notation will prove
convenient: for a real function ψ, we set

ψ�
l (q) = lim

t↘0

ψ(q − t)− ψ(q)

−t and ψ�
r(q) = lim

t↘0

ψ(q + t)− ψ(q)

t
.

Lemma 3.5. Let μ and ν be elements of F ∗ and F respectively. Set ϕ(t) =
b(μ,ν),Sμ

(t, 1) and assume that ϕ(0) = 0 and ν�(Sμ) > 0. Then one has

ν�
({
x ∈ Sμ ; lim

r↘0

log μ
(
B(x, r)

)
log r

> −ϕ�
l (0)

})
= 0

and

ν�
({
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

< −ϕ�
r(0)

})
= 0.

Proof. Take γ > −ϕ�
l (0) = limt↘0

ϕ(−t)
t and choose t > 0 such that γt > ϕ(−t).

We have H
(−t,1),γt
(μ,ν) (Sμ) = 0.

Consider the set

E =
{
x ∈ Sμ ; lim

r↘0

logμ
(
B(x, r)

)
log r

> γ
}
.

For all x ∈ E, there exists δ > 0 such that, for all r < δ, one has μ
(
B(x, r)

)
< rγ .

Set En =
{
x ∈ Sμ ; ∀r ≤ 1/n, μ

(
B(x, r)

)
< rγ

}
and consider a subset F of En.

If {Bj}j is any centered δ-cover of F with δ < 1/n, one has

νδ(F ) ≤
∑

ν(Bj) =
∑

μ(Bj)
−tμ(Bj)

tν(Bj) ≤
∑

μ(Bj)
−trγtj ν(Bj).

Therefore
νδ(F ) ≤ H

(−t,1),γt

(μ,ν),δ (F ).

Then we have
ν(F ) ≤ H

(−t,1),γt

(μ,ν) (F ) ≤ H
(−t,1),γt
(μ,ν) (Sμ) = 0.

This implies ν�(En) = 0 and ν�(E) = 0. This proves the first assertion. The
second one is proved in the same way. �
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Proposition 3.6. Let μ be an element of F . Suppose that, for some q ∈ Jb,

H
q,b(q)
μ (Sμ) > 0, and consider the set

E =
{
x ∈ Sμ ; lim

r↘0

logμ (B(x, r))

log r
≤ −b�l(q) and lim

r↘0

logμ (B(x, r))

log r
≥ −b�r(q)

}
.

Then we have

dimP E ≥
{
b(q)− q b�r(q), if q ≥ 0,

b(q)− q b�l (q), if q ≤ 0.

In particular, if b′(q) exists one has

dimP

{
x ∈ Sμ ; lim

r↘0

logμ (B(x, r))

log r
≤−b′(q) ≤ lim

r↘0

logμ (B(x, r))

log r

}
≥ b(q)−q b′(q).

Proof. This results from Lemma 3.5 and (3.4) of Lemma 3.1. �

4. An example

Now, we can deal with the example given in [3] (Theorem 2.6). We take for X

the space {0, 1}N∗
endowed with the ultrametric which assigns diameter 2−n to

cylinders of order n.
We are given two numbers p and p̃ such that 0 < p < p̃ ≤ 1/2, and a sequence

of integers 1 = t0 < t1 < · · · < tn < · · · such that limn→∞ tn/tn+1 = 0.

We define a probability measure μ on {0, 1}N∗
: the measure assigned to the

cylinder [ε1ε2 . . . εn] is

μ
(
[ε1ε2 . . . εn]

)
=

n∏
j=1

�j,

where

- if t2k−1 ≤ j < t2k for some k, then �j = p if εj = 0, and �j = 1 − p
otherwise,

- if t2k ≤ j < t2k+1 for some k, then �j = p̃ if εj = 0, and �j = 1 − p̃
otherwise.

In fact, the measure considered in [3] is obtained by taking the image of μ under
the natural binary coding of numbers in [0, 1] composed with the Gray code. The
purpose of using the Gray code was to get a doubling measure on [0, 1].

For q ∈ R, define

θ(q) = log2
(
pq + (1− p)q

)
and θ̃(q) = log2

(
p̃q + (1 − p̃)q

)
.

Then it follows from [3] that for 0 < q < 1 we have

b(q) = θ(q) < θ̃(q) = B(q),

and, for q < 0 or q > 1,

b(q) = θ̃(q) < θ(q) = B(q).
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We wish to prove the following result:

Proposition 4.1. 1) For α ∈ (− log2(1− p̃),− log2 p̃
)
, we have

dimH Xμ(α) = inf
q∈R

b(q) + αq.

2) For α ∈ (− log2(1 − p̃),− log2 p̃
) \ (

[−B′
r(0),−B′

l(0)] ∪ [−B′
r(1),−B′

l(1)]
)
, we

have
dimP Xμ(α) = inf

q∈R

B(q) + αq.

Proof. We consider the measure ν constructed as μ with parameters r and r̃ instead
of p and p̃. We impose the condition

(4.1) r log p+ (1 − r) log(1− p) = r̃ log p̃+ (1− r̃) log(1− p̃).

As both r and r̃ should belong to the interval (0, 1), we must have

(4.2) log
1− p

1− p̃
< r log

1− p

p
< log

1− p

p̃
.

From Corollary 2.2, it is easy to compute ϕ(x) = τ(μ,ν),Sμ
. We have

ϕ(x) = log2 max
{(
pxr + (1 − p)x(1− r)

)
,
(
p̃xr̃ + (1− p̃)x(1− r̃)

)}
.

