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Nearly optimal interpolation

of data in C2(R2). Part I

Charles Fefferman

Abstract. Given ε > 0, we compute a function taking prescribed values
at N given points in R2, whose C2-norm is within a factor (1+ ε) of least
possible. The computation takes C(ε)N logN computer operations.

0. Introduction

The problem

Our goal, here and in [4], is to interpolate data by a smooth function. We work
in Cm(Rn), the space of real-valued functions F whose derivatives up to order m
are continuous and bounded on Rn. We fix a norm on Cm(Rn), e.g.,

(1) ‖ F ‖Cm(Rn)= sup
x∈Rn

max
|α|≤m

|∂αF(x)|.

Let f : E → R be a real-valued function on a finite set E ⊂ Rn. An “interpolant”
for f is a function F ∈ Cm(Rn) such that F = f on E. We define

(2) ‖ f ‖Cm(E)= inf {‖ F ‖Cm(Rn): F ∈ Cm(Rn), F = f on E}.

Elementary examples show that the inf in (2) needn’t be a minimum. Given a
real number A > 1, we say that F ∈ Cm(Rn) is an “A-optimal interpolant” for
f : E → R, provided F = f on E and ‖ F ‖Cm(Rn)≤ A ‖ f ‖Cm(E).

Our main problem is to compute an A-optimal interpolant for f, where A is
not too large.

To “compute” an interpolant, we provide an algorithm to be implemented on
an (idealized) digital computer. We want to minimize the number of computer
operations, and the size of the computer memory, needed to execute our algorithm.

In [7] and [8], Fefferman–Klartag gave an efficient algorithm to compute an
A-optimal interpolant, where A is a constant depending only on m and n. Unfor-
tunately, the constant A arising from the algorithm in [7] and [8] is large, even for
modest m and n.
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Motivated by the hope of eventual practical applications, we therefore pose the
following

(3) Sharp Interpolation Problem: Given a function f : E → R on a finite set
E ⊂ Rn, and given ε > 0, compute a (1 + ε)-optimal interpolant for f.

Our main result, here and in [4], is an algorithm to solve the above Sharp
Interpolation Problem for the case of C2(R2). For sets E consisting ofN points, our
algorithm requires at most C(ε)N logN computer operations, where C(ε) depends
only on ε, and on our choice of the norm on C2(R2).

This improves our previous result in [6] (specialized to C2(R2)), which computes
a (1+ε)-optimal interpolant using C(ε)N5(logN)2 operations. The algorithm in [6]
reduces matters to a linear programming problem of size C(ε)N. Here and in [4],
we instead reduce matters to O(N) “little” linear programming problems, each of
size C(ε).

The previous results of Fefferman–Klartag [7], [8] and Fefferman [6] were all
based on “finiteness principles”, which we explain below. The natural finiteness
principle relevant to our Sharp Interpolation Problem fails for C2(R2). Neverthe-
less, we are able to give an efficient algorithm for this case.

Notation

Fix m,n ≥ 1. For F ∈ Cm(Rn) and x ∈ Rn, we write Jx(F) (the “jet” of F at x)
to denote the mth order Taylor polynomial of F at x. Thus, Jx(F) belongs to P, the
vector space of (real) mth degree polynomials on Rn.

Now let E ⊂ Rn be a finite set. A “Whitney field” on E is a family of polyno-
mials

(4) �P = (Px)x∈E, indexed by the points of E, such that each Px belongs to P.
We write Wh(E) to denote the vector space of all Whitney fields on E.

For F ∈ Cm(Rn) and E ⊂ Rn finite, the “jet” JE(F) of F at E is defined as

(5) JE(F) = (Jx(F))x∈E ∈ Wh(E).

If �P is a Whitney field as in (4), and if S ⊂ E, then the “restriction” �P|S is
defined as

(6) �P|S = (Px)x∈S, with the same Px as in (4).

We define a norm on Whitney fields �P ∈ Wh(E), by setting

(7) ‖ �P ‖Wh(E)= inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn), JE(F) = �P}.

If �P = (Px)x∈E ∈ Wh(E) and f : E → R, then we say that �P “agrees” with f

provided

(8) (Px)(x) = f(x) for each x ∈ E.
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Similarly if �P = (Px)x∈E1
∈ Wh(E1) and f : E2 → R, then we say that �P

“agrees” with f at a given point x̄ ∈ E1 ∩ E2, provided

(9) (Px̄)(x̄) = f(x̄).

The Cm norm

Our choice of the norm in (1) is somewhat arbitrary. We could just as well
have defined, say,

(10) ‖ F ‖Cm(Rn)= sup
x∈Rn

∑
|α|≤m

|∂αF(x)|,

(11) ‖ F ‖Cm(Rn)= sup
x∈Rn

( ∑
|α|≤m

|∂αF(x)|2
)1/2

, or

(12) ‖ F ‖Cm(Rn)=
∑

|α|≤m

sup
x∈Rn

|∂αF(x)|.

Each of these norms gives rise to a different Sharp Interpolation Problem (3). To
allow freedom to pick our favorite Cm-norm, we suppose from now on that we are
given a family of norms | · |x on P, parametrized by x ∈ Rn.

For Ω ⊂ Rn, and for F ∈ Cm
loc(Ω), we then define

(13) ‖ F ‖Cm(Ω)= sup
x∈Ω

|Jx(F)|x

For instance, we recover the Cm-norms (1) and (10)–(11) by taking

(14) |P|x = max
|α|≤m

|∂αP(x)|,

(15) |P|x =
∑

|α|≤m

|∂αP(x)|, and

(16) |P|x =
( ∑

|α|≤m

|∂αP(x)|2
)1/2

,

respectively, for P ∈ P.

The Cm-norm (12) is not given in the form (13); we do not consider it further.
The norms | · |x are assumed to satisfy two reasonable conditions, called the “Boun-
ded Distortion Property” and “Approximate Translation-Invariance”. These prop-
erties are given in Section 5. The norms (14), (15), (16) satisfy these two conditions.

From now on, whenever we mention the Cm-norm, we assume that the norm
is defined by (13), or by its special case (1). This applies in particular to the

definition of ‖ �P ‖Wh(E) by (7).

The computer

Our Sharp Interpolation Problem asks us to “compute” a function using a
“computer”. We suppose that our computer has standard von Neumann archi-
tecture [14]. We assume that each memory cell and each register is capable of
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holding an arbitrary real number. We suppose that the computer can perform
elementary arithmetic operations on exact real numbers, without roundoff error.
(The arithmetic operations include exponentials and logarithms, and the “greatest
integer” function.) To perform a single arithmetic operation, or to read or write
a single number to memory, costs us one unit of “work”. See [12] and [17] for a
more detailed discussion of this model of computation (and its pitfalls).

Our computer will have to acquire information on the family of norms | · |x
used to specify the Cm-norm in (13). We suppose that our computer has access to
an Oracle. Given a point x ∈ Rn and a polynomial P ∈ P, the Oracle returns the
value of |P|x, at a charge of one unit of “work”. (This assumption can be weakened;
see Section 5 below.) For the family of norms | · |x given by (14), (15) or (16), an
obvious algorithm serves as an Oracle.

Computing a function

Our computer can only calculate finitely many real numbers. What does it
mean to “compute a function” F ∈ Cm(Rn)? As in [6], [8], we have in mind the
following dialogue with the computer: First, we enter the data (m,n, E, f, ε for
our Sharp Interpolation Problem). Next, the computer executes an algorithm,
performing W1 operations of “one-time work”. After the one-time work is com-
plete, the computer signals that it is ready to accept queries. A “query” consists of
a point x ∈ Rn. When we enter a query x, the computer responds by executing a
“query algorithm”, involving WQ operations (the “query work”), and then return-
ing the values of ∂αF(x) for |α| ≤ m. We may enter as many queries as we please.
We insist that the function F be uniquely determined once the computer signals
that it is ready for queries. In particular, we disallow “adaptive algorithms”, in
which the function F depends on our queries. We also disallow calls to the Oracle
by the query algorithm.

The computer resources used to compute a function are the one-time work W1,
the query work WQ, and the “storage” or “space” (i.e., the number of memory
cells in the computer’s random-access memory).

The main result

After the above preparations, we are ready to state our main result. We work
in C2(R2); thus m = n = 2 above.

Theorem 1. Fix a norm on C2(R2) of the form (13). Suppose we are given
0 < ε < 1

2
and f : E → R, with E ⊂ R2, #(E) = N.

Then, with work C(ε)N logN and storage C(ε)N, we can compute a non-
negative real number |||f||| such that (1+ ε)−1 |||f||| ≤‖ f ‖C2(E)≤ (1+ ε) |||f|||.

Moreover, we can compute a (1 + ε)-optimal interpolant for f, using one-time
work C(ε)N logN, query work C log(N/ε), and storage C(ε)N.

Here, C depends only on our choice of the C2-norm, and C(ε) depends only on
ε and our choice of the C2-norm.

Most likely, the N-dependence in Theorem 1 is optimal. Our C(ε) depends
superexponentially on ε; we hope this can be improved.
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Previous work

To place our main result in context, and to discuss its proof, we recall the
previous work of Fefferman–Klartag [7], [8] and Fefferman [6].

Theorem 2. Define the Cm(Rn)-norm by (1). Suppose we are given f : E → R,
with E ⊂ Rn, #(E) = N.

Then, using work at most CN logN and storage at most CN, we can compute
a non-negative real number |||f||| such that

(17) |||f||| ≤‖ f ‖Cm(E)≤ A |||f|||.

Moreover, we can compute an A-optimal interpolant for F, using one-time work
at most CN logN, query work at most C logN, and storage at most CN. Here, A
and C depend only on m and n.

Unfortunately, the constant A arising from [7], [8] is large.
As an easier variant of our Sharp Interpolation Problem (3), we pose the follo-

wing

Sharp Interpolation Problem for Whitney Fields: Given �P ∈ Wh(E), and given ε > 0,
compute a function F ∈ Cm(Rn), such that

(18) JE(F) = �P and ‖ F ‖Cm(Rn)≤ (1+ ε) ‖ �P ‖Wh(E).

If (18) holds, then we call F a “(1+ ε)-optimal interpolant” for �P.

The following result answers the Sharp Interpolation Problem for Whitney
Fields:

Theorem 3. Fix a norm on Cm(Rn) of the form (13). Suppose we are given

0 < ε < 1
2
and �P ∈ Wh(E), with E ⊂ Rn, #(E) = N.

Then, with work exp(C/ε)N logN and storage exp(C/ε)N, we can compute a

non-negative real number |||�P||| such that |||�P||| ≤‖ �P ‖Wh(E)≤ (1+ ε) |||�P|||.

Moreover, we can compute a (1+ ε)-optimal interpolant for �P, using one-time
work at most exp(C/ε)N logN, query work at most C log(N/ε), and storage at
most exp(C/ε)N.

Here C depends only on m,n and our choice of Cm-norm.

Using Theorem 3, we can reduce the Sharp Interpolation Problem (3) (for
functions) to a linear programming problem of size exp(C/ε)N. This leads to the
following preliminary result on (3); see [6].

Theorem 4. Fix a norm on Cm(Rn) of the form (13). Suppose we are given
0 < ε < 1

2
and f : E → R, with E ⊂ Rn, #(E) = N.

Then, with work exp(C/ε)N5(logN)2 and storage exp(C/ε)N2, we can com-
pute a non-negative real number |||f||| such that |||f||| ≤‖ f ‖Cm(E)≤ (1+ ε) |||f|||.

Moreover, we can compute a (1 + ε)-optimal interpolant for f, using one-time
work at most exp(C/ε)N5(logN)2, query work at most C log(N/ε), and storage at
most exp(C/ε)N2. Here, C depends only on m,n and our choice of the Cm-norm.
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Thus, for fixed ε, the Sharp Interpolation Problem (3) can be solved in poly-
nomial time.

Finiteness principles

The ideas behind Theorems 2 and 3 start with the classic Whitney Extension
Theorem [13], [18], [19], [20], which we state in the special case of finite sets E.

Theorem 5 (Whitney). Fix m,n ≥ 1, and define the Cm(Rn)-norm by (1). Let
�P = (Px)x∈E ∈ Wh(E), where E ⊂ Rn is finite. Assume the estimates: |∂αPx(x)| ≤ 1

for |α| ≤ m, x ∈ E; and |∂α(Px − Py)(y)| ≤ |x− y|m−|α| for |α| < m, x, y ∈ E.

Then there exists F ∈ Cm(Rn) such that ‖ F ‖Cm(Rn)≤ C and JE(F) = �P.
Here, C depends only on m,n.

Whitney’s theorem may be restated in the following equivalent form:

Theorem 6. Fix m,n ≥ 1, and define the Cm(Rn) norm by (1). Let �P ∈ Wh(E),

where E ⊂ Rn is finite. Suppose that ‖ (�P|S) ‖Wh(S)≤ 1 for each subset S ⊂ E

containing at most two points.

Then ‖ �P ‖Wh(E)≤ C, where C depends only on m and n.

Theorem 6 is the simplest case of a “finiteness principle”.
The proof of Theorem 2 is based on the following deeper finiteness principle

(see Brudnyi–Shvartsman [2], Fefferman [10], Bierstone–Milman [1], and Shvarts-
man [15]):

Theorem 7. Fix m,n ≥ 1, and define the Cm(Rn)-norm by (1). Then there exist
constants k#, C, depending only on m,n, such that the following holds:

Let f : E → R, with E ⊂ Rn finite. Suppose that ‖ (f|S) ‖Cm(S)≤ 1 for each

subset S ⊂ E containing at most k# points. Then ‖ f ‖Cm(E)≤ C.

Similarly, the proof of Theorem 3 is based on the following finiteness principle,
called the “(1+ ε)-Whitney theorem” in [5], [6]:

Theorem 8. Fix m,n ≥ 1, and fix a Cm(Rn)-norm of the form (13). Let �P ∈
Wh(E), with E ⊂ Rn finite; and let 0 < ε < 1

2
. Suppose that ‖ (�P|S) ‖Wh(S)≤ 1

for each subset S ⊂ E containing at most exp(C/ε) points.

Then ‖ �P ‖Wh(E)≤ 1+ ε. Here, C depends only on m,n and our choice of the
Cm-norm.

We believe that the exponential exp(C/ε) can be replaced by a power of 1/ε in
Theorems 3 and 8. A remarkable result of LeGruyer [11] suggests the possibility
of dramatic further improvements.

LeGruyer’s theorem pertains to the space C1,1(Rn) of function F whose gra-
dients are Lipschitz 1. On C1,1(Rn), we take the natural seminorm

‖ F ‖= sup
x,y∈Rn

x �=y

∣∣�F(x) − �F(y)
∣∣/ |x− y| .
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(Here, |�F(x) − �F(y)| and |x− y| are defined in terms of the Euclidean norm | · |
on Rn.)

For x ∈ Rn and F ∈ C1,1(Rn), we write jx(F) to denote the first-degree Taylor
polynomial of F at x. Le Gruyer’s theorem is as follows:

Theorem 9 ([11]). Let E ⊂ Rn. For each x ∈ E, let Px be a given first-degree
polynomial on Rn. Then the following are equivalent:

(A) There exists a function F ∈ C1,1(Rn) such that ‖ F ‖≤ 1 and jx(F) = Px for
each x ∈ E.

(B) |Px(z) − Py(z)| ≤ 1
2
(|z − x|2 + |z− y|2) for all x, y ∈ E and z ∈ Rn.

Corollary. Suppose that, for any two points x, y ∈ E, there exists Fx,y ∈ C1,1(Rn)
such that ‖ Fx,y ‖≤ 1, jx(F

x,y) = Px and jy(F
x,y) = Py.

Then there exists F ∈ C1,1(Rn) such that ‖ F ‖≤ 1 and jx(F) = Px for
each x ∈ E.

Thus, finiteness principles lie at the heart of all the above previous work on
interpolation problems. In view of the above results, it is natural to make the
following conjectures:

Conjecture 1 (Finiteness Principle). Fix m,n ≥ 1, and fix a Cm(Rn)-norm of
the form (13).

Given ε > 0, there exists a constant k#(ε), depending only on ε,m,n and our
choice of the Cm-norm, such that the following holds:

Let f : E → R, with E ⊂ Rn finite. Assume that ‖ (f|S) ‖Cm(S)≤ 1 for each

subset S ⊂ E containing at most k#(ε) points. Then ‖ f ‖Cm(E)≤ 1+ ε.

