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On Hardy spaces associated with certain

Schrödinger operators in dimension 2

Jacek Dziubański and Jacek Zienkiewicz

Abstract. We study the Hardy space H1 associated with the Schrödinger
operator L = −Δ + V on R

2, where V ≥ 0 is a compactly supported non-
zero C2-potential. We prove that this space, which is originally defined
by means of the maximal function associated with the semigroup gener-
ated by −L, admits a special atomic decomposition with atoms satisfying
a weighted cancellation condition with a weight of logarithmic growth.

1. Introduction

The aim of this paper is to prove a special atomic characterization of the Hardy
spaces H1 associated with Schrödinger operators in R2 with compactly supported
non-negative smooth potentials. In other dimensions such characterizations were
obtained in [4] and [10], and only the 2-dimensional situation remained open.

LetKt(x, y) be the integral kernels of the semigroup of linear operators {Kt}t>0

on R2, generated by a Schrödinger operator −L = Δ − V (x), where V (x) is
a non-zero nonnegative C2-function supported by the unit open ball B(0, 1). The
Feynman–Kac formula

(1.1) Ktf(x) = Ex
(
e−

∫ t
0
V (Xs) dsf(Xt)

)
,

where Xt is the Brownian motion associated with the heat semigroup Pt := etΔ

(see, e.g., Chapter V of [16]), implies that

(1.2) 0 ≤ Kt(x, y) ≤ (4πt)−1 exp(−|x− y|2/4t) := Pt(x− y).

Clearly, for every 1 ≤ p < ∞, the family {Kt}t>0 forms a semigroup of linear
contractions on Lp(R2).

The Hardy space H1
L is defined by means of the maximal function for the

semigroup {Kt}t>0, namely,

(1.3) H1
L =

{
f ∈ L1(R2) : MLf ∈ L1(R2)

}
,
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where

(1.4) MLf(x) = sup
t>0

|Ktf(x)|.

The norm ‖f‖H1
L
on the space H1

L is given by the formula

(1.5) ‖f‖H1
L
= ‖MLf‖L1(R2).

Let w(x) > 0 be a locally integrable function. We say that a measurable
function b defined on R2 is an atom for the Hardy space H1

w, at if there exists a ball
B = B(x0, r) such that

supp b ⊂ B, ‖b‖L∞ ≤ |B|−1,(1.6) ∫
R2

b(x)w(x) dx = 0.(1.7)

The atomic norm ‖f‖H1
w, at

is given by the formula

(1.8) ‖f‖H1
w, at

= inf
{∑

j

|λj | : f =
∑
j

λjbj , λj ∈ C, bj are atoms for H1
w, at

}
.

Clearly, if w ≡ 1, then the H1
w, at-atoms coincide with the classical (1,∞)-atoms

for the Hardy space H1(R2). For the theory of the classical real Hardy spaces
Hp(Rd) we refer the reader to [3], [11], [12], [17], and the references therein.

Our goal in this paper is to prove the following theorem:

Theorem 1.1. Assume that L = −Δ+V is a Schrödinger operator in R2, where V
is a non-zero nonnegative C2-function such that suppV is contained in the unit
ball B(0, 1). Then there exists a regular L-harmonic weight w such that

(1.9) C−1 ln(2 + |x|) ≤ w(x) ≤ C ln(2 + |x|),

H1
L = H1

w, at, and

(1.10) C−1 ‖f‖H1
w, at

≤ ‖f‖H1
L
≤ C ‖f‖H1

w, at

The construction and the properties of the weight w are given in Section 3.

Let us finally emphasize the differences which occur in atomic decompositions of
the Hardy spaces associated with Schrödinger operators with compactly supported
potentials in dimensions different than 2. It was proved in [10] that for d ≥ 3
and any compactly supported nonnegative V ∈ Lq(Rd), q > d/2, the Hardy
space H1

−Δ+V coincides with H1
w, at, where

(1.11) w(x) = lim
t→∞

∫
Rd

Kt(x, y) dy.
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Here Kt(x, y) are the integral kernels of the semigroup generated by Δ− V in Rd.
The function w defined by (1.11) satisfies

0 < c ≤ w(x) ≤ 1, lim
|x|→∞

w(x) = 1, |w(x) − w(x′)| ≤ C|x − x′|.

See [10] for details and proofs.
The one-dimensional situation is different and was studied in [4]. Let V ∈L1

loc(R)
be a nonnegative potential. In order to define the notion of an atom for the
space H1

−Δ+V , one defines the auxiliary function

ρ(y) := inf
{
r > 0 : r

∫ y+r

y−r

V (x) dx ≥ 1
}
.

Then atoms for H1
−Δ+V are either the classical (1,∞)-atoms for the Hardy space

H1(R) or |I|−1χI(x), where I = (y − ρ(y), y + ρ(y)). Hence, in this case, the
Hardy space is local, where the scale of localization is adapted to the behavior of
the potential (see [4]).

The reader interested in results concerning Hardy spaces associated with semi-
groups of linear operators, and in particular semigroups generated by Schrödinger
operators, is referred to [1], [2], [4], [6], [7], [8], [9], [10] and [15].

The paper is organized as follows. In Section 2 we derive estimates for the
integral kernels Kt(x, y) of the semigroup generated by −L = Δ − V , where
V ∈ C2(B(0, 1)) ⊂ R2, V ≥ 0, V 	≡ 0. Then we prove some properties of the
operator V L−1. Section 3 is devoted for the construction of the weight function w
(see Theorem 1.1). In Section 4 we provide a relation between the classical atoms
and the H1

w, at-atoms (see Proposition 4.2). The proofs of the inequalities in (1.10)
are presented in Sections 5 and 6.

Acknowledgments. The authors want to thank the reviewer for his valuable
remarks which improved the presentation of the paper.

2. Estimates of kernels in R
2

Henceforth, unless otherwise stated, we assume that V is a non-zero nonnegative
C2-potential supported in the unit ball B(0, 1) of R2, Kt(x, y) are the integral
kernels of the semigroup {Kt}t>0 generated by −L = Δ− V (x).

For C0 > 0 (big enough) we define

G(x) :=
1

2π

∫
R2

ln |x− y|V (y) dy + C0.

Then G ∈ C∞(R2) and, if we take C0 large,

(2.1) G(x) ≥ 2 and G(x) ∼ ln(2 + 2|x|) for x ∈ R
2.
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The function G(x) is L-subharmonic, that is, LG(x) ≥ 0. Indeed,

LG(x) = (−Δ+ V (x))
( 1

2π

∫
R2

ln |x− y|V (y) dy + C0

)
= −V (x) + V (x)G(x) ≥ 0.

Hence,

d

dt

∫
R2

Kt(z, y)G(y) dy = −
∫
R2

Kt(z, y)LG(y) dy ≤ 0,

and, consequently,

(2.2)

∫
R2

Kt(z, y)G(y) dy ≤ G(z).

Since G(x) is bounded on compact sets,

(2.3)

∫
Kt(z, y)G(y) dy ≤ C for t > 0 and |z| ≤ 3.