Condition (4.1) implies that ϕ′(0) exists. We set

(4.3) α = −ϕ′(0) = −r log2 p− (1 − r) log2(1− p) = r log2
1− p

p
− log2(1− p).

It results from (4.2) that α can take any value in the interval
(− log2(1−p̃),− log2 p̃

)
.

Moreover, the strong law of large numbers shows that we have

lim
n→∞

log2 ν
(
B(x, 2−n)

)
−n = min{h(r), h(r̃)}

and

lim
n→∞

log2 ν
(
B(x, 2−n)

)
−n = max{h(r), h(r̃)}

for ν-almost every x, where we set h(r) = −r log2 r − (1− r) log2(1− r).
Then it results from Lemmas 3.2 and 3.1-b that

(4.4) dimH Xμ(α) ≥ min{h(r), h(r̃)}
and

(4.5) dimP Xμ(α) ≥ max{h(r), h(r̃)},

where r, r̃, and α are linked by (4.1) and (4.3).
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If α is defined by (4.3), we have

(4.6) α = −θ′(q) if q =
log 1−r

r

log 1−p
p

and α = −θ̃′(q̃) if q̃ =
log 1−r̃

r̃

log 1−p̃
p̃

.

Now fix q and q̃ as above in (4.6). One can check that, for these values of q
and q̃, one has

(4.7) θ(q) − q θ′(q) = h(r) and θ̃(q̃)− q̃ θ̃′(q̃) = h(r̃).

In order to have θ(q) = b(q), we must have 0 < q < 1, which means

(4.8) log2
1

pp(1− p)1−p
< α < log2

1√
p(1− p)

.

In order to have θ̃(q̃) = b(q̃), we must have q̃ < 0 or q̃ > 1, which means

(4.9) α > log2
1√

p̃(1− p̃)

or

(4.10) α < log2
1

p̃p̃(1 − p̃)1−p̃
.

One can check that at least one of the conditions (4.8), (4.9) and (4.10) is fulfilled.

But for any q such that b′(q) exists, we have (see [8] or [1]) that

(4.11) dimH Xμ

(−b′(q)) ≤ b(q)− q b′(q).

The first assertion then results from (4.4), (4.7), and (4.11).

In order to have θ(q) = B(q), we must have q < 0 or q > 1, which means

α > log2
1√

p(1− p)
= −B′

l(0) or α < log2
1

pp(1− p)1−p
= −B′

r(1).

In order to have θ̃(q̃) = B(q̃), we must have 0 < q̃ < 1, which means

−B′
l(1) = log2

1

p̃p̃(1− p̃)1−p̃
< α < log2

1√
p̃(1− p̃)

= −B′
r(0).

Then assertion (2) follows as before. �

Remark 4.2. Proposition 4.1 also holds for the measure considered in [3]. Indeed,
using the Gray code before projecting on [0, 1] yields doubling measures.
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5. The vector case

As in [10] one may consider expressions of the form exp−〈q,κ(B)〉 instead of μ(B)q ,
where κ takes its values in the dual E′ of a separable Banach space E and q ∈ E.

Let ν be an element of F . For E ⊂ X, q ∈ E, t ∈ R, and δ > 0, one sets

P
q,t

δ (E) = sup
{∑

rtje
−〈q,κ(Bj)〉ν(Bj) ; {Bj} a δ-packing of E

}
,

P
q,t
(E) = lim

δ↘0
P

q,t

δ (E),

Pq,t(E) = inf
{∑

P
q,t
(Ej) ; E ⊂

⋃
Ej

}
,

and

H
q,t

δ (E) = inf
{∑

rtje
−〈q,κ(Bj)〉ν(Bj) ; {Bj} a centered δ-cover of E

}
,

H
q,t
(E) = lim

δ↘0
H

q,t

δ (E),

H q,t(E) = sup
{
H

q,t
(F ) ; F ⊂ E

}
,

For a function χ from E to R, and for v ∈ E of norm 1, one defines

∂vχ(0) = lim
t↘0

χ(tv) − χ(0)

t
and ∂∗vχ(0) = lim

t↘0
−χ(tv)− χ(0)

t
.

With these notations we have the following analogues of Lemmas 3.2 and 3.5:

Lemma 5.1. Let ϕ(q) be one of the following functions:

inf
{
t ; P

q,t
(X) = 0

}
or inf

{
t ; Pq,t(X) = 0

}
.

Assume that ϕ(0) = 0 and that ∂vϕ(0) at 0 is a lower semi-continuous function
of v. Then one has

ν�
{
x ; lim

r↘0

〈v,κ(B(x, r))
− ln r

< −∂vϕ(0) for some v ∈ E

}
= 0.

Lemma 5.2. Set ϕ(q) = inf {t ; H q,t(X) = 0} and assume that ϕ(0) = 0 and
that ∂∗vχ(0) is a lower semi-continuous function of v. Then one has

ν�
{
x ; lim

r↘0

〈v,κ(B(x, r))
− ln r

< −∂∗vϕ(0) for some v ∈ E

}
= 0.

The proofs follow the same lines as those above and as the proofs in [10]. As a
corollary we get the following result (with the notations of [10]):

Theorem 5.3. Let B(q)=inf{t∈R ;H q,t
κ (X) = 0}. Assume that, at some point q,

the function B is differentiable with derivative B′(q) and that H
q,B(q)
κ (X) > 0.

Then one has

dimH

{
x ; ∀v ∈ E, lim

r↘0

〈
v,κ

(
B(x, r)

)〉
log r

= −B′(q)v
}
= B(q) −B′(q)q.
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