Conjecture 2 (Sharp Interpolation Algorithm). Fix m,n ≥ 1, and fix a Cm(Rn)-
norm of the form (13).

Given ε > 0, and given f : E → Rn, #(E) ≤ N, we can compute a (1 + ε)-
optimal interpolant for f, using one-time work at most C(ε)N logN, query work at
most C log(N/ε), and storage at most C(ε)N. Here, C(ε) depends only on ε,m,n
and our choice of the Cm-norm; and C depends only on m,n and choice of the
Cm-norm.

Moreover, it is natural to guess that the proof of Conjecture 1 will lead to the
algorithm promised in Conjecture 2.

Unfortunately, the facts are otherwise. A counterexample in Fefferman–Klar-
tag [9] shows that Conjecture 1 fails, already for C2(R2). Nevertheless, we prove,
here and in [4], that Conjecture 2 is correct for C2(R2); that is the content of
Theorem 1. Perhaps Conjecture 2 holds for Cm(Rn) (any m,n). A proof will
require substantial new ideas. We do not yet know what lies at the heart of the
Sharp Interpolation Problem.
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Reduction of Theorem 1 to a main algorithm

To prove Theorem 1, we will present the following

(19) main algorithm: Fix a C2(R2)-norm of the form (13).

Given 0 < ε < 1
2
, and given a function f : E → R, with E ⊂ R2 and

#(E) = N, we produce one of the following two outcomes:

(20) Bad News: We guarantee that there exists no interpolant for f with C2(R2)-
norm less than 1.

(21) Good News: We guarantee that there exists an interpolant for f with C2(R2)-
norm less than 1+ε. Moreover, for one such interpolant F, we compute the jet

(22) �P := JE(F).

The work and storage used to produce one of these two outcomes are at most
C(ε)N logN and C(ε)N, respectively. Here, C(ε) depends only on ε and our choice
of the C2-norm.

To prove Theorem 1 for a given f : E → R, we first apply Theorem 2 to compute
‖ f ‖C2(E) up to a factor of C, where C depends only on our choice of the Cm-norm.
Next, by repeatedly applying the above main algorithm to constant multiples
of f, we compute ‖ f ‖C2(E) up to a factor of (1 + ε). Without loss of generality,

we may now suppose that (1 + ε)−1 ≤‖ f ‖C2(E)< 1. Another application of our

main algorithm produces a Whitney field �P ∈ Wh(E) such that �P agrees with f

and ‖ �P ‖Wh(E)≤ 1+ ε.

Applying Theorem 3, we compute a function F ∈ C2(R2), such that JE(F) = �P

and ‖ F‖C2(R2)≤ (1 + ε) ‖�P ‖Wh(E). In particular, we have ‖ F‖C2(R2)≤ (1 + ε)2,

F = f on E, and ‖ f ‖C2(E)≥ (1+ε)−1. Thus, we have computed a (1+ε)3-optimal
interpolant F, using one-time work, query work and storage as indicated in Theo-
rem 1. We conclude that Theorem 1 reduces easily to the main algorithm (19),
together with Theorems 2 and 3.

The rest of this Introduction sketches some of the ideas used in the main
algorithm.

Data structures

We will be working with convex polyhedra. A “convex polyhedron” in a finite-
dimensional vector space V is a compact subset K ⊂ V of the form

(23) K = {v ∈ V : λi(v) ≥ βi for i = 1, . . . , I}, where each λi is a (real) linear
functional on V , and each βi is a real number.

We say that K is “defined” by the “constraints” λi(v) ≥ βi (i = 1, 2, . . . , I).
Note that K may be empty, and that a single K ⊂ V may be defined by many
different lists of constraints.

We will work with squares Q ⊂ R2. We always suppose that the sides of Q are
parallel to the coordinate axes. We write δQ to denote the sidelength of Q. For
positive real numbers A, we write AQ to denote the square obtained by dilating Q
about its center by a factor of A.
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Let 0 < ε < 1
2

be given. We will write c, C,C′, etc., to denote constants
depending only on our choice of the C2-norm; and we write c(ε), C(ε), etc., to
denote constants depending only on ε and on our choice of the C2-norm. These
symbols may denote different constants in different occurrences.

As a first crude attempt to represent a function F ∈ C2(Q) in a computer
memory, we fix an “ε100-net” S ⊂ Q, i.e., a finite subset S ⊂ Q such that

(24) Any point z ∈ Q satisfies |z− z′| < ε100δQ for some z′ ∈ S, and

(25) #(S) ≤ Cε−200.

We then represent the function F ∈ C2(Q) to the computer, simply by keeping
the Whitney field JS(F). This captures a lot of information about the behavior
of F, but it misses fine details on lengthscales smaller than ε100δQ. In particular,
if E ⊂ Q, and if the distance between nearest neighbors in E is smaller than
ε100δQ, then we cannot tell from JS(F) whether F = f on E. Therefore, we will
later introduce a more sophisticated data structure to represent F ∈ C2(Q).

Tools from the proofs of previous results

Our main algorithm will make use of two tools from previous work. From ideas
in the proof of Theorem 3, we obtain the following algorithm:

Algorithm AUB (“Approximate Unit Ball”): Fix a norm on C2(R2) of the
form (13).

Given a square Q, a finite subset S ⊂ Q, and a positive number ε, such that
#(S) ≤ Cε−200, we compute a convex polyhedron KAUB(S,Q) ⊂ Wh(S), with the
following properties:

(26) Let F ∈ C2(2Q) with norm ≤ 1. Then JS(F) ∈ KAUB(S,Q).

(27) Let �P ∈ KAUB(S,Q). Then there exists F ∈ C2(Q) with norm ≤ 1 + ε, such

that JS(F) = �P.

(28) The polyhedron KAUB(S,Q) is defined by at most C(ε) constraints.

The work and storage used to compute KAUB(S,Q) are at most C(ε).

When applying the above algorithm in this oversimplified introduction, we may
blur the distinction between 2Q in (26) and Q in (27). Clearly, Algorithm AUB
gives us good control over the requirement that ‖ F ‖C2≤ 1+O(ε). On the other
hand, so far we have no control over the requirement that F = f on E.

Our second tool is a Calderón–Zygmund decomposition of R2, taken from our
proof of Theorem 2 in [8] (specialized to C2(R2)). That decomposition parti-
tions R2 into Calderón–Zygmund squares {Qν} with sidelengths δQν

≤ 1, such
that, for each ν, E ∩ 3Qν is contained in the graph of a function. More precisely,
either

(29) E ∩ 3Qν ⊂ {(x1, x2) ∈ R2 : x2 = ϕν(x1)} or

(30) E ∩ 3Qν ⊂ {(x1, x2) ∈ R2 : x1 = ϕν(x2)},
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where ϕν in (29), (30) satisfies

(31) |ϕ′
ν| ≤ C, |ϕ′′

ν| ≤ Cδ−1
Qν

.

Moreover, for each ν, there exist a base point zν ∈ 9Qν, and a convex polyhedron
Γ(zν) ⊂ P, defined by at most C constraints, with the following properties:

(32) Let F ∈ C2(R2) with norm ≤ 1. If F = f on E, then Jzν
(F) ∈ Γ(zν).

(33) Let P, P′ ∈ Γ(zν). Then |∂α(P − P′)(zν)| ≤ Cδ
2−|α|

Qν
for |α| ≤ 2.

When we look for an interpolant F, (32) shows that we may restrict attention
to functions such that Jzν

(F) ∈ Γ(zν) for each ν. Thanks to (33), this tells us a lot
about F on 9Qν, when δQν

is small. When δQν
isn’t small, (32) and (33) give no

useful information.

The plan

Our main algorithm is based on the Calderón–Zygmund decomposition des-
cribed in (29)–(33).

For each Calderón–Zygmund square Qν, we pick an “ε100-net” Sν ⊂ Qν, as
in (24) and (25).

Step I: For each ν, we compute a convex polyhedron Kν ⊂ Wh(Sν), with the
following properties:

(34) Let F ∈ C2(CQν), with norm at most 1. Assume that F = f on E∩ 3Qν, and
that Jzν

(F) ∈ Γ(zν). Then JSν
(F) ∈ Kν.

(35) Conversely, let �P ∈ Kν be given. Then there exists F ∈ C2(9Qν) with norm

at most 1+Cε, such that F = f on E∩ 3Qν, Jzν
(F) ∈ Γ(zν), and JSν

(F) = �P.
Moreover, we can compute the jet JE∩3Qν

(F) for one such F.

Thus, Kν is analogous to KAUB(Sν, Qν) in (26), (27), (28) with the crucial
difference that Kν takes into account the condition F = f on E ∩ 3Qν.

Perhaps some of the Kν are empty. In that case, we know from (34) that there
exists no function F ∈ C2(R2) with norm ≤ 1 such that F = f on E. We can then
report Bad News and terminate the main algorithm. (See (19) and (20).)

Step II: Suppose all the Kν are non-empty.

Using the polyhedra Kν, we attempt to patch together local interpolants Fν ∈
C2(9Qν) into a global interpolant F using a partition of unity. We hope that
F will have norm less than 1 + Cε in C2(R2), because the Fν fit together well.
This may or may not be possible. If we cannot find local interpolants that fit
together properly, then we report Bad News and terminate the main algorithm.
(Again, see (19) and (20).) However, if we can find Fν that fit together well, then
we succeed in patching together the Fν into a global interpolant F with norm at
most 1 + Cε in C2(R2). In this favorable case, we can compute the jet JE(F) for
our global interpolant F. Thus, we can report Good News, and terminate the main
algorithm. (See (19) and (21).)
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The purpose of this paper is to carry out Step I. In the sequel [4], we will carry
out Step II, using ideas from the proof of Theorem 3 in [6], and complete our
explanation of the main algorithm.

The rest of this introduction sketches some of the main ideas used in Step I, in
the context of a simplified model problem. We put off all explanations of Step II
until our later paper [4].

A Model Problem

We prepare to introduce a model problem to illustrate our approach to Step I
above. Fix a norm on C2(R2), of the form (13). Let 0 < ε < 1

2
and N > 1 be

given. We regard ε as small but fixed, while N is arbitrarily large. We introduce
the set E ⊂ Q0, where

(36) E = {( 1
N
, 0), ( 2

N
, 0), . . . , (N−1

N
, 0), (1, 0)} ⊂ R2 and

(37) Q0 = {(x1, x2) ∈ R2 : |x1|, |x2| ≤ 2}.

Also, we fix an ε100-net

(38) S0 ⊂ Q0, as in (24), (25).

Suppose we are given a function

(39) f : E → R.

Our Model Problem is to compute a convex polyhedron K0 ⊂ Wh(S0), defined
by at most C(ε) constraints, and having the following properties:

(40) Let F ∈ C2(CQ0) with norm less than 1. If F = f on E, then JS0
(F) ∈ K0.

(41) Conversely, let �P ∈ K0 be given. Then there exists a function F ∈ C2(Q0)

with norm at most 1+ Cε, such that F = f on E and JS0
(F) = �P. Moreover,

we can compute the jet JE(F) for one such F.

We want to compute the polyhedron K0 with work at most C(ε)N logN and
storage at most C(ε)N. Moreover, the computation of JE(F) in (41) should require
work and storage at most C(ε)N.

Clearly, the above Model Problem is close to Step I (see (29), (34), (35)) for
the case of a Calderón–Zygmund square Qν of sidelength δQν

= 1. Note that
the polyhedron Γ(zν) from (32) and (33) plays no rôle here, since our square Q0

in (37) is not small.

In the following pages, we will explain some of the main ideas in the solution
of the Model Problem. We hope this will lighten the task of understanding our
treatment of Step I in the main algorithm.
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More notation

We introduce additional notation to discuss our Model Problem. We start by
fixing an interval I0, such that

(42) [0, 1] is contained in the middle half of I0, but |I0| ≤ 100. We will call I0 the
“starting interval”.

The interval I0, and all the intervals that may be obtained from I0 by repeated
bisection, will be called “dyadic intervals”. The set of all dyadic intervals will be
called the “dyadic grid” G(I0). The set T(I0), consisting of all dyadic intervals I

of length |I| ≥ 1
1024N

, forms a binary tree under inclusion. The root of T(I0) is
the interval I0. The tree T(I0) consists of “leaves” and “internal nodes”. Each
leaf I ∈ T(I0) is a dyadic interval of length between 1

1024N
and 1

512N
. Each

internal node I ∈ T(I0) has two “children” in T(I0), namely the two dyadic intervals
obtained by bisecting I.

For each I ∈ T(I0), we introduce the squareQ(I), with sidelength 50|I|, centered
at (x̄, 0) ∈ R2, where x̄ is the midpoint of I.

We note the following elementary properties of the squares Q(I):

(43) Q(I) ⊂ Q(I′) whenever I ⊂ I′.

(44) Q0 ⊂ Q(I0) ⊂ CQ0, with Q0 as in (37).

(45) If I ∈ T(I0) is a leaf, then Q(I) contains at most one point of E.

A leaf I ∈ T(I0) such that Q(I) contains a point of E will be said to be of
“type C1”. If I ∈ T(I0) is a leaf of type C1, then we write z!(I) to denote the one
and only point of E belonging to Q(I).

For each I ∈ T(I0), we introduce an ε100-net

(46) S(I) ⊂ Q(I), as in (24), (25).

We can easily pick the S(I) so that

(47) z!(I) ∈ S(I), whenever I ∈ T(I0) is a leaf of type C1.

We introduce a C2-partition of unity

(48) 1 =
∑

I∈T(I0)
θI on Q0; with each θI satisfying

(49) supp θI ⊂ Q(I), and

(50) |∂αθI| ≤ C|I|−|α| for |α| ≤ 2,

(51) θI ≥ 0.

We can easily arrange for the θI to satisfy the following additional properties:

(52) supp θI∩ supp θI′ �= ∅ implies c|I| ≤ |I′| ≤ C|I|.

(53) Any given point z ∈ Q0 belongs to supp θI for at most C distinct I ∈ T(I0).

(54) Let I ∈ T(I0). If E∩ supp θI �= ∅, then I is a leaf of type C1, and
E∩ supp θI = {z!(I)}.

Note that the functions θI are defined only on Q0.
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Refined data structure

To solve our model problem, we will have to understand functions F ∈ C2(Q0)
on lengthscales much smaller than ε100δQ0

. Therefore, we will represent an inter-
polant F in the computer, as a family of Whitney fields

(55) P = (�PI)I∈T(I0), where
�PI ∈ Wh(S(I)) for each I.

To pass from a function F ∈ C2(Q(I0)) to a family of Whitney fields P as
in (55), we simply define

(56) �PI = JS(I)(F) for each I ∈ T(I0).

If F = f on E, then P satisfies

(57) �PI agrees with f at z!(I), for each leaf I of type C1, since by definition,
z!(I) ∈ E.

Conversely, we want to pass from a family P as in (55), to a function F ∈
C2(Q0). It’s not immediately clear how to do that. Our plan is to define a “local
function” FI ∈ C2(Q(I)) for each I ∈ T(I0), such that

(58) JS(I)(FI) = �PI, and ‖ FI ‖C2(Q(I))≤ 1+ Cε.

We will then patch together the FI by setting

(59) F =
∑

I∈T(I0)

θIFI ∈ C2(Q0).

Thanks to Algorithm AUB, we understand well the problem of producing FI
satisfying (58). We hope that the function F in (59) satisfies

(60) F = f on E, and

(61) ‖ F ‖C2(Q)≤ 1+ C′ε.

In fact, (60) holds provided our family of Whitney fields P satisfies (57). Indeed,
if (57) holds, then FI = f at z!(I) for each leaf I of type C1, as follows from (57)
and (58). Equality (60) therefore follows from (54).

To prove (61), we would like our local functions FI to satisfy the strong consis-
tency condition

(62) |∂α(FI−FI′)| ≤ Cε|I|2−|α| on supp θI∩ supp θI′ for |α| ≤ 1, whenever supp θI
∩ supp θI′ �= ∅.

If we can pick the FI to satisfy (62), then it is easy to prove the desired esti-
mate (61).