Lemma 2.1. There is C > 0 such that∫
R2

Kt(z, y) dy ≤
{
1 for t ≤ 2(1 + |z|),
C ln(2+2|z|)

ln t for t > 2(1 + |z|).
Proof. Thanks to (1.2), it suffices to consider t > 2(1 + |z|). Using (2.2) together
with (2.1), we have that∫

R2

Kt(z, y) dy =

∫
|y|≤t1/4

Kt(z, y) dy +

∫
|y|>t1/4

Kt(z, y) dy

≤ C t−1

∫
|y|≤t1/4

dy + C

∫
|y|>t1/4

Kt(z, y)
ln |y|
ln t1/4

dy

≤ C t−1/2 + C
G(z)

ln t1/4
≤ C

ln(2 + 2|z|)
ln t

.

�

Lemma 2.2. There exists a constant δ > 0 such that

(2.4)

∫
R2

Kt(x, y) dy ≥ δ
ln(2 + |x|)

ln t
for t > 2(1 + |x|).

Proof. The Feynman–Kac formula (1.1) implies that

(2.5) e−t‖V ‖∞Pt(x− y) ≤ Kt(x, y).

Set φ(x, t) =
∫
R2 Kt(x, y) dy. Clearly, by (1.2) and the semigroup property,

(2.6) 0 < φ(x, t1) ≤ φ(x, t2) for t1 > t2 > 0.

Let Ω = {x ∈ R2 : |x| > 1}. We have

0 ≥ d

dt
φ(x, t) = Δφ(x, t) − V (x)φ(x, t) = Δφ(x, t) for x ∈ Ω,
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and so for fixed t, φ(x, t) is superharmonic on Ω. Moreover, from the Feynman–
Kac formula we conclude that there exists a constant δ0 > 0 such that φ(x, t) ≥ δ0
for |x| = √

t > 2. For fixed t > 4, let

u(x) = δ0
ln |x|
ln
√
t
.

Then

0 = u(x) ≤ φ(x, t) for |x| = 1 and δ0 = u(x) ≤ φ(x, t) for |x| = √
t,

and, consequently, since u is harmonic,

(2.7) δ0
ln |x|
ln
√
t
= u(x) ≤ φ(x, t) =

∫
R2

Kt(x, y) dy for 1 ≤ |x| ≤ √
t.

Now we consider |x| ≤ 2. Let t > 5. Then,∫
R2

Kt(x, y) dy =

∫
R2

∫
R2

K1(x, z)Kt−1(z, y) dz dy

≥
∫
R2

∫
2<|z|<3

K1(x, z)Kt−1(z, y) dz dy

≥ inf
{|x|≤2, 2<|z|<3}

{K1(x, z)}
∫
R2

∫
2<|z|<3

Kt−1(z, y) dz dy

≥ c δ0

ln
√
t− 1

,

where in the last inequality we have used (2.5) and (2.7). Thus, thanks to (2.6)
and (2.7), the lemma is proved for t > 2(1+ |x|)2. Assume now that t > 2(1+ |x|).
Since t2 > t,∫

R2

Kt(x, y) dy ≥
∫
R2

Kt2(x, y) dy ≥ δ
ln(2 + |x|)

ln(t2)
=

δ ln(2 + |x|)
2 ln t

.

�

The perturbation formula (see, e.g., Chapter 3 of [5]) asserts that

(2.8) Pt = Kt +

∫ t

0

Pt−sV Ks ds.

Thus ∫ t

0

∫
R2

V (z)Ks(z, y) dz ds =

∫
R2

(Pt(x− y)−Kt(x, y)) dx

= 1−
∫
R2

Kt(x, y) dx.

(2.9)

Hence, using Lemma 2.1, we get

(2.10)

∫ ∞

0

∫
R2

V (z)Ks(z, y) dz ds = 1.
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Lemma 2.3. There exists a constant C > 0 such that for x, y ∈ R2 we have

(2.11)

∫ ∞

2

Kt(x, y) dt ≤ Cmin(ln(2 + |x|), ln(2 + |y|)).

Proof. Observe first that for x, y ∈ R
2, and t ≥ 2 one has

(2.12) Kt(x, y) ≤ C
ln(2 + |x|) ln(2 + |y|)

t (ln t)2
.

Indeed, if u ∈ R2, then from Lemma 2.1 we conclude

Kt(x, u) =

∫
R2

Kt/2(x, z)Kt/2(z, u) dz ≤ C t−1

∫
R2

Kt/2(x, z) dz

≤ C
ln(2 + |x|)

t ln t
.

(2.13)

Applying again Lemma 2.1 combined with (2.13), we obtain

Kt(x, y) =

∫
R2

Kt/2(x, z)Kt/2(z, y) dz

≤ C ln(2 + |x|)
t ln t

∫
R2

Kt/2(z, y) dz ≤ C ln(2 + |x|) ln(2 + |y|)
t(ln t)2

.

Clearly, (2.12) implies (2.11) for |x|, |y| ≤ 2. Thus, to complete the proof of the
lemma, we can assume that |y| ≥ |x| and |y| > 2. If additionally |y| > 2|x|, then
by (2.12) and (1.2),∫ ∞

2

Kt(x, y) dt ≤
∫ |y|2

2

Kt(x, y) dt+

∫ ∞

|y|2
Kt(x, y) dt

≤ C

∫ |y|2

2

t−1e−|y|2/16t dt+ C

∫ ∞

|y|2
ln(2 + |x|) ln(2 + |y|)

t(ln t)2
dt ≤ C ln(2 + |x|).

If 2|x| ≥ |y| ≥ |x|, then from (2.12) and (1.2) we get∫ ∞

2

Kt(x, y) dt ≤ C

∫ |y|2

2

t−1 dt+ C

∫ ∞

|y|2
ln(2 + |x|) ln(2 + |y|)

t(ln t)2
dt ≤ C ln(2 + |x|).

�

For ε > 0 we set

Δε := Δ− εI, Lε := −Δ+ εI + V = −Δε + V.

We have

Δ−1
ε = −

∫ ∞

0

e−εtPt dt, L−1
ε =

∫ ∞

0

e−εtKt dt.

Since Pt and Kt are contractions on every Lp(R2), the operators Δ−1
ε and L−1

ε are
bounded on every Lp(R2), 1 ≤ p < ∞. Moreover,

(I − VΔ−1
ε )(I − V L−1

ε ) = (I − V L−1
ε )(I − VΔ−1

ε ) = I.

These equalities can be proved by direct computation if we substitute V = Δε+Lε.
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For f ∈ L1(R2) let

L−1f(x) =

∫ ∞

0

∫
R2

Kt(x, y)f(y) dy dt.

Formula (2.10) implies that the operator V L−1 is bounded on L1(R2) (see also
Lemma 2.3). Clearly,

(2.14) I = (I − VΔ−1
ε )(I − V L−1) + (I − VΔ−1

ε )(V L−1 − V L−1
ε ) on L1(R2).

Finally let Δ−1f(x) = f ∗ E(x), with E(x) = (2π)−1 ln |x|. Since E belongs to
BMO(R2), there is a constant C > 0 such that for any classical H1(R2)-atom a
one has |Δ−1a(x)| ≤ C and

(2.15) Δ−1a(x) = − lim
ε→0+

∫ 1/ε

ε

Pta(x) dt

(see also (5.2) and (5.3)).

