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Gradings on the exceptional Lie

algebras F4 and G2 revisited

Alberto Elduque and Mikhail Kochetov

Abstract. All gradings by abelian groups are classified on the following
algebras over an algebraically closed field F: the simple Lie algebra of type
G2 (charF �= 2, 3), the exceptional simple Jordan algebra (charF �= 2),
and the simple Lie algebra of type F4 (charF �= 2).

1. Introduction

Gradings on Lie algebras have been extensively used since the beginning of Lie
theory: the Cartan grading on a complex semisimple Lie algebra is the Zr-grading
(r being the rank) whose homogeneous components are the root spaces relative to
a Cartan subalgebra (which is the zero component); symmetric spaces are related
to Z2-gradings, Kac–Moody Lie algebras to gradings by a finite cyclic group, the
theory of Jordan algebras and pairs to 3-gradings on Lie algebras, etc.

In 1989, a systematic study of gradings on Lie algebras was started by Patera
and Zassenhaus [24]. Fine gradings (i.e., those that cannot be refined) by arbitrary
abelian groups on the classical simple complex Lie algebras other than D4 were
considered in [19]. The arguments there are computational and the problem of the
classification of fine gradings is not completely settled. The complete classification,
up to equivalence, of fine gradings on all classical simple Lie algebras (including D4)
over algebraically closed fields of characteristic 0 has recently been obtained in [17].
For any abelian group G, the classification of all G-gradings, up to isomorphism,
on the classical simple Lie algebras other than D4 over algebraically closed fields
of characteristic different from 2 has been achieved in [1] using methods developed
in [3], [6],[7], [4], [8], [9] and [2].

As for the exceptional simple Lie algebras, the classification of all gradings (up
to equivalence) for type G2 over an algebraically closed field of characteristic 0
was obtained independently in [12] and [5], using the results on gradings on the
Cayley algebras in [14]. Also, the classification of fine gradings (up to equiva-
lence) for type F4 over an algebraically closed field of characteristic 0 has recently
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been obtained in [13] (see also [11]). The method used in that work relies on the
fact that, under the stated assumptions on the ground field, any abelian group
grading on an algebra is the decomposition into common eigenspaces for some di-
agonalizable subgroup of the automorphism group of the algebra. It is shown that
any such subgroup is contained in the normalizer of a maximal torus of the auto-
morphism group. Starting from this point, the argument is quite technical, and
some computer-aided case-by-case analysis is used in [13]. Since the automorphism
groups of the simple Lie algebra of type F4 and of the exceptional simple Jordan
algebra (the Albert algebra) are isomorphic, in [13] the fine gradings on the Al-
bert algebra are computed as well. These methods are being currently used by
C. Draper and A. Viruel to study gradings on the simple Lie algebra of type E6.

The purpose of this paper is the classification of gradings on the simple Lie
algebras of typesG2 and F4 over algebraically closed fields of characteristic different
from 2 (and different from 3 for type G2, as there is no simple Lie algebra of typeG2

in characteristic 3). Actually, for G2 the situation is simple enough to obtain a
description of gradings without assuming the ground field algebraically closed.
Our arguments will differ essentially from the arguments in [12], [5], [13], which
depend heavily on the characteristic being 0. The idea is to classify gradings on
the Cayley algebra and on the Albert algebra first, and then use automorphism
group schemes to transfer the classification to the corresponding Lie algebras. All
gradings on the Cayley algebras over an arbitrary field were described in [14],
using, essentially, only the properties of the norm and trace. All gradings on the
Albert algebra over an algebraically closed field of characteristic different from 2
will be described here, using the well-known properties of this exceptional Jordan
algebra. In this way, not only the results on the gradings on the Albert algebra
in [13] will be extended to positive characteristic, but also the gradings will be
described intrinsically, according to structural properties of the Albert algebra
and the identity component of the grading. In particular, we obtain an interesting
model of the Albert algebra based on the fine Z×Z3

2-grading and the Cayley algebra
and another model based on the fine Z3

3-grading and the Okubo algebra – see (6.2)
and (6.4), respectively. Once this is done, general arguments using morphisms of
affine group schemes (already used in [1]) will be applied to show that any grading
on the simple Lie algebra of type G2 or F4 is induced from a grading on the Cayley
or the Albert algebra, respectively. Our desire to cover characteristic 3 for type F4

has forced us to extend some classical results which, to the best of our knowledge,
have appeared in the literature only assuming characteristic different from 2 and 3
(see Propositions 8.1 and 8.2).

In Section 2, we collect the basic definitions and properties related to grad-
ings, including their relationship with automorphism group schemes. Section 3 is
devoted to a review of the description of gradings on the Cayley algebras in [14]
in a way suitable for our purposes; we also obtain, for any abelian group G, a
classification of G-gradings up to isomorphism (over an algebraically closed field).
These results are applied in Section 4 to describe all gradings on central simple Lie
algebras of type G2 over an arbitrary field of characteristic different from 2 and 3,
and to classify the gradings up to equivalence and up to isomorphism, assuming
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the field algebraically closed. Then, in Section 5, the Albert algebra is described,
and some subgroups of its automorphism group are considered. Section 6 gives con-
structions of four fine gradings on the Albert algebra over an algebraically closed
field of characteristic different from 2 (one of them does not exist in characteris-
tic 3). In Section 7, these gradings are shown to exhaust the list of fine gradings,
up to equivalence. We also obtain, for any abelian group G, a classification of G-
gradings up to isomorphism. Finally, in Section 8, all gradings on the simple Lie
algebra of type F4 are classified under the same assumptions on the ground field.

Acknowledgment. The authors are indebted to the referee for the very detailed
revision of the manuscript.

2. Gradings

In this section, we state some basic definitions and facts concerning gradings on
(nonassociative) algebras. We also fix the notation that will be used throughout
the paper. The reader may consult [23] for a survey of results on gradings on Lie
algebras.

2.1. Some definitions

Let A be an algebra over a ground field F. A grading on A is a decomposition

Γ : A =
⊕
s∈S

As

of A into a direct sum of subspaces, called the homogeneous components, such that
for any s1, s2 ∈ S there exists s3 ∈ S with As1As2 ⊂ As3 . If 0 �= a ∈ As, we will
say that a is homogeneous of degree s and write deg a = s. Then:

• If A is finite-dimensional, let ni be the number of homogeneous components
of dimension i, i = 1, . . . , r, where r is the highest dimension that occurs.
(Hence dimA =

∑r
i=1 ini.) The type of Γ is the sequence (n1, n2, . . . , nr).

• Two gradings Γ : A =
⊕

s∈S As and Γ′ : A′ =
⊕

s′∈S′ A
′
s′ are said to be

equivalent if there exist an isomorphism ψ : A → A′ and a bijection α : {s ∈
S | As �= 0} → {s′ ∈ S′ | A′

s′ �= 0} such that for any s ∈ S we have
ψ(As) = A′

α(s).

• Let Γ and Γ′ be two gradings on A. The grading Γ is said to be a refinement
of Γ′ (or Γ′ a coarsening of Γ) if, for any s ∈ S, there exists s′ ∈ S′ such that
As ⊂ As′ . In other words, each homogeneous component of Γ′ is a (direct)
sum of some homogeneous components of Γ. A grading is called fine if it
admits no proper refinement.

• The grading Γ is said to be a group grading (respectively, an abelian group
grading) if there is a group (respectively, abelian group) G containing S such
that, for all s1, s2 ∈ S, we have As1As2 ⊂ As1s2 , with the multiplication of s1
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and s2 in G. Setting Ag := 0 if g /∈ S, we have

Γ : A =
⊕
g∈G

Ag where AgAh ⊂ Agh for all g, h ∈ G.

This is what is called a G-grading on A. A group grading (respectively,
abelian group grading) is said to be fine if it admits no proper refinement
in the class of group gradings (respectively, abelian group gradings). We
will also consider G-gradings on a vector space V , which are just direct sum
decompositions of the form V =

⊕
g∈G Vg.

• Given a G-grading Γ : V =
⊕

g∈G Vg, the subset {g ∈ G | Vg �= 0} of G
will be called the support of Γ and denoted by SuppΓ (or SuppV if the
grading is clear from the context). A subspace W ⊂ V is said to be graded if
W =

⊕
g∈GWg whereWg= Vg∩W . Then we can speak of the support ofW .

• Given a grading Γ : A =
⊕

s∈S As, we define the (abelian) group G0 gener-
ated by {s ∈ S | As �= 0} subject only to the relations s1s2 = s3 whenever
0 �= As1As2 ⊂ As3 . Then we obtain a G0-grading: A =

⊕
g∈G0

Ag where
Ag is the sum of the homogeneous components As such that the class of s
in G0 is g. In general, this is a coarsening of Γ. If Γ is a group grading (re-
spectively, an abelian group grading), then S imbeds in G0 and the grading
A =

⊕
g∈G0

Ag coincides with Γ. The group G0 has the following universal
property: given any (abelian) group grading A =

⊕
h∈H Ah that is a coars-

ening of Γ, there exists a unique homomorphism of groups α : G0 → H such
that Ah =

⊕
g∈α−1(h) Ag. The group G0 is called the universal (abelian)

group of Γ and denoted U(Γ). The universal (abelian) groups of two equiv-
alent gradings are isomorphic.

• Given aG-grading Γ : A =
⊕

g∈G Ag and a group homomorphism α : G→ H ,
we obtain an H-grading A =

⊕
h∈H Ah where Ah =

⊕
g∈α−1(h) Ag. This

H-grading will be denoted by αΓ and said to be induced by α from Γ. Clearly,
αΓ is a coarsening of Γ (not necessarily proper).

• Two G-gradings over the same group, Γ : A =
⊕

g∈G Ag and Γ′ : A′ =⊕
g∈G A′

g, are said to be isomorphic if there is an isomorphism ψ : A → A′

such that ψ(Ag) = A′
g for all g ∈ G. A G-grading Γ : A = ⊕g∈GAg and an

H-grading Γ′ : A′ = ⊕h∈HA′
h are said to be weakly isomorphic if there are

isomorphisms α : G → H and ψ : A → A′ such that, for all g ∈ G, we have
ψ(Ag) = A′

α(g). This is equivalent to saying that Γ′ is isomorphic to αΓ. It is
clear that weakly isomorphic gradings are equivalent, but the converse does
not hold in general. However, two equivalent (abelian) group gradings are
weakly isomorphic when considered as gradings by their universal (abelian)
groups.

• The automorphism group of Γ, denoted Aut(Γ), consists of all self-equivalences
of Γ, i.e., automorphisms of A that permute the components of Γ. The sta-
bilizer of Γ, denoted Stab(Γ), consists of all automorphisms of the graded
algebra A, i.e., automorphisms of A that leave each component of Γ in-
variant. The diagonal group of Γ, denoted Diag(Γ), is the subgroup of the
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stabilizer consisting of all automorphisms ϕ such that the restriction of ϕ to
any homogeneous component of Γ is the multiplication by a (nonzero) scalar.
The quotient group Aut(Γ)/ Stab(Γ), which is a subgroup of Sym(Supp Γ),
will be called the Weyl group of Γ and denoted by W (Γ). Each element of
W (Γ) extends to a unique automorphism of U(Γ), so W (Γ) can be regarded
as a subgroup of Aut(U(Γ)). For example, suppose A is a finite-dimensional
algebra over an algebraically closed field and T is a maximal torus in the
algebraic group Aut(A). Then the eigenspace decomposition Γ of A relative
to T is a X(T )-grading on A where X(T ) is the group of regular characters
of T . Let N(T ) be the normalizer of T in Aut(A) and let C(T ) be the cen-
tralizer. It is easy to see that T is the connected component of Diag(Γ),
Aut(Γ) is N(T ), and Stab(Γ) is C(T ). Hence W (Γ) is W (T ) := N(T )/C(T ).
This justifies our use of the term “Weyl group” for W (Γ).

Unless stated otherwise, the term grading in this paper will always refer to an
abelian group grading, and universal group to universal abelian group.

2.2. Gradings and automorphism group schemes

For background on group schemes the reader may consult [27] or Chapter VI of [22].

It is well-known that a G-grading Γ on a vector space V is equivalent to a
comodule structure ρΓ : V → V ⊗FG, which is defined by setting ρΓ(v) = v⊗ g
for all v ∈ Vg and g ∈ G. Since G is abelian, the Hopf algebra FG is commutative
and thus represents an affine group scheme, which we denote by GD. Affine group
schemes of this form are called diagonalizable. G can be identified with the group
of characters of GD, i.e., morphisms from GD to GL1. If V is finite-dimensional,
then ρΓ is equivalent to a morphism ηΓ : G

D → GL(V ), i.e., a linear representation
of GD on V . If we pick a homogeneous basis {v1, . . . , vn} in V , degΓ(vi) = gi,
then the comorphism of representing objects η∗Γ : F[Xij , det(Xij)

−1] → FG can be
written explicitly as follows: Xij 	→ δijgi, i, j = 1, . . . , n. In particular, ηΓ is a
closed imbedding if and only if η∗Γ is onto if and only if Supp Γ generates G.

If A is a finite-dimensional (nonassociative) algebra, then the automorphism
group scheme Aut(A) is defined as follows. For any unital commutative associative
F-algebra R, the tensor product A⊗R is an R-algebra, and we set

Aut(A)(R) := AutR(A⊗R).

Equivalently, Aut(A) is the subgroupscheme StabGL(A)(μ) where μ : A⊗A → A

is the multiplication map, which is to be regarded as an element of Hom(A⊗A,A)
where GL(A) acts in the standard way.

If Γ is a G-grading on an algebra A, then the multiplication map μ : A⊗A → A

is a morphism of GD-representations, which is equivalent to saying that GD sta-
bilizes μ, or that the image of ηΓ : G

D → GL(A) is a subgroupscheme of Aut(A).
Conversely, a morphism η : GD → Aut(A) gives rise to a G-grading Γ on the al-
gebra A such that ηΓ = η. For any unital commutative associative F-algebra R,
the action of R-points of GD by automorphisms of the R-algebra A⊗R can be
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written explicitly:

(2.1) (ηΓ)R(f)(x⊗ r) = x⊗ f(g)r for all x ∈ Ag, r ∈ R, g ∈ G, f ∈ Alg(FG,R).

A group homomorphism α : G→ H gives rise to a morphism αD : HD → GD.
Then ραΓ = (id⊗α) ◦ ρΓ implies that ηαΓ = ηΓ ◦ αD.

Now if B is another algebra and we have a morphism θ : Aut(A) → Aut(B),
then any G-grading Γ on A induces a G-grading on B via the morphism θ ◦
ηΓ : G

D → Aut(B). We will denote the induced grading by θ(Γ). Clearly,
θ(αΓ) = α(θ(Γ)).

The group Aut(A) of the F-points ofAut(A) acts by automorphisms ofAut(A)
via conjugation. Namely, ϕ ∈ Aut(A) defines a morphism Ad ϕ : Aut(A) →
Aut(A) as follows:

(2.2) (Ad ϕ)R(f) := (ϕ⊗ id) ◦ f ◦ (ϕ−1 ⊗ id) for all f ∈ AutR(A⊗R).

Comparing (2.1) and (2.2), we see that Ad ϕ(Γ) is the grading A =
⊕

g∈G ϕ(Ag).
To summarize:

Proposition 2.1. The G-gradings on A are in one-to-one correspondence with
the morphisms of affine group schemes GD → Aut(A). Two G-gradings are iso-
morphic if and only if the corresponding morphisms are conjugate by an element
of Aut(A). The weak isomorphism classes of gradings on A with the property that
the support generates the grading group are in one-to-one correspondence with the
Aut(A)-orbits of diagonalizable subgroupschemes in Aut(A).