Unfortunately, it’s far from clear how to produce families of local functions FI
that satisfy (62). Therefore, in place of (62), we will settle for the following weaker
dyadic analogue:
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(63) Let I ∈ T(I0), and let I′ be one of the two dyadic children of I. Then we have
|∂α(FI − FI′)| ≤ Cε|I|2−|α| on Q(I′) ⊂ Q(I), for |α| ≤ 1.

We will construct families of local functions FI satisfying (58) and (63); then
we will see how the function F in (59) behaves for such families of local functions.
Finally, we will apply what we have learned to our Model Problem.

To construct FI satisfying (58) and (63), the key idea is to define and compute
a certain convex polyhedron K(I) ⊂ Wh(S(I)) for each I ∈ T(I0).

We now explain the construction of the K(I).

The basic polyhedra

We construct a polyhedron K(I) ⊂ Wh(S(I)) for I ∈ T(I0), by bottom-up
recursion in the tree T(I0). The recursion proceeds as follows:

In the base case, I is a leaf in T(I0). We then define

(64) K(I) = {�P ∈ KAUB(S(I), Q(I)) : �P agrees with f at z!(I)} if the leaf I is of
type C1, and

(65) K(I) = KAUB(S(I), Q(I)) if the leaf I isn’t of type C1.

(For the polyhedron KAUB(· · · ), see Algorithm AUB above.)

For the induction step, suppose I ∈ T(I0) is an internal node with children I1, I2;
and suppose we have already defined the convex polyhedra K(I1) ⊂ Wh(S(I1)) and
K(I2) ⊂ Wh(S(I2)). We then define K(I) ⊂ Wh(S(I)), as follows: Let

(66) S+(I) = S(I) ∪ S(I1) ∪ S(I2) ⊂ Q(I).

Next, define

(67) K̃(I) = {�P+|S(I) : �P
+ ∈ KAUB(S

+(I), Q(I)),�P+|S(I1) ∈ K(I1),�P
+|S(I2) ∈ K(I2)}.

Finally, we take K(I) to be a polyhedron, defined by at most C(ε) constraints,

and slightly larger than K̃(I). In particular, K(I) ⊃ K̃(I).

The purpose in passing from K̃(I) to K(I) here, is to prevent the number of
constraints defining K(I) from growing rapidly as I moves up the tree T(I0) in our
bottom-up recursion. Such a rapid growth of the number of constraints would
greatly increase the number of computer operations needed to carry out our algo-
rithms.

However, to simplify the presentation, let us pretend in this introduction that
we simply take

(68) K(I) = K̃(I).

This completes our description of the recursive definition of the polyhedra K(I).
It is a routine task to follow the above recursive definition, and compute the

polyhedra K(I). From now on, we assume that they are known.
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Using the basic polyhedra

Let us relate the polyhedra K(I) to our previous discussion (55)–(63). Suppose
first that we are given a function

(69) F ∈ C2(Q(I0)) with norm at most 1, such that F = f on E.

Then an easy bottom-up recursion in the tree T(I0), using the defining properties
of KAUB(· · · ), shows that
(70) JS(I)(F) ∈ K(I) for each I ∈ T(I0).

In particular, (69) implies

(71) JS(I0)(F) ∈ K(I0).

Conversely, suppose we are given a Whitney field

(72) �P0 ∈ K(I0).

By top-down recursion in the tree T(I0), we will compute a Whitney field �PI ∈ K(I)
for each I ∈ T(I0). The top-down recursion proceeds as follows:

In the base case, we have I = I0, the root of the tree T(I0). In this case, we
simply set

(73) �PI0 = �P0 ∈ K(I0).

For the induction step, let I ∈ T(I0) be an internal node, with children I1, I2.

Suppose we have already computed �PI ∈ K(I). We will then compute �PI1 ∈ K(I1)

and �PI2 ∈ K(I2). This will complete the top-down recursion. To produce �PI1 and
�PI2 , we recall that (we are pretending that) K(I) = K̃(I), defined by (67). Since
�PI ∈ K(I), it follows that there exists a Whitney field

(74) �P+ ∈ KAUB(S
+(I), Q(I)), such that

(75) �P+|S(I) = �PI, �P
+|S(I1) ∈ K(I1), and �P+|S(I2) ∈ K(I2).

Since the Whitney field �PI and the polyhedra KAUB(S
+(I), Q(I)), K(I1), K(I2) are

known, we can compute a particular �P+ satisfying (74) and (75), by routine linear

programming. Once we have found such a �P+, we set

(76) �PI1 = �P+|S(I1) and �PI2 = �P+|S(I2).

In particular, �PI1 ∈ K(I1) and �PI2 ∈ K(I2), thanks to (75). This completes our
top-down recursion.

Thus, given �P0 ∈ K(I0), we have computed �PI ∈ K(I) for all I ∈ T(I0); in

particular �PI0 = �P0.
Next, for each I ∈ T(I0), we produce a “local function”

(77) FI ∈ C2(Q(I)), with norm ≤ 1+ Cε, such that JS(I)(FI) = �PI.
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To do so, suppose first that I is a leaf of T(I0). Then, by definition (64), (65),

K(I) ⊂ KAUB(S(I), Q(I)). Since �PI ∈ K(I), the defining property (27) of KAUB(· · · )
gives us a function FI satisfying (77).

On the other hand, suppose I is an internal node of T(I0), with children I1, I2.

Then (74), (75), (76) hold for a Whitney field �P+. From (74) and the defining
property (27) of KAUB(· · · ), we obtain a function FI ∈ C2(QI) with norm at most

1+ ε, such that JS+(I)(FI) = �P+. Thanks to (75) and (76), this FI satisfies

(78) JS(I)(FI) = �PI, JS(I1)(FI) =
�PI1 , JS(I2)(FI) =

�PI2 .

In particular, our FI satisfies (77). Thus, (77) holds in all cases.
Furthermore, our local functions FI do satisfy the “dyadic consistency condi-

tion” (63). To see this, we return to (78), and apply (77) to the intervals I1 and I2.

Thus, we find that JS(I1)(FI)=JS(I1)(FI1)=
�PI1 , and similarly for I2. In particular,

(79) JS(I1)(FI − FI1 ) = 0 and JS(I2)(FI − FI2) = 0.

We recall from (77) that ‖FI1 ‖C2(Q(I1))≤ 1+ε and ‖ FI ‖C2(Q(I1))≤‖ FI ‖C2(Q(I))

≤ 1+ ε. Moreover, we have picked S(I1) so that any z ∈ Q(I1) satisfies |z − z′| ≤
ε100δQ(I1) = Cε100|I1| for some z′ ∈ S(I1).

In view of the above remarks and Taylor’s theorem, (79) implies the estimate
|∂α(FI − FI1)| ≤ Cε100|I1|

2−|α| on Q(I1) for |α| ≤ 1, and similarly for I2. This is
stronger than the desired estimate (63), since we have here ε100 in place of ε. In
any event, we have proven (63).

Let us summarize the discussion so far.

(80) For each I∈T(I0), we have computed the convex polyhedron K(I)⊂Wh(S(I)).

(81) Suppose F∈C2(Q(I0)) with norm≤1, with F = f on E. Then JS(I0)(F)∈K(I0).

(82) Conversely, given �P0 ∈ K(I0), we can compute �PI ∈ K(I) for each I ∈ T(I0),

with �PI0 = �P0. Moreover, for each I ∈ T(I0), we have defined a “local

function” FI ∈ C2(Q(I)) with norm ≤ 1+ ε, such that JS(I)(FI) = �PI.

The FI in (82) satisfy the dyadic consistency condition

(83) |∂α(FI − FI′)| ≤ Cε|I|2−|α| on Q(I′) for |α| ≤ 1, whenever I′ is a child of the
internal node I ∈ T(I0).

Given �P0 ∈ K(I0), we take �PI, FI as in (82), (83), and define

(84) FI0 =
∑

I∈T(I0)

θIFI ∈ C2(Q0), as in (59).

(We have changed notation, by writing FI0 in place of F; this change will soon be
useful.) We would be happy if FI0 satisfied

(85) FI0 = f on E, and

(86) ‖ FI0 ‖C2(Q0)≤ 1+ Cε.

This would provide a complete converse to (81); we would then have essentially
solved our Model Problem.
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Our FI0 is easily seen to satisfy (85). In fact, by definition (64), we see that �PI

agrees with f at z!(I) whenever I is a leaf of type C1. Since z!(I) ∈ S(I) for such I,

and since JS(I)(FI) = �PI always, it follows that FI = f at z!(I), for each leaf I
of type C1. Thanks to (54), it follows in turn that FI = f on E ∩ suppθI for
any I ∈ T(I0), from which (85) follows by definition (84). Thus, our FI0 is an
interpolant for f.

Unfortunately, we do not have the strong estimate (86) for FI0 . To obtain that
estimate, we would need the consistency condition (62), whereas we have achieved
merely the weaker dyadic consistency (83). Accordingly, in place of (86), we obtain
only the following weaker condition:

For a certain set Goodpoints(I0) ⊂ Q0 containing all but Cε of the area of Q0,
we find that

(87) |Jz(F
I0 )|z ≤ 1+ Cε for all points z ∈ Goodpoints (I0),

but only

(88) |Jz(F
I0 )|z ≤ C for all points z ∈ Q0� Goodpoints(I0).

We recall from the definition (13) of the C2 norm that our desired estimate
‖ FI0 ‖C2(Q0)≤ 1+ Cε amounts to saying that |Jz(F)|z ≤ 1+ Cε for all z ∈ Q0.

The distinction between (87) and (88) is closely related to a familiar property
of dyadic intervals, which we now recall.

Our dyadic intervals were defined by repeatedly bisecting a “starting inter-
val” I0. Let I ⊂ I0 be a tiny subinterval, not necessarily dyadic. Typically, I is
contained in a dyadic interval not much bigger than I. However, if I is very badly
placed, it may happen that the only dyadic intervals containing I are much larger
than I. (In the worst case, when I is centered at the midpoint of I0, it is contained
in no proper dyadic subinterval of I0.)

Property (87) of FI0 follows straightforwardly from our dyadic consistency con-
dition. Property (88) is a lot harder to prove. It is based on our ability to pick
the local functions FI to satisfy a further dyadic consistency condition, involving
∂

∂x2
FI(x1, x2) evaluated at the endpoints of the interval I × {0} ⊂ R2. This con-

sistency condition is relevant only for C2(R2), and has no useful analogue for,
say, C2(R3). Many of the differences between the oversimplified discussion in this
introduction and the unfortunate truth arise from the need to establish the addi-
tional dyadic consistency and obtain (88). For purposes of this introduction, let
us take (88) for granted.

We have succeeded in computing an interpolant FI0 ∈ C2(Q0) that satisfies
(85), (87), (88), but not (86). To overcome this obstacle, we consider an ensemble
of C(ε) distinct starting intervals I0. For each I0 in our ensemble, we know how
to compute an interpolant FI0 ∈ C2(Q0) that satisfies (85), (87), (88). We then
define our interpolant F to be the average of the interpolants FI0 over all I0 in our
ensemble. Since (85) holds for each I0, we have

(89) F = f on E,
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so at least we have done no harm. Moreover, if we pick the ensemble of starting
intervals correctly, then the following holds:

(90) For any fixed z ∈ Q0, we have Goodpoints(I0) � z for all but at most ε
percent of the starting intervals I0 in our ensemble.

Thanks to (90), we can average our estimates (87), (88) over all I0 in the
ensemble, and we find that |Jz(F)|z ≤ 1+ C′ε for all z ∈ Q0, i.e.,

(91) ‖ F ‖C2(Q0)≤ 1+ C′ε.

Since F satisfies (89) and (91), we have succeeded in constructing interpolants F
for f, having norm at most 1+C′ε in C2(Q0). We were fortunate that (90) holds,
even though each particular set Goodpoints(I0) omits part of Q0.

At this point, we have not yet solved the Model Problem (see (36)–(41)), but
we now have enough ideas to allow us to give the solution without real difficulty.
Perhaps the time has come to end this long introduction. Let us begin our proof
of Theorem 1.

We again warn the reader that our introduction is oversimplified. The correct
discussion starts in the next section. In particular, we discard the notation and
conventions of the introduction, and start afresh.
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1. Notation

(0) The label (i.j) denotes equation j in Section i. Within Section i, we abbreviate
(i.j) to (j).

(1) If I is an interval and A is a positive real number, then AI denotes the interval
with the same center as I, and with A times the length of I. If I is open, then
so is AI. If I is closed, then so is AI; and similarly for half-closed intervals.

(2) We write |I| to denote the length of an interval I, and we write center (I) to
denote the midpoint of I.

(3) P denotes the vector space of real-valued second-degree polynomials on R2.

(4) If z ∈ R2 and F is locally C2 in a neighborhood of z, then Jz(F) ∈ P denotes
the second-degree Taylor polynomial of F at z.

(5) We define a multiplication z on P for each z ∈ R2, by stipulating that
Jz(FG) = Jz(F) z Jz(G) for F,G ∈ C2(R2).

If S ⊂ R2 is finite, then #(S) denotes the number of points of S, and:

(6) Wh(S) denotes the vector space of all families �P = (Pz)z∈S of polynomials

Pz ∈ P, indexed by the points of S. We call such a family �P a “Whitney
field” on S.

(7) We write JS(F) for the Whitney field (Jz(F))z∈S.
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(8) If �P = (Pz)z∈S ∈ Wh(S), and if z0 ∈ S, then val(�P, z0) denotes the real
number (Pz0)(z0).

We use (x1, x2) as rectangular coordinates on R2.

(9) If �P = (Pz)z∈S ∈ Wh(S), and if z0 ∈ S, then we write val(∂i
�P, z0) (i = 1, 2)

to denote the real number
(

∂Pz0

∂xi

)
(z0).

Similarly, we write val(��P, z0) to denote the vector (�Pz0)(z0) ∈ R2.

Note that, for �P = JS(F), we have val(�P, z0) = F(z0), val(∂i
�P, z0) = ∂iF(z0),

and val(��P, z0) = �F(z0).
(10) A “square” in R2 is a product of intervals Q = I × J ⊂ R2, with |I| = |J|.

We write δQ to denote the side length of Q, and (for real A > 0) we write
AQ to denote the square AI×AJ.

2. Conventions regarding constants

Within any given section, we may specify a (possibly empty) list of finitely many
constants, which we will take to be the “boiler-plate constants” for that section.
We then define a “controlled constant” to be a positive real number computed from
the boiler-plate constants by applying an algorithm. (In particular, a controlled
constant is uniquely determined by the boiler-plate constants.) We write c, C,C′,
etc., to denote controlled constants. These symbols may denote different controlled
constants in different occurrences.

More generally, suppose that, in addition to the boiler-plate constants, we are
given real numbers (say A, η), and/or integer constants (say, k). Then we write
C(A, η, k), C′(A, η, k), etc., to denote a positive real number computed by applying
an algorithm whose inputs areA, η, k and the boiler-plate constants. An expression
such as C(A, η, k) needn’t denote the same quantity in different occurrences. We
call C(A, η, k) an “(A, η, k)-controlled constant”.

The above notions may change from one section to the next, since each section
will have its own list of boiler-plate constants.

Within any particular section, we may be given a positive number ε. We always
assume that ε is less than a small enough controlled constant. We refer to this
assumption as the “small ε assumption”.

3. Convex polyhedra

Let V be a finite-dimensional vector space over R, and let V∗ be its dual. By a
“convex polyhedron” in V , we mean a compact convex K ⊂ V of the form

(1) K = {v ∈ V : λi(v) ≥ βi for i = 1, . . . , I}, where λi ∈ V∗ and βi ∈ R for
each i.

We allow the case K = ∅. We call the inequality λi(v) ≥ βi a “constraint”, and
we say that K ⊂ V is a “convex polyhedron defined by I constraints”. To specify
a convex polyhedron, we provide a list of constraints.
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In this section, we state the algorithms used in later sections to manipulate
convex polyhedra. These algorithms are well-known, so we omit explanations
here. (See [14]). We recall our conventions regarding constants. We use no boiler
plate constants in this section. Thus, e.g., C(A,B) denotes a constant computable
from A and B.

Algorithm CP1. (Linear Programming): Given a convex polyhedron K ⊂ V

defined by I constraints, we compute a point v ∈ K, or guarantee that K is empty.
To do so, we use work and storage at most C(I, dimV).