As a consequence of (2.10) we have the following lemma:

Lemma 2.4. For every f ∈ L1(R2)∫
(I − V L−1)f(x) dx = 0.

For ε > 0 let

Wε(x, y) := V (x)

∫ ∞

0

Kt(x, y)(1 − e−εt) dt.

It is clear that Wε(x, y) is the integral kernel of the operator V L−1 − V L−1
ε .

Lemma 2.5. As ε → 0, Wε(x, y) → 0 uniformly on sets of the form R2×B(0, R).

Proof. Recall that V is a C2 function supported in B(0, 1). Hence, Wε(x, y) = 0
for |x| ≥ 1. Fix R > 2. If |y| ≤ R and |x| < 1, then by (1.2) and (2.12) we obtain

Wε(x, y) ≤ V (x)

∫ R

0

‖Kt‖∞ ε t dt+ V (x)

∫ ∞

R

Kt(x, y)(1 − e−εt) dt

≤ C ‖V ‖∞ Rε+ C ‖V ‖∞
∫ ∞

R

ln(2 +R)

t (ln t)2
(1− e−εt) dt.

(2.16)

The lemma follows by applying the Lebesgue dominated convergence theorem. �

The following corollary can be concluded from Lemmas 2.3 and 2.5:

Corollary 2.6. ‖V L−1 − V L−1
ε ‖L1→L1 ≤ 1. Moreover, for every f ∈ L1(R2),

lim
ε→0

‖(V L−1 − V L−1
ε )f‖L1(R2) = 0.
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3. Auxiliary weight function

Let

θ(ε) =
1

4π

∫ ∞

1

exp(−εu)
du

u
=

1

4π

∫ ∞

ε

exp(−u)
du

u
.

Note that

θ(ε)− 1

4π
ln

1

ε
= c1 +O(ε) as ε → 0+.

For 0 < ε ≤ 1 we define the weight function

wε(y) = θ(ε)

∫
R2

∫ ∞

0

V (z)Ks(z, y)(1− e−εs) ds dz.

Proposition 3.1. There are constants C, c > 0 such that

wε(y) ≤ C ln(2 + 2|y|),
c ln(2 + 2|y|) ≤ wε(y) for |y| < ε−1.

Proof. We split the integral which defines wε into two parts:

wε(y) = θ(ε)

∫ ε−1

0

∫
R2

V (z)Ks(z, y)(1− e−εs) dz ds

+ θ(ε)

∫ ∞

ε−1

∫
R2

V (z)Ks(z, y)(1− e−εs) dz ds

:= Jε
1 (y) + Jε

2 (y).

(3.1)

Using (2.10) and Lemma 2.1, we get

Jε
2 (y) ∼ θ(ε)

∫ ∞

ε−1

∫
R2

V (z)Ks(z, y) dz ds

= θ(ε)
( ∫ ∞

0

∫
R2

V (z)Ks(z, y) dz ds−
∫ ε−1

0

∫
R2

V (z)Ks(z, y) dz ds
)

= θ(ε)
(
1−

(
1−

∫
R2

Kε−1(z, y) dz
))

≤ Cθ(ε)
ln(2 + 2|y|)

ln 1/ε

≤ C ln(2 + 2|y|).

(3.2)

Observe that if |y| < ε−1, then from Lemma 2.2 we obtain

(3.3) Jε
2 (y) ≥ c ln(2 + |y|).

We now turn to estimating Jε
1 (y). By the perturbation formula (see (2.9))
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and Lemma 2.1 we have

Jε
1 (y) = θ(ε)

( ∫ ε−1

0

∫
R2

V (z)Ks(z, y) dz ds

−
∫ ε−1

0

∫
R2

(ε+V (z))Ks(z, y)e
−εs dz ds+

∫ ε−1

0

∫
R2

εKs(z, y)e
−εs dz ds

)
= θ(ε)

(
−
∫
R2

Kε−1(z, y) dz

+

∫
R2

Kε−1(z, y)e−1 dz +

∫ ε−1

0

∫
R2

εKs(z, y)e
−εs dz ds

)
= θ(ε)(e−1 − 1)

∫
R2

Kε−1(z, y) dz + θ(ε)ε

∫ ε−1

0

∫
R2

Ks(z, y)e
−εs dz ds

≤ Cθ(ε)
ln(2 + 2|y|)
ln(1/ε)

+ θ(ε)ε

∫ ε−1/2

0

∫
R2

Ks(z, y) dz ds

+ θ(ε)ε

∫ ε−1

ε−1/2

e−εs ln(2 + 2|y|)(ln
√
1/ε)−1 ds

≤ C ln(2 + 2|y|) + Cθ(ε)ε1/2 + Cθ(ε)ε ln(2 + 2|y|)(ln 1/ε)−1

∫ ε−1

ε−1/2

ds

≤ C ln(2 + 2|y|).

(3.4)

Thus from (3.1)–(3.4) we get the proposition. �

From Proposition 3.1 we conclude that there is a subsequence εj → 0+ such
that wεj (x) converges to a function w(x) in the weak* sense and (1.9) holds.

Since for every y ∈ R2 and t > 0 the function x �→ Kt(x, y) is continuous and
has Gaussian decay, we have

(3.5) lim
j→∞

∫
R2

wεj (x)Kt(x, y) dx =

∫
R2

w(x)Kt(x, y) dx.

Proposition 3.2. The function w is L-harmonic, that is,

Ktw(y) =

∫
R2

w(x)Kt(x, y) dx = w(y) for every t > 0.

In order to prove the proposition we need the following lemma:

Lemma 3.3. For every t > 0, there is a constant C > 0 such that, for every
0 < ε < 1, one has

|Ktwε(x) − wε(x)| ≤ C θ(ε) ε.
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Proof of Lemma 3.3. We have:

Ktwε(x) = θ(ε)

∫
R2

∫ ∞

0

∫
R2

Kt(x, y)V (z)Ks(z, y)(1− e−εs) dz ds dy

= θ(ε)

∫ ∞

0

∫
R2

V (z)Ks+t(x, z)(1 − e−εs) dz ds

= θ(ε)

∫ ∞

t

∫
R2

V (z)Ks(x, z)(1− eεte−εs) dz ds

= θ(ε)

∫ ∞

t

∫
R2

V (z)Ks(x, z)(1− e−εs) dz ds

+ θ(ε)

∫ ∞

t

∫
R2

V (z)Ks(x, z)(e
−εs − eεte−εs) dz ds

= θ(ε)

∫ ∞

0

∫
R2

V (z)Ks(x, z)(1− e−εs) dz ds

− θ(ε)

∫ t

0

∫
R2

V (z)Ks(x, z)(1− e−εs) dz ds

+ θ(ε)

∫ ∞

t

∫
R2

V (z)Ks(x, z)e
−εs(1 − eεt) dz ds

= wε(x) − θ(ε)

∫ t

0

∫
R2

V (z)Ks(x, z)(1 − e−εs) dz ds.