Let Γ be an abelian group grading on A. Define the subgroupscheme Diag(Γ)
of Aut(A) as follows:

Diag(Γ)(R) := {f ∈ AutR(A⊗R) | f |Ag ⊗R ∈ R×idAg ⊗R for all g ∈ G}.
Since Diag(Γ) is a subgroupscheme of a torus in GL(A), it is diagonalizable, so
Diag(Γ) = UD for some finitely generated abelian group U . If Γ is realized as a
G-grading, then (2.1) shows that the image of the imbedding ηΓ : G

D → Aut(A) is
a subgroupscheme of Diag(Γ). The imbedding GD → Diag(Γ) corresponds to an
epimorphism U → G. We conclude that U satisfies the definition of the universal
abelian group of Γ and hence Diag(Γ) = U(Γ)D.

Let Γ and Γ′ be two abelian group gradings on A and let Q = Diag(Γ) and
Q′ = Diag(Γ′). Now Γ is a refinement of Γ′ if and only if Γ′ = αΓ for some
epimorphism α : U(Γ) → U(Γ′) if and only if ηΓ′ = ηΓ ◦ αD. Hence we obtain

Γ′ is a coarsening of Γ ⇔ Q′ is a subgroupscheme of Q.

It follows that fine gradings correspond to maximal diagonalizable subgroup-
schemes of Aut(A). To summarize:

Proposition 2.2. The equivalence classes of fine gradings on A are in one-to-one
correspondence with the Aut(A)-orbits of maximal diagonalizable subgroupschemes
in Aut(A).
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As a consequence of the descriptions in Propositions 2.1 and 2.2, we obtain the
following results, which will be used to transfer the classification of gradings from
the algebra of octonions to the simple Lie algebra of type G2 and from the Albert
algebra to the simple Lie algebra of type F4.

Theorem 2.3. Let A and B be finite-dimensional (nonassociative) algebras. As-
sume we have a morphism θ : Aut(A) → Aut(B). Then, for any abelian group G,
we have a mapping, Γ → θ(Γ), from G-gradings on A to G-gradings on B. If Γ
and Γ′ are isomorphic (respectively, weakly isomorphic), then θ(Γ) and θ(Γ′) are
isomorphic (respectively, weakly isomorphic).

Proof. We have already defined θ(Γ). Let ϕ ∈ Aut(A) and ψ = θF(ϕ). Then the
following diagram commutes:

Aut(A)
θ ��

Adϕ

��

Aut(B)

Adψ

��

Aut(A)
θ �� Aut(B)

This follows immediately from (2.2) and the equation θR(ϕ⊗ id) = ψ⊗ id, which
is a consequence of the naturality of θ.

Now if ϕ sends Γ to Γ′ (respectively, αΓ to Γ′), then ψ sends θ(Γ) to θ(Γ′)
(respectively, θ(αΓ) = α(θ(Γ)) to θ(Γ′)). �

Theorem 2.4. Let A and B be finite-dimensional (nonassociative) algebras. As-
sume we have an isomorphism θ : Aut(A) → Aut(B). Let Γ be a G-grading on A

such that G is its universal abelian group. Then Γ is a fine abelian group grading
if and only if so is θ(Γ). Also, two such fine abelian group gradings, Γ and Γ′, are
equivalent if and only if θ(Γ) and θ(Γ′) are equivalent.

Proof. If Γ is fine, then the image of ηΓ : G
D → Aut(A) is a maximal diagonaliz-

able subgroupscheme of Aut(A). Hence the image of ηθ(Γ) = θ ◦ ηΓ is a maximal
diagonalizable subgroupscheme of Aut(B) and so θ(Γ) is fine. It remains to recall
that, if universal groups are used, two fine gradings are equivalent if and only if
they are weakly isomorphic, so we can apply Theorem 2.3. �

2.3. Gradings on Lie algebras of derivations

Recall that, for any algebraic affine group scheme G, we have the adjoint represen-
tation Ad : G → GL

(
Lie(G)

)
, see e.g. Section 21 of [22]. The differential of Ad

is ad : Lie(G) → gl
(
Lie(G)

)
, the adjoint representation of Lie(G). The image

of Ad is contained in the subgroupscheme Aut(Lie(G)) of GL
(
Lie(G)

)
, and the

image of ad is contained in Der
(
Lie(G)

)
.

For G = Aut(A), we have Lie(G) = Der(A). Hence, given a G-grading Γ
on A, we get an induced G-grading Ad (Γ) on Der(A) by Theorem 2.3. Since
Ad in this case is the composition of the closed imbedding Aut(A) → GL(A) and
the standard action GL(A) → GL(Hom(A,A)), the grading Ad (Γ) is given by the
standard FG-comodule structure on Hom(A,A), which is determined by the requi-
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rement that the evaluation map, ev : Hom(A,A)⊗A → A, be a homomorphism
of FG-comodules. This implies that the induced G-grading Ad (Γ) on Der(A) is
the natural one: Der(A) =

⊕
g∈G Der(A)g where

Der(A)g = {d ∈ Der(A) | d(Ah) ⊂ Agh for all h ∈ G}.
Let L = Der(A). If we know that Ad : Aut(A) → Aut(L) is an isomorphism,
then every G-grading on L is induced from a unique G-grading on A in this way,
and we can transfer the classification of gradings from A to L via Theorems 2.3
and 2.4.

Let F be the algebraic closure of the ground field F. In order for Ad to be an
isomorphism of affine group schemes, the following conditions are necessary:

1) Ad
F
: Aut

F
(A⊗F) → Aut

F
(L⊗F) is a bijection;

2) ad : L → Der(L) is a bijection.

If charF = 0, then condition 1) alone is sufficient. If charF = p, even the
combination of both conditions does not imply, in general, that Ad is an isomor-
phism. Recall that an algebraic affine group scheme G is smooth if and only if
dimLie(G) = dimG (see e.g. Section 21 of [22]). The dimension of G coincides
with the dimension of the algebraic group G(F). Hence, for G = Aut(A), smooth-
ness is equivalent to the condition dimDer(A) = dimAut

F
(A⊗F). If Aut(A) is

smooth, then the combination of 1) and 2) does imply that Ad is an isomorphism of
affine group schemes – see e.g. (22.5) in [22] and observe that, under conditions 1)
and 2), the smoothness of Aut(A) implies the smoothness of Aut(L).

3. Gradings on Cayley algebras

The aim of this section is to present the known results about gradings on Cayley
algebras in a way that will be convenient for our study of gradings on the Albert
algebra. We also obtain, for an arbitrary abelian group G, a classification of
G-gradings up to isomorphism on the (unique) Cayley algebra over an algebraically
closed field. Throughout this section, the ground field F will be arbitrary, unless
stated otherwise.

A Cayley algebra C over F is an eight-dimensional unital composition algebra.
Then, there exists a nondegenerate quadratic form (the norm) n : C → F such that
n(xy) = n(x)n(y) for any x, y ∈ C. Here the norm being nondegenerate means
that its polar form: n(x, y) = n(x+ y)−n(x)−n(y) is a nondegenerate symmetric
bilinear form.

The next result summarizes some of the well-known properties of these algebras
(see Chapter VIII of [22] and Chapter 2 of [28]):

Proposition 3.1. Let C be a Cayley algebra over F. Then:

1) Any x ∈ C satisfies the degree 2 Cayley–Hamilton equation:

(3.1) x2 − n(x, 1)x+ n(x)1 = 0.
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2) The map x 	→ x̄ = n(x, 1)1 − x is an involution, called the standard con-
jugation, of C and for any x, y, z ∈ C, xx̄ = x̄x = n(x)1 and n(xy, z) =
n(y, x̄z) = n(x, zȳ) hold.

3) If the norm represents 0 –which is always the case if F is quadratically
closed –, then there is a “good basis” {e1, e2, u1, u2, u3, v1, v2, v3} of C con-
sisting of isotropic elements, such that n(e1, e2) = n(ui, vi) = 1 for any
i = 1, 2, 3 and n(er, ui) = n(er, vi) = n(ui, uj) = n(ui, vj) = n(vi, vj) = 0
for any r = 1, 2 and 1 ≤ i �= j ≤ 3, whose multiplication table is shown in
Figure 1. In particular, up to isomorphism, there is a unique Cayley algebra
whose norm represents 0, which is called the split Cayley algebra.

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0

e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 −e1 0 0

u2 0 u2 −v3 0 v1 0 −e1 0

u3 0 u3 v2 −v1 0 0 0 −e1
v1 v1 0 −e2 0 0 0 u3 −u2
v2 v2 0 0 −e2 0 −u3 0 u1

v3 v3 0 0 0 −e2 u2 −u1 0

Figure 1. Multiplication table of the Cayley algebra

A “good basis” {e1, e2, u1, u2, u3, v1, v2, v3} of the split Cayley algebra C gives
a Z2-grading with

C(0,0) = Fe1 ⊕ Fe2,
C(1,0) = Fu1, C(−1,0) = Fv1,
C(0,1) = Fu2, C(0,−1) = Fv2,
C(1,1) = Fv3, C(−1,−1) = Fu3.

This is called the Cartan grading on the split Cayley algebra, and Z2 is its universal
grading group.

Remark 3.2. The Cartan grading is fine as a group grading, but it is not so
as a general grading, because the decomposition C = Fe1 ⊕ Fe2 ⊕ Fu1 ⊕ Fu2 ⊕
Fu3 ⊕ Fv1 ⊕ Fv2 ⊕ Fv3 is a proper refinement. This refinement is not even a
semigroup grading (because (u1u2)u3 = −e2 and u1(u2u3) = −e1 are in different
homogeneous subspaces).

Let Q be a proper four-dimensional subalgebra of the Cayley algebra C such
that n|Q is nondegenerate, and let u be any element in C \ Q with n(u) = α �= 0.
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Then C = Q⊕ Qu and we get:

n(a+ bu) = n(a) + αn(b),

(a+ bu)(c+ du) = (ac− αd̄b) + (da+ bc̄)u,

for any a, b, c, d ∈ Q. Then C is said to be obtained from Q by means of the Cayley–
Dickson doubling process and we write C = CD(Q, α). This gives a Z2-grading on
C with C0̄ = Q and C1̄ = Qu.

The subalgebra Q above is a quaternion subalgebra which in turn can be ob-
tained from a quadratic subalgebra K through the same process Q = CD(K, β) =
K⊕Kv, and this gives a Z2-grading of Q and hence a Z2

2-grading of C = K⊕Kv⊕
Ku⊕ (Kv)u. We write here C = CD(K, β, α).

If charF �= 2, then K can be obtained in turn from the ground field: K =
CD(F, γ), and a Z3

2-grading of C appears. Here we write C = CD(F, γ, β, α).
These gradings by Zr

2, r = 1, 2, 3, will be called gradings induced by the Cayley–
Dickson doubling process. The groups Zr

2 are their universal grading groups.

The following result describes all possible gradings on Cayley algebras:

Theorem 3.3 ([14]). Any abelian group grading on a Cayley algebra is, up to
equivalence, either a grading induced by the Cayley–Dickson doubling process or a
coarsening of the Cartan grading on the split Cayley algebra.

Remark 3.4. The number of inequivalent gradings induced by the Cayley–Dickson
doubling process depends on the ground field. Actually, the number of inequiva-
lent Z2-gradings coincides with the number of isomorphism classes of quaternion
subalgebras Q of the Cayley algebra.

For an algebraically closed field F, this is one. Over R there are two non
isomorphic Cayley algebras, the classical division algebra of the octonions O =
CD(R,−1,−1,−1) and the split Cayley algebra Os = CD(R, 1, 1, 1). Any quater-
nion subalgebra of O is isomorphic to H = CD(R,−1,−1), while Os contains
quaternion subalgebras isomorphic to H and to M2(R).

On the other hand, for two different prime numbers p, q congruent to 3
modulo 4, it is easy to check that the quaternion subalgebras Qp = CD

(
Q(i), p

)
and Qq = CD

(
Q(i), q

)
are not isomorphic (i2 = −1). Consider the division algebra

Q = CD
(
Q(i),−1

)
. The split Cayley algebra over Q is isomorphic to C = CD(Q, 1),

and by the classical Four Squares Theorem, Q⊥ contains elements whose norm is −p
for any prime number p. Therefore C contains a quaternion subalgebra isomor-
phic to Qp for any prime number p, and hence the split Cayley algebra over Q is
endowed with infinitely many non equivalent Z2-gradings.

Over an algebraically closed field there is a unique Zr
2-grading, up to equiv-

alence, for any r = 1, 2, 3. Over R, O is endowed with a unique Zr
2-grading

(r = 1, 2, 3) up to equivalence, while Os is endowed with two inequivalent Z2

and Z2
2-gradings, but a unique Z3

2-grading. �

Up to symmetry, any coarsening of the Cartan grading is obtained as follows
(with gi = deg(ui), i = 1, 2, 3, which satisfy g1 + g2 + g3 = 0):
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g1 = 0 Then we obtain a “3-grading” by Z: C = C−1 ⊕ C0 ⊕ C1, with C0 =

span {e1, e2, u1, v1}, C1 = span {u2, v3}, C−1 = span {u3, v2}. All proper
coarsenings have a 2-elementary grading group.

g1 = g2 Here we obtain a “5-grading” by Z, with C−2 = Fu3, C−1 = span {v1, v2},
C0 = span {e1, e2}, C1 = span {u1, u2} and C2 = Fv3, which has two proper
coarsenings whose grading groups are not 2-elementary:

g1 = g2 = g3 This gives a Z3-grading with C0̄ = span {e1, e2}, and C1̄ =

span {u1, u2, u3}, C2̄ = span {v1, v2, v3}.
g3 = −g3 This gives a Z4-grading.

g1 = −g1 Here we get a Z× Z2-grading

C = C(0,0̄) ⊕ C(1,0̄) ⊕ C(−1,0̄) ⊕ C(0,1̄) ⊕ C(−1,1̄) ⊕ C(1,1̄)

� � � � � �

span {e1, e2} Fu2 Fv2 span {u1, v1} Fu3 Fv3

Any of its coarsenings is a coarsening of the previous gradings.

g1 = −g2 In this case g3 = 0, and this is equivalent to the grading obtained with
g1 = 0.

Thus the next result follows:

Theorem 3.5 ([14]). Up to equivalence, the nontrivial abelian group gradings on
the split Cayley algebra are:

1. The Zr
2-gradings induced by the Cayley–Dickson doubling process, r = 1, 2, 3

(charF �= 2 for r = 3).

2. The Cartan grading by Z2.

3. The 3-grading: C0 = span {e1, e2, u1, v1}, C1 = span {u2, v3}, and C−1 =
span {u3, v2}.

4. The 5-grading: C0 = span {e1, e2}, C1 = span {u1, u2}, C2 = span {v3},
C−1 = span {v1, v2}, and C−2 = span {u3}.

5. The Z3-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2, u3}, and C2̄ =
span {v1, v2, v3}.

6. The Z4-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2}, C2̄ = span {u3, v3},
and C3̄ = span {v1, v2}.

7. The Z× Z2-grading.

In particular, over an algebraically closed field of characteristic not two, there
are 9 equivalence classes of nontrivial gradings on the (unique) Cayley algebra.