Algorithm CP2. (Extreme Points): Given a convex polyhedron K ⊂ V defined
by I constraints, we compute the set S of extreme points of K. We have K = convex
hull (S) and #(S) ≤ C(I, dimV). The work and storage used to compute S are at
most C(I, dimV).

Algorithm CP3. (Convex Hull): Given a finite set S ⊂ V , we compute a convex
polyhedron K, defined by at most C(#(S), dimV) constraints, such that K = con-
vex hull (S). To do so, we use work and storage at most C(#(S), dimV).

Algorithm CP4. (Image under Linear Maps): Given a convex polyhedron K⊂V

defined by I constraints, and given a linear map T : V −→ W of finite-dimensional
vector spaces, we compute a convex polyhedron K′ ⊂ W, defined by at most
C(I, dimV, dimW) constraints, such that K′ = T(K). The work and storage used
to do so are at most C(I, dimV, dimW).

Algorithm CP5. (Intersection): Given convex polyhedra K1, K2 ⊂ V , defined
by I1, I2 constraints respectively, we compute the convex polyhedron K1∩K2 ⊂ V ,
defined by I1 + I2 constraints. The work and storage used to do so are at most
C(I1, I2, dimV).

Algorithm CP6. (Convex Hull of Union I): Given convex polyhedra K1, K2 ⊂ V ,
defined by I1, I2 constraints respectively, we compute a convex polyhedron K ⊂ V ,
defined by at most C(I1, I2, dimV) constraints, such that K = convex hull (K1∪K2).
To do so, we use work and storage at most C(I1, I2, dimV).

Algorithm CP7. (Convex Hull of Union II): Given convex polyhedra K1, K2 ⊂
V defined by I1, I2 constraints respectively, and given a point v ∈ convex hull
(K1 ∪ K2), we compute points v1 ∈ K1, v2 ∈ K2 and a number t ∈ [0, 1] such that
v = tv1+(1−t)v2. The work and storage used to do so are at most C(I1, I2, dimV).

Algorithm CP8. (Minkowski sum): Given convex polyhedra K1, K2 ⊂ V defined
by I1, I2 constraints respectively, we compute a convex polyhedron K ⊂ V , defined
by at most C(I1, I2, dimV) constraints, such that K = {v1 + v2 : v1 ∈ K1, v2 ∈ K2}.
The work and storage used to do so are at most C(I1, I2, dimV).

Algorithm CP9. (Inverse Image): Given finite-dimensional vector spaces V and
W1, . . . , WL of dimensionsD andD1, . . . , DL, respectively; given convex polyhedra
K1 ⊂ W1, K2 ⊂ W2, . . . , KL ⊂ WL, defined by I1, I2, . . . , IL constraints, respec-
tively; and given linear maps T1 : V −→ W1, T2 : V −→ W2, . . . , TL : V −→ WL,
such that T−1

1 (K1) ∩ T−1
2 (K2) ∩ · · · ∩ T−1

L (KL) ⊂ V is compact; we compute a con-
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vex polyhedron K ⊂ V , defined by at most C(I1, . . . , IL, D1, . . .DL, D) constraints,
such that K = T−1

1 (K1) ∩ T−1
2 (K2) ∩ · · · ∩ T−1

L (KL). The work and storage used to
compute K are at most C(I1, . . . , IL, D1, . . . , DL, D).

The above algorithms may be implemented straightforwardly. Several of them
require many computer operations, except in small cases. In later sections, we will
use them without mentioning them explicitly.

4. Dyadic grids

For any given real number t, the “dyadic grid” Gt consists of all intervals of the
form [t+m · 2�, t+ (m + 1) · 2�), where m, � ∈ Z.

Once we fix a dyadic grid Gt, an interval I ∈ Gt will be called “dyadic”. Each
dyadic interval I is partitioned into two dyadic subintervals I1, I2 of length |I1| =
|I2| =

1
2
|I|. We call I1 and I2 the “dyadic children” of I. If I1 lies to the left of I2,

then we call I1, I2 respectively, the “left dyadic child” and the “right dyadic child”
of I. Also, each dyadic interval I is contained in one and only one dyadic interval
of length 2|I|. We call that interval the “dyadic parent” of I, and denote it by I+.
Thus, each dyadic interval has one dyadic parent and two dyadic children. The
above notions depend on the choice of the grid Gt, i.e., on the number t.

Later on, we will encounter a collection J of dyadic intervals, having the fol-
lowing property for fixed x ∈ R, δ > 0:

Each I ∈ J satisfies |I| ≤ δ and 3I � x.

We hope that all the I ∈ J are contained in a single dyadic interval Î, with |̂I|

not much bigger than δ. Therefore, we make the following

Definition. Let t, x ∈ R, and let k0, � be integers, with k0 > 0. Let Î be the inter-
val of length 2k0+� in Gt, such that Î � x. Then we say that (x, �) is “ k0-regular”
for Gt, provided the following holds:

(1) Every I ∈ Gt such that |I| ≤ 2� and 3I � x satisfies I ⊂ Î.

The following simple result shows that (x, �) is often k0-regular for Gt.

Lemma DG1. Let x, t ∈ R and k0, � ∈ Z, with k0 > 0. Suppose (x, �) is not
k0-regular for Gt. Then dist(x− t, 2�+k0Z) ≤ 2�+1.

Proof. Let I ∈ Gt satisfy |I| ≤ 2�, 3I � x, I �⊂ Î, where Î ∈ Gt satisfies |̂I| = 2�+k0 ,
Î � x. Let y ∈ I� Î. Since x ∈ 3I and |I| ≤ 2�, we have y ∈ I ⊂ [x− 2|I|, x+ 2|I|] ⊂
[x − 2�+1, x + 2�+1]. Thus, x, y ∈ [x − 2�+1, x + 2�+1], with x ∈ Î and y /∈ Î.
Consequently, [x−2�+1, x+2�+1] contains an endpoint of Î. However, the endpoints
of Î belong to t+ 2�+k0Z. Therefore, dist(x, t+ 2�+k0Z) ≤ 2�+1. �

To exploit Lemma DG1, we will average a function Ft over an ensemble of
dyadic grids Gt. This will be done much later, but we now introduce the relevant
ensemble of dyadic grids.
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Definition. Let kmax, k0 be integers, with k0 > 0. We write Per(k0) to denote
the set of all maps σ : Z → {0, 1} such that σ(j+ k0) = σ(j) for all j ∈ Z. For each
σ ∈ Per(k0), we then define

t(σ; kmax) =
∑

j<kmax

σ(j) · 2j ∈ R.

Thus, the σ(j) (j < kmax) are the digits in the binary expansion of t(σ; kmax). We
define

T(k0, kmax) = {t(σ; kmax) : σ ∈ Per(k0)} ⊂ R .

By thinking about the digits in binary expansions, one sees easily that

(2) T(k0, kmax) =
{

2kmax

2k0−1
· m : m = 0, 1, . . . , 2k0 − 1

}
. In particular

(3) T(k0, kmax) ⊂ [0, 2kmax ], and

(4) #(T(k0, kmax)) = 2k0 .

Later on, when we average functions Ft over an ensemble of dyadic grids, the
grids in question will be the Gt0+t for all t ∈ T(k0, kmax); here, t0, k0, kmax are
fixed. The following simple result will be useful.

Lemma DG2: Let k0, kmax, � ∈ Z, with k0 > 0 and � ≤ kmax − k0. Let z ∈ R.
Then dist(z − t, 2�+k0Z) ≤ 2�+1 for at most 100 distinct t ∈ T(k0, kmax).

Proof. For each σ ∈ Per(k0), we write

t(σ; kmax) =
∑

j<kmax

σ(j) · 2j

=
∑
j<�

σ(j) · 2j +
∑

�≤j<�+k0

σ(j) · 2j +
∑

�+k0≤j<kmax

σ(j) · 2j

≡ t�0(σ) + tmed(σ) + thi(σ) .

Note that 0 ≤ t�0(σ) ≤ 2� and thi(σ) ∈ 2�+k0Z. Therefore, for any given σ, if

dist(z − t(σ; kmax), 2
�+k0Z) ≤ 2�+1 , then dist(z − tmed(σ), 2

�+k0Z) ≤ 3 · 2� ,
i.e.,

(5) dist(2−�z − 2−� tmed(σ), 2
k0Z) ≤ 3 .

Hence, Lemma DG2 will follow, if we can show that (5) holds for at most 100
distinct σ ∈ Per(k0). However, by thinking about binary digits, one sees that the
map

σ �→ 2−� · tmed(σ)

is a one-to-one correspondence between Per(k0) and {0, 1, . . . , 2k0 − 1}. Thus,
Lemma DG2 holds because dist(2−�z−m, 2k0Z) ≤ 3 for at most 100 of the integers
m = 0, 1, . . . , 2k0 − 1. �
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Combining Lemmas DG1 and DG2, we obtain the following

Lemma DG3. Let k0, kmax, � ∈ Z, with k0 > 0 and � ≤ kmax−k0. Let x, t0 ∈ R.
Then there are at most 100 distinct t ∈ T(k0, kmax) such that (x, �) is not k0-regular
for Gt0+t.

5. C2 norms

For each z ∈ R2, we suppose we are given a norm | · |z on P. We assume that these
norms satisfy the following

Bounded Distortion Property

(1) c0 · max
|α|≤2

|∂αP(z)| ≤ |P|z ≤ C0 · max
|α|≤2

|∂αP(z)| for all P ∈ P, z ∈ R2.

Approximate Translation-Invariance Property

(2) |P|z+h ≤ exp(C1|h|) · |P|z for all P ∈ P and z, h ∈ R2.

Given 0 < η ≤ 1 and P ∈ P, z ∈ R2, we assume that an Oracle produces a
number N(P, z, η) such that

(3) (1+ η)−1 ·N(P, z, η) ≤ |P|z ≤ (1+ η) ·N(P, z, η).

To compute a single N(P, z, η), the Oracle charges us “work”

(4) exp(C2/η).

If Ω ⊂ R2 is open, and if F ∈ C2
loc(Ω) is a real-valued function on Ω, then we

define

(5) ‖ F ‖C2(Ω) := sup
z∈Ω

|Jz(F)|z.

The following lemma, a slight variant of results in [6], concerns “gentle parti-
tions of unity”.

Lemma GPU. Let A1, . . . , A4, ε, δz be positive real numbers, with

(6) δz ≤ 1.

Let z ∈ R2, let U be an open neighborhood of z, and let θν, Fν ∈ C2
loc(U) for

ν = 1, 2, . . . , νmax. Assume the following:

(7) |Jz(Fν)|z ≤ 1+ A1ε for each ν.

(8) At most A2 of the jets Jz(θν) are nonzero.

(9)
∑
ν

θν = 1 on U, and each θν is non-negative on U.

Assume also that either

(a) |∂αθν(z)| ≤ εA3δ
−|α|
z for 0 < |α| ≤ 2, 1 ≤ ν ≤ νmax; and |∂α(Fν − Fν′)(z)|

≤ A4δ
2−|α|
z for |α| ≤ 2, whenever z ∈ suppθν ∩ suppθν′ ; or
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(b) |∂αθν(z)| ≤ A3δ
−|α|
z for 0 < |α|≤ 2, 1 ≤ ν ≤ νmax; and |∂α(Fν − Fν′)(z)| ≤

εA4δ
2−|α|
z for |α| ≤ 1, whenever z ∈ suppθν ∩ suppθν′ .

Then F =
∑

νθνFν satisfies |Jz(F)|z ≤ 1 +Aε, where A may be computed from
A1 . . . A4 and the constant C0 in the Bounded Distortion Property. More precisely,
A = A1 + CC0A2A3A4, where C is a universal constant.

Proof. Pick ν0 such that z ∈ supp θν0
, and note that

(10) Jz(F) =
∑
ν

θν(z)Jz(Fν) +
∑
ν

[Jz(θν · [Fν − Fν0
]) − θν(z) · Jz(Fν − Fν0

)].

Since | · |z is a norm, θν(z) ≥ 0, and
∑

νθν(z) = 1, we know that

(11)
∣∣∣∑

ν

θν(z)Jz(Fν)
∣∣∣
z
≤

∑
ν

θν(z)|Jz(Fν)|z ≤ max
ν

|Jz(Fν)|z ≤ 1+A1ε .

Moreover, for |α| ≤ 2, and for any ν such that z ∈ suppθν, we have

∂α {Jz(θν · [Fν − Fν0
]) − θν(z) · Jz(Fν − Fν0

)} (z) =

=
∑

α′+α′′=α
α′ �=0

c(α′, α′′) · ∂α′
θν(z) · ∂α′′

(Fν − Fν0
)(z),

where the c(α′, α′′) are harmless coefficients. On the right-hand side here, we
have 0 < |α′| ≤ 2 and |α′′| ≤ 1. Hence, assuming either hypothesis (a) or (b) of
Lemma GPU, we see that

|∂α{Jz(θν · [Fν − Fν0
]) − θν(z) · Jz(Fν − Fν0

)}(z)| ≤
≤

∑
α′+α′′=α

α′ �=0

CA3A4εδ
2−|α′|−|α′′|
z ≤ C′A3A4εδ

2−|α|
z ≤ C′A3A4ε

where C,C′ are universal constants.
This holds for all |α| ≤ 2. Hence, by the Bounded Distortion Property,

|Jz(θν · [Fν − Fν0
]) − θν(z) · Jz(Fν − Fν0

)|z ≤ C′C0A3A4ε

whenever z ∈ suppθν. Summing over ν, and recalling that there are at most A2

nonzero summands, we conclude that

(12)
∣∣∣∑

ν

[Jz(θν · [Fν − Fν0
]) − θν(z) · Jz(Fν − Fν0

)]
∣∣∣
z
≤ C′C0A2A3A4ε,

with C0 as in (1), and with C′ a universal constant. Putting (11) and (12) into (10),
we learn that

|Jz(F)|z ≤ 1+ A1ε+ C′C0A2A3A4ε ,

completing the proof of Lemma GPU. �
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6. Approximate unit balls

In this section, we suppose we are given a family of norms | · |z on P (z ∈ R2),
together with an Oracle, as in Section 5. The boiler-plate constants in this section
are the constants called c0, C0, C1, C2 in that section.

Also, in this section, we work with a positive number ε, assumed to satisfy the
“small ε assumption” as explained in Section 2.

We will be concerned here with the following notion:

Definition. Let ε > 0, let Q ⊂ R2 be an open square, let S ⊂ Q be non-empty and
finite, and let L be a positive integer. We say that a convex polyhedron K ⊂ Wh(S)
belongs to AUB(ε, S,Q, L) (K is an “approximate unit ball”) if the following hold:

(1) K is defined by at most L constraints.

(2) Let F ∈ C2(2Q) with norm ≤ 1. Then JS(F) ∈ K.

(3) Let �P ∈ K. Then there exists F ∈ C2(Q) with norm ≤ 1 + ε, such that

JS(F) = �P.

The goal of this section is to compute a K ∈ AUB(ε, S,Q, L) (for suitable L),
given any ε, S,Q. The ideas needed to do so are contained in [6], but unfortunately,
we cannot simply quote. For completeness, we provide details here. We use the
following basic result:

Smoothing Lemma. Let ε > 0 (satisfying the “small ε assumption”), and let
Q ⊂ R2 be an open square with sidelength δQ ≤ 1. Let 0 < η < ε2 exp

(
− 1

ε

)
be given.

Let S ⊂ Q, and assume that |z − z′| > 2η exp
(
1
ε

)
δQ for any z, z′ ∈ S distinct.

Let F ∈ C2((1 + η)Q), with norm ≤ 1.

Then there exists F# ∈ C3(Q) with norm ≤ 1+ Cε in C2(Q), such that

(4) Js(F
#) = Js(F), and

(5) |∂αF#| ≤ Cη−2δ−1
Q on Q, for |α| = 3.

Sketch of Proof: Our present Smoothing Lemma is just the special case m = n = 2
of Lemma 12.2 in [6], in which balls are replaced by squares. The proofs of Lem-
mas 12.1 and 12.2 in [6] carry over to the present case, without difficulty. �

Also, directly from [6] , we have the following algorithm:

Algorithm AUB0. Given ε > 0 and z ∈ R2, we compute a convex polyhedron
Kz ⊂ P, with the following properties:

(6) Any P ∈ P such that |P|z ≤ 1 belongs to Kz.