+ θ(ε)

∫ ∞

t

∫
R2

V (z)Ks(x, z)e
−εs(1 − eεt) dz ds,

which, by using (2.10) and the mean value theorem, implies the lemma. �

Proof of Proposition 3.2. Write v(x) = Ktw(x). Since w(y) is the weak* limit of
wεj (y), we get

lim
j→∞

∫
R2

wεj (y)Kt(x, y) dy =

∫
R2

w(y)Kt(x, y) dy = v(x).

On the other hand, by Lemma 3.3, we have

v(x) = lim
j→∞

∫
R2

wεj (y)Kt(x, y) dy = lim
j→∞

wεj (x) +O(θ(εj)εj).

Thus, v(x) = w(x) for every x ∈ R2. �

Clearly, Δw(x) = V (x)w(x), because w is L-harmonic. Since w has logarithmic
growth (see (1.9)), there is C1 > 0 such that

(3.6) w(x) = (2π)−1

∫
R2

V (y)w(y) ln |x− y| dy + C1.

It follows from (3.6) that

(3.7) |∇w(x)| ≤ C(1 + |x|)−1
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and

(3.8) |w(x) − w(x′)| ≤ C provided |x|/2 ≤ |x′| ≤ 2|x|.
Another direct consequence of (3.6) is the following lemma:

Lemma 3.4. Let a be a classical H1(R2)-atom. Set g = (I − VΔ−1)a. Then∫
g(x)w(x) dx = 0.

4. Atoms

We start this section by proving the following lemma:

Lemma 4.1. Let εj be a sequence as in the definition of the function w(x). Let b
be an atom for H1

w, at. Then

(4.1) lim
j→∞

(VΔ−1
εj (V L−1 − V L−1

εj )) b(x) = 0

uniformly in x.

Proof. Since suppV ⊂ B(0, 1), it is enough to consider |x| ≤ 1. Let Uε(x, y) denote
the integral kernel of the operator −VΔ−1

ε (V L−1 − V L−1
ε )). Fix an atom b for

H1
w, at (see (1.6)–(1.7)). Let r be such that supp b ⊂ B(0, r). Then for |x| ≤ 1 and

|y| ≤ r we have

Uε(x, y) =

∫ ∞

0

∫
R2

∫ ∞

0

V (x)Pu(x− z)e−εuV (z)Kt(z, y)(1− e−εt) dt dz du

=

∫ 1

0

∫
R2

∫ 3

0

. . . dt dz du+

∫ 1

0

∫
R2

∫ ∞

3

. . . dt dz du

+

∫ ∞

1

∫
R2

∫ ∞

0

. . . dt dz du

:= I1(x, y) + I2(x, y) + I3(x, y).

(4.2)

By the mean value theorem and (1.2) we obtain that

I1(x, y) ≤ C V (x)

∫ 1

0

∫
R2

∫ 3

0

Pu(x− z)V (z)‖Kt‖∞ ε t dt dz du

≤ C εV (x) ‖V ‖∞.

(4.3)

To estimate I2 we apply (2.12) and obtain

I2(x, y) ≤ C V (x)

∫ 1

0

∫
R2

∫ ∞

3

Pu(x− z)V (z)
ln(2 + r)

t(ln t)2
(1− e−εt) dt dz du

≤ C V (x)‖V ‖∞
∫ ∞

1

ln(2 + r)

t (ln t)2
(1− e−εt) dt

≤ C V (x) ln(2 + r) ‖V ‖∞ (ln ε−1)−1.

(4.4)
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In order to deal with I3 we split the integral as follows:

I3(x, y)

=

∫ ∞

1

∫
R2

∫ ∞

0

V (x)(Pu(x− z)−Pu(0)) e
−εu V (z)Kt(z, y)(1− e−εt) dt dz du

+

∫ ∞

1

∫
R2

∫ ∞

0

V (x)Pu(0)e
−εuV (z)Kt(z, y)(1− e−εt) dt dz du

= I ′3(x, y) + V (x)wε(y).

(4.5)

By the mean value theorem,

|I ′3(x, y)| ≤ C

∫ ∞

1

∫
R2

∫ ∞

0

V (x)u−3/2V (z)Kt(z, y)(1− e−εt) dt dz du

≤ C V (x)

∫
R2

∫ 1/
√
ε

0

V (z)Kt(z, y)εt dt dz

+ C V (x)

∫
R2

∫ ∞

1/
√
ε

V (z)Kt(z, y) dt dz

≤ C V (x)
√
ε‖V ‖L1 + C V (x)‖V ‖L1(ln ε−1)−1,

(4.6)

where in the last inequality we have used (2.12). Hence we obtain the lemma
from (4.2)–(4.6) and (1.7), because

lim
j→∞

∫
R2

V (x)wεj (y) b(y) dy = V (x)

∫
R2

w(y)b(y) dy = 0.

�

The goal of this section is to prove the following proposition, which will be used
in the proof of the second inequality in (1.10).

Proposition 4.2. There is a constant C > 0 such that if b is an atom for the Hardy
space H1

w, at associated with a ball B(x,r), then there exist a finite sequence ak of
classical H1(R2)-atoms and a sequence λk ∈ C such that

each atom ak is associated with a ball B(xk, rk) with rm ≤ max(1, r),(4.7) ∑
k

|λk| ≤ C, and b =
∑
k

λk(I − VΔ−1)ak.(4.8)

The proof of the proposition consists of Lemmas 4.3, 4.7, 4.8, 4.9, and Corol-
lary 4.6 below.

For n,m ∈ N ∪ {0}, n < m, let Rn,m = {x ∈ R2 : 2n/2 ≤ |x| ≤ 2m/2}. The
following decomposition will be frequently used here:

(4.9) |Rn,n+1|−1χRn,n+1 = |R0,1|−1χR0,1 +

n∑
k=1

fk,
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where

fk = |Rk,k+1|−1χRk,k+1
− |Rk−1,k|−1χRk−1,k

.

Observe that for k = 1, 2, . . . , n we have

supp fk ⊂ Rk−1,k+1,

∫
R2

fk(y) dy = 0,

‖fk‖∞ ≤ C

|Rk−1,k+1| , ‖fk‖H1(R2) ≤ C,

(4.10)

with a constant C independent of n and k. Consequently,

|Rn,n+1|−1χRn,n+1 = |R0,1|−1χR0,1 +

n∑
k=1

VΔ−1fk +

n∑
k=1

(I − VΔ−1)fk,(4.11)

∥∥∥|R0,1|−1χR0,1 +

n∑
k=1

VΔ−1fk

∥∥∥
∞

≤ C(n+ 1).(4.12)

Lemma 4.3. Assume that b is an H1
w, at-atom such that supp b ⊂ B(0, 3) and

‖b‖∞ ≤ |B(0, 3)|−1. Then there is an H1(R2)-atom a such that suppa ⊂ B(0, 3),
‖a‖∞ ≤ C, and b = (I − VΔ−1)a.