Corollary 3.6. Let Γ be a fine abelian group grading on the Cayley algebra C over
an algebraically closed field F. Then Γ is equivalent either to the Cartan grading
or to the Z3

2-grading induced by the Cayley–Dickson doubling process. The latter
grading does not occur if charF = 2.
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Let G be an abelian group. Assuming F algebraically closed, we can classify
all G-gradings on C up to isomorphism. Let Γ1

C be the Cartan grading and, if
charF �= 2, let Γ2

C be the Z3
2-grading induced by the Cayley–Dickson doubling

process. We will need the following result:

Theorem 3.7 ([18]). Identifying Supp Γ1
C \ {0} with the short roots of the root

system Φ of type G2, we have W (Γ1
C) = AutΦ, W (Γ2

C) = Aut(Z3
2).

To state our classification theorem, we introduce the following notation, where
we will use multiplicative notation for the grading group:

• Let γ = (g1, g2, g3) be a triple of elements in G with g1g2g3 = e. Denote by
Γ1
C(G, γ) the G-grading on C induced from Γ1

C by the homomorphism Z2 → G
sending (1, 0) to g1 and (0, 1) to g2. In other words, we set deg ej = e, j = 1, 2,
deg ui = gi and deg vi = g−1

i , i = 1, 2, 3, for some “good basis” of C. For two
such triples, γ and γ′, we will write γ ∼ γ′ if there exists π ∈ Sym(3) such
that g′i = gπ(i) for all i = 1, 2, 3 or g′i = g−1

π(i) for all i = 1, 2, 3.

• Let H ⊂ G be a subgroup isomorphic to Z3
2. Then Γ2

C may be regarded
as a G-grading with support H . We denote this G-grading by Γ2

C(G,H).
(SinceW (Γ2

C) = Aut(Z3
2), all induced gradings αΓ2

C for various isomorphisms
α : Z3

2 → H are isomorphic, so Γ2
C(G,H) is well-defined.)

Theorem 3.8. Let C be the Cayley algebra over an algebraically closed field and
let G be an abelian group. Then any G-grading on C is isomorphic to some Γ1

C(G, γ)
or Γ2

C(G,H), but not both. Also,

• Γ1
C(G, γ) is isomorphic to Γ1

C(G, γ
′) if and only if γ ∼ γ′;

• Γ2
C(G,H) is isomorphic to Γ2

C(G,H
′) if and only if H = H ′.

Proof. It follows from Corollary 3.6 that any G-grading is isomorphic to αΓ1
C for

some α : Z2 → G or to αΓ2
C for some α : Z3

2 → G. In the second case, if α is not
one-to-one, then αΓ2

C is isomorphic to some βΓ1
C. Γ

1
C(G, γ) and Γ2

C(G,H) cannot be
isomorphic, because in the first case dimCe ≥ 2 and in the second case dimCe = 1.

If γ ∼ γ′, then there is an automorphism in Aut(Γ1
C) that sends Γ1

C(G, γ) to
Γ1
C(G, γ

′). Conversely, if ϕ is an automorphism of C sending Γ1
C(G, γ) to Γ1

C(G, γ
′),

then, in particular, ϕ maps Ce onto C′
e. If Ce = C, there is nothing to prove. Oth-

erwise Ce is isomorphic to M2(F) or F× F, because it is a composition subalgebra
of C (alternatively, one may examine the cases in Theorem 3.5). If Ce is isomorphic
to M2(F), then one of gi is e. Say, g3 = e and hence g2 = g−1

1 . The support of
the grading then consists of e and g±1

1 . Applying the same argument to g′i, we
see that γ ∼ γ′. Finally, consider the case dimCe = 2. Then Ce = C′

e, since
both are spanned by the idempotents e1 and e2. Hence ϕ either fixes e1 and e2 or
swaps them. In the first case, ϕ preserves the subspaces U = Fu1 +Fu2+Fu3 and
V = Fv1+Fv2+Fv3. Looking at the support of U and the dimensions of the homo-
geneous components in U, we conclude that (g′1, g

′
2, g

′
3) must be a permutation of

(g1, g2, g3). In the second case, ϕ swaps U and V and we conclude that (g′1, g
′
2, g

′
3)

must be a permutation of (g−1
1 , g−1

2 , g−1
3 ).
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Since H is the support of Γ2
C(G,H), an isomorphism between Γ2

C(G,H) and
Γ2
C(G,H

′) forces H = H ′. �

Note that γ ∼ γ′ if and only if the corresponding homomorphisms Z2 → G are
conjugate by W (Γ1

C) = AutΦ in its action on the group U(Γ1
C) = Z2. This is a

special case of the following general result.1

Proposition 3.9. Let A be a finite-dimensional algebra over an algebraically
closed field. Let T be a maximal torus in Aut(A). Let G be an abelian group
and let Γ and Γ′ be G-gradings induced by homomorphisms α : X(T ) → G and
α′ : X(T ) → G, respectively. Then Γ′ is isomorphic to Γ if and only if there exists
w ∈W (T ) such that α′(λ) = α(λw) for all λ ∈ X(T ).

Proof. The “if” part is clear. To prove the “only if” part, suppose Γ : A =⊕
g∈G Ag, Γ

′ : A =
⊕

g∈G A′
g, and there exists ϕ ∈ Aut(A) such that A′

g = ϕ(Ag)

for all g ∈ G. Let T ′ = ϕTϕ−1. It is a maximal torus in Aut(A). LetH = Stab(Γ′).
Then both T and T ′ are contained in H and thus are maximal tori in H . Therefore,
T and T ′ are conjugate in H , i.e., there exists ψ ∈ H such that ψT ′ψ−1 = T . Let
ϕ̃ = ψϕ. Then, by construction, we have ϕ̃T ϕ̃−1 = T and A′

g = ϕ̃(Ag) for all
g ∈ G. Hence we can take w to be the image of the element ϕ̃ ∈ N(T ) in the
quotient group W (T ) = N(T )/C(T ). �

4. Gradings on G2

The central simple Lie algebras of type G2 appear as the algebras of derivations
of the Cayley algebras. The gradings on the simple Lie algebra of type G2 over
an algebraically closed field of characteristic 0 were obtained independently in [12]
and [5], using the results on gradings on the (unique) Cayley algebra in [14].

In this section the gradings on the simple Lie algebras of type G2 will be
obtained over arbitrary fields of characteristic different from 2 and 3. Note that,
in characteristic 3, the Lie algebra of derivations of a Cayley algebra is not simple
(see e.g. [10]).

So let C be a Cayley algebra over a field F, charF �= 2, 3, and let g = Der(C).
Then we have the affine group scheme Aut(C) and the morphism Ad : Aut(C) →
Aut(g).

Let F be the algebraic closure of F. Then Aut
F
(C⊗F) is the simple algebraic

group of type G2. It is well-known that

Ad
F
: Aut

F
(C⊗F) → Aut

F
(g⊗F)

is bijective. Since any derivation of g is inner (see [25]), the differential

ad : g → Der(g)

is also bijective.

1The authors would like to thank Prof. Reichstein, University of British Columbia, Canada,
for a discussion that was instrumental in proving this result.
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Finally, since
dimAut

F
(C⊗F) = 14 = dimDer(C),

we conclude that Aut(C) is smooth. It follows that Ad : Aut(C) → Aut(g) is
an isomorphism of affine group schemes and hence Theorems 2.3 and 2.4 yield the
following result:

Theorem 4.1. Let C be a Cayley algebra over a field F, charF �= 2, 3. Then
the abelian group gradings on Der(C) are those induced by such gradings on C.
The algebras C and Der(C) have the same classification of fine gradings up to
equivalence and, for any abelian group G, the same classification of G-gradings up
to isomorphism.

If C is split, then g = Der(C) is the split simple Lie algebra of type G2, and
the Cartan grading on C induces the Cartan decomposition of g relative to a split
Cartan subalgebra. The latter will be called the Cartan grading on g.

Corollary 4.2. Let C be a Cayley algebra over a field F, charF �= 2, 3. Then any
abelian group grading on the simple Lie algebra g = Der(C) is, up to equivalence,
either a Zr

2-grading, r = 1, 2, 3, induced by the Cayley–Dickson doubling process
on C, or a coarsening of the Cartan grading on the split algebra g. In particu-
lar, if F is algebraically closed, then there are, up to equivalence, exactly two fine
abelian group gradings on g: the Cartan grading Γ1

g with universal group Z2 and
the Cayley–Dickson grading Γ2

g with universal group Z3
2.

Let Γ1
g(G, γ) and Γ2

g(G,H) be the G-gradings induced by Γ1
g and Γ2

g, respec-
tively, in the same way as Γ1

C(G, γ) and Γ2
C(G,H) are induced from Γ1

C and Γ2
C (see

Theorem 3.8).

Corollary 4.3. Let g be the simple Lie algebra of type G2 over an algebraically
closed field F, charF �= 2, 3. Let G be an abelian group. Then any G-grading on g
is isomorphic to some Γ1

g(G, γ) or Γ2
g(G,H), but not both. Also,

• Γ1
g(G, γ) is isomorphic to Γ1

g(G, γ
′) if and only if γ ∼ γ′;

• Γ2
g(G,H) is isomorphic to Γ2

g(G,H
′) if and only if H = H ′.

If one wants to obtain a classification of all abelian group gradings on Der(C)
up to equivalence, then one should be careful when applying Theorem 4.1, because
each grading on our list in Theorem 3.5 can be realized as a G-grading for many
different groups G.

For example, consider the 3-grading on the split Cayley algebra C in Theo-
rem 3.5(3):

C0 = span {e1, e2, u3, v3} , C1 = span {u1, v2} , C−1 = span {u2, v1} .
As a Z-grading it induces a 5-grading on Der(C), with Der(C)2 = span {Du1,v2} �=
0, where Da,b : c 	→ [[a, b], c] + 3

(
(ac)b − a(cb)

)
is the inner derivation defined

by a, b ∈ C (the linear span of the inner derivations fills Der(C)), so it has five
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different nonzero homogeneous components. Its type is (2, 0, 0, 3). However, up
to equivalence, this grading on C is also a Z3-grading, and as such it induces a
Z3-grading on Der(C) of type (0, 0, 0, 1, 2).

As a further example, the Cartan grading on the split Cayley algebra C can
be realized as a G-grading for any abelian group G containing two elements g1
and g2 such that the elements e, g1, g2, g1, g2, g

−1
1 , g−1

2 and (g1g2)
−1 are all

different. In particular, it can be obtained as a Z2
3-grading, with g1 = (1̄, 0̄) and

g2 = (0̄, 1̄). However, the induced Z2
3-grading on Der(C) is not equivalent to the

Cartan grading, as some of the nonzero root spaces coalesce in the Z2
3-grading.

Easy combinatorial arguments give all the gradings on Der(C) in terms of the
gradings on the Cayley algebra C in Theorem 3.5 (see Figure 1 of [23]):

Theorem 4.4. Let C be a split Cayley algebra over a field of characteristic diffe-
rent from 2 and 3. Up to equivalence, the nontrivial abelian group gradings on
Der(C) are:

1. The Zr
2-gradings induced by the Cayley–Dickson doubling process, r = 1, 2, 3.

2. Eleven gradings induced by the Cartan grading on C with universal groups:
Z2, Z7, Z8, Z9, Z10, Z, Z6 × Z2, Z× Z2, Z12, Z× Z3 and Z2

3.

3. Three gradings induced by the 3-grading on C with universal groups Z, Z3

and Z4.

4. Three gradings induced by the 5-grading on C with universal groups Z, Z5

and Z6.

5. The Z3-grading induced by the Z3-grading on C.

6. The Z4-grading induced by the Z4-grading on C.

7. Three gradings induced by the Z × Z2-grading on C with universal groups
Z× Z2, Z3 × Z2 and Z4 × Z2.

In particular, over an algebraically closed field of characteristic different from 2
and 3, there are exactly 25 equivalence classes of nontrivial gradings on the simple
Lie algebra of type G2.

5. The Albert algebra

Let C be the Cayley algebra over an algebraically closed field F of characteristic
different from 2. The Albert algebra is the algebra of Hermitian 3 × 3-matrices
over C:

A = H3(C, ∗) =
⎧⎨
⎩
⎛
⎝α1 ā3 a2
a3 α2 ā1
ā2 a1 α3

⎞
⎠ : α1, α2, α3 ∈ F, a1, a2, a3 ∈ C

⎫⎬
⎭

= FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(C)⊕ ι2(C)⊕ ι3(C),

(5.1)
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where

E1 =

⎛
⎝1 0 0
0 0 0
0 0 0

⎞
⎠ , E2 =

⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠ , E3 =

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ ,

ι1(a) = 2

⎛
⎝0 0 0
0 0 ā
0 a 0

⎞
⎠ , ι2(a) = 2

⎛
⎝0 0 a
0 0 0
ā 0 0

⎞
⎠ , ι3(a) = 2

⎛
⎝0 ā 0
a 0 0
0 0 0

⎞
⎠ ,

for any a ∈ C, with (commutative) multiplication given by XY = 1
2 (X ·Y +Y ·X),

whereX ·Y denotes the usual product of matricesX and Y . Then Ei are orthogonal
idempotents with E1 + E2 + E3 = 1. The rest of the products are as follows:

Eiιi(a) = 0, Ei+1ιi(a) =
1

2
ιi(a) = Ei+2ιi(a),

ιi(a)ιi+1(b) = ιi+2(āb̄), ιi(a)ιi(b) = 2n(a, b)(Ei+1 + Ei+2),
(5.2)

for any a, b ∈ C, with i = 1, 2, 3 taken modulo 3. (This convention about indices
will be used without further mention.)

For the main properties of the Albert algebra the reader may consult [21]. This
is the only exceptional simple Jordan algebra over F. Any element X ∈ A satisfies
the generic degree 3 equation

(5.3) X3 − T (X)X2 + S(X)X −N(X)1 = 0,

for the linear form T (the trace), the quadratic form S, and the cubic form N (the
norm) given by:

T (X) = α1 + α2 + α3,

S(X) =
1

2

(
T (X)2 − T (X2)

)
=

3∑
i=1

(
αi+1αi+2 − 4n(ai)

)
,

N(X) = α1α2α3 + 8n(a1, ā2ā3)− 4

3∑
i=1

αin(ai),

for X =
∑3

i=1

(
αiEi + ιi(ai)

)
. We note that the trace T is associative:

T
(
(XY )Z

)
= T

(
X(Y Z)

)
for all X,Y, Z ∈ A

and symmetric:
T (XY ) = T (Y X) for all X,Y ∈ A.

The next result shows the good behavior of the trace form T (X,Y ) := T (XY )
of the Albert algebra with respect to gradings. It will be crucial in what follows.