(7) Any P ∈ Kz satisfies |P|z ≤ 1+ ε.

(8) Kz is defined by at most C(ε) constraints.

The work and storage used to compute Kz are at most C(ε).
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Explanation. See [6].

We now begin the work of computing approximate unit balls. We start with
special cases, and build up to the general case.

Algorithm AUB1. Suppose we are given ε > 0, 0 < η < ε2 exp
(
−1
ε

)
, Q ⊂ R2

an open square, with sidelength δQ ≤ 1, and S ⊂ Q non-empty and finite.
Assume that |z−z′| > 2η exp

(
1
ε

)
δQ for any z, z′ ∈ S distinct. Then we compute

K ∈ AUB(Cε, S,Q, L) where L = C(ε, η).
The work and storage used to compute K are at most C(ε, η).

Explanation. We can trivially compute a “fine net” S+ ⊂ Q, such that

(9) S+ ⊃ S;

(10) Any z ∈ Q satisfies |z− z′| < η20δQ for some z′ ∈ S+; and

(11) #(S+) ≤ C(ε, η).

For each z ∈ S+, we apply Algorithm AUB0 to produce a convex polyhedron
Kz ⊂ P, satisfying (6), (7), (8).

We now define K+ ⊂ Wh(S+) to be the set of all �P+ = (P+,z)z∈S+ ∈ Wh(S+)
satisfying:

(12) P+,z ∈ (1 + Cε)Kz for each z ∈ S+; and

(13) |∂α(P+,z −P+,z′
)(z)| ≤ Cη−2δ−1

Q · |z− z′|3−|α| for |α| ≤ 2, z, z′ ∈ S+ distinct.

The controlled constant C in (12), (13) will be picked in a moment. Note that

(14) K+ ⊂ Wh(S+) is a convex polyhedron, defined by at most C(ε, η) constraints.

We check the following properties of K+:

(15) Let F ∈ C2(2Q) with norm ≤ 1. Then there exists F# ∈ C2(Q), such that
JS(F

#) = JS(F) and JS+(F#) ∈ K+.

(16) Let �P+ ∈ K+. Then there exists F ∈ C2(Q) with norm ≤ 1 + Cε, such that

JS+(F) = �P+.

To check (15) we apply the Smoothing Lemma. Thus, there exists F# ∈ C3(Q)
with norm ≤ 1+Cε in C2(Q), such that (5) holds, and JS(F

#) = JS(F). We check
that JS+(F#) ∈ K+; this will complete the proof of (15).

Since ‖ F# ‖C2(Q)≤ 1+ Cε, we have |Jz(F
#)|z ≤ 1+ Cε for z ∈ S+.

Hence, (6) yields

(17) Jz(F
#) ∈ (1+ Cε)Kz for each z ∈ S+.

Also, (5) and Taylor’s theorem yield the estimate

(18) |∂α{Jz(F
#) − Jz′ (F#)}(z)| ≤ C′η−2δ−1

Q |z − z′|3−|α| for |α| ≤ 2, z, z′ ∈ S+

distinct.
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If the constant C in (12), (13) is larger than the constants C,C′ in (17), (18),
then we obtain

(19) JS+(F#) = (Jz(F
#))z∈S+ ∈ K+.

We now pick C in (12), (13) as just explained. This proves (19), thus prov-
ing (15) as well.

Next, we check (16). Let �P+ = (P+,z)z∈S+ ∈ K+. From (7), (12) and the Boun-
ded Distortion Property, we find that |∂αP+,z(z)| ≤C≤ Cη−2δ−1

Q for |α| ≤ 2, z ∈ S+.

Together with (13) and the classical Whitney extension theorem for finite sets,
this shows that there exists F ∈ C3(R3) such that

(20) |∂αF| ≤ Cη−2δ−1
Q on R2 for |α| = 3, and

(21) Jz(F) = P+,z for each z ∈ S+.

(Recall that Jz(F) denotes the second degree Taylor polynomial, even though F ∈
C3(R2).)

We restrict F to Q, and we check that

(22) ‖ F ‖C2(Q)≤ 1+ Cε.

In fact, let z ∈ Q be given, and let z′ ∈ S+ be as in (10). Then (10), (20) and
Taylor’s theorem tell us that |∂α{Jz(F) − Jz′(F)}(z)| ≤ Cη−2δ−1

Q · (η20δQ)3−|α| ≤
Cη18 for |α| ≤ 2.

Hence, by the Bounded Distortion Property,

(23) |Jz(F) − Jz′(F)|z ≤ C′η18 < ε, since 0 < η < ε2 exp
(
−1
ε

)
.

Also, since �P+ ∈ K+ and z′ ∈ S+, (7), (12) and (21) yield |Jz′(F)|z′ ≤ 1 + Cε.
Hence, by Approximate Translation-Invariance, we have

(24) |Jz′(F)|z ≤ exp(C|z− z′|) · |Jz′(F)|z′ ≤ exp(Cη20δQ) · (1+Cε) ≤ 1+C′ε, since
δQ ≤ 1 and 0 < η < ε2 exp

(
−1
ε

)
.

Combining (23) and (24), we find that |Jz(F)|z ≤ 1 + C′′ε. This holds for
arbitrary z ∈ Q, hence (22) holds. Thus, F satisfies (21) and (22), completing the
proof of (16).

We now define

(25) K = {�P+|S : �P+ ∈ K+} ⊂ Wh(S).

By (11) and (14),

(26) K ⊂ Wh(S) is convex polyhedron, defined by at most C(ε, η) constraints.
Moreover, we can compute K from K+ using work and storage at most C(ε, η).

Comparing (25) with (15) and (16), we learn the following:

(27) Let F ∈ C2(2Q) with norm ≤ 1. Then JS(F) ∈ K.

(28) Let �P ∈ K. Then there exists F ∈ C2(Q) with norm ≤ 1 + Cε, such that

JS(F) = �P.
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By (26), (27), (28), we have K ∈ AUB(Cε, S,Q, L), with L = C(ε, η). The
reader may check easily that the work and storage used to compute K as above are
at most C(ε, η). This completes our explanation of Algorithm AUB1.

Note that Algorithm AUB1 applies when S = {z0} is a singleton; we can just
take

η =
1

2
ε2 exp

(
−

1

ε

)
.

Thus, we obtain K ∈ AUB(Cε, S,Q, L) with L = C(ε), using work and storage at
most C(ε).

The following algorithm will allow us to “glue together” two finite sets S1
and S2.

Algorithm AUB2. Suppose we are given real numbers ε > 0, r > 0; open
squares Q1, Q2 ⊂ R2; finite sets S1 ⊂ Q1 and S2 ⊂ Q2; a point z0 ∈ S1 ∩ S2;
positive integers L1, L2; and approximate unit balls K1 ∈ AUB(ε, S1, Q1, L1) and
K2 ∈ AUB(ε, S2, Q2, L2). We make the following assumptions:

(29) δQ2
≤ 1.

(30) 2Q1 ⊂ 2Q2.

(31) S1 ⊂ Q2 ∩ B(z0, r).

(32) S2 ∩ B(z0, exp
(
1
ε

)
r) = {z0}.

(33) Q2 ∩ B(z0, exp
(
1
ε

)
r) ⊂ Q1.

(Here, B(z0, r) denotes an open disc in R2.) Then we compute

K ∈ AUB(Cε, S1 ∪ S2, Q2, L1 + L2).

The work and storage used to do so are at most C(ε,#(S1),#(S2), L1, L2).

Explanation: We set K = {�P ∈ Wh(S1 ∪ S2) : �P|S1
∈ K1 and �P|S2

∈ K2}. Thus, K is
a convex polyhedron, defined by at most L1 + L2 constraints.

The work and storage used to compute K are clearly as promised.

To show that K∈AUB(Cε, S1∪S2, Q2, L1+L2), we must establish the following:

(34) Let F ∈ C2(2Q2) with norm ≤ 1. Then JS1∪S2
(F) ∈ K.

(35) Let �P ∈ K. Then there exists F ∈ C2(Q2) with norm ≤ 1 + Cε, such that

JS1∪S2
(F) = �P.

To prove (34), we just note that JS2
(F) ∈ K2 since K2 ∈ AUB(ε, S2, Q2, L2);

and JS1
(F) ∈ K1 since 2Q1 ⊂ 2Q2 and K1 ∈ AUB(ε, S1, Q1, L1). Thus, (34) holds

trivially. Our task is to prove (35). Let �P = (Pz)z∈S1∪S2
∈ K. By definition,

�P|S1
∈ K1 and �P|S2

∈ K2. Since Ki ∈ AUB(ε, Si, Qi, Li) for i = 1, 2, there exist
functions

(36) F1 ∈ C2(Q1) and F2 ∈ C2(Q2), both having norm ≤ 1+ ε, such that

(37) JS1
(F1) = �P|S1

and JS2
(F2) = �P|S2

.
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In particular, Jz0
(F1) = Jz0

(F2) since z0 ∈ S1∩S2. Hence, by Taylor’s theorem,

(38) |∂α(F1 − F2)(z)| ≤ C|z − z0|
2−|α| for |α| ≤ 1, z ∈ Q1 ∩Q2.

We take a partition of unity

(39) 1 = θ1 + θ2 on R2, with θi ∈ C2(R2), θi ≥ 0 on R2;

(40) |∂αθi(z)| ≤ Cε|z− z0|
−|α| for 0 < |α| ≤ 2, z ∈ R2 (i = 1, 2); and

(41) suppθ1 ⊂ B(z0, exp
(
1
ε

)
r), supp θ2 ⊂ R2 � B(z0, r).

We can achieve (39), (40), (41) by taking θ1, θ2 to be functions of ε ln
( |z−z0|

r

)
;

details are omitted.

We now define

(42) F(z) = θ1(z)F1(z) + θ2(z)F2(z) for z ∈ Q2.

This makes sense, because, for z ∈ supp θ1 ∩Q2, we have z ∈ B(z0, exp
(
1
ε

)
r)∩Q2

⊂ Q1 (see (33)), hence F1(z) is defined.

We estimate |Jz(F)|z for z ∈ Q2.

In a small neighborhood of z0, we have θ1 = 1, θ2 = 0. Hence, Jz0
(F) = Jz0

(F1).
Since ‖ F1 ‖C2(Q1)≤ 1+ ε, it follows that

(43) |Jz0
(F)|z0

≤ 1+ ε.

For z ∈ Q2 � {z0}, we use Lemma GPU with δz = c|z − z0|; note that δz ≤ 1, as
required for Lemma GPU, since z, z0 ∈ Q2 and δQ2

≤ 1. We have

|Jz(F1)|z ≤ 1+ ε if z ∈ Q2 ∩ suppθ1 (see (33), (41)), and

|Jz(F2)|z ≤ 1+ ε (see (36)),

as well as (39), (40). Hence, Lemma GPU applies, and it tells us that

|Jz(F)|z ≤ 1+ Cε for z ∈ Q2 � {z0}.

Together with (43), this yields

(44) ‖ F ‖C2(Q2)≤ 1+ Cε.

Next, we check that JS1∪S2
(F) = �P.

First, suppose z ∈ S1. By (31) and (41), z /∈ suppθ2, hence Jz(F) = Jz(F1) = Pz,
thanks to (37).

On the other hand, suppose z ∈ S2 � S1 ⊆ S2 � {z0}. Then (32) and (41) show
that z /∈ suppθ1, hence Jz(F) = Jz(F2) = Pz, again thanks to (37).

Thus, Jz(F) = Pz for all z ∈ S1 ∪ S2, i.e., JS1∪S2
(F) = �P. Together with (44),

this completes the proof of (35), as well as our explanation of Algorithm AUB2.
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As a first application of Algorithm AUB2, we sharpen Algorithm AUB1 as
follows:

Algorithm AUB3. Suppose we are given ε, S,Q, η, with S ⊂ Q, 0 < η <
ε2 exp

(
− 1

ε

)
, and δQ ≤ 1. Suppose |z − z′| ≥ η diam(S) for any z, z′ ∈ S distinct.

Then we compute K ∈ AUB(Cε, S,Q, L), with L ≤ C(ε, η). The work and storage
used to do so are at most C(ε, η).

Explanation: If diam(S) ≥ exp
(
−10
ε

)
δQ, then we may apply Algorithm AUB1,

with η replaced by η′ = 1
2
η exp

(
−12
ε

)
. Hence, we may suppose that diam(S) ≤

exp
(
−10
ε

)
δQ.

Fix z0 ∈ S, and let r = 2 diam(S). We can trivially compute an open square
Q1 ⊂ Q such that S ⊂ Q1, δQ1

≤ 10 exp
(
1
ε

)
r, and Q ∩ B(z0, exp

(
1
ε

)
r) ⊂ Q1.

We set Q2 = Q, S1 = S, S2 = {z0}. Note that

(45) |z− z′| > cη exp
(
−1
ε

)
δQ1

for z, z′ ∈ S1 distinct .

Note also that

(46) S1 ⊂ Q1, S2 ⊂ Q2, and δQ2
≤ 1.

We prepare to apply Algorithm AUB1. Let 0 < ε′ < ε, with ε′ to be picked
below, and let η′ = c(ε′, η) be picked so that 0 < η′ < (ε′)2 exp

(
− 1

ε′
)
and

cη exp
(
−1
ε

)
> 2η′ exp

(
1
ε′
)
with c as in (45). Then we have S1 ⊂ Q1, δQ1

< 1, 0 <

η′ < (ε′)2 exp
(
−1
ε′

)
, and |z − z′| > 2η′ exp

(
1
ε′
)
δQ1

for z, z′ ∈ S1 distinct. Hence,
Algorithm AUB1 applies to ε′, η′, S1, Q1. Thus, with work at most C(ε′, η′), we
compute

(47) K1 ∈ AUB(Cε′, S1, Q1, L1), with L1 ≤ C(ε′, η′).

We now pick ε′ = cε so that Cε′ < ε, with C as in (47). Since we took
η′ = c(ε′, η) above, we now have

(48) K1 ∈ AUB(ε, S1, Q1, L1), with L1 ≤ C(ε, η).

Moreover, S2 is a singleton. Hence, applying Algorithm AUB1, with ε replaced by
ε/C for large enough C, we obtain

(49) K2 ∈ AUB(ε, S2, Q2, L2), with L2 ≤ C(ε).

The work and storage used to compute K1 are at most C(ε, η); and the work
and storage used to compute K2 are at most C(ε).

We now check that K1, K2, S1, S2, Q1, Q2, ε satisfy the assumptions of Algo-
rithm AUB2. Aside from (46), (48), (49), these assumptions are as follows:

• z0 ∈ S1 ∩ S2; this holds by definition of S1, S2, since z0 ∈ S.

• δQ2
≤ 1; this holds by the assumptions of Algorithm AUB3, since Q2 = Q.
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• 2Q1 ⊂ 2Q2; this holds since z0 ∈ Q1 ∩Q2, and

δQ1
≤ 10 exp

( 1
ε

)
r = 20 exp

( 1
ε

)
diam (S) ≤ 20 exp

(−9

ε

)
δQ2

.

• S1 ⊂ Q2 ∩ B(z0, r); this holds since S1 = S ⊂ Q = Q2, z0 ∈ S, and r =
2diam(S).

• S2 ∩ B(z0, exp
(
1
ε

)
r) = {z0}; this holds, since S2 = {z0}.

• Q2 ∩ B(z0, exp
(
1
ε

)
r) ⊂ Q1; this holds by definition of Q1, Q2.

Thus, the assumptions of Algorithm AUB2 are satisfied. Applying that algo-
rithm, we obtain

(50) K ∈ AUB(Cε, S,Q, L1 + L2).

The work and storage used to apply Algorithm AUB2 are at most C(ε,#(S1),
#(S2), L1, L2).

We have #(S1) = #(S) ≤ C(η), since |z− z′| ≥ η diam (S) for z, z′ ∈ S distinct.
Also, #(S2) = 1; and we have seen that L1 ≤ C(ε, η) and L2 ≤ C(ε). Consequently,
the work and storage used in applying Algorithm AUB2 are at most C(ε, η), and
L1 + L2 ≤ C(ε, η).

Thus, (50) shows that K is an approximate unit ball, as promised. This com-
pletes our explanation of Algorithm AUB3.