Proof. Set a = (I − V L−1)b. Clearly, supp a ⊂ B(0, 3), ‖a‖∞ ≤ C and, by
Lemma 2.4,

∫
a = 0. Moreover, using (2.14) combined with (2.15), and Lemmas 2.5

and 4.1, we get b = (I − VΔ−1)a. �

Lemma 4.4. Let b be a function such that supp b ⊂ Rn,n+1, ‖b‖∞ ≤ 2−n, and∫
bw = 0. Then there exists a finite sequence {aj}n+1

j=0 of classical H1(R2)-atoms

and a sequence {λj}n+1
j=0 of complex numbers such that

b =

n+1∑
j=0

λj(I − VΔ−1)aj ,

n+1∑
j=0

|λj | ≤ C.

The constant C is independent of b.

Proof. Set

κ =

∫
R2

b(x) dx.

Fix x0 ∈ Rn,n+1. By the assumptions on b and (3.8), we obtain

|κ| = w(x0)
−1

∣∣∣ ∫
R2

b(x)(w(x0)− w(x)) dx
∣∣∣ ≤ Cw(x0)

−1 ≤ Cn−1,(4.13)

where in the last inequality we have used (1.9). Applying (4.9) (see also (4.11)),
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we have

b =
κ

|Rn,n+1|χRn,n+1 +
(
b− κ

|Rn,n+1|χRn,n+1

)
= κ|R0,1|−1χR0,1 + κ

n∑
k=1

VΔ−1fk + VΔ−1
(
b− κ

|Rn,n+1|χRn,n+1

)
+ (I − VΔ−1)

(
b− κ

|Rn,n+1|χRn,n+1

)
+ κ

n∑
k=1

(I − VΔ−1)fk.

(4.14)

Clearly, b − κ|Rn,n+1|−1χRn,n+1 and fk, k = 1, 2, . . . , n, are multiples of H1(R2)-
atoms with a universal constant factor independent of b (see (4.10) and (4.13)).
Moreover, the function

g(x) = κ|R0,1|−1χR0,1 + κ

n∑
k=1

VΔ−1fk + VΔ−1
(
b − κ

|Rn,n+1|χRn,n+1

)
is supported in B(0,

√
2), and, thanks to (4.12) and (4.13), we have that ‖g‖∞ ≤ C.

Since
∫
bw = 0, we conclude from (4.14) and Lemma 3.4 that

∫
gw = 0. Therefore,

by Lemma 4.3, g = (I − VΔ−1)f0, where f0 is a multiple of a classical H1(R2)-
atom. Hence, Lemma 4.4 follows form (4.14), (4.12), and (4.13). �

Lemma 4.5. Assume that b is an H1
w, at-atom associated with B(0, 2n/2), n > 1.

Then there is a sequence of functions bk, k = 0, 1, . . . , n− 1, such that

‖bk‖∞ ≤ C2−n,

∫
bkw = 0,

supp b0 ⊂ B(0,
√
2), supp bk ⊂ Rk−1,k+1 for k = 1, 2, . . . , n− 1,

b =

n−1∑
k=0

bk.

Proof. Let B0 = B(0, 1) and A = |B(0, 2n/2)|−1 = π−12−n. By the assumptions,
‖b‖∞ ≤ A. Define

s0 = 1 +
w(B(0, 1))

w(R0,1)
, sk = 1 + sk−1

w(Rk−1,k)

w(Rk,k+1)
for k = 1, 2, . . .

where w(U) =
∫
U w(x) dx for a measurable set U ⊂ R2. Formula (3.6) implies that

0 < w(Rk−1,k)/w(Rk,k+1) ≤ r < 1 for k ≥ 2.

Hence the sequence sk is bounded. Set

b = (bχB0 − c0χR0,1) + (c0χR0,1 + bχR0,n) := b0 + b̃0,

where

c0 =
1

w(R0,1)

∫
B0

bw.
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Obviously, |c0| ≤ Aw(B0)w(R0,1)
−1. We easily see that∫
b0w =

∫
b̃0w = 0,

supp b0 = B(0,
√
2), supp b̃0 ⊂ R0,n,

|b0(x)| ≤ As0,

|̃b0(x)| ≤
{
As0 for x ∈ R0,1,

A for x ∈ R1,n.

Now we decompose b̃0:

b̃0 = (̃b0χR0,1 − c1χR1,2) + (c1χR1,2 + bχR1,n) := b1 + b̃1,

where c1 = w(R1,2)
−1

∫
R0,1

b̃0w. Clearly,
∫
b1w =

∫
b̃1w = 0. Moreover,

|c1| ≤ As0
w(R0,1)

w(R1,2)
,

supp b1 ⊂ R0,2, supp b̃1 ⊂ R1,n, and

|b1(x)| ≤
{
As0 for x ∈ R0,1,

A s0
w(R0,1)
w(R1,2)

for x ∈ R1,2,

|̃b1(x)| ≤
{
As1 for x ∈ R1,2,

A for x ∈ R2,n.

Then we decompose b̃1:

b̃1 = (̃b1χR1,2 − c2χR2,3) + (c2χR2,3 + bχR2,n) := b2 + b̃2,

where c2 = w(R2,3)
−1

∫
R1,2

b̃1w. We have
∫
b2w =

∫
b̃2w = 0, and

|c2| ≤ As1
w(R1,2)

w(R2,3)
.

In addition, supp b2 ⊂ R1,3, supp b̃2 ⊂ R2,n, and

|b2(x)| ≤
{
As1 for x ∈ R1,2,

A s1
w(R1,2)
w(R2,3)

for x ∈ R2,3,

|̃b2(x)| ≤
{
As2 for x ∈ R2,3,

A for x ∈ R3,n.
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We continue the procedure and get functions bk and b̃k, k = 1, 2, . . . , n − 2, such
that supp bk ⊂ Rk−1,k+1, supp b̃k ⊂ Rk,n,

∫
bkw =

∫
b̃kw = 0, b = b̃n−2 +

∑n−2
k=0 bk

and

|bk(x)| ≤
{
Ask−1 for x ∈ Rk−1,k,

Ask−1
w(Rk−1,k)
w(Rk,k+1)

for x ∈ Rk,k+1,

|̃bk(x)| ≤
{
Ask for x ∈ Rk,k+1,

A for x ∈ Rk+1,n.

Set bn−1 = b̃n−2. From the above we see that |bk| ≤ C 2−n, with C independent
of b. �

As a direct consequence of Lemmas 4.4 and 4.5, we obtain the following corol-
lary:

Corollary 4.6. The conclusion of Proposition 4.2 holds for every H1
w, at-atom b

associated with a ball B(0, 2n/2), n > 1.

Lemma 4.7. The conclusion of Proposition 4.2 holds for every H1
w, at-atom b

associated with a ball B(x0, r), |x0| < 2, r < 1.

Proof. Set c0 = |B(x0, r)|−1
∫
b(x) dx. By (1.6)–(1.7) and the mean value theorem,

(4.15) |c0| = |B(x0, r)|−1w(x0)
−1

∣∣∣ ∫
R2

b(x)(w(x0)− w(x)) dx
∣∣∣ ≤ Cr−1.

Define Bj = B(x0, 2
jr), cj = c0

|B0|
|Bj | , j = 0, 1, . . . , [log2 r

−1] = k. Then,

b = (b− c0χB0) + c0|B0|
k∑

j=0

(|Bj |−1χBj − |Bj+1|−1χBj+1) + c0|B0||Bk+1|−1χBk+1
.