Theorem 5.1. Let G be an abelian group and let A =
⊕

g∈G Ag be a G-grading
on the Albert algebra over an algebraically closed field of characteristic different
from 2. Then T (AgAh) = 0 unless gh = e.
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Proof. If the characteristic of the ground field F is not 3, the result is very easy
to prove, because T (X) = 1

9 trace(LX) for any X ∈ A, where LX denotes the
multiplication by X . Let us give a proof that includes the case of characteristic 3.
We may assume, without loss of generality, that G is generated by the support of
the grading, and hence it is finitely generated. It is sufficient to prove T (Ag) = 0
for all g �= e. If the order of g is ≥ 3, then equation (5.3) shows that for any
X ∈ Ag, S(X) = 0 and either T (X) = 0 or X2 = 0. In the latter case, T (X)2 =
2S(X) + T (X2) = 0, so again T (X) = 0. Hence T (Ag) = 0 for any g ∈ G of
order ≥ 3. But G = G1G2

∼= G1 × G2 where G2 is the 2-torsion subgroup of G
and G1 is 2-torsion free. Then G1 has no elements of order 2, and hence the trace
of any non-identity homogeneous component of the G1-grading induced by the
projection G → G1 is 0. In other words, T (Agh) = 0 for any e �= g ∈ G1 and
any h ∈ G2. Now consider the G2-grading induced by the projection G → G2.
Since the characteristic is not 2, the homogeneous components are the common
eigenspaces for a family of commuting automorphisms. But for ϕ ∈ Aut(A) and
X ∈ A with ϕ(X) = λX , 1 �= λ ∈ F, we get T (X) = T (ϕ(X)) = λT (X), so
T (X) = 0. Therefore, T (Agh) = 0 for any g ∈ G1 and e �= h ∈ G2. The result
follows. �

Corollary 5.2. Under the assumptions of Theorem 5.1, Ae is a semisimple Jordan
algebra. Moreover, if the degree of Ae is 2, then Ae is isomorphic to F× F.

Proof. The restriction T |Ae is nondegenerate by Theorem 5.1, and if I is an ideal
of Ae with I2 = 0, then for any X ∈ I, T (XAe) = 0, as any element in XAe is
nilpotent (see p. 226 of [21]). Then Dieudonné’s Lemma (see p. 239 of [21]) proves
that Ae is semisimple.

If the degree of Ae is 2, then either Ae is isomorphic to F× F (a direct sum of
two copies of the degree one simple Jordan algebra), or it is a simple Jordan algebra
of degree 2. In the latter case let m̃X(λ) = λ2 − T ′(X)λ + S′(X) be the generic
minimal polynomial of Ae. With mX(λ) = λ3−T (X)λ2+S(X)λ−N(X) being the
generic minimal polynomial in A, it follows that there is a linear form T ′′ : Ae → F

such that mX(λ) = (λ− T ′′(X))m̃X(λ) for any X ∈ Ae (see Section VI.3 of [21]).
Then N(X) = S′(X)T ′′(X) for any X ∈ Ae. But S

′(X)2 = S′(X)2 and N(X2) =
N(X)2 for any X (see Theorem 6.1 of [21]). Thus we have T ′′(X2) = T ′′(X)2 too.
Since T ′′ is linear, it follows that T ′′ is a homomorphism and hence kerT ′′ is a
codimension one ideal of Ae, a contradiction. �

We will make use of some subgroups of the automorphism group Aut(A). First
we will consider StabAutA(E1, E2, E3), the stabilizer of the three orthogonal idem-
potents E1, E2 and E3. The orthogonal group of C relative to its norm will be
denoted by O(C, n), and the special orthogonal group by SO(C, n).

Definition 5.3. A triple (f1, f2, f3) ∈ O(C, n)3 is said to be related if

f1(x̄ȳ) = f2(x) f3(y) for all x, y ∈ C.

To simplify the notation, consider the para-Hurwitz product x • y = x̄ȳ on C

(see Chapter VIII of [22]). Note that, for any x, y, z ∈ C, n(x • y, z) = n(x̄ȳ, z) =
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n(x̄, zy) = n(x, ȳz̄) = n(x, y•z), and (x•y)•x = x̄ȳx̄ = (yx)x̄ = n(x)y = x•(y•x).
In other words,

(5.4) n(x • y, z) = n(x, y • z), (x • y) • x = n(x)y = x • (y • x),
for all x, y, z ∈ C.

Consider the trilinear form on C given by 〈x, y, z〉 = n(x • y, z). Equation (5.4)
shows that 〈x, y, z〉 = 〈y, z, x〉 for any x, y, z ∈ C.

Lemma 5.4. Let f1, f2, f3 be three elements in O(C, n), then:

• (f1, f2, f3) is a related triple if and only if 〈f1(x), f2(y), f3(z)〉 = 〈x, y, z〉 for
any x, y, z ∈ C.

• (f1, f2, f3) is related if and only if so is (f2, f3, f1).

Proof. The triple (f1, f2, f3) is related if and only if f1(x•y) = f2(x)•f3(y) for any
x, y ∈ C, and this happens if and only if n

(
f1(x•y), f1(z)

)
= n

(
f2(x)•f3(y), f1(z)

)
for any x, y, z ∈ C. But f1 is orthogonal, so n

(
f1(x•y), f1(z)

)
= n(x•y, z), and this

is equivalent to 〈f2(x), f3(y), f1(z)〉 = 〈x, y, z〉. The cyclic symmetry of 〈x, y, z〉
completes the proof. �

Denote by lx and rx the left and right multiplications in the para-Cayley algebra
(C, •): lx(y) = x • y = x̄ȳ, rx(y) = y • x = ȳx̄. Then equation (5.4) shows that
l∗x = rx and lxrx = n(x)id = rxlx for any x ∈ C, where ∗ denotes the adjoint
relative to the norm n.

Let Cl(C, n) be the Clifford algebra of the space C relative to the norm. The
linear map

C −→ EndF(C⊕ C), x 	→
(
0 lx
rx 0

)
extends to an algebra isomorphism (see Section 35 of [22] or [15])

Φ: Cl(C, n) → EndF(C⊕ C),

which is in fact an isomorphism of Z2-graded algebras, where the Clifford algebra
Cl(C, n) is Z2-graded with deg x = 1̄ for all x ∈ C, and EndF(C ⊕ C) is Z2-graded
with the 0̄-component being the endomorphisms that preserve the two copies of C,
and the 1̄-component being the endomorphisms that swap these copies.

The standard involution τ on Cl(C, n) is defined by setting τ(x) = x for all
x ∈ C. We define an involution on EndF(C ⊕ C) as the adjoint relative to the
quadratic form n ⊥ n on C ⊕ C. Since l∗x = rx for any x ∈ C, it follows that Φ is
an isomorphism of algebras with involution.

Consider now the corresponding spin group:

Spin(C, n) = {u ∈ Cl(C, n) : u · τ(u) = 1 and u · C · u−1 ⊂ C}
= {x1 · x2 · . . . · x2r : r ≥ 0, xi ∈ C and n(x1)n(x2) · · ·n(x2r) = 1},

where the multiplication in Cl(C, n) is denoted u · v.
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For any u ∈ Spin(C, n), the map χu : C → C, x 	→ u · x · u−1 is in SO(C, n), and
the map χ : Spin(C, n) → SO(C, n), u 	→ χu is a group homomorphism, which is
onto and whose kernel is just the cyclic group of two elements {±1}. Besides, for
any u ∈ Spin(C, n), Φ(u) is an even endomorphism of C ⊕ C, so there are linear
maps ρ±u ∈ EndF(C) with

Φ(u) =

(
ρ−u 0
0 ρ+u

)
.

Theorem 5.5. Let C be the Cayley algebra over an algebraically closed field of
characteristic different from 2. Then the map

Spin(C, n) −→ GL(C)3, u 	→ (χu, ρ
+
u , ρ

−
u )

is a one-to-one group homomorphism whose image coincides with the set of related
triples in O(C, n)3. In particular, any related triple is contained in SO(C, n)3.

Proof. The map is one-to-one because so is Φ. For u ∈ Spin(C, n), we have that
u · τ(u) = 1, so ρ±u ∈ O(C, n), as Φ is an isomorphism of algebras with involution.
Also, for any x ∈ C, u · x = χu(x) · u. Applying Φ to both sides, we obtain:(

ρ−u 0
0 ρ+u

)(
0 lx
rx 0

)
=

(
0 lχu(x)

rχu(x) 0

)(
ρ−u 0
0 ρ+u

)
.

Thus ρ−u lx = lχu(x)ρ
+
u , or ρ−u (x • y) = χu(x) • ρ+u (y), for all x, y ∈ C. Hence

(ρ−u , χu, ρ
+
u ) is related, and so is (χu, ρ

+
u , ρ

−
u ) by Lemma 5.4.

Conversely, let (f1, f2, f3) be a related triple, and let u be the (even) element in

Cl(C, n) such that Φ(u) =

(
f3 0
0 f2

)
. Then u · τ(u) = 1 since Φ is an isomorphism

of algebras with involution. For any x ∈ C,

Φ(u · x · u−1) =

(
f3 0
0 f2

)(
0 lx
rx 0

)(
f−1
3 0
0 f−1

2

)

=

(
0 f3lxf

−1
2

f2rxf
−1
2 0

)
=

(
0 lf1(x)

rf1(x) 0

)
= Φ

(
f1(x)

)
,

where we have used the equations f3(x • y) = f1(x) • f2(y) and f2(y • x) = f3(y) •
f1(x). It follows that u ∈ Spin(C, n), χu = f1 and hence (f1, f2, f3) = (χu, ρ

+
u , ρ

−
u ).

The last assertion follows because if (f1, f2, f3) is related, then there is an ele-
ment u ∈ Spin(C, n) such that f1 = χu ∈ SO(C, n). But (f2, f3, f1) and (f3, f1, f2)
are also related, so f2, f3 ∈ SO(C, n) as well. �

Corollary 5.6. The group StabAutA(E1, E2, E3) is isomorphic to Spin(C, n).

Proof. Any automorphism ϕ ∈ StabAutA(E1, E2, E3) stabilizes each of the sub-
spaces ιi(C) = {X ∈ A : Ei+1X = 1

2X = Ei+2X}, and hence there are linear
automorphisms fi ∈ GL(C) such that ϕ

(
ιi(x)

)
= ιi(fi(x)) for any i = 1, 2, 3 and

x ∈ C. But ιi(x)
2 = 4n(x)

(
Ei+1 + Ei+2

)
, so we obtain fi ∈ O(C, n) for any i, and

ι2(x)ι3(y) = ι1(x•y) for any x, y ∈ C, whence it follows that (f1, f2, f3) is a related
triple. It remains to apply Theorem 5.5. �
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Corollary 5.7. The group StabAutA(E1, E2, E3, ι1(1)) is isomorphic to Spin(C0, n),
where C0 denotes the space of trace zero octonions, i.e., the orthogonal complement
to 1 in C.

Proof. Corollary 5.6 provides identifications:

StabAutA(E1, E2, E3, ι1(1)) ∼= {(χu, ρ
+
u , ρ

−
u ) : u ∈ Spin(C, n), χu(1) = 1}

∼= {(χc, ρ
+
c , ρ

−
c ) : c ∈ Spin(C0, n)}

∼= Spin(C0, n). �

Note that for x1, x2 ∈ C, we have

Φ(x1 · x2) =
(

0 lx1

rx1 0

)(
0 lx2

rx2 0

)
=

(
lx1rx2 0

0 rx1 lx2

)
.

If x1, x2 ∈ C0, then, for any y ∈ C, we compute: x1 • (y •x2) = x̄1ȳx̄2 = x̄1(x2y) =
−x1(x2y). Similarly, (x2 • y) • x1 = −(yx2)x1. Hence, for c = x1 · x2 · . . . · x2r ∈
Spin(C0, n), we have

ρ+x1·x2·...·x2r
= (−1)rRx1Rx2 · · ·Rx2r ,

ρ−x1·x2·...·x2r
= (−1)rLx1Lx2 · · ·Lx2r ,

(5.5)

where Lx and Rx denote the left and right multiplications by x in C.

6. Construction of fine gradings on the Albert algebra

We continue to assume that the ground field F is algebraically closed of character-
istic different from 2. The aim of this section is to construct four fine gradings on
the Albert algebra (the fourth one will exist only for charF �= 3). If charF = 0,
these gradings (although presented in a somewhat different form) are known to be
the only fine gradings, up to equivalence [13]. The next section will be devoted to
proving the same result for charF �= 2.

6.1. Cartan grading

Let us consider the group Z4 and use additive notation. Consider the following
elements in this group:

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (−1,−1, 0, 0),

g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), g3 = (0, 0,−1,−1).

Then a1 + a2 + a3 = 0 = g1 + g2 + g3. Take a “good basis” {e1, e2, u1, u2, u3, v1,
v2, v3} of the Cayley algebra. The assignment

deg e1 = deg e2 = 0, deg ui = gi = − deg vi

gives the Cartan grading of the Cayley algebra C.
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Now the assignment

degEi = 0,

deg ιi(e1) = ai = − deg ιi(e2),

deg ιi(ui) = gi = − deg ιi(vi),

deg ιi(ui+1) = ai+2 + gi+1 = − deg ιi(vi+1),

deg ιi(ui+2) = −ai+1 + gi+2 = − deg ιi(vi+2),

for any i = 1, 2, 3, gives a Z4-grading on the Albert algebra A. Indeed, since C

is graded by the second component of Z2 × Z2, it suffices to look at the first
component, and by the cyclic symmetry of the product, it is enough to check that
deg

(
ι3(x̄ȳ)

)
= deg ι1(x) + deg ι2(y) for any x, y in the “good basis” of C, and this

is straightforward.
This grading will be called the Cartan grading on A. Its type is (24, 0, 1).
Note that ιi(e1)ιi(e2) = 2(Ei+1 + Ei+2) is homogeneous in any refinement of

the Cartan grading. Then Ei = (Ei + Ei+1)(Ei−1 + Ei) is homogeneous too in
any refinement, and it follows that E1, E2, E3 must be homogeneous of the same
degree in any refinement. Hence the Cartan grading is fine. (Actually, this proves
that it is fine not just as an abelian group grading, but as a general grading.)

Also, the elements

(6.1) ι1(e1), ι1(e2), ι2(e1), ι2(e2), ι1(u1), ι1(v1), ι2(u2), ι2(v2)

constitute a set of generators of A. In any grading Γ : A =
⊕

g∈G Ag in which
these elements are homogeneous, as ι1(e1)ι1(e2) = 2(E2 + E3), we obtain that
E2 + E3 is homogeneous. But this is an idempotent, so its degree must be e,
and we have deg ι1(e1) deg ι1(e2) = e. In the same vein, deg ι2(e1) deg ι2(e2) =
deg ι1(u1) deg ι1(v1) = deg ι2(u2) deg ι2(v2) = e. Therefore the assignment a1 	→
deg ι1(e1), a2 	→ deg ι2(e1), g1 	→ deg ι1(u1) and g2 	→ deg ι2(u2) determines a
group homomorphism α : Z4 → G.

This proves the following result:

Theorem 6.1. Let Γ : A =
⊕

g∈G Ag be a grading of the Albert algebra in which
the elements in (6.1) are homogeneous. Then there is a group homomorphism
α : Z4 → G such that Γ is the grading induced by α from the Cartan grading.

In particular, Z4 is the universal group of the Cartan grading.

6.2. Z5
2-grading

As discussed in Section 3, the Cayley algebra C is obtained by repeated application
of the Cayley–Dickson doubling process:

K = F⊕ Fw1, H = K⊕Kw2, C = H ⊕Hw3,

with w2
i = 1 for i = 1, 2, 3 (one may take w1 = e1 − e2, w2 = u1 − v1 and

w3 = u2−v2), and this gives a (uniquely determined up to isomorphism) Z3
2-grading

of C by setting degw1 = (1̄, 0̄, 0̄), degw2 = (0̄, 1̄, 0̄), degw3 = (0̄, 0̄, 1̄).
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Then A is obviously Z5
2-graded as follows:

degEi = (0̄, 0̄, 0̄, 0̄, 0̄), i = 1, 2, 3

deg ι1(x) = (1̄, 0̄, deg x),

deg ι2(x) = (0̄, 1̄, deg x),

deg ι3(x) = (1̄, 1̄, deg x),

for homogeneous elements x ∈ C. The type of this grading is (24, 0, 1).
This grading will be referred to as the Z5

2-grading on A.
With the same arguments as for the Cartan grading, this grading is fine (even

as a general grading).