At last, we pass to the general case.

Algorithm AUB4. Given: ε > 0 satisfying the “small ε assumption”; an open
square Q ⊂ R2, with δQ ≤ 1; and a non-empty finite set S ⊂ Q; we compute a
K ∈ AUB(ε, S,Q, L), with L ≤ C(ε,#(S)). The work and storage used to do so
are at most C(ε,#(S)).

Explanation: We proceed recursively, using induction on #(S).

We first check whether #(S) = 1. If so, then we may apply Algorithm AUB1
(with ε replaced by ε/C for large enough C), and we are done. If #(S) > 1, then
we proceed as follows:

Let 0 < ε′ < ε, with ε′ to be picked below. (Later on, we will pick ε′ = cε for
small enough c, but we do not yet make that choice.)

We check whether

(51) |z− z′| > exp
(

−100·#(S)
ε′

)
· diam(S) for z, z′ ∈ S distinct.

Case 1: Suppose (51) holds. Then, taking η′ = exp
(−100#(S)

ε′
)
, we can apply

Algorithm AUB3, with inputs ε′, η′, S,Q. That algorithm produces

(52) K ∈ AUB(Cε′, S,Q, L), with L ≤ C(ε′, η′) = C′(ε′,#(S)).

The work and storage used to produce K are at most C(ε′, η′) = C′(ε′,#(S)).
Moreover, we have K ∈ AUB(ε, S,Q, L), provided

(53) Cε′ < ε, where C is as in (52).
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Case 2: Suppose (51) does not hold. We can trivially compute

(54) z0, z1 ∈ S distinct, such that

(55) |z0 − z1| ≤ exp
(

−100·#(S)
ε′

)
· diam(S).

Since there are at most #(S) distinct distances |z− z0|(z ∈ S), there exists an even
integer j (2 ≤ j ≤ 98 ·#(S)), such that the distances |z − z0|(z ∈ S) do not lie in
the interval [exp

(
−j
ε′
)
diam (S), exp

(
2−j
ε′

)
diam(S)). It is trivial to compute such

a j; we fix that j. Now define:

r = 2 exp
(
−j
ε′
) · diam(S);

Q1 = open square centered at z0, with sidelength

δQ1
= 100 exp

(−(j−1)
ε′

)
diam(S) = 50 exp

(
1
ε′
)
r ;

Q2 = Q;

S1 = S ∩ B(z0, r) ⊂ Q1; and

S2 = {z0} ∪ (S� B(z0, r)) ⊂ Q2.

We prepare to verify the assumptions of Algorithm AUB2, for the inputs
ε′, r, S1, Q1, S2, Q2. In fact, (29) holds, since δQ2

= δQ ≤ 1 by the assumptions of
Algorithm AUB4. To check (30), we note that z0 ∈ Q1 ∩Q2, and

δQ1
= 100 exp

(−(j− 1)

ε′
)
diam(S) ≤ 100 exp

(−1

ε′
)
diam(S)

≤ C exp
(−1

ε′
)
δQ = C exp

(−1

ε′
)
δQ2

;

hence 2Q1 ⊂ 2Q2.

Next, (31) holds, since S1 ⊂ S ⊂ Q2 and S1 ⊂ B(z0, r) by definition.
To check (32), let z ∈ (S2 ∩ B(z0, exp

(
1
ε′
)
r)) be given. Then z ∈ S, and

|z− z0| ≤ exp
( 1

ε′
)
r = 2 exp

(1− j

ε′
)
diam(S).

The defining property of j tells us that |z− z0| cannot lie in the interval[
exp

(−j

ε′
)
· diam(S) , exp

(2− j

ε′
)
· diam(S)

)
.

Consequently, |z − z0| < exp
(
− j

ε′
) · diam(S) = 1

2
r. Thus, z ∈ S2 ∩ B(z0, r).

By definition of S2, we have S2 ∩ B(z0, r) = {z0}. Hence, z = z0. We have shown
that S2∩B(z0, exp

(
1
ε′
)
r) contains no points other than z0. On the other hand, by

definition of S2, we have z0∈S2∩B(z0, exp
(

1
ε′
)
r). This completes the proof of (32).

To check (33), we note that Q2 ∩B(z0, exp
(

1
ε′
)
r) ⊂ B(z0, exp

(
1
ε′
)
r) ⊂ Q1, by

definition of Q1. Thus,

(56) Conditions (29)–(33) hold for the data ε′, r, S1, Q1, S2, Q2.

Next, we check that

(57) #(S1),#(S2) < #(S).
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Indeed, S1, S2 are subsets of S. We cannot have S1 = S, since that would imply
diam(S) = diam(S1) ≤ 2r = 4 exp

(
−j
ε′
) · diam(S) < diam(S). (Recall that j ≥ 2

and #(S) ≥ 2.) To check that S2 �= S, we show that z1 /∈ S2. (See (54), (55).)
Indeed, (55) gives

|z1 − z0| ≤ exp

(
−100 ·#(S)

ε′

)
· diam(S) < exp

(
−j

ε′

)
· diam(S)

=
1

2
r (since j ≤ 98 ·#(S) by definition).

Thus, z1 cannot belong to S � B(z0, r). Since also z1 �= z0, we have z1 /∈ S2,
completing the proof of (57).

We have S1 ⊂ Q1, S2 ⊂ Q2, and δQ1
, δQ2

≤ 1. Thanks to (57), we may re-
cursively apply Algorithm AUB4 to the inputs (ε′, S1, Q1) and (ε′, S2, Q2). Thus,
using work and storage at most C(ε′,#(S1)) + C(ε′,#(S2)), we compute

(58) K1 ∈ AUB(ε′, S1, Q1, L1) and K2 ∈ AUB(ε′, S2, Q2, L2), with

(59) L1 ≤ C(ε′,#(S1)) and L2 ≤ C(ε′,#(S2)).

Recall that z0 ∈ S1∩S2. Hence, by (56) and (58), all the assumptions of Algorithm
AUB2 hold, for the data ε′, r, S1, Q1, S2, Q2, K1, K2. Applying that algorithm, we
compute

(60) K ∈ AUB(Cε′, S,Q, L1+L2); the work and storage used to do so are at most

C(ε′,#(S1),#(S2), L1, L2) .

Recalling (59), we see that the work and storage used to apply Algorithm AUB2
as above are at most C(ε′,#(S1),#(S2)), and furthermore, L1+L2 ≤ C(ε′,#(S1),
#(S2)). Moreover, we have K ∈ AUB(ε, S,Q, L1 + L2), provided

(61) Cε′ < ε, where C is as in (60).

This concludes our analysis of Case 2.
We now pick ε′ = cε, with c taken small enough, so that ε′ will satisfy (53)

and (61). Thus, in both Case 1 and Case 2, we can compute K ∈ AUB(ε, S,Q, L)
with L ≤ C(ε,#(S)); the work and storage used to do so (apart from the recursive
calls to Algorithm AUB4) are at most C(ε,#(S)).

Since we make two recursive calls to Algorithm AUB4 in Case 2, and since
#(S1), #(S2) < #(S), it follows that the total work and storage used by Algorithm
AUB4 are at most C(ε,#(S)).

This completes our explanation of Algorithm AUB4.

Remark. By definition of AUB(ε, S,Q, L), the K computed in Algorithm AUB4
has the following properties:

• K ⊂ Wh(S) is a polyhedron defined by at most C(ε,#(S)) constraints.

• Let F ∈ C2(2Q) with norm ≤ 1. Then JS(F) ∈ K.

• Let �P ∈ K. Then there exists F ∈ C2(Q) with norm ≤ 1 + ε, such that

JS(F) = �P.



448 C. Fefferman

7. The basic tree

(1) Let Ē ⊂ R be a finite set, with N ≥ 2 elements.

For x ∈ R we define a lengthscale

(2) δLS(x) = inf{r > 0 : [x− r, x+ r] contains at least two points of Ē}.

We fix a dyadic grid Gτ; in this section, an interval I is called “dyadic” if I ∈ Gτ.
We use no “boiler-plate constants” in this section; thus, c, C,C′ here denote

absolute constants.
Our goal here is to define a binary tree Tglobal (Ǐ), whose nodes are dyadic

subintervals of a given dyadic interval Ǐ. The root of Tglobal(Ǐ) is the interval Ǐ.
Each internal node I ∈ Tglobal(Ǐ) has two children in the tree Tglobal(Ǐ), namely its
two dyadic children.

In trivial cases, Tglobal(Ǐ) consists merely of the single node Ǐ. Except for those
trivial cases, each node I ∈ Tglobal(Ǐ) satisfies #(25I ∩ Ē) ≥ 2; and we will define
two “representatives”xrepleft(I) and x

rep
rt (I) in 25I∩ Ē. Moreover, the leaves of Tglobal(Ǐ)

form a partition of Ǐ into dyadic intervals I, such that

(3) cδLS(x) ≤ |I| ≤ δLS(x) for any x ∈ 3I.

In view of (3), the number of nodes in Tglobal(Ǐ) depends on the spacing of the
points of Ē. We cannot bound the number of nodes solely in terms of N = #(Ē).

To make possible efficient computations using Tglobal(Ǐ), we therefore introduce
a subset Tdist(Ǐ), consisting of at most CN “distinguished nodes”. We will think
about all the nodes of Tglobal(Ǐ), but we will make computations only for the nodes
of Tdist(Ǐ). To illustrate, we discuss the representatives xrepleft(I), x

rep
rt (I).

A fundamental property of Tglobal(Ǐ) and Tdist(Ǐ) is that Tglobal(Ǐ) � {Ǐ} may be
written as a disjoint union, over suitable Ĩ ∈ Tdist(Ǐ), of T loc(Ĩ)� {Ĩ}, where T loc(Ĩ)
is a “local tree” with root Ĩ. It turns out that we can define our representatives in
such a way that I �→ x

rep
left(I) and I �→ x

rep
rt (I) are constant on T loc(Ĩ)� {Ĩ}, for each

distinguished node Ĩ. Accordingly, we will compute representatives xsleft(Ĩ), x
s
rt(Ĩ)

for suitable Ĩ ∈ Tdist(Ǐ), and then define xrepleft(I) = xsleft(Ĩ), xreprt (I) = xsrt(Ĩ), for

each I ∈ T loc(Ĩ)� {Ĩ}, Ĩ ∈ Tdist(Ǐ). Thus, we will only have to compute at most CN
representatives xsleft(Ĩ), x

s
rt(Ĩ); these yield all the xrepleft(I), x

rep
rt (I) for I ∈ Tglobal(Ǐ)�{Ǐ}.

Even though Tglobal(Ǐ) may contain far more than CN nodes, we can nevertheless
compute all the representatives we need without excessive work.

We prepare to give the definitions of Tglobal(Ǐ) and Tdist(Ǐ). We begin with a
few preliminary definitions. Let I be a dyadic interval. We define

(4) J(I) = convex hull of 5I+ ∩ Ē.

Thus, J(I) is the empty set, a single point, or a non-degenerate closed interval. We
say that I is of:

“type A” if |J(I)| ≥ 1
32
|I|;

“type B” if 1
32
|I| > |J(I)| > 0; and

“type C” if |J(I)| = 0.
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If I is of type C, then J(I) is the empty set or a single point. We say that I

is of type C0 if J(I) is empty, while I is of type C1 if J(I) is a single point. For I
of type C1, we write x!(I) to denote the one and only element of J(I). Note that
Ē ∩ 5I+ = {x!(I)} when I is of type C1.

Since Ē is finite, we have the following:

(5) If I is of type A or B, then J(I) is a non-degenerate closed interval, and the
endpoints of J(I) belong to Ē.

(6) Every sufficiently small dyadic interval is of type C.

Next, for any dyadic interval Ĩ, we define the “local tree” T loc(Ĩ), which consists
of dyadic subintervals of Ĩ. Some of the leaves of this tree will be called “red
offspring” of Ĩ; the set of all red offspring of Ĩ will be denoted by RO(Ĩ). The
definition of T loc(Ĩ) and RO(Ĩ) proceeds by cases.

(7) Suppose Ĩ is of type A. Then T loc(Ĩ) consists of Ĩ and its two dyadic
children Ĩ1 and Ĩ2; and RO(Ĩ) consists of Ĩ1 and Ĩ2.

(8) Suppose Ĩ is of type B. Then T loc(Ĩ) consists of all dyadic I ⊆ Ĩ such that
5I+ ∩ J(Ĩ) �= ∅ and |I| ≥ |J(Ĩ)|.

In this case, the leaves of T loc(Ĩ) are precisely those dyadic intervals I ⊆ Ĩ such that
either

(8a) 5I ∩ J(Ĩ) = ∅, 5I+ ∩ J(Ĩ) �= ∅, |I| ≥ |J(Ĩ)| or

(8b) 5I ∩ J(Ĩ) �= ∅, |J(Ĩ)| ≤ |I| < 2|J(Ĩ)|.

The set RO(Ĩ) consists of all I ⊆ Ĩ that satisfy (8b).

(9) Suppose Ĩ is of type C. Then T loc(Ĩ) consists of the single node Ĩ, and
RO(Ĩ) is the empty set.

Thus, we have defined T loc(Ĩ) and RO(Ĩ). Note that

(10) Every Ĩ′ ∈ RO(Ǐ) is a proper dyadic subinterval of Ǐ.

We are now ready to define Tglobal(Ǐ) and Tdist(Ǐ) for any given dyadic interval Ǐ.
Our definitions of these objects will be recursive: Given Ǐ, we assume that we have
already defined Tglobal(Ǐ′) and Tdist(Ǐ′) for all Ǐ′ ∈ RO(Ǐ), and then we proceed
to define Tglobal(Ǐ) and Tdist(Ǐ). Such a recursive definition makes sense, thanks
to (6), (9) and (10).

Our recursive definitions of Tglobal(Ǐ) and Tdist(Ǐ) are as follows:

(11) Tglobal(Ǐ) = T loc(Ǐ) ∪ ⋃
Ǐ′∈RO(Ǐ)

Tglobal(Ǐ′).

(12) Tdist(Ǐ) = {Ǐ} ∪ ⋃
Ǐ′∈RO(Ǐ)

Tdist(Ǐ′).

Note that

(13) If Ǐ is of type C, then Tdist(Ǐ) = Tglobal(Ǐ) = {Ǐ}.
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The basic properties of Tglobal(Ǐ) and Tdist(Ǐ) are given by the next three lemmas.

Lemma BT1. Let Ǐ be a dyadic interval. Then

(I) Tglobal(Ǐ) is a finite collection of dyadic subintervals of Ǐ, including Ǐ itself.

(II) For each I ∈ Tglobal(Ǐ), either

(A) (I is a “leaf”) : No proper dyadic subinterval of I belongs to Tglobal(Ǐ) or

(B) (I is an “internal node”) : Both of the dyadic children of I belong to
Tglobal(Ǐ).

(III) The leaves of Tglobal(Ǐ) form a partition of Ǐ into finitely many dyadic subin-
tervals I. Each leaf I satisfies cδLS(x) ≤ |I| ≤ δLS(x) for all x ∈ 3I, provided Ǐ

is of type A or B, and (5Ǐ ∩ Ē) �= ∅. (See (2).)

(IV) Any given point x ∈ R lies in 3I for at most C distinct leaves I in Tglobal(Ǐ).

Lemma BT2. Let Ǐ be a dyadic interval. Then

(I) Tdist(Ǐ) ⊂ Tglobal(Ǐ), and Ǐ ∈ Tdist(Ǐ).

(II) Let Ĩ ∈ Tdist(Ǐ). Then the children of Ĩ in the tree Tdist(Ǐ) are precisely the
dyadic intervals in RO(Ĩ). There are at most C such intervals.

(III) Let I be a leaf of Tglobal(Ǐ). If 5I ∩ Ē �= ∅, then I ∈ Tdist(Ǐ), I is of type C1,
and #(5I+ ∩ Ē) = 1.

(IV) The tree Tdist(Ǐ) has at most CN nodes.

Lemma BT3. Let Ǐ be a dyadic interval. Then

(I) Tglobal(Ǐ)� {Ǐ} is the disjoint union of T loc(Ĩ)� {Ĩ} over all Ĩ ∈ Tdist(Ǐ). (Here,
we may restrict to Ĩ ∈ Tdist(Ǐ) of type A or B, since T loc(Ĩ)� {Ĩ} = ∅ for Ĩ of
type C.)