Set a0 = (b − c0χB0) and aj+1 = |Bj |−1χBj − |Bj+1|−1χBj+1 , for j = 0, 1, . . . , k.
Clearly aj , j = 0, 1, . . . , k, are multiples of classical H1(R2)-atoms with a constant
factor independent of b. So,

b = (I − VΔ−1) a0 + (I − VΔ−1)

k∑
j=1

c0|B0|aj

+ VΔ−1a0 + VΔ−1
k∑

j=1

c0|B0|aj + c0
|B0|

|Bk+1|χBk+1
.

(4.16)

Note that
∑k

j=1 c0|B0| ≤ C. Further, from Lemma 3.4 we deduce that

VΔ−1
(
a0 +

k∑
j=1

c0|B0|aj
)
+ c0

|B0|
|Bk+1|χBk+1

is a multiple of an H1
w, at-atom associated with the ball B(0, 3). Hence, the lemma

follows by applying (4.16) and Lemma 4.3. �
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Lemma 4.8. Assume that b is an H1
w, at-atom associated with B(x0, r), |x0| > 1,

r ≤ 1. Then the conclusion of Proposition 4.2 about the decomposition holds.

Proof. Let n = [log2 r
−1], s = [|x0|], Bk = B(x0, 2

kr), for k = 0, 1, . . . , n, and
Bn+j = B( s−j

s x0, 2
nr), for j = 1, . . . , s. Put c0 = |B0|−1

∫
b(x) dx,

a0 = b− c0χB0 , λ0 = 1;

ak = |Bk−1|−1χBk−1
− |Bk|−1χBk

, λk = c0|B0|, k = 1, 2, . . . , n;

an+j = |Bn|−1(χBn+j−1 − χBn+j ), λn+j = c0|B0|, j = 1, 2, . . . , s.

Then, from (1.6), (1.7), (3.7), and the mean value theorem we obtain that

|c0|w(x0) |B0| |x0| ≤ Cr.

Moreover, the am are multiples of classical H1(R2)-atoms (with a constant factor
independent of b) and

b =

n+s∑
m=0

λmam + c0
|B0|
|Bn|χBn+s .

Clearly,
∑n+s

m=0 |λm| ≤ C, and

b =

n+s∑
m=0

λm(I − VΔ−1)am +

n+s∑
m=0

λmVΔ−1am + c0
|B0|

|Bn+s|χBn+s .(4.17)

The function g =
∑n+s

m=0 λmVΔ−1am + c0|B0||Bn+s+1|−1χBn+s+1 is supported
in B(0, 2), ‖g‖∞ ≤ C, and, by Lemma 3.4,

∫
g(x)w(x) dx = 0. The proof is

completed by the use of (4.17) and Lemma 4.3. �

Lemma 4.9. The conclusion of Proposition 4.2 holds for every H1
w, at-atom b

associated with a ball B(x0, r), |x0| > 2r > 2.

Proof. Let s = [|x0|/r], n = [log2 r] + 1, Bk = B( s−k
s x0, r), k = 0, 1, . . . , s, and

Bs+j = B(0, 2−jr), j = 1, 2, . . . , n. Set c0 = |B0|−1
∫
b(x) dx. We have

|c0|w(x0)|B0||x0| ≤ r.

Define

a0 = b− c0χB0 , λ0 = 1;

ak = |Bk|−1(χBk−1
− χBk

), λk = c0|B0|, k = 1, . . . , s;

as+j = |Bs+j−1|−1χBs+j−1 − |Bs+j |−1χBs+j , λs+j = c0|Bs|, j = 1, 2, . . . , n.

The functions ak, k = 0, 1, . . . , s+ n, are multiples of the classical H1(R2)-atoms.
By the same arguments as in the proof of the previous lemma,

(4.18) b =

s+n∑
m=0

(I − VΔ−1)λmam +

s+n∑
m=0

VΔ−1λmam + c0
|Bs|

|Bs+n|χBs+n
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with
∑s+n

m=0 |λm| ≤ C, the function

g =

s+n∑
m=0

VΔ−1λmam + c0|Bs| |Bs+n|−1χBs+n

being a multiple of an H1
w, at-atom supported in B(0, 2). From equation (4.18) and

Lemma 4.3, we get the decomposition. �

5. Boundedness of maximal functions

The main goal of this section is to prove the second inequality in (1.10) of Theo-
rem 1.1, that is, there exists a constant C > 0 such that

(5.1) ‖MLf‖L1(R2) ≤ C‖f‖H1
w,at

.

Let us first note that if a is a classical H1(R2)-atom associated with a ball of
radius r > 0, then

(5.2) |Psa(x)| ≤
{
Cs−3/2r for s > r2,

Cr−2 for s ≤ r2.

Hence, there is C > 0 such that

(5.3)

∫ ∞

0

|Psa(x)| ds ≤ C

for every classical H1(R2)-atom a.
The perturbation formula asserts that

(5.4) Kt = Pt −
∫ t

0

(Kt−s −Kt)V Ps ds−Kt

∫ t

0

V Ps ds.

Let f ∈ H1(R2). Then

Kt(I − VΔ−1)f = Ptf +Kt

∫ ∞

t

V Psf ds+

∫ t

0

(Kt −Kt−s)V Psf ds

= Ptf +Qtf +Rtf + Stf,

(5.5)

where

Qt = Kt

∫ ∞

t

V Ps ds,

Rt =

∫ t/2

0

(Kt −Kt−s)V Ps ds,

St =

∫ t

t/2

(Kt −Kt−s)V Ps ds.
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Lemma 5.1. There exists a constant C > 0 such that, for every H1(R2)-atom a,
one has

(5.6)
∥∥ sup

0<t≤4
|Qta|

∥∥
L1 ≤ C,

∥∥ sup
0<t≤4

|Rta|
∥∥
L1 ≤ C,

∥∥ sup
0<t≤4

|Sta|
∥∥
L1 ≤ C.

Proof. Let a be a classical H1(R2)-atom associated with a ball B(x0, r). Denote

M0f(x) = sup
0<t≤4

Pt|f |(x).

Clearly, sup0<t≤4 Kt|f |(x) ≤ M0f(x). Using (5.3), we get

(5.7) sup
0<t≤4

|Qta(x)| ≤ CM0χB(0,1)(x).

Similarly, for 0 < t ≤ 4, we have

|Rta(x)| ≤ Kt

(∫ t/2

0

V |Psa| ds
)
(x) +

∫ t/2

0

Kt−sV |Psa|(x) ds

≤ CM0χB(0,1)(x) + C

∫ t/2

0

Kt/2V |Psa|(x) ds
≤ C′ M0χB(0,1)(x).

(5.8)

To deal with St we apply (5.2) and obtain∣∣∣∣∣
∫ t

t/2

Kt−sV Psa(x) ds

∣∣∣∣∣ ≤
{
C
∫ t

t/2(Kt−sV )(x)r−2 ds if t < r2,

C
∫ t

t/2(Kt−sV )(x)s−3/2r ds if t ≥ r2,

≤ CM0χB(0,1)(x).