Theorem 6.2. Let Γ : A =
⊕

g∈G Ag be a grading of the Albert algebra in which
the elements

ι1(1), ι2(1), ι3(wj), j = 1, 2, 3,

are homogeneous. Then there is a group homomorphism α : Z5
2 → G such that Γ

is the grading induced by α from the Z5
2-grading.

In particular Z5
2 is the universal group of the Z5

2-grading.

Proof. Since ι1(1) is homogeneous for Γ, so is ι1(1)
2 = 4(E2+E3). But E2 +E3 is

an idempotent, so its degree must be e, and hence the degree of ι1(1) has order ≤ 2.
The same happens to all the homogeneous elements above, and since these elements
constitute a set of generators of A, the result follows. �

6.3. Z × Z3
2-grading

Take an element i ∈ F with i2 = −1 and consider the following elements in A:

E = E1,

Ẽ = 1− E = E2 + E3,

ν(a) = iι1(a) for all a ∈ C0,

ν±(x) = ι2(x)± iι3(x̄) for all x ∈ C,

S± = E3 − E2 ± i
2 ι1(1).

These elements span A, and the multiplication is given by

EẼ = 0, ES± = 0, Eν(a) = 0, Eν±(x) = 1
2 ν±(x),

ẼS± = S±, Ẽν(a) = ν(a), Ẽν±(x) = 1
2 ν±(x),

S±S± = 0, S+S− = 2Ẽ, S±ν(a) = 0,

S±ν∓(x) = ν±(x), S±ν±(x) = 0,

ν(a)ν(b) = −2n(a, b)Ẽ, ν(a)ν±(x) = ±ν±(xa),
ν±(x)ν±(y) = 2n(x, y)S±,

ν+(x)ν−(y) = 2n(x, y)(2E + Ẽ)− ν(x̄y − ȳx),

(6.2)

for any x, y ∈ C and a, b ∈ C0.
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There appears a Z-grading on A:

(6.3) A = A−2 ⊕A−1 ⊕A0 ⊕A1 ⊕A2,

with A±2 = FS±, A±1 = ν±(C), and A0 = FE ⊕ (
FẼ ⊕ ν(C0)

)
. Note that the

subspace FẼ ⊕ ν(C0) is the Jordan algebra of the quadratic form −4n|C0 , with

unity Ẽ.
The Z3

2-grading on C considered previously combines with this Z-grading to
give a Z× Z3

2-grading as follows:

deg S± = (±2, 0̄, 0̄, 0̄),

deg ν±(x) = (±1, deg x),

degE = 0 = deg Ẽ,

deg ν(a) = (0, deg a),

for homogeneous elements x ∈ C and a ∈ C0.
This grading will be referred to as the Z×Z3

2-grading on A. Its type is (25, 1)
and again it is fine (even as a general grading).

Theorem 6.3. Let Γ : A =
⊕

g∈G Ag be a grading of the Albert algebra in which
the elements

ν±(1), ν(wj), j = 1, 2, 3,

are homogeneous. Then there is a group homomorphism α : Z × Z3
2 → G such

that Γ is the grading induced by α from the Z× Z3
2-grading.

In particular Z× Z3
2 is the universal group of the Z× Z3

2-grading.

Proof. As in Theorem 6.2, if ν(wj) is homogeneous for Γ, then its degree has

order ≤ 2 and Ẽ ∈ Ae, and as in Theorem 6.1, if ν±(1) is homogeneous, then

deg ν+(1) deg ν−(1) = e, as Ẽ(ν+(1)ν−(1)) = 4Ẽ. Since the elements above con-
stitute a set of generators of A, the result follows. �

Remark 6.4. Note that the stabilizer StabAutA(E1, E2, E3, ι1(1)), which is iso-
morphic to Spin(C0, n) by Corollary 5.7, coincides with StabAutA(E, S

+, S−).
Also, relative to the Z-grading in equation (6.3):

A±1 = {X ∈ A | S±X = 0, EX =
1

2
X}, ν(C0) = {X ∈ A | S±X = 0 = EX}.

Hence StabAutA(E1, E2, E3, ι1(1)) stabilizes the Z-grading. Moreover, given any
c = x1·x2·. . .·x2r ∈ Spin(C0, n), i.e., xj ∈ C0 for any j and n(x1)n(x2) · · ·n(x2r)=1,
the corresponding automorphism ϕc in StabAutA(E1, E2, E3, ι1(1)) fixes Ei, i =
1, 2, 3, acts as χc on ι1(C), as ρ

+
c = (−1)rRx1Rx2 · · ·Rx2r on ι2(C) and as ρ−c =

(−1)rLx1Lx2 · · ·Lx2r on ι3(C) – see (5.5). But ν±(x) = ι2(x) ± iι3(x̄), so for all
x ∈ C, we have:

ϕc(ν±(x)) = (−1)r
(
ι2
(
((xx2r) · · · )x1

)± iι3
(
x1(· · · (x2rx̄))

))
= (−1)r

(
ι2
(
((xx2r) · · · )x1

)± iι3
(
((xx2r) · · · )x1

))
= ν±(ρ+c (x)).



796 A. Elduque and M. Kochetov

6.4. Z3
3-grading

Define an order 3 automorphism τ of C that acts on the elements of a “good basis”
of C as follows:

τ(ei) = ei, τ(uj) = uj+1, τ(vj) = vj+1

for i = 1, 2 and j = 1, 2, 3, and a new multiplication on C:

x ∗ y = τ(x̄)τ2(ȳ),

for all x, y ∈ C. Then n(x ∗ y) = n(x)n(y) for any x, y, since τ preserves the norm.
Moreover, for any x, y, z ∈ C:

n(x ∗ y, z) = n(τ(x̄)τ2(ȳ), z) = n(τ(x̄), zτ2(y)) = n(x̄, τ2(z)τ(y))

= n(x, τ(ȳ)τ2(z̄)) = n(x, y ∗ z).

Hence (C, ∗, n) is a symmetric composition algebra (see [16] or Chapter VIII of [22]).
Actually, (C, ∗) is the Okubo algebra over F. Its multiplication table is shown in
Figure 2.

e1 e2 u1 v1 u2 v2 u3 v3

e1 e2 0 0 −v3 0 −v1 0 −v2
e2 0 e1 −u3 0 −u1 0 −u2 0

u1 −u2 0 v1 0 −v3 0 0 −e1
v1 0 −v2 0 u1 0 −u3 −e2 0

u2 −u3 0 0 −e1 v2 0 −v1 0

v2 0 −v3 −e2 0 0 u2 0 −u1
u3 −u1 0 −v2 0 0 −e1 v3 0

v3 0 −v1 0 −u2 −e2 0 0 u3

Figure 2. Multiplication table of the Okubo algebra

This Okubo algebra is Z2
3-graded by setting deg e1 = (1̄, 0̄) and deg u1 = (0̄, 1̄),

with the degrees of the remaining elements being uniquely determined.
Assume now that charF �= 3. Then this Z2

3-grading is determined by two
commuting order 3 automorphisms ϕ1, ϕ2 ∈ Aut(C, ∗):

ϕ1(e1) = ωe1, ϕ1(u1) = u1,

ϕ2(e1) = e1, ϕ2(u1) = ωu1,

where ω is a primitive third root of unity in F.
Define now ι̃i(x) = ιi(τ

i(x)) for all i = 1, 2, 3 and x ∈ C. Then the multiplica-
tion in the Albert algebra A = ⊕3

i=1

(
FEi ⊕ ι̃i(C)

)
is given, for i = 1, 2, 3 and
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for x, y ∈ C, by:

E2
i = Ei, EiEi+1 = 0,

Ei ι̃i(x) = 0, Ei+1 ι̃i(x) =
1
2 ι̃i(x) = Ei+2 ι̃i(x),

ι̃i(x)ι̃i+1(y) = ι̃i+2(x ∗ y), ι̃i(x)ι̃i(y) = 2n(x, y)(Ei+1 + Ei+2),

(6.4)

The commuting order 3 automorphisms ϕ1, ϕ2 of (C, ∗) extend to commuting
order 3 automorphisms of A (which will be denoted by the same symbols) as
follows: ϕj(Ei) = Ei, ϕj

(
ι̃i(x)

)
= ι̃i(ϕj(x)) for all i = 1, 2, 3, j = 1, 2 and x ∈ C.

On the other hand, the linear map ϕ3 ∈ EndF(A) defined by

ϕ3(Ei) = Ei+1, ϕ3

(
ι̃i(x)

)
= ι̃i+1(x),

for all i = 1, 2, 3 and x ∈ C, is another order 3 automorphism, which commutes
with ϕ1 and ϕ2. The subgroup of Aut(A) generated by ϕ1, ϕ2, ϕ3 is isomorphic
to Z3

3 and induces a Z3
3-grading on A of type (27). This grading is obviously fine,

and Z3
3 is its universal group.

This grading will be referred to as the Z3
3-grading on A (charF �= 3).

Remark 6.5. We may define the elements

ρ0̄(x) = ι̃1(x) + ι̃2(x) + ι̃3(x),

ρ1̄(x) = ι̃1(x) + ω2ι̃2(x) + ωι̃3(x),

ρ2̄(x) = ι̃1(x) + ωι̃2(x) + ω2ι̃3(x),

for any x ∈ C. Then the eigenspaces of ϕ3 are:

A0̄ = F1⊕ ρ0̄(C) (1 = E1 + E2 + E3),

A1̄ = F(E1 + ω2E2 + ωE3)⊕ ρ1̄(C),

A2̄ = F(E1 + ωE2 + ω2E3)⊕ ρ2̄(C).

The subalgebra A0̄ is isomorphic to the Jordan algebraM3(F)
+, the 3×3 matrices

with the symmetrized product, and the decomposition A = A0̄ ⊕ A1̄ ⊕ A2̄ gives
the First Tits Construction of A (see p. 412 of [21]).

7. Classification of gradings on the Albert algebra

The aim of this section is to classify the fine gradings on the Albert algebra A

up to equivalence and then, for any abelian group G, all G-gradings on A up to
isomorphism. Throughout this section, we will assume that the ground field F is
algebraically closed of characteristic different from 2.

Theorem 7.1. Let A be the Albert algebra over an algebraically closed field F,
charF �= 2. Then, up to equivalence, the fine abelian group gradings on A, their
universal groups and types are the following:

• The Cartan grading Γ1
A defined in §6.1; universal group Z4; type (24, 0, 1).
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• The grading Γ2
A defined in §6.2; universal group Z5

2; type (24, 0, 1).

• The grading Γ3
A defined in §6.3; universal group Z× Z3

2; type (25, 1).

• If charF �= 3, then also the grading Γ4
A defined in §6.4; universal group Z3

3;
type (27).

We already know that the gradings Γj
A, j = 1, 2, 3, 4, are fine, so it will suffice

to show that any grading Γ : A =
⊕

g∈G Ag of the Albert algebra is induced from

Γj
A for some j = 1, 2, 3, 4 (j �= 4 if charF = 3), by a homomorphism U(Γj

A) → G.
The proof will be divided into cases according to the degree of the semisimple
subalgebra Ae, which can be 1, 2 or 3 (see Corollary 5.2).

7.1. Degree 3

In case the degree of Ae is 3, Ae contains three orthogonal primitive idempotents,
and the coordinatization results in Sections III.2 and IX.1 of [21] show that we
may assume that E1, E2, E3 are in Ae. Hence the subspaces ιi(C) = {X ∈ A :
Ei+1X = Ei+2X = 1

2X} are graded subspaces of A, i = 1, 2, 3.
Assume first that for some i there is a basis of ιi(C) consisting of homogeneous

elements: {ιi(xj), ιi(yj) : j = 1, 2, 3, 4} such that n(xj , yk) = δjk, n(xj , xk) =
0 = n(yj, yk) (a basis consisting of four orthogonal hyperbolic pairs). This is the
case if all the homogeneous components of ιi(C) are isotropic for the trace form
(recall T (ιi(x)ιi(y)) = 4n(x, y) for any x, y ∈ C and any i = 1, 2, 3). We may
assume i = 1. There is an element f1 ∈ SO(C, n) which takes this basis to our
“good basis” B = {e1, e2, u1, u2, u3, v1, v2, v3} of C. Take c ∈ Spin(C, n) such that
f1 = χc and consider the automorphism in StabAutA(E1, E2, E3) determined by
the related triple (χc, ρ

+
c , ρ

−
c ) (see Corollary 5.6).

Therefore we may assume, through this automorphism, that all the elements
ι1(ej), ι1(ui) and ι1(vi), for j = 1, 2 and i = 1, 2, 3, are homogeneous. Then

ι1(v1)
(
ι1(v2)

(
ι1(v3)ι3(C)

))
= ι2(((Cv3)v2)v1) = Fι2(e1),

and this proves, since ι3(C) is a graded subspace, that ι2(e1) is homogeneous. In
the same vein, we get that ι2(e2), ι3(e1) and ι3(e2) are homogeneous. Finally,
ι2(u2) = −ι3(e2)ι1(u2) and ι2(v2) = −ι3(e1)ι1(v2) are homogeneous too.

Theorem 6.1 finishes the proof in this case.

Otherwise, in each ιi(C) we may find some homogeneous element ιi(xi) with
n(xi) �= 0, and we may scale it to get n(xi) = 1.

Lemma 7.2. Let x1, x2 ∈ C be elements of norm 1, then there is an automorphism
ϕ ∈ StabAutA(E1, E2, E3) such that ϕ(ιi(xi)) = ιi(1), for i = 1, 2.

Proof. First take an element f1 ∈ SO(C, n) which takes x1 to 1, and extend
it as before to find a related triple (f1, f2, f3). The associated automorphism
in StabAutA(E1, E2, E3) takes ι1(x1) to ι1(1) and ι2(x2) to some ι2(y2) with
n(y2) = 1. Thus we may assume x1 = 1.
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Assuming x1 = 1, take an element a ∈ C0 with n(a) = 1, n(a, x2) = 0. Then
n(x2a, 1) = n(x2, ā) = −n(x2, a) = 0, so x2a ∈ C0, and n(x2a) = n(x2)n(a) = 1.
Consider the element c = (x2a)·a∈Spin(C0, n). Then (χc, ρ

+
c , ρ

−
c ) is a related triple

inducing an automorphism ϕ in StabAutA(E1, E2, E3) with ϕ(ι1(1)) = ι1(χc(1))
= ι1(1) and ϕ(ι2(x2)) = ι2(ρ

+
c (x2)) = −ι2((x2a)(x2a)) = ι2(1), as required. �

Therefore, in this situation we may assume that ι1(1) and ι2(1) are homoge-
neous elements. Let a = deg ι1(1) and b = deg ι2(1). Since

1
4 ιi(1)

2 = Ei+1 + Ei+2

is an idempotent, we get a2 = b2 = e.
For x, y ∈ C, ι3(xy) = ι1(x̄)ι2(ȳ) =

(
ι2(1)ι3(x)

)(
ι3(y)ι1(1)

)
, so if we define

Cg = {x ∈ C : ι3(x) ∈ Aabg} we get that for x ∈ Cg and y ∈ Ch, ι3(xy) ∈
(AbAabg)(AabhAa) ⊂ Aabgh, so CgCh ⊂ Cgh and C = ⊕g∈GCg is a G-grading on C.