(II) Let I ∈ T loc(Ĩ) ∩ T loc(Ĩ′), where Ĩ, Ĩ′ ∈ Tdist(Ǐ). Then either

(A) Ĩ = Ĩ′,

(B) I = Ĩ ∈ RO(Ĩ′), or

(C) I = Ĩ′ ∈ RO(Ĩ).

(III) Let I be an internal node of Tglobal(Ǐ). Then there exists Ĩ ∈ Tdist(Ǐ), such
that I and its two dyadic children all belong to T loc(Ĩ).

The above lemmas justify our assertions∗ regarding Tglobal(Ǐ) and Tdist(Ǐ) at the
start of this section. To justify our assertions regarding “representatives”, we make
the following definitions:

Let I be any dyadic interval. We write xleft(I), xrt(I) to denote the left and right
endpoints of I, respectively.

∗The assertion #(25I ∩ E) ≥ 2 for I ∈ Tglobal (̌I) (in non-trivial cases) will be justified by
Lemma BT4 below.
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If I is of type A or B, then we recall that J(I) is a non-degenerate closed
interval; we write xsleft(I) and xsrt(I) to denote the left and right endpoints of J(I),
respectively. Note that xsleft(I) and xsrt(I) are undefined for I of type C.
Recall that we defined x!(I) to be the one and only element of J(I), in case I is of
type C1. For intervals I of type A,B or C0, x!(I) is undefined.

Now let Ǐ be a dyadic interval, and let I ∈ Tglobal(Ǐ) � {Ǐ}. According to
Lemma BT3 (conclusion I), we have I ∈ T loc(Ĩ)\{Ĩ} for precisely one Ĩ ∈ Tdist(Ǐ);
and this Ĩ is of type A or B.

Using this Ĩ, we define

(14) x
rep
left(I) = xsleft(Ĩ) and x

rep
rt (I) = xsright(Ĩ).

Thus, xrepleft(I) and xreprt (I) are defined for all I ∈ Tglobal(Ǐ)� {Ǐ}. If Ǐ is of type A

or B, then we define

(15) x
rep
left(Ǐ) = xsleft(Ǐ) and x

rep
rt (Ǐ) = xsrt(Ǐ), so that xrepleft(I), x

rep
rt (I) are defined for all

I ∈ Tglobal(Ǐ).

If Ǐ is of type C, then x
rep
left(Ǐ), x

rep
rt (Ǐ) are undefined. (In this case, Tglobal(Ǐ) is trivial;

see (13).)

Lemma BT4. Let Ǐ be a dyadic interval, and let I ∈ Tglobal(Ǐ) � {Ǐ}. Then
x
rep
left(I) < x

rep
rt (I) (strict inequality), and x

rep
left(I), x

rep
rt (I) ∈ 25I ∩ Ē.

If Ǐ is of type A or B, then the above conclusions hold also for I = Ǐ.

This lemma justifies our earlier assertions regarding representatives.

Most of the conclusions of Lemmas BT1–BT4 are trivial, but, to help the careful
reader, we provide some details of their proofs. At the end of this section, we give
algorithms to compute the tree Tdist(Ǐ) and the points xleft(Ĩ), xrt(Ĩ), x

s
left(Ĩ), x

s
rt(Ĩ),

x!(Ĩ) for Ĩ ∈ Tdist(Ǐ) (whenever those points are defined).

We prepare the way to the proofs of Lemmas BT1–BT4 by establishing a series
of propositions.

The basic properties of T loc(Ĩ) and RO(Ĩ) are given by the following result:

Proposition BT1. Let Ĩ be a dyadic interval. Then

(16) T loc(Ĩ) is a finite tree whose nodes are dyadic subintervals of Ĩ.

(17) Ĩ ∈ T loc(Ĩ).

(18) Each I ∈ T loc(Ĩ) satisfies either

(a) (I is a “leaf” of T loc(Ĩ)) : No proper subinterval of I belongs to T loc(Ĩ),
or

(b) (I is an “internal node” of T loc(Ĩ)) : Both of the dyadic children of I
belong to T loc(Ĩ).

(19) Let I �= Ĩ be a leaf of T loc(Ĩ). If I /∈ RO(Ĩ), then 5I ∩ Ē = ∅.
(20) Each I ∈ RO(Ĩ) is a proper dyadic subinterval of Ĩ.
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(21) The intervals of RO(Ĩ) are pairwise disjoint.

(22) There are at most C intervals in RO(Ĩ).

(23) For each I ∈ T loc(Ĩ)� {Ĩ}, we have J(Ĩ) ⊂ 25I.

(24) For each I ∈ RO(Ĩ), we have diam(Ē ∩ 25I) ≥ 1
16
|I|.

(25) If Ĩ is of type A or B, and 5Ĩ ∩ Ē �= ∅, then the two dyadic children of Ĩ

belong to T loc(Ĩ).

Proof. Assertions (16), (17), (18), (20) are trivial from the definitions. Asser-
tion (19) holds vacuously for Ĩ of type A or C. For Ĩ of type B, (19) follows
from (8a), since Ē ∩ 5Ĩ+ ⊂ J(Ĩ) by definition. Assertion (21) holds because the in-
tervals I ∈ RO(Ĩ) are leaves in a tree consisting of dyadic intervals. Assertion (22)
is obvious for Ĩ of type A or C. For Ĩ of type B, (22) holds because there are at
most C dyadic intervals I satisfying (8b).

Assertion (23) holds trivially for Ĩ of type A or C. Suppose Ĩ is of type B. Then
any I ∈ T loc(Ĩ) satisfies 5I+ ∩ J(Ĩ) �= ∅ and |I| ≥ |J(Ĩ)|, hence J(Ĩ) ⊂ 25I. Thus, (23)
holds in all cases.

To prove (24), let I ∈ RO(Ĩ). Then RO(Ĩ) �= ∅, so Ĩ cannot be of type C. Thus,
Ĩ is of type A or B. Hence, (5) and (23) show that the endpoints of J(Ĩ) lie in
Ē ∩ 25I. Consequently, diam(Ē ∩ 25I) ≥ |J(Ĩ)|. On the other hand, for Ĩ of type A

or B and I ∈ RO(Ĩ), we can check that |J(Ĩ)| ≥ 1
16
|I|. Indeed, if Ĩ is of type A, then

I ∈ RO(Ĩ) is a dyadic child of Ĩ, and |I| = 1
2
|̃I| ≤ 16|J(Ĩ)| (since Ĩ is of type A ).

If instead Ĩ is of type B, then any I ∈ RO(Ĩ) satisfies (8b). In particular,
|I| < 2|J(Ĩ)|. Thus, in all cases, |J(Ĩ)| ≥ 1

16
|I| as claimed. We now know that

diam(25I ∩ Ē) ≥ |J(Ĩ)| ≥ 1
16
|I|, proving (24).

Assertion (25) is trivial for Ĩ of type A. For Ĩ of type B, (25) asserts that
5Ĩ ∩ J(Ĩ) �= ∅ and 1

2
|̃I| ≥ |J(Ĩ)|.

We know that 1
2
|̃I| ≥ |J(Ĩ)|, since Ĩ is of type B. We have also 5Ĩ ∩ J(Ĩ) ⊃

5Ĩ ∩ [5Ĩ+ ∩ Ē] = 5Ĩ ∩ Ē. Hence, if 5Ĩ ∩ Ē �= ∅, then 5Ĩ ∩ J(Ĩ) �= ∅, proving (25).
The proof of Proposition BT1 is complete. �

The next several propositions pertain to Tglobal(Ǐ) and Tdist(Ǐ). To prove those
propositions, we will make repeated use of “induction on Ǐ”, which means the
following:

Let Prop(Ǐ) be some assertion involving a given dyadic interval Ǐ. We want to
prove that Prop(Ǐ) holds for all Ǐ. To do so, it is enough to fix Ǐ, assume Prop(Ǐ′) for
all Ǐ′ ∈ RO(Ǐ), and then prove Prop(Ǐ). (This establishes Prop(Ǐ) for all Ǐ, thanks
to (6), (9), (10). We have already used this idea in our recursive definitions (11)
and (12).) We refer to the assumption that Prop(Ǐ′) holds for all Ǐ′ ∈ RO(Ǐ) as the
“induction hypothesis”.

Proposition BT2. Let Ĩ ∈ Tdist(Ǐ). Then

(A) T loc(Ĩ) ⊂ Tglobal(Ǐ).

(B) The children of Ĩ in the tree Tdist(Ǐ) are precisely the intervals in RO(Ĩ).
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Proof. By induction on Ǐ. �

Proposition BT3. Let I′ ⊂ I, with I′ ∈ Tglobal(Ǐ) and I ∈ T loc(Ǐ). Then either

(A) I′ ∈ T loc(Ǐ) or

(B) For some Ǐ′ ∈ RO(Ǐ), we have I′ ∈ Tglobal(Ǐ′) and Ǐ′ ⊂ I.

Proof. Suppose (A) fails. By (11), we have I′ ∈ Tglobal(Ǐ′) for some Ǐ′ ∈ RO(Ǐ). In
particular, I′ ⊂ Ǐ′; and we are assuming that I′ ⊂ I. Thus, the dyadic intervals I
and Ǐ′ are not disjoint. Consequently, either Ǐ′ ⊂ I or I � Ǐ′.

The latter inclusion is impossible, since I ∈ T loc(Ǐ) and Ǐ′ is a leaf of T loc(Ǐ).
Thus, Ǐ′ ⊂ I, Ǐ′ ∈ RO(Ǐ), and I′ ∈ Tglobal(Ǐ′) , i.e., (B) holds. �

Proposition BT4. Let I′ ⊂ I, with I′ ∈ Tglobal(Ǐ) and I ∈ Tglobal(Ǐ′), where Ǐ′ ∈
RO(Ǐ). Then I′ ∈ Tglobal(Ǐ′).

Proof. We may suppose I′ � I. Suppose I′ /∈ Tglobal(Ǐ′). Then by (11), either
I′ ∈ T loc(Ǐ) or I′ ∈ Tglobal(Ǐ′′), with Ǐ′′ ∈ RO(Ǐ) distinct from Ǐ′. The latter case
would imply I′ ⊂ Ǐ′′ and I ⊂ Ǐ′; hence I and I′ are disjoint, by (21). That’s
impossible, since I′ � I. Therefore, I′ ∈ T loc(Ǐ). However, that’s also impossible,
since I′ � I ⊂ Ǐ′, and Ǐ′ is a leaf of T loc(Ǐ). This contradiction completes the proof
of the proposition. �

Proposition BT5. Suppose I ∈ Tglobal(Ǐ). Then either

(A) (I is a “leaf”): No proper subinterval of I belongs to Tglobal(Ǐ) or

(B) (I is an “internal node”): There exists Ĩ ∈ Tdist(Ǐ) such that I and both its
dyadic children belong to T loc(Ĩ). In particular, the dyadic children of I belong
to Tglobal(Ǐ).

Proof. We use induction on Ǐ. Suppose (A) fails; we will prove (B). Fix I′ ∈
Tglobal(Ǐ) such that I′ � I. (Such an I′ exists, since (A) fails.) Thanks to Proposi-
tion BT3, Proposition BT4 and (11), we fall into one of the following cases:

Case 1: I, I′ ∈ Tglobal(Ǐ′) for some Ǐ′ ∈ RO(Ǐ).

Case 2: I ∈ T loc(Ǐ) and I′ ∈ T loc(Ǐ).

Case 3: I ∈ T loc(Ǐ), I′ ∈ Tglobal(Ǐ′), and Ǐ′ ⊂ I, for some Ǐ′ ∈ RO(Ǐ).

In Case 1, conclusion (B) follows from the induction hypothesis (i.e., Propo-
sition BT5 for Ǐ′). In Case 2, (18) shows that (B) holds, with Ĩ = Ǐ. In Case 3,
we have I′ ⊂ Ǐ′ ⊂ I, with I′ �= I. If Ǐ′ �= I, then again (18) shows that (B) holds,
with Ĩ = Ǐ. If instead Ǐ′ = I, then (B) follows from the induction hypothesis, i.e.,
Proposition BT5 for Ǐ′.

Thus, assuming (A) fails, we have proven (B) in all cases. �

Corollary. The leaves of Tglobal(Ǐ) form a partition of Ǐ into dyadic subintervals.

Proposition BT6. Each I∈Tglobal(Ǐ)�{Ǐ} belongs to T loc(Ĩ)�{Ĩ} for some Ĩ∈Tdist(Ǐ).
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Proof. An easy induction on Ǐ. �

Proposition BT7. Let Ĩ, Ĩ′ ∈ Tdist(Ǐ), and suppose I ∈ T loc(Ĩ) ∩ T loc(Ĩ′). Then
either Ĩ = Ĩ′; or I = Ĩ ∈ RO(Ĩ′); or I = Ĩ′ ∈ RO(Ĩ).

Proof. We use induction on Ǐ. We may assume Ĩ �= Ĩ′. We proceed by cases.

Assume Ĩ = Ǐ. Then Ĩ′ ∈ Tdist(Ǐ) � {Ǐ}. Hence, by (12), there exists Ǐ′ ∈ RO(Ǐ)
such that Ĩ′ ∈ Tdist(Ǐ′). Consequently, Ĩ′ ⊂ Ǐ′. Also, since I ∈ T loc(Ĩ′), we have
I ⊂ Ĩ′. Thus I ⊂ Ĩ′ ⊂ Ǐ′. However, I cannot be properly contained in Ǐ′, since
I ∈ T loc(Ǐ) and Ǐ′ is a leaf of T loc(Ǐ). Therefore, I = Ĩ′ = Ǐ′ ∈ RO(Ǐ) = RO(Ĩ). In
particular, I = Ĩ′ ∈ RO(Ĩ).

Assume Ĩ′ = Ǐ. Proceeding as above, with the rôles of Ĩ and Ĩ′ interchanged, we
see that I = Ĩ ∈ RO(Ĩ′).

Assume Ĩ, Ĩ′ �= Ǐ. Then by (12), we have Ĩ ∈ Tdist(Ǐ′) and Ĩ′ ∈ Tdist(Ǐ′′), with
Ǐ′, Ǐ′′ ∈ RO(Ǐ). Also, since I ∈ T loc(Ĩ), we have I ⊂ Ĩ ⊂ Ǐ′; similarly, I ⊂ Ĩ′ ⊂ Ǐ′′.
Therefore, Ǐ′ = Ǐ′′ by (21). Thus, Ĩ, Ĩ′ ∈ Tdist(Ǐ′).

The conclusion of Proposition BT7 therefore follows by induction hypothesis,
i.e., Proposition BT7 for Ǐ′.

Thus, Proposition BT7 holds in all cases. �

Corollary. The sets T loc(Ĩ)� {Ĩ}, for Ĩ ∈ Tdist(Ǐ), are pairwise disjoint.

Proposition BT8. Let I be a leaf of Tglobal(Ǐ). Then #(Ē ∩ 5 I) ≤ 1.

Proof. We suppose I is a leaf with #(Ē ∩ 5 I) ≥ 2, and derive a contradiction. We
proceed by cases.

Case 1: Suppose I ∈ Tdist(Ǐ). Then T loc(I) ⊂ Tglobal(Ǐ); hence I is a leaf of T loc(I).
That is, T loc(I) = {I}. According to (25), I cannot be of type A or B. However,
since #(Ē∩ 5 I) ≥ 2, I cannot be of type C. Thus, we have derived a contradiction
in Case 1.

Case 2: Suppose I /∈ Tdist(Ǐ). Then I ∈ Tglobal(Ǐ) � {Ǐ}, hence I ∈ T loc(Ĩ) � {Ĩ}
for some Ĩ ∈ Tdist(Ǐ). Since I is a leaf of Tglobal(Ǐ), it is a leaf of T loc(Ĩ). Moreover,
we cannot have I ∈ RO(Ĩ), since then I ∈ Tdist(Ǐ). Hence, (19) tells us that
5 I ∩ Ē = ∅, whereas we have assumed that #(5 I ∩ Ē) ≥ 2. Thus, we have derived
a contradiction in Case 2. �

Proposition BT9. Let Ĩ ∈ Tdist(Ǐ). If Ĩ is of type C, then it is a leaf of Tglobal(Ǐ).