(5.9)

Similarly to (5.8), by the use of (5.3), we get

(5.10)

∣∣∣∣∣
∫ t

t/2

KtV Psa(x) ds

∣∣∣∣∣ ≤ CM0χB(0,1)(x).

Now the lemma follows from (5.7)–(5.10) and from the fact that M0 maps χB(0,1)

into L1. �

Lemma 5.2. There exists a constant C > 0 such that, for every classical H1(R2)-
atom a associated with a ball B(x0, r), one has∥∥∥ sup

t>max(r2,4)

|Qta|
∥∥∥
L1

≤ C,∥∥∥ sup
t>max(r2,4)

|Rta|
∥∥∥
L1

≤ C,∥∥∥ sup
t>max(r2,4)

|Sta|
∥∥∥
L1

≤ C.

(5.11)
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Proof. From (5.2), for t > max(r2, 4), we have

(5.12) |Qta(x)| ≤ CKt

(∫ ∞

0

V rs−3/2 ds

)
(x) ≤ Crt−1/2KtV (x).

In order to deal with Rt we note that for 0 < s < t/2 one has

(5.13) |Kt(x, z)−Kt−s(x, z)| ≤ C
s

t2
exp(−c|x− z|/t1/2) = s

t
φt(x− z).

Hence, by (5.2), we obtain

|Rta(x)| ≤
∫ r2/2

0

∫
R2

s

t
φt(x − z)V (z)|Psa(z)| dz ds

+

∫ t/2

r2/2

∫
R2

s

t
φt(x − z)V (z)|Psa(z)| dz ds

≤
∫ r2/2

0

∫
R2

s

t
φt(x − z)V (z)r−2 dz ds

+

∫ t/2

r2/2

∫
R2

s

t
φt(x − z)V (z)rs−3/2 dz ds

≤ C r t−1/2 φt ∗ V (x) + C t−1/2 φt ∗ V (x).

(5.14)

We now turn to estimating Sta. Applying (5.2) we get∣∣∣∣∣
∫ t

t/2

Kt−sV Psa(x)

∣∣∣∣∣ ≤ C

∫ t

t/2

∫
R2

Kt−s(x, z)V (z)rs−3/2 dz ds

≤ C
r

t3/2

∫ t/2

0

∫
R2

Ks(x, z)V (z) dz ds

= C
r

t3/2

∫ 2

0

(KsV )(x) ds + C
r

t3/2

∫ t/2

2

(KsV )(x) ds

≤ C t−1 M0V (x) + C
r

t3/2

∫ t/2

2

(KsV )(x) ds.

(5.15)

Set

S(x) = sup
t>max(r2,4)

r

t3/2

∫ t/2

2

(KsV )(x) ds.

If |x| ≤ 2, then we use (2.12) and get

S(x) ≤ C sup
t>max(r2,4)

r

t3/2

∫ t/2

2

s−1(ln s)−2 ds ≤ Cr(1 + r)−3.(5.16)
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If 2 ≤ |x| ≤ max(r, 2), then

S(x) ≤ C sup
t>max(r2,4)

( r

t3/2

∫ |x|

2

(KsV )(x) ds+
r

t3/2

∫ t/2

|x|
(KsV )(x) ds

)
≤ C sup

t>max(r2,4)

( r

t3/2

∫ |x|

2

s−1e−c|x|2/s ds+
r

t3/2

∫ t/2

|x|

ln |x|
s(ln s)2

ds
)

≤ C e−c|x| + C sup
t>max(r2,4)

r

t3/2
ln |x|

( 1

ln |x| −
1

ln t

)
≤ C e−c|x| + C (1 + r)−2.

(5.17)

Finally, if |x| > max(r, 2), then

S(x) ≤ C sup
|x|2>t>max(r2,4)

r

t3/2

∫ t/2

2

KsV (x) ds+ C sup
t>|x|2

r

t3/2

∫ t/2

2

KsV (x) ds

≤ C sup
|x|2>t>max(r2,4)

C
r

t3/2

∫ t

2

sN−1

|x|2N ds

+ C sup
t>|x|2

r

t3/2

∫ |x|

2

KsV (x) ds+ C sup
t>|x|2

r

t3/2

∫ t/2

|x|
KsV (x) ds

≤ C
r

|x|3 + C sup
t>|x|2

r

t3/2

∫ |x|

2

sN−1

|x|2N ds+ C sup
t>|x|2

r

t3/2

∫ t/2

|x|

ln |x|
s(ln s)2

ds

≤ C
r

|x|3 .

(5.18)

The estimates for supt>max(r2,4) |
∫ t

t/2
KtV Psa ds| are similar to those we have

provided for Qt (see (5.12)). Observe that∥∥∥ sup
t>max(r2,4)

r t−1/2 φt ∗ V (x)
∥∥∥
L1(R2)

≤ C.

Hence, taking together (5.12)–(5.18) we obtain the lemma. �

Proof of (5.1). It suffices to prove that ‖MLb‖L1 ≤ C for b being any H1
w, at-atom.

If an atom b is associated with a ball B(x0, r), then, from (1.2) one easily concludes
that ‖ sup0<t≤r2 |Ktb|‖L1 ≤ C. Thus there remains only the case t > r2. To this
end, we note that by Proposition 4.2 it is enough to prove that ‖ supt>r2 |Kt(I −
VΔ−1)a|‖L1 ≤ C for every classical H1(R2)-atom a. This is a direct consequence
of (5.5), and Lemmas 5.1 and 5.2. �

6. Atomic decomposition

The goal of this section is to prove the first inequality in (1.10) of Theorem 1.1,

(6.1) ‖f‖H1
w, at

≤ C‖MLf‖L1 ,

with a constant C > 0 independent of f . For this purpose we shall use results
about Hardy spaces associated with Schrödinger operators proved in [15].
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Let {Tt}t>0 be a semigroup of linear operators generated by a Schrödinger
operator L = Δ− V on R

d, where V is a nonnegative locally integrable potential.
Let M ≥ 1 be a positive integer. A function ã ∈ L1(Rd) is called a (1, 2,M)-atom

associated with L (see Section 2 of [15]) if there exists a function b̃ which belongs
to the domain of the operator LM considered on L2(Rd) and a ball B = B(x0, rB)
such that

(i) ã = LM b̃;

(ii) suppLk b̃ ⊂ B, k = 0, 1, . . . ,M ;

(iii) ‖Lk b̃‖L2(Rd) ≤ r2M−2k
B |B|−1/2, k = 0, 1, . . . ,M .

The atomic norm ‖f‖H1
L, at, M

is defined by

‖f‖H1
L,at,M

= inf
{ ∞∑

j=1

|λj |
}
,

where the infimum is taken over all representations f =
∑∞

j=1 λj ãj , where λj ∈ C

and the aj are (1, 2,M)-atoms. The following atomic decomposition was shown in
Theorem 8.2 of [15]. For every integer M ≥ 1 there is a constant CM > 0 which
depends on M and d such that

(6.2) C−1
M ‖f‖H1

L,at,M
≤ ‖MLf‖L1(Rd) ≤ CM‖f‖H1

L,at,M
.