Hence either there is a good basis of C consisting of homogeneous elements, but
then ι3(C) has a basis consisting of homogeneous elements forming four orthogonal
hyperbolic pairs, and this case has already been treated, or this grading in C is
equivalent to the Z3

2-grading on C, and Theorem 6.2 shows that our grading Γ is
induced by the Z5

2-grading of A.

In fact, we obtain more than what we need for the proof of Theorem 7.1:

Proposition 7.3. Let Γ : A =
⊕

g∈G Ag be a grading of the Albert algebra with
E1, E2, E3 ∈ Ae. If there exists i = 1, 2, 3 and an element x ∈ C with n(x) = 0
and ιi(x) homogeneous, then Γ is induced from the Cartan grading. Otherwise Γ
is induced from the Z5

2-grading and all homogeneous components in each ιj(C),
j = 1, 2, 3, are one-dimensional and orthogonal relative to the trace form.

Moreover, in the latter case, up to equivalence there are three different gradings
whose universal grading groups and types are Z5

2 and (24, 0, 1), Z4
2 and (7, 8, 0, 1),

and Z3
2 and (0, 0, 7, 0, 0, 1). The homogeneous component of highest dimension

is Ae in all cases.

Proof. If ιi(x) is a nonzero homogeneous element with n(x) = 0, then since the
trace form is nondegenerate and T (ιj(a)ιj(b)) = 4n(a, b) for any j = 1, 2, 3 and
a, b ∈ C, there is another homogeneous element ιi(y) with n(y) = 0 and n(x, y) = 1.
Then n(x+ y) = 1 so C = (x̄+ ȳ)C = x̄C+ ȳC. As x̄C and ȳC are isotropic spaces,
its dimension is at most 4. We get C = x̄C⊕ ȳC, so ιi+2(C) = ιi+2(x̄C)⊕ ιi+2(ȳC) =
ιi(x)ιi+1(C)⊕ ιi(y)ιi+1(C) is the direct sum of two isotropic graded subspaces (for
the trace form). Therefore, ιi+2(C) has a basis consisting of homogeneous elements
forming four orthogonal hyperbolic pairs, and hence Γ is induced from the Cartan
grading.

Otherwise all the homogeneous components in each graded subspace ιj(C) are
one-dimensional and not isotropic, and hence orthogonal relative to the trace form,
because of Theorem 5.1. The arguments preceding this proposition show that we
may assume deg ι1(1) = a, deg ι2(1) = b and deg ι3(wj) = abcj, j = 1, 2, 3, with all
the elements a, b, c1, c2, c3 having order 2, and that C is graded with degwj = cj ,
j = 1, 2, 3, so the subgroup H generated by c1, c2, c3 is isomorphic to Z3

2. If
a, b ∈ H , Lemma 7.2 allows us to assume a = b = e and we get SuppΓ = H ∼= Z3

2.
If only one of a, b or ab is in H , by symmetry we may assume a ∈ H , and again we
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may assume a = e, thus getting Supp Γ = 〈b,H〉 ∼= Z4
2. Otherwise Supp Γ ∼= Z5

2,
and Γ is equivalent to the fine Z5

2-grading. The types are easily computed. �

7.2. Degree 2

If the degree of Ae is 2, Corollary 5.2 shows that Ae = FE ⊕ F(1 − E) for an
idempotent E with T (E) = 1 (and hence T (1 − E) = 2). We may assume that

E = E1, so that Ẽ = 1−E = E2+E3. The grading on A restricts to a grading on
{X ∈ A | EX = 0} = FE2⊕FE3⊕ ι1(C) = FẼ⊕V, where V = F(E2−E3)⊕ ι1(C),
which is the Jordan algebra of a quadratic form with unity Ẽ, because (E2−E3)

2 =

E2 + E3 = Ẽ, (E2 − E3)ι1(C) = 0 and ι1(x)ι1(y) = 2n(x, y)Ẽ = 1
2T (ι1(x)ι1(y))Ẽ.

Hence XY = 1
2T (XY )Ẽ for any X,Y ∈ V. However, the gradings on the Jordan

algebras of quadratic forms are quite easy to describe: the unity is always in the
identity component, and the restriction of the grading to the vector space V is just
a decomposition into subspaces: V = ⊕g∈GVg, with T (VgVh) = 0 unless gh = e.
Then either:

1) for any g ∈ Supp(V), g2 = e and dimVg = 1, or

2) there are homogeneous elements X,Y ∈ V with T (X2) = T (Y 2) = 0 and
T (X,Y ) = 1.

Let us prove that the first case is not possible. Assume that for any g ∈
Supp(V), g2 = e and dimVg = 1. Let H be the subgroup of G generated by
Supp(V), which is 2-elementary: H ∼= Zr

2, with r ≥ 4 as dimV = 9. Since {e} ∪
Supp(V) has 10 elements, it is not a subgroup of H , and hence there are elements
g �= h ∈ Supp(V) such that gh �∈ Supp(V). Then Vg = FX for some X with

X2 = Ẽ. Hence Ẽ2 = 1
2 (Ẽ + X) and Ẽ3 = 1

2 (Ẽ − X) are nonzero orthogonal

idempotents whose sum is Ẽ = 1 − E1. Thus E1, Ẽ2 and Ẽ3 are orthogonal
primitive idempotents and we may assume that E2 = 1

2 (Ẽ+X) and E3 = 1
2 (Ẽ−X),

so that X = E2 −E3. Then we have V = F(E2 −E3)⊕ ι1(C) and g �∈ Supp(ι1(C)).

Let G = G/〈g〉 and consider the induced G-grading on A, denoting by ā the
class of a ∈ G modulo 〈g〉. Then E1, E2, E3 ∈ Aē, so that each ιi(C) are graded
subspaces.

Besides, ι1(C) is already a graded subspace of the original G-grading whose
homogeneous components are all one-dimensional and not isotropic (relative to the
norm of C). Moreover, since ι1(C)gh = Vgh = 0, ι1(C)h̄ = ι1(C)h⊕ ι1(C)gh = ι1(C)h
is one-dimensional and not isotropic. Proposition 7.3 gives that each homogeneous
component of the G-grading on each ιi(C) is one-dimensional and not isotropic.

Take a ∈ G such that ι2(C)ā �= 0, so that there is an element x ∈ C with
n(x) �= 0 such that ι2(C)ā = Fι2(x). Then:(

ι2(C)⊕ ι3(C)
)
ā
= ι2(C)ā ⊕ ι3(C)ā.

If ι3(C)ā = 0, then ι2(x) is homogeneous for the G-grading, and so is ι2(x)
2 =

4n(x)(E1 + E3), a contradiction with Ae = FE1 ⊕ F(E2 + E3). Hence we have
ι3(C)ā �= 0.



Gradings on the exceptional Lie algebras F4 and G2 revisited 801

We conclude that the supports, for the G-grading, of both ι2(C) and ι3(C)
coincide. But since n(x) �= 0, we have ι3(C) = ι1(C)ι2(C)ā. Since ι3(C)ā �= 0,
it follows that ι1(C)ē �= 0, which means ι1(C)g �= 0, a contradiction with g �∈
Supp(ι1(C)).

We are left with the second case, i.e., there are homogeneous elements X ∈ Vg,
Y ∈ Vg−1 with T (X2) = T (Y 2) = 0 and T (XY ) = 1, and g �= e because Ae =

FE⊕FẼ. Then (X+Y )2 = T (XY )Ẽ = Ẽ and hence 1
2 (Ẽ−X−Y ) and 1

2 (Ẽ+X+Y )

are nonzero idempotents with sum Ẽ, so we may assume X + Y = E3 − E2.
Then X − Y is an element of {Z ∈ A | E1Z = 0 = (E2 − E3)Z} = ι1(C), and
T ((X − Y )2) = −2. By Lemma 7.2, we may assume X − Y = i

2 ι1(1). In other

words, we may assume that the elements S+ = 2X = (E3 − E2) +
i
2 ι1(1) and

S− = 2Y = (E3 − E2) − i
2 ι1(1) are homogeneous, say S+ ∈ Ag and S− ∈ Ag−1

(because S+S− = 2Ẽ ∈ Ae).
Consider the Z-grading of A in (6.3). The subspaces A±1 = {Z ∈ A | EZ =

1
2Z, S

±Z = 0} are then graded subspaces as well as A0 = FE⊕ FẼ⊕ ν(C0), since
ν(C0) = {Z ∈ A | EZ = 0 = S±Z}.

Assume now that there is an element 0 �= x ∈ C with n(x) = 0 such that ν+(x)
is homogeneous: ν+(x) ∈ (A1)h1 . The nondegeneracy of the trace form shows
that there is a homogeneous element ν−(y) ∈ (A−1)h−1

1
with T (ν+(x)ν−(y)) =

8n(x, y) �= 0. Then ν+(x)ν−(y) = 2n(x, y)(2E+ Ẽ)−ν(x̄y− ȳx) ∈ Ae = FE⊕FẼ.
Hence x̄y = ȳx. But then n(x, y)1 = x̄y + ȳx = 2x̄y, a contradiction, since
n(x̄y) = n(x)n(y) = 0 while n(x, y) �= 0 and n(1) = 1 �= 0.

Therefore, all the homogeneous components in A1 are one-dimensional and not
isotropic (relative to the norm of C once we identify A1 = ν+(C) with C). Fix a
homogeneous element ν+(x) ∈ (A1)a, with n(x) = 1. Then ν+(x)

2 = 4n(x)S+, so
a2 = g. The proof of Lemma 7.2 shows that there is an element c ∈ Spin(C0, n)
such that ρ+c (x) = 1, so Remark 6.4 allows us to assume that x = 1. Thus we have
ν+(1) ∈ (A1)a, a

2 = g, and hence ν−(1) = S−ν+(1) ∈ (A−1)a−1 . In this situation,
for any x, y ∈ C such that ν+(x) ∈ (A1)h1 , ν+(y) ∈ (A1)h2 , we have:

(ν+(x)ν−(1))ν+(y) =
(
2n(x, 1)(2E + Ẽ)− ν(x̄ − x)

)
ν+(y)

= 3n(x, 1)ν+(y)− ν+(y(x̄− x))

= 2n(x, 1)ν+(y) + 2ν+(yx), as x+ x̄ = n(x, 1)1.

If n(x, 1) �= 0, then 0 �= ν+(x)ν+(1) ∈ FS+, so that h1a = g = a2, so h1 = a and
(ν+(x)ν−(1))ν+(y) ∈ (A1)aa−1h2

= (A1)h2 , and ν+(yx) ∈ (A1)a−1h1h2
. On the

other hand, if n(x, 1) = 0, then ν+(yx) =
1
2 (ν+(x)ν−(1))ν+(y) ∈ (A1)a−1h1h2

too.
Thus, consider the subspaces Ch = {x ∈ C | ν+(x) ∈ (A1)ah} for h ∈ G.

Then Ch1Ch2 ⊂ Ch1h2 and we get a grading of C in which all the homogeneous
components are one-dimensional. Hence this is isomorphic to the Z3

2-grading of C.
Since 1 ∈ Ce, we have ν+(1) ∈ Aa, ν−(1) ∈ Aa−1 , and ν(wj) = 1

2ν+(wj)ν−(1)
are homogeneous too, for w1, w2 and w3 as in Theorem 6.3. This theorem shows
that Γ is induced from the Z× Z3

2-grading.
In fact, we can say more. Let a = deg ν+(1) and bj = deg ν(wj), j = 1, 2, 3.

Then the subgroup H=〈b1, b2, b3〉 is isomorphic to Z3
2 and a2=g �=e as dimAe= 2.
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Then SuppΓ = 〈a,H〉, and the homogeneous components of the 5-grading in (6.3)
have supports SuppA±2 = {a±2}, SuppA±1 = a±1H , SuppA0 = H . If these
subsets are disjoint, Γ is equivalent to the Z×Z3

2-grading. Otherwise we have one
of the following possibilities:

• a4 = e but a2 �∈ H , thus giving a Z4 × Z3
2-grading of type (23, 2).

• a2 ∈ a−1H . In this case a3 = b ∈ H , and hence (ab)3 = 1 and (ab)2 = a2.
As before we may change a by ab and hence assume a3 = e. We get a
Z3 × Z3

2-grading of type (21, 3).

• a2 ∈ H (recall a2 �= e). Since all the homogeneous components of the Z3
2-

grading of C, with the exception of the neutral component, play the same role
we may assume a2 = b1 and we obtain a unique, up to equivalence, grading
by Z4 × Z2

2 of type (6, 9, 1).

We summarize our arguments:

Proposition 7.4. Let Γ : A = ⊕g∈GAg be a grading of the Albert algebra with
dimAe = 2. Then Γ is induced from the Z × Z3

2-grading. Moreover, up to equiv-
alence there are four such different gradings whose universal grading groups and
types are Z×Z3

2 and (25, 1), Z4×Z3
2 and (23, 2), Z3×Z3

2 and (21, 3), and Z4 ×Z2
2

and (6, 9, 1).

7.3. Degree 1

Finally, consider the case of a grading Γ : A =
⊕

g∈G Ag of the Albert algebra
with dimAe = 1, or Ae = F1.

Let g ∈ Supp Γ be an element of order 2. Let G = G/〈g〉 and consider the in-
ducedG-grading. ThenAē = Ae⊕Ag is a degree two Jordan algebra, so dimAg = 1
by Corollary 5.2, and Aē = FE⊕F(1−E) for an idempotent E with T (E) = 1. But
Ag = {X ∈ Aē | X �∈ F1, X2 ∈ F1}∪{0} = F(1−2E), and T (1−2E) = 3−2 = 1,
while T (Ag) = T (AgAe) = 0 by Theorem 5.1, a contradiction. Therefore, for any
element g ∈ SuppΓ, we have g = e or the order of g is at least 3.

Take now an element g ∈ SuppΓ, g �= e (so its order is at least 3), and take
X ∈ Ag and Y ∈ Ag−1 with T (XY ) �= 0. Hence 0 �= XY ∈ Ae = F1 and we may
take XY = 1. This implies T (1) �= 0, which shows that charF �= 3.

The first linearization of equation (5.3) gives

X2Y + 2(XY )X − T (Y )X2 − 2T (X)XY

+ S(X)Y + S(X,Y )X −N(X ;Y )1 = 0

(N(X ;Y ) being quadratic onX and linear on Y ). But T (X) = T (X2) = T (Y ) = 0,
so the component inAg of the above equation givesX2Y +2(XY )X+S(X,Y )X=0,
and S(X,Y ) = −T (XY ) = −3, so that X2Y + 2X − 3X = 0, or X2Y = X .
Then X is invertible in the Jordan sense (see p. 51 of [21]) with inverse Y . Since
T (X) = 0 = S(X), we have X3 − N(X)1 = 0, so 0 �= X3 ∈ Ae, which forces
g3 = e. Therefore, any element of Supp Γ different from e has order 3. Since we
may assume that G is generated by SuppΓ, we conclude that G is an elementary
3-group.
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Moreover, with X as above, the quadratic operator UX is invertible and takes
any Ah to Ag2h. In particular Ae = UX(Ag), which forces dimAg = 1. Also,
for any other h ∈ Supp Γ, UX(Ah) = Ag2h, so we get that for any g, h ∈ SuppΓ,
g−1h ∈ SuppΓ. It follows that SuppΓ is a group, isomorphic to Z3

3.

Since we have shown that charF �= 3, the grading Γ is given by three commuting
order 3 automorphisms ϕ1, ϕ2, ϕ3 of A. Let S be the subalgebra of elements fixed
by ϕ1 and ϕ2. Then dim S = 3, S = Ae ⊕ Ag ⊕ Ag2 for some g ∈ SuppΓ. Take
X ∈ Ag with X3 = 1. Thus S is isomorphic to F×F×F, and we may assume that
S = FE1 ⊕ FE2 ⊕ FE3 with ϕ3(Ei) = Ei+1 for any i = 1, 2, 3.

For each i, the subspace ιi(C) = {X ∈ A | Ei+1X = 1
2X = Ei+2X} is invariant

under ϕ1 and ϕ2, while ϕ3(ιi(C)) = ιi+1(C).

For x, y ∈ C define x ∗ y by ι3(x ∗ y) = ϕ3(ι3(x))ϕ
2
3(ι3(y)). Then:

ι3((x ∗ y) ∗ x) = ϕ3(ι3(x ∗ y))ϕ2
3(ι3(x))

=
(
ϕ2
3(ι3(x))ι3(y)

)
ϕ2
3(ι3(x)) = ϕ2

3(ι3(x))
(
ϕ2
3(ι3(x))ι3(y)

)
.

But ϕ2
3(ι3(x)) = ι2(x

′) for some x′ ∈ C with n(x) = n(x′) (since T (ιi(x)2) = 8n(x)
and T is invariant under ϕ3), and

ι2(x
′)
(
ι2(x

′)ι3(y)
)
= ι2(x

′)ι1(x̄′ȳ) = ι3(x̄′ȳx̄′)
= ι3((yx

′)x̄′) = n(x′)ι3(y) = n(x)ι3(y).

Hence (x ∗ y) ∗ x = n(x)y and, in the same vein, we get x ∗ (y ∗ x) = n(x)y.
It follows that (C, ∗) is a symmetric composition algebra (see Chapter VIII of [22]),
and ϕ1 and ϕ2 give, by restriction to ι3(C), two commuting order 3 automorphisms
of (C, ∗), and hence a grading of (C, ∗) by Z2

3. We obtain that (C, ∗) is the Okubo
algebra over F and the grading is the unique, up to equivalence, Z2

3-grading on
(C, ∗) [16].

Moreover, setting ι̃i(x) = ϕi
3(ι3(x)), we recover exactly the multiplication in A

in equations (6.4). This shows that Γ is equivalent to the Z3
3-grading of A.

The proof of Theorem 7.1 is complete.

Corollary 7.5. Let A be the Albert algebra over an algebraically closed field of
characteristic different from 2. Then any abelian group grading on A is either
induced from the Cartan grading or is equivalent to one of the following:

• a Z5
2-grading of type (24, 0, 1), a Z4

2-grading of type (7, 8, 0, 1), or a Z3
2-grading

of type (0, 0, 7, 0, 0, 1), if the degree of the neutral component is 3;

• a Z×Z3
2-grading of type (25, 1), a Z4×Z3

2-grading of type (23, 2), a Z3×Z3
2-

grading of type (21, 3), or a Z4 × Z2
2-grading of type (6, 9, 1), if the degree of

the neutral component is 2;

• a Z3
3-grading of type (27) if the degree of the neutral component is 1 and the

characteristic is not 3.
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7.4. Classification of G-gradings up to isomorphism

Now we obtain, for any abelian group G, a classification of G-gradings on A up to
isomorphism. We will need the following result describing the Weyl groups of the
fine gradings Γj

A, j = 1, 2, 3, 4.

Theorem 7.6 ([18]). Identifying Supp Γ1
A \ {0} with the short roots of the root

system Φ of type F4, we have W (Γ1
A) = AutΦ. W (Γ2

A) is the stabilizer in
Aut(Z2

2 × Z3
2) of the subgroup Z3

2 (as a set ). W (Γ3
A) = Aut(Z × Z3

2). W (Γ4
A) is

the commutator subgroup of Aut(Z3
3). �

To state our classification theorem, we introduce the following notation:

• Let γ = (b1, b2, b3, b4) be a quadruple of elements in G. Denote by Γ1
A(G, γ)

the G-grading on A induced from Γ1
A by the homomorphism Z4 → G sending

the i-th element of the standard basis of Z4 to bi, i = 1, 2, 3, 4. For two such
quadruples, γ and γ′, we will write γ ∼ γ′ if there exists w ∈ AutΦ such that
b′j = b

w1j

1 b
w2j

2 b
w3j

3 b
w4j

4 where w = (wij) is considered as an element of GL4(Z).

• Let γ = (b1, b2, b3) be a triple of elements in G with b1b2b3 = e and b2i = e,
i = 1, 2, 3. Let H ⊂ G be a subgroup isomorphic to Z3

2. Fix an isomorphism
α : Z3

2 → H and denote by Γ2
A(G,H, γ) the G-grading induced from Γ2

A by the
homomorphism Z2

2 ×Z3
2 → G sending the i-th element of the standard basis of Z2

2

to bi, i = 1, 2, and restricting to α on Z3
2. It follows from Theorem 7.6 that the

isomorphism class of the induced grading does not depend on the choice of α. For
two such triples, γ and γ′, we will write γ ∼ γ′ if there exists π ∈ Sym(3) such
that b′i ≡ bπ(i) (mod H) for all i = 1, 2, 3.

• Let g be an element of G such that g2 �= e. Let H ⊂ G be a subgroup
isomorphic to Z3

2. Fix an isomorphism α : Z3
2 → H and denote by Γ3

A(G,H, g)
the G-grading induced from Γ3

A by the homomorphism Z × Z3
2 → G sending the

element 1 in Z to g and restricting to α on Z3
2. It follows from Theorem 7.6 that

the isomorphism class of the induced grading does not depend on the choice of α.
For two elements, g and g′, we will write g ∼ g′ if g′ ≡ g (mod H) or g′ ≡ g−1

(mod H).

• Let H ⊂ G be a subgroup isomorphic to Z3
3. Then Γ4

A may be regarded as
a G-grading with support H . Since W (Γ4

A) has index 2 in Aut(Z3
3), there are two

isomorphism classes among the induced gradings αΓ4
A for various isomorphisms

α : Z3
3 → H . They can be distinguished as follows: fix a primitive third root of

unity ω and a generating set {g1, g2, g3} for H , then in one isomorphism class we
will have (X1X2)X3 = ωX1(X2X3) and in the other (X1X2)X3 = ω−1X1(X2X3)
where Xi are nonzero elements with degXi = gi, i = 1, 2, 3 – see Section 4.5
of [18]. We denote these two (isomorphism classes of) G-gradings by Γ4

A(G,H, δ),
where δ ∈ {+,−}.
Theorem 7.7. Let A be the Albert algebra over an algebraically closed field of
characteristic different from 2. Let G be an abelian group. Then any G-grading
on A is isomorphic to some Γ1

A(G, γ), Γ2
A(G,H, γ), Γ3

A(G,H, g) or Γ4
A(G,H, δ)

(characteristic �= 3 in this latter case), but not two from this list. Also,
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• Γ1
A(G, γ) is isomorphic to Γ1

A(G, γ
′) if and only if γ ∼ γ′;

• Γ2
A(G,H, γ) is isomorphic to Γ2

A(G,H
′, γ′) if and only if H = H ′ and γ ∼ γ′;

• Γ3
A(G,H, g) is isomorphic to Γ3

A(G,H
′, g′) if and only if H = H ′ and g ∼ g′;

• Γ4
A(G,H, δ) is isomorphic to Γ4

A(G,H
′, δ′) if and only if H = H ′ and δ = δ′.

Proof. By Theorem 7.1, we know that any G-grading Γ : A =
⊕

g∈G Ag is iso-

morphic to αΓj
A for some j = 1, 2, 3, 4 (j �= 4 if charF = 3) and a homomorphism

α : U(Γj
A) → G. In the case j = 2, if the restriction α|Z3

2
is not one-to-one, then

Proposition 7.3 tells us that Γ can also be induced from Γ1
A by a homomorphism

Z4 → G. In the case j = 3, if the restriction α|Z3
2
is not one-to-one or 1 ∈ Z is

sent to an element of order ≤ 2, then Proposition 7.4 implies that the degree of
the algebra Ae is 3 and hence, by Proposition 7.3, Γ is isomorphic to a grading
induced from Γ1

A or Γ2
A. In the case j = 4, if α is not one-to-one, then Ae has

degree 3 and the same argument applies. We have shown that Γ is isomorphic to
a grading from our list.

Now, two gradings on our list that have different j’s cannot be isomorphic,
because the degree of Ae is 1 for j = 4, it is 2 for j = 3, and 3 for j = 1, 2; in the
latter case the gradings can be distinguished as follows: for any grading induced
from Γ1

A by a homomorphism Z4 → G where G is an elementary 2-group, every
homogeneous component Ag, g �= e, has even dimension, whereas the gradings
Γ2
A(G,H, γ) possess homogeneous components of odd dimension other than Ae

(see their types in Proposition 7.3).

It remains to consider isomorphisms between two gradings with the same j.
The “if” part follows from Theorem 7.6, which shows that one grading can be
mapped to the other by an automorphism in Aut(Γj

A). The proof of the “only if”
part will be divided into cases according to the value of j.

1) Since Γ1
A is the eigenspace decomposition relative to a 4-dimensional torus

in Aut(A), and the latter is the simple algebraic group of type F4, this case is
covered by Proposition 3.9.

2) Suppose ϕ ∈ Aut(A) sends Γ = Γ2
A(G,H, γ) to Γ′ = Γ2

A(G,H
′, γ′). Then,

in particular, it maps Ae to A′
e. If bi ∈ H for all i, then Supp Γ = H and hence

SuppΓ′ = H , which forces H ′ = H and b′i ∈ H for all i. Suppose that at least one
of the bi is not in H . Then, in fact, at least two of them, say b2 and b3, are not in H .
Hence Ae is not simple – precisely, FE1 is a factor of Ae. Then Fϕ(E1) is a factor
of A′

e and hence the idempotent ϕ(E1) is one of Ei, i = 1, 2, 3. The automorphism
of A defined by Ei 	→ Ei+1, ιi(x) 	→ ιi+1(x), for all x ∈ C and i = 1, 2, 3, belongs
to Aut(Γ2

A), so we may assume without loss of generality that ϕ(E1) = E1. It
follows that ϕ leaves the subspace FE2 ⊕ FE3 ⊕ ι1(C) invariant. The support of
this subspace is, on the one hand, b1H and, on the other hand, b′1H

′. It follows
that H = H ′ and b1 ≡ b′1 (mod H). Also, ϕ leaves the subspace ι2(C) ⊕ ι3(C)
invariant, and the support of this subspace is, on the one hand, b2H ∪ b3H and, on
the other hand, b′2H∪b′3H . It follows that b2 ≡ b′2 (mod H) and b3 ≡ b′3 (mod H),
or b2 ≡ b′3 (mod H) and b3 ≡ b′2 (mod H).
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3) Suppose ϕ ∈ Aut(A) sends Γ3
A(G,H, g) to Γ3

A(G,H
′, g′). Since E = E1 is

the unique idempotent of trace 1 in Ae and in A′
e, we have ϕ(E1) = E1. Hence

the subspaces FE2⊕FE3 ⊕ ι1(C) and ι2(C)⊕ ι3(C) are invariant under ϕ. Looking
at the supports, we get:

H ∪ {g±2} = H ′ ∪ {(g′)±2} and gH ∪ g−1H = g′H ′ ∪ (g′)−1H ′.

The first condition shows that the intersection H ∩H ′ has at least 6 elements, and
hence it generates both H and H ′. Therefore, H = H ′. Now the second condition
gives that g′ ≡ g (mod H) or g′ ≡ g−1 (mod H).

4) This case is clear from the definition of Γ4
A(G,H, δ). �

8. Gradings on F4

We continue to assume that the ground field F is algebraically closed and charF �=2.
The simple Lie algebra of type F4 arises as the algebra of derivations of the Albert
algebra. In order to describe it, consider first the local version of Definition 5.3.
Let C be the Cayley algebra over F. Its triality Lie algebra is defined as

tri(C) = {(d1, d2, d3) ∈ so(C, n)3 | d1(x • y) = d2(x) • y + x • d3(y) ∀x, y ∈ C}.
(Recall x • y = x̄ȳ and lx(y) = ry(x) = x • y.) As in Lemma 5.4, if (d1, d2, d3)
belongs to tri(C), so does (d3, d1, d2). The Lie bracket in tri(C) is the componentwise
bracket, and we get the order 3 automorphism θ (triality automorphism):

(8.1) θ : (d1, d2, d3) 	→ (d3, d1, d2).

Each triple (d1, d2, d3) ∈ tri(C) induces a derivation of the Albert algebra A:

(8.2) D(d1,d2,d3) : Ei 	→ 0, ιi(x) 	→ ιi(di(x)),

for any i = 1, 2, 3 and x ∈ C. Also, for any x ∈ C and i = 1, 2, 3, consider the
derivationDi(x) = 2[Lιi(x), LEi+1 ] (we use here the notation LX to denote the mul-
tiplication by the element X in the Albert algebra):

(8.3)

Di(x) : Ei 	→ 0, Ei+1 	→ 1
2 ιi(x), Ei+2 	→ − 1

2 ιi(x),
ιi(y) 	→ 2n(x, y)(−Ei+1 + Ei+2),

ιi+1(y) 	→ −ιi+2(x • y),
ιi+2(y) 	→ ιi+1(y • x),

for all y ∈ C. Then we get (see Theorem IX.17 of [21]):

(8.4) Der(A) = Dtri(C) ⊕
( 3⊕

i=1

Di(C)
)
.

One verifies at once the following properties (see Section 5.3 of [16]):

[D(d1,d2,d3), Di(x)] = Di(di(x)),

[Di(x), Di+1(y)] = Di+2(x • y),
[Di(x), Di(y)] = 2Dθi(tx,y ),

(8.5)
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for all x, y ∈ C, (d1, d2, d3) ∈ tri(C) and i = 1, 2, 3, where θ is the triality automor-
phism in (8.1) and where

tx,y =
( 1

2
n(x, y)id− rxly,

1

2
n(x, y)id− lxry, σx,y

)
∈ tri(C),

σx,y(z) = n(x, z)y − n(y, z)x ∈ so(C, n). Moreover, the projection of tri(C) onto
any of its components gives an isomorphism tri(C) → so(C, n). For simplicity, we
will denote Dtx,y simply by Dx,y.

Take a “good basis” B = {e1, e2, u1, u2, u3, v1, v2, v3} of C and consider the
subspace h of g = Der(A) spanned by De1,e2 and Dui,vi for i = 1, 2, 3. This is an
abelian subalgebra of g. Actually, the image of h in so(C, n) under the projection
of tri(C) onto its first component is the span of σe1,e2 and σui,vi , i = 1, 2, 3, so it is
a Cartan subalgebra of so(C, n).

Consider the linear maps εj : h → F, j = 0, 1, 2, 3, that constitute the dual basis
to Duj ,vj , j = 0, 1, 2, 3, where u0 := e1 and v0 := e2. Since we have:

σe1,e2 : e1 	→ −e1, e2 	→ e2, ui, vi 	→ 0,

σui,vi : ui 	→ −ui, vi 	→ vi, e1, e2, uj, vj 	→ 0 (j �= i)

1
2 id− re1 le2 : e1 	→ 1

2e1, e2 	→ − 1
2e2, ui 	→ − 1

2ui, vi 	→ 1
2vi,

1
2 id− rui lvi : e1 	→ 1

2e1, e2 	→ − 1
2e2, ui 	→ − 1

2ui, vi 	→ 1
2vi,

uj 	→ 1
2uj , vj 	→ − 1

2vj (j �= i),

1
2 id− le1re2 : e1 	→ 1

2e1, e2 	→ − 1
2e2, ui 	→ 1

2ui, vi 	→ − 1
2vi,

1
2 id− luirvi : e1 	→ − 1

2e1, e2 	→ 1
2e2, ui 	→ − 1

2ui, vi 	→ 1
2vi,

uj 	→ 1
2uj , vj 	→ − 1

2vj (j �= i),

we obtain that the weights of h in ι1(C), and hence the roots in D1(C), are ±εj,
j = 0, 1, 2, 3, the weights in ι2(C), and hence the roots in D2(C), are

1
2 (±ε0 ± ε1 ±

ε2 ± ε3) with an even number of + signs, and the weights in ι3(C), and hence the
roots in D3(C), are

1
2 (±ε0 ± ε1 ± ε2 ± ε3) with an odd number of + signs. From

[σa,b, σx,y] = σσa,b(x),y + σx,σa,b(y) for any a, b, x, y ∈ C we obtain that the roots in
Dtri(C) are ±εr ± εs, 0 ≤ r �= s ≤ 3. Hence h is a Cartan subalgebra of g with the
following set of roots:

Φ = {±εr ± εs | 0 ≤ r �= s ≤ 3} ∪ {±εr | 0 ≤ r ≤ 3} ∪ {1
2
(±ε0 ± ε1 ± ε2 ± ε3)}.

Note that the root spaces in Dtri(C) are the subspaces FDui,uj , FDui,vj and FDvi,vj

for 0 ≤ i �= j ≤ 3, while in Di(C), i = 1, 2, 3, the root spaces are the subspaces
FDi(x) for x ∈ B. It follows at once that for any α ∈ Φ and Xα ∈ gα, the linear
maps X3

α on A, and ad 3
Xα

on g are zero.
Consider the Z4-grading on g induced by the Cartan grading on A. Its ho-

mogeneous components are precisely the root spaces above, i.e., it is the Cartan
decomposition of g relative to h. We will call it the Cartan grading on g.
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Proposition 8.1. Let A be the Albert algebra over an algebraically closed field of
characteristic different from 2 and let g = Der(A). Then any derivation of g is
inner.

Proof. This is well-known for charF �= 2, 3 (see [25]). We include a proof that is
valid also in characteristic 3, where the Killing form is trivial. The Cartan grading
on g induces a grading on Der(g). It suffices to consider homogeneous elements
D ∈ Der(g). Suppose a ∈ Z4 and D ∈ Der(g)a. If ga = 0, then D(h) = D(g0) = 0.
If a = 0, then the subspaces g0 and gα, α ∈ Φ, are invariant under D and hence
D(h) = 0 again. Finally, suppose ga = FXα for some α ∈ Φ. Then there is a
linear map λ : h → F such that D(H) = λ(H)Xα for all H ∈ h. Hence for any
H1, H2 ∈ h, we have 0 = D([H1, H2]) = [D(H1), H2] + [H1, D(H2)], which gives
λ(H1)α(H2) = λ(H2)α(H1). Therefore, either λ = 0 or the linear maps λ and α
have the same kernel, so λ = μα for some μ ∈ F. Hence the derivation D+μadXα

annihilates h. We have shown that Der(g) = ad (g) + {D ∈ Der(g) | D(h) = 0}.
Now take a system Δ of simple roots. For instance,

(8.6) Δ = {α1, α2, α3, α4}
where α1 = 1

2 (ε0 − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3 and α4 = ε1 − ε2. Any
derivation D ∈ Der(g) which annihilates h preserves the root spaces, so there are
scalars μi ∈ F such that D(Xαi) = μiXαi , and hence D(X−αi) = −μiX−αi . Take
H ∈ h such that αi(H) = μi for i = 1, 2, 3, 4. The multiplication rules in (8.5)
show that the elements X±αi , i = 1, 2, 3, 4, generate g. It follows that D = adH ,
which completes the proof. �

Proposition 8.2. Let A be the Albert algebra over an algebraically closed field of
characteristic different from 2 and let g = Der(A). Then the map Ad : Aut(A) →
Aut(g), ϕ 	→ (D 	→ ϕ ◦D ◦ ϕ−1), is a group isomorphism.

Proof. Again, this is well-known for charF �= 2, 3 (see p. 71 of [25]). We include a
proof that works also in characteristic 3. Since ϕ ◦ adX ◦ ϕ−1 = adϕ(X) for all
X ∈ g, we see that Ad is one-to-one. The following argument will show that it
is onto.

Consider the order 2 automorphism of C given by:

(8.7) σ : e1 ↔ e2, ui ↔ vi, for all i = 1, 2, 3.

This automorphism σ extends to an order 2 automorphism of A by means of
σ(Ei) = Ei, σ(ιi(x)) = ιi(σ(x)), for all i = 1, 2, 3 and x ∈ C, and hence it induces
an order 2 automorphism of g, which will be denoted by σ as well. Note that the
restriction of σ to h is −id, and σ takes any root space gα to g−α.

Given isotropic elements x, y, x′, y′ ∈ C with n(x, x′) = 1 = n(y, y′) and n(Fx+
Fx′,Fy + Fy′) = 0, we get

[[σx,y, σx′,y′ ], σx,y] = [σx,x′ + σy,y′ , σx,y] = −2σx,y.

Hence, in particular, for i �= j, we obtain

[[Dui,uj ,−σ(Dui,uj )], Dui,uj ] = 2Dui,uj ,
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where, as before, u0 = e1 and v0 = e2. It follows that

{[Dui,uj ,−σ(Dui,uj )], Dui,uj ,−σ(Dui,uj )}
is an sl2-triple in g, i.e., a triple {H,E, F} satisfying [H,E] = 2E, [H,F ] = −2F
and [E,F ] = H , and thus spanning a subalgebra isomorphic to sl2(F). With the
same arguments we get sl2-triples starting with Dui,vj or Dvi,vj , 0 ≤ i �= j ≤ 3. In
a similar vein, for x in the “good basis” B of C:

[[Di(x), Di(σ(x))], Di(x)] = 2[Dθi(tx,σ(x)), Di(x)] = 2Di

(
σx,σ(x)(x)

)
= −2Di(x),

so {[Di(x),−σ(Di(x))], Di(x),−σ(Di(x))} is an sl2-triple.

Take the system Δ of simple roots in (8.6), and the corresponding set of positive
roots:

Φ+ = {εr, εr ± εs,
1

2
(ε0 ± ε1 ± ε2 ± ε3) | 0 ≤ r < s ≤ 3}.

For each α ∈ Φ+, choose the nonzero element Xα in the root spaces gα to be of
the form Dx,y or Di(x) for some x, y ∈ B and i = 1, 2, 3. In particular,

Xα1 = D3(e1), Xα2 = D1(v3), Xα3 = Dv2,v3 , Xα4 = Dv1,v2 .

Take Xα = −σ(X−α) for α ∈ Φ− = −Φ+.
With Hi = [Xαi ,−σ(Xαi)], the basis

BCh = {Hi, Xα | 1 ≤ i ≤ 4, α ∈ Φ}
is a Chevalley basis of g (see the proof of Proposition 25.2 in [20]) whose structure
constants lie in Z if charF = 0 and in the field Z/pZ if charF = p. Moreover, the
structure constants of the action of the elements Xα on A are in 1

2Z if charF = 0
and in Z/pZ if charF = p.

Let AC be the complex Albert algebra, so that gC = Der(AC) is the simple
Lie algebra of type F4 over C. Consider the ring Z[ 12 ] = { a

2n | a ∈ Z, n ∈ N}.
In AC, let AZ[ 12 ]

be the linear span of the basis {Ei, ιi(x) | i = 1, 2, 3, x ∈ B} over

Z[ 12 ] and let gZ[ 12 ] be the linear span of the basis BCh over Z[ 12 ]. Then our Albert
algebra A over F is isomorphic to AZ[ 12 ]

⊗Z[ 12 ]
F, and its Lie algebra of derivations

g = Der(A) is isomorphic to gZ[ 12 ] ⊗Z[ 12 ]
F.

According to Steinberg (see 4.1 of [26]), the automorphism group of g is gen-
erated by the operators exp(μ adXα), α ∈ Φ, μ ∈ F×. These are indeed auto-
morphisms, even in characteristic 3, since they are obtained by specialization from
the automorphism exp(t adXα) in gZ[ 12 ] ⊗Z[ 12 ]

Z[ 12 , t], which is a subalgebra of gC
if we identify t with a transcendental element in C. (Here we are using the same
symbol Xα to denote an element in gC = Der(AC) and in g = Der(A), but this
should cause no confusion.) Now,

exp(t adXα)(Y ) = exp(tXα)Y exp(−tXα) = (exp tXα)Y (exp tXα)
−1,

for all Y ∈ AC, i.e., we have exp(t adXα) = Ad (exp tXα).
The operator expμXα on A is an automorphism of A, since it is obtained

by specialization from an automorphism in AZ[ 12 ]
⊗Z[ 12 ]

Z[ 12 , t]. We also have

exp(μ adXα) = Ad (expμXα), which completes the proof. �
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Corollary 8.3. Let C be a Cayley algebra over a field F, charF �= 2. Let A =
H3(C) and g = Der(A). Then Ad : Aut(A) → Aut(g) is an isomorphism of
affine group schemes.

Proof. Let F be the algebraic closure of F. Since Der(g)⊗F = Der
F
(g⊗F), g⊗F =

Der
F
(A⊗F), and A⊗F = H3(C⊗F), we may pass from F to F and thus assume

that F is algebraically closed. Then Aut(A) is the simple algebraic group of type F4

(see (25.13) of [22] and the references therein) and hence

dimAut(A) = 52 = dimDer(A),

which means that Aut(A) is smooth. Now, the maps Ad F : Aut(A) → Aut(g)
and ad : g → Der(g) are both bijective, by Propositions 8.2 and 8.1, respectively.
The result follows. �

Now Theorems 2.3 and 2.4 yield the following result:

Theorem 8.4. Let A be the Albert algebra over an algebraically closed field F,
charF �= 2. Then the abelian group gradings on Der(A) are those induced by such
gradings on A. The algebras A and Der(A) have the same classification of fine
gradings up to equivalence and, for any abelian group G, the same classification of
G-gradings up to isomorphism.

Corollary 8.5. We use the notation of Theorems 8.4 and 7.1. Then, up to equiv-
alence, the fine abelian group gradings on the simple Lie algebra g = Der(A), their
universal groups and types are the following:

• The Cartan grading Γ1
g induced by Γ1

A; universal group Z4; type (48, 0, 0, 1).

• The grading Γ2
g induced by Γ2

A; universal group Z5
2; type (24, 0, 0, 7).

• The grading Γ3
g induced by Γ3

A; universal group Z× Z3
2; type (31, 0, 7).

• The grading Γ4
g induced by Γ4

A; universal group Z3
3; type (0, 26) – this one

exists only if charF �= 3.

Proof. Only the type of these gradings has to be checked and this is straightfor-
ward. The most difficult case is for the Z × Z3

2-grading. Since g = [LA, LA] (see
Corollary IX.11 of [21]), we obtain: g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 where
gn =

∑
r+s=n[LAr , LAs ] and Ar as in (6.3). But [LS± , Lν±(C)] = 0, so g±3 = 0.

The local version of Remark 6.4 shows that g0 contains a subalgebra isomorphic
to so(C0, n). Also, [LE, LA±1 ] = [LE , Lν±(C)] is an 8-dimensional subspace of g±1,

since [LE , Lν±(x)](S
∓) = 1

2ν∓(x), and [LS± , Lν(C0)] is a 7-dimensional subspace of
g±2, since [LS± , Lν(a)](ν∓(1)) = ∓2ν±(a). It follows that dim g0 = 22, dim g±1 = 8
and dim g±2 = 7 (actually, g±1 = [LE , Lν±(C)] and g±2 = [LS± , Lν(C0)]). Hence the
type of the Z×Z3

2-grading, which is obtained by refining the Z-grading on g above
using the Z3

2-grading on C, is (31, 0, 7), where the seven 3-dimensional homogeneous
components are in so(C0, n), which is contained in g0. �



Gradings on the exceptional Lie algebras F4 and G2 revisited 811

Let Γ1
g(G, γ), Γ

2
g(G,H, γ), Γ

3
g(G,H, g), and Γ4

g(G,H, δ) be the G-gradings in-

duced by Γj
g, j = 1, 2, 3, 4, respectively, in the same way as for Γj

A (see Theo-
rem 7.7).

Corollary 8.6. Let g be the simple Lie algebra of type F4 over an algebraically
closed field F, charF �= 2. Let G be an abelian group. Then any G-grading on A

is isomorphic to some Γ1
g(G, γ), Γ

2
g(G,H, γ), Γ

3
g(G,H, g) or Γ4

g(G,H, δ) (charac-
teristic �= 3 in this latter case), but not two from this list. Also,

• Γ1
g(G, γ) is isomorphic to Γ1

g(G, γ
′) if and only if γ ∼ γ′;

• Γ2
g(G,H, γ) is isomorphic to Γ2

g(G,H
′, γ′) if and only if H = H ′ and γ ∼ γ′;

• Γ3
g(G,H, g) is isomorphic to Γ3

g(G,H
′, g′) if and only if H = H ′ and g ∼ g′;

• Γ4
g(G,H, δ) is isomorphic to Γ4

g(G,H
′, δ′) if and only if H = H ′ and δ = δ′.

Corollary 8.7. Using the notation of Corollary 8.6, any abelian group grading on g
is either induced from the Cartan grading or equivalent to one of the following:

• a Z5
2-grading of type (24, 0, 0, 7), a Z4

2-grading of type (1, 8, 0, 0, 7), or a Z3
2-

grading of type (0, 0, 1, 0, 0, 0, 7);

• a Z × Z3
2-grading of type (31, 0, 7), a Z8 × Z2

2-grading of type (19, 6, 7), a
Z4 × Z3

2-grading of type (17, 7, 7), a Z3 × Z3
2-grading of type (3, 14, 7), or a

Z4 × Z2
2-grading of type (0, 8, 2, 0, 6);

• a Z3
3-grading of type (0, 26) if charF �= 3.

Proof. Consider, for example, the grading Γ = Γ3
g(G,H, g) and the correspond-

ing grading on A. The homogeneous components of the 5-grading in (6.3) have
supports SuppA±2 = {g±2}, SuppA±1 = g±1H , SuppA0 = H . Hence Γ has

the following supports in each of the components of the Z-grading g =
⊕2

r=−2 gr:
Supp g±2=g

±2(H\{e}) (as g±2=[LE, Lν(C0)]), Supp g±1=g
±1H and Supp g0=H .

If these subsets are disjoint, then Γ is equivalent to the fine Z×Z3
2-grading. Other-

wise we have several possibilities where some homogeneous components of this fine
grading coalesce as in the arguments preceding Proposition 7.4, plus a new pos-
sibility where g4 ∈ H \ {e} and hence Supp Γ is a group isomorphic to Z8 × Z2

2.
With combinatorial arguments of this kind, one completes the proof. �
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