Proof. We use induction on Ǐ, and proceed by cases.

If Ĩ = Ǐ, then, by (13), Ĩ is a leaf of Tglobal(Ǐ).

If Ĩ ∈ Tdist(Ǐ)�{Ǐ}, then, by (12), we have Ĩ ∈ Tdist(Ǐ′) for some Ǐ′ ∈ RO(Ǐ). Since
Tglobal(Ǐ′) ⊂ Tglobal(Ǐ), it follows by the inductive assumption (Proposition BT9
for Ǐ′), that Ĩ is a leaf of Tglobal(Ǐ′). Consequently, Ĩ is a leaf of Tglobal(Ǐ), thanks to
Proposition BT4.

Thus, Proposition BT9 holds in all cases. �
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Proposition BT10. Let I be a leaf of Tglobal(Ǐ). If 5 I∩ Ē �= ∅, then I is of type C1.

Proof. We use induction on Ǐ, and proceed by cases.

Case 1: Suppose I = Ǐ. Then Ǐ is a leaf of T loc(Ǐ), i.e., T loc(Ǐ) = {Ǐ}. This
cannot happen if Ǐ is of type A or B, thanks to (25). Hence, Ǐ is of type C. Since
5 I ∩ Ē �= ∅, I is of type C1.

Case 2: Suppose I ∈ T loc(Ǐ)� {Ǐ}. Then I is a leaf of T loc(Ǐ) such that I �= Ǐ and
5 I ∩ Ē �= ∅. By (19), we have I ∈ RO(Ǐ). Hence, by (11), Tglobal(I) ⊂ Tglobal(Ǐ).

Consequently, I is a leaf of Tglobal(I). It follows that I is a leaf of T loc(I), i.e.,
T loc(I) = {I}. Since 5 I∩ Ē �= ∅, (25) now shows that I is of type C. In particular, I
is of type C1, since 5 I ∩ Ē �= ∅.

Case 3: Suppose I /∈ T loc(Ǐ). By (11), we have I ∈ Tglobal(Ǐ′) for some Ǐ′ ∈ RO(Ǐ).
Since Tglobal(Ǐ′) ⊂ Tglobal(Ǐ), I is a leaf of Tglobal(Ǐ′) with 5 I ∩ Ē �= ∅. Induction
hypothesis (Proposition BT10 for Ǐ′) now tells us that I is of type C1.

Thus, Proposition BT10 holds in all cases. �

Proposition BT11. Let I be a leaf of Tglobal(Ǐ). If 5 I ∩ Ē �= ∅, then I ∈ Tdist(Ǐ).

Proof. The desired conclusion is obvious for I = Ǐ. Suppose I ∈ Tglobal(Ǐ) � {Ǐ}.
Proposition BT6 gives I ∈ T loc(Ĩ)� {Ĩ} for some Ĩ ∈ Tdist(Ǐ). By Proposition BT2,
T loc(Ĩ) ⊂ Tglobal(Ǐ); hence, I is a leaf of T loc(Ĩ). Since I �= Ĩ and 5 I ∩ Ē �= ∅, (19)
gives I ∈ RO(Ĩ). Consequently, I ∈ Tdist(Ǐ), by Proposition BT2. �

Proposition BT12. Let x ∈ 3I, I ∈ Tglobal(Ǐ) � {Ǐ}. Then 1
20
δLS(x) ≤ |I|. Also,

if I is any leaf of Tglobal(Ǐ) and x ∈ 3I, then |I| ≤ δLS(x). (See (2).)

Proof. Let x ∈ 3I, I ∈ Tglobal(Ǐ) � {Ǐ}. By Proposition BT6, I ∈ T loc(Ĩ) � {Ĩ} for
some Ĩ. The interval Ĩ cannot be of type C, since T loc(Ĩ) � {Ĩ} �= ∅. Hence, by (5)
and (23), J(Ĩ) is a non-degenerate closed interval, whose endpoints both lie in
Ē ∩ 25 I. In particular, #(Ē ∩ 25 I) ≥ 2. However, since x ∈ 3 I, we have [x− 20|I|,
x+20|I|] ⊃ 25 I. Consequently, #(Ē∩[x−20|I|, x+20|I|]) ≥ 2, so that, by definition,
20|I| ≥ δLS(x).

On the other hand, suppose I is a leaf of Tglobal(Ǐ). By Proposition BT8,
#(Ē ∩ 5 I) ≤ 1. Since x ∈ 3 I, we have [x − |I|, x + |I|] ⊂ 5 I. Consequently,
#(Ē ∩ [x− |I|, x+ |I|]) ≤ 1, so that, by definition, |I| ≤ δLS(x). �

Corollary. Let Ǐ be a dyadic interval, and let x ∈ R be given. Then x ∈ 3I for at
most C distinct leaves I of Tglobal(Ǐ).

Proof. We may suppose Ǐ is not a leaf of Tglobal(Ǐ). By Proposition BT12, each I
as above is a dyadic interval, such that 1

20
δLS(x) ≤ |I| ≤ δLS(x) and x ∈ 3I. There

are at most C such I. �

Proposition BT13. For any Ĩ ∈ Tdist(Ǐ)� {Ǐ}, we have diam(25 Ĩ ∩ Ē) ≥ 1
16
|̃I|.
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Proof. We use induction on Ǐ. By (12), we have Ĩ ∈ Tdist(Ǐ′) for some Ǐ′ ∈ RO(Ǐ). If
Ĩ = Ǐ′, then (24) yields diam(25 Ĩ∩Ē) ≥ 1

16
|̃I|. Otherwise, we have Ĩ ∈ Tdist(Ǐ′)�{Ǐ′}.

Induction hypothesis (Proposition BT13 for Ǐ′) tells us that diam(25 Ĩ∩ Ē) ≥ 1
16
|̃I|.

Thus, the proposition holds in all cases. �

Proposition BT14. The number of nodes of Tdist(Ǐ) is at most CN.

Proof. We bring in the Well-Separated Pairs Decomposition for Ē. Recall ([3])
that Ē× Ē� Diagonal can be partitioned into at most CN (non-empty) Cartesian
products E′

ν × E′′
ν, such that, for each ν,

(26) diam(E′
ν) + diam(E′′

ν) < 10−3dist(E′
ν, E

′′
ν).

Here, as usual, diam(E) = max{|x − x′| : x, x′ ∈ E} and dist(E, E′) = min{|x − x′| :
x ∈ E, x′ ∈ E′} for finite sets E, E′ ⊂ R. For each ν, we pick a “representative”
(x′ν, x′′ν) ∈ E′

ν × E′′
ν.

Now let I ∈ Tdist(Ǐ) � {Ǐ}. By Proposition BT13, there exist x′, x′′ ∈ Ē ∩ 25 I

such that |x′ − x′′| ≥ 1
16
|I|.

We know that (x′, x′′) ∈ E′
ν×E′′

ν for some ν. Then x′, x′ν ∈ E′
ν and x′′, x′′ν ∈ E′′

ν,
so that (26) yields |x′−x′ν|+|x′′−x′′ν| < 10−3 |x′−x′′| ≤ 25·10−3 |I| (since x′, x′′ ∈ 25 I).
Consequently, x′ν, x

′′
ν ∈ 50 I, and |x′ν − x′′ν| ≥ |x′ − x′′|− 25 · 10−3|I| ≥ 1

100
|I|.

Thus, we have proven the following: Let I ∈ Tdist(Ǐ) � {Ǐ}. Then, for some ν,
we have

(27) x′ν, x
′′
ν ∈ 50 I and |I| ≤ 100|x′ν − x′′ν|.

For fixed ν, there are at most C distinct dyadic intervals I satisfying (27). Since
there are at most CN distinct ν here, we conclude that Tdist(Ǐ)� {Ǐ} consists of at
most CN nodes. �

Proposition BT15. (A) Let I be a leaf of Tglobal(Ǐ), and suppose x ∈ Ē ∩ 5 I.
Then I ∈ Tdist(Ǐ), I is of type C1, and x = x!(I) ∈ 5 I.

(B) Conversely, suppose I ∈ Tdist(Ǐ), I is of type C1, and x!(I) ∈ 5 I. Then I is a
leaf of Tglobal(Ǐ), and x!(I) ∈ Ē ∩ 5 I.

Proof. Let I and x be as assumed in (A). By Propositions BT10 and BT11, I ∈
Tdist(Ǐ) and I is of type C1. Since I is of type C1, we have Ē ∩ 5 I+ = {x!(I)}. On
the other hand, x ∈ Ē ∩ 5 I ⊂ Ē ∩ 5 I+. Hence, x = x!(I) ∈ 5 I.

Conversely, let I be as assumed in (B). Then by Proposition BT9, I is a leaf of
Tglobal(Ǐ). Since I is of type C1, we have x!(I) ∈ Ē. By assumption, x!(I) ∈ 5 I. �

It is now easy to establish Lemmas BT1–BT4.

Proof of Lemma BT1:

(I) follows from an easy induction on Ǐ.

(II) follows from Proposition BT5.

(III) follows from the Corollary to Proposition BT5, Proposition BT12, and (25).

(IV) is just the Corollary to Proposition BT12. �
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Proof of Lemma BT2:

(I) follows from an easy induction on Ǐ.

(II) follows from (22) and Proposition BT2.

(III) follows from Propositions BT10 and BT11, and the definition of “type C1”.

(IV) is just Proposition BT14. �

Proof of Lemma BT3:

(I) is immediate from Proposition BT6 and the Corollary to Proposition BT7.

(II) is precisely Proposition BT7.

(III) is immediate from Proposition BT5. �

Proof of Lemma BT4: Let I ∈ Tglobal(Ǐ)� {Ǐ}. By definition,

x
rep
left(I) = xsleft(Ĩ) = left endpoint of J(Ĩ) ,

and x
rep
rt (I) = xsrt(Ĩ) = right endpoint of J(Ĩ) , where Ĩ ∈ Tdist(Ǐ) satisfies that

I ∈ T loc(Ĩ)� {Ĩ}. In particular, Ĩ is of type A or B (since T loc(Ĩ) � {Ĩ} �= ∅), hence
J(Ĩ) is a non-degenerate closed interval.

Hence, it is obvious that x
rep
left(I) < x

rep
rt (I); moreover, (5) and (23) show

that x
rep
left(I), x

rep
rt (I) ∈ Ē ∩ 25 I. Thus, we have proven the desired results for

I ∈ Tglobal(Ǐ)� {Ǐ}.
Now suppose Ǐ is of type A or B. Then J(Ǐ) is a non-degenerate closed interval,

whose endpoints belong to Ē, by (5). Moreover, by definition, xrepleft(Ǐ) = xsleft(Ǐ) =

left endpoint of J(Ǐ), and x
rep
rt (Ǐ) = xsrt(Ǐ) = right endpoint of J(Ǐ). Thus, x

rep|
left (Ǐ) <

x
rep
rt (Ǐ), and x

rep
left(Ǐ), x

rep
rt (Ǐ) ∈ Ē. Moreover, by definition, xrepleft(Ǐ), x

rep
rt (Ǐ) ∈ J(Ǐ) ⊂

5 Ǐ+ ⊂ 25 Ǐ. The proof of Lemma BT4 is complete. �

So far, we have discussed the mathematical properties of T loc(Ĩ), Tglobal(Ǐ),
xsleft(Ĩ), x

s
rt(Ĩ), etc. We now present algorithms. We suppose that the set Ē ⊂ R,

with #(Ē) = N, is given to us as a sorted list, Ē = {x̄1, x̄2, . . . , x̄N}, with x̄1 <

x̄2 < · · · < x̄N.

Algorithm BT1. Suppose we are given a dyadic grid Gτ, an N-element set Ē

(sorted, withN ≥ 2), and a dyadic interval Ĩ ∈ Gτ. We compute J(Ĩ), and determine
whether Ĩ is of type A,B, C0 or C1. If Ĩ is of type A or B, then we compute xsleft(Ĩ)

and xsrt(Ĩ). If Ĩ is of type C1, then we compute x!(Ĩ). Regardless of the type of Ĩ,
we compute xleft(Ĩ), xrt(Ĩ), and RO(Ĩ).

The work used to do the above is at most C logN, and the storage used (apart
from that used to hold Ē) is at most C.

Explanation: By binary searches, we first determine whether Ē∩5 Ĩ+ is empty; and
if it is non-empty, we then compute max(Ē ∩ 5 Ĩ+) and min(Ē ∩ 5 Ĩ+). This allows
us to compute J(Ĩ) and determine whether Ĩ is of type A,B,C0 or C1. It also allows
us to write down xsleft(Ĩ), x

s
rt(Ĩ) if Ĩ is of type A or B; and x!(Ĩ) if Ĩ is of type C1.



458 C. Fefferman

The points xleft(Ĩ), xrt(Ĩ) are simply the endpoints of Ĩ.
To compute RO(Ĩ) is trivial if Ĩ is of type A or C. For Ĩ of type B, the set RO(Ĩ)

consists of all dyadic intervals I ⊂ Ĩ satisfying (8b). We can easily list all such
intervals.

The binary searches above require work C logN and storage C (aside from the
storage used to hold Ē). The rest of the computation requires work and storage at
most C.

Algorithm BT2. Given a dyadic grid Gτ, an N-element set Ē (sorted, with
N ≥ 2), and a dyadic interval Ǐ ∈ Gτ, we compute the tree Tdist(Ǐ). We mark each
node Ĩ ∈ Tdist(Ǐ) to indicate whether it is of type A, B, C0, or C1. We mark each
node Ĩ ∈ Tdist(Ǐ) of type A or B with the points xsleft(Ĩ) and xsrt(Ĩ). We mark each

node Ĩ ∈ Tdist(Ǐ) of type C1 with the point x!(Ĩ). We mark each node Ĩ ∈ Tdist(Ǐ)
with the points xleft(Ĩ), xrt(Ĩ).

The work used to do so is at most CN logN, and the storage used is at most CN.

Explanation: We start with the root Ǐ, and apply Algorithm BT1.
This provides all the markings required for Ǐ, and provides also RO(Ǐ), the

set of all the children of Ǐ in Tdist(Ǐ). If RO(Ǐ) �= ∅, then, recursively, we apply
Algorithm BT2 to each Ǐ′ ∈ RO(Ǐ), to compute and mark the tree Tdist(Ǐ′). Thus,
we compute and mark Tdist(Ǐ).

Since the tree Tdist(Ǐ) has at most CN nodes, the work and storage used by our
algorithm are as claimed.

Algorithm BT3. Given a dyadic grid Gτ, an N-element set Ē (sorted, with
N ≥ 2), and a dyadic interval Ǐ ∈ Gτ, we compute the set L of all pairs (I, x), for
which I is a leaf of Tglobal(Ǐ) and x ∈ 5 I ∩ Ē.

The work used to do so is at most CN logN, and the storage used is at most CN.

Explanation: We execute Algorithm BT2 to compute Tdist(Ǐ) and mark its nodes.
According to Proposition BT15, L consists of all pairs (I, x!(I)) for I ∈ Tdist(Ǐ) of
type C1, such that x!(I) ∈ 5I.

Thus, we can trivially list all the elements of L.
Since the tree Tdist(Ǐ) has at most CN nodes, the work and storage used, once

we have executed Algorithm BT2, are at most CN.

8. The basic set-up

In this section, we provide the basic assumptions that we will be making in several
sections below. The assumptions below involve positive constants c̄1, C̄1, C̄2, C̄3,
which we regard as given.

(1) We are given a real number τ, used to fix a dyadic grid Gτ.

(2) We are given a positive real number ε < c̄1.

(3) We are given a dyadic interval I0 ∈ Gτ, with |I0| ≤ C̄1ε.

(4) We are given a finite set Ē ⊂ I0.
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(5) We are given a function ϕ ∈ C2(c̄1ε
−1I0), which is assumed to satisfy the

estimates:

(6) |ϕ′| ≤ C̄2 and |ϕ′′| ≤ C̄2ε|I0|
−1 on c̄1ε

−1I0.

We suppose we have access to a “ϕ-Oracle”:

(7) Given a point x1 ∈ c̄1ε
−1I0, the ϕ-Oracle computes ϕ(x1), ϕ

′(x1), ϕ′′(x1),
and changes us “work”

(8) WϕO ≥ 