Using (6.2) we shall prove another atomic decomposition for elements of the
Hardy space H1 associated with L. We say that a function a is a generalized (1, q)-
atom (1 < q ≤ ∞) for H1

q,L,at if there exists a function b and a ball B = B(x0, rB)
such that

(i) suppb ⊂ B;

(ii)
∥∥b∥∥

Lq(Rd)
≤ |B|1/q−1;

(iii) a = (I − Tr2B
)b.

The norm ‖f‖H1
q,L,at

is defined by

‖f‖H1
q,L,at

= inf
{∑

j

|λj | : f =
∑
j

λjaj

}
,

where the infimum is taken over all decompositions f =
∑

j λjaj , λj ∈ C, and
the aj are generalized (1, q)-atoms.

Proposition 6.1. There is a constant Cq such that

(6.3) ‖MLa‖L1(Rd) ≤ Cq.

for every generalized (1, q)-atom a.
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Proof. Using standard arguments (see, e.g., [13]) we have that there is a con-
stant Cq such that∥∥∥ sup

0<t<r2B

|Tta(x)|
∥∥∥
L1(dx)

≤ 2
∥∥∥ sup

0<t<2r2B

|Ttb(x)|
∥∥∥
L1(dx)

≤ Cq

for every generalized (1, q)-atom a.

We now consider supt>r2B
|Kta(x)|. Using the functional calculus for Schrödin-

ger operators, see e.g. [14], one gets ‖L2Tt‖L1(Rd)→L1(Rd) ≤ Ct−2. Hence,

sup
t≥r2B

|Tta(x)| = sup
t≥r2B

∣∣(Tt+r2B
− Tt)b(x)

∣∣ = sup
t≥r2B

∣∣∣ ∫ t+r2B

t

LKsb(x) ds
∣∣∣

= sup
t≥r2B

∣∣∣ ∫ t+r2B

t

∫ ∞

s

L2Kub(x) du ds
∣∣∣

≤ sup
t≥r2B

∫ t+r2B

t

∫ ∞

r2B

∣∣L2Kub(x)
∣∣ du ds = r2B

∫ ∞

r2B

∣∣L2Kub(x)
∣∣ du

and, consequently, ∥∥ sup
t≥r2B

|Tta(x)|
∥∥
L1(dx)

≤ C.

�

Lemma 6.2. There is a constant C > 0 such that

(6.4) ‖f‖H1
∞,L,at

≤ C‖MLf‖L1(Rd).

Proof. Assume that ‖MLf‖L1(Rd) < ∞. Then, by virtue of (6.2),

(6.5) f =
∑
j

λj ãj ,
∑
j

|λj | ≤ C0‖MLf‖L1(Rd),

where the ãj are (1, 2, 1)-atoms.

Let ã be a (1, 2, 1)-atom. By definition there is a function b̃ and a ball B =
B(x0, rB) such that

ã = Lb̃, supp b̃ ⊂ B(x0, rB), and ‖Lkb̃‖L2(Rd) ≤ r2−2k
B |B|−1/2, k = 0, 1.

Set
g = r−2

B ϕ(r2BL)̃b,
where ϕ(λ) = λe−λ(1−e−λ)−1. Obviously, ϕ ∈ S([0,∞)) and ã = (I−Tr2B

)(ã+g).

By [14] the integral kernel ϕ(r2BL)(x, y) of the operator ϕ(r2BL) satisfies

(6.6) |ϕ(r2BL)(x, y)| ≤ cNr−d
B

(
1 +

|x− y|
rB

)−N

.
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Hence,

(6.7) |g(x)| ≤ CNr−d
B

(
1 +

|x− x0|
rB

)−N

.

One can easily conclude from (6.7) that g can be written as

(6.8) g =
∑
i

μibi,
∑
i

|μi| ≤ C′
0,

where each bi is supported by a ball Bi = B(yi, rB), ‖bi‖L∞ ≤ |Bi|−1 and the
constant C′

0 is independent of ã. Now let A = {x ∈ B : |ã(x)| > ε−1|B|−1}, where
ε > 0 is a small constant which will be determined later. By the Tchebychev
inequality, |A| ≤ ε2|B|. Set a0 = ã(x)χB\A(x) and a∞(x) = ã(x)χA(x). We have

that ‖a0‖L∞ ≤ ε−1|B|−1 and ‖a∞‖L3/2(Rd) ≤ ε1/3|B|−1/3. Proposition 6.1 implies

that ‖ML(I − Tr2B
)a∞‖L1 ≤ C3/2ε

1/3. Thus, using (6.8), we get

ã =
(
(I − Tr2B

)a0 +
∑
i

μi(I − Tr2B
)b̃i

)
+ (I − Tr2B

)a∞ := h1 + h2 ,(6.9)

with
‖h1‖H1

∞,L,at
≤ max(ε−1, C′

0), ‖MLh2‖L1(Rd) ≤ C3/2ε
1/3.

Thanks to (6.5) and (6.9), we decompose

(6.10) f = f1 + f1

with

‖f1‖H1
∞,L,at

≤ C0 max(ε−1, C′
0)‖MLf‖L1(Rd),

‖MLf1‖L1(Rd) ≤ C0C3/2ε
1/3‖MLf‖L1(Rd).

Taking ε small enough we guarantee that C0C3/2ε
1/3 < 1/2. Now we use the

decomposition (6.10) for f1 instead of f and obtain f1 = f2 + f2 with

‖f2‖H1
∞,L,at

≤ C0 max(ε−1, C′
0)‖MLf1‖L1(Rd)

≤ C0 max(ε−1, C′
0)2

−1‖MLf‖L1(Rd),

‖MLf2‖L1(Rd) ≤ C0C3/2ε
1/3‖MLf1‖L1(Rd) ≤ 2−2‖MLf‖L1(Rd).

Iterating this procedure we get the desired decomposition (6.4). �

Proof of (6.1). According to Lemma 6.2 it suffices to prove that every generalized
(1,∞)-atom a = (I − Tr2)b can be written as

a =
∑
j

λjbj ,

where the bj are H1
w, at-atoms and

∑
j |λj | ≤ C.
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Let B = B(x0, r) be a ball such that suppb ⊂ B, ‖b‖L∞ ≤ |B|−1. Then∫
R2

a(x)w(x) dx =

∫
R2

b(x)(I − Tr2)w(x) dx = 0,

because w is L-harmonic. Clearly,

|a(x)| ≤ Cr−2 exp(−|x− x0|/r).

Write 2kB = B(x0, 2
kr) and set

ck = −w(2kB)−1

∫
(2kB)c

a(x)w(x) dx, k = 0, 1, 2 . . . ;

b0 = (a− c0)χB, bk = ck−1χ2k−1B − ckχ2kB + aχ2kB\2k−1B.

Then a =
∑∞

j=0 bj . One can easily see, using the fact that w(x) dx is a doubling

measure, that each bj is a multiple of an H1
w, at-atom and ‖bj‖H1

w, at
≤ Cj−2, which

finishes the proof. �
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cana 15 (1999), no. 2, 279–296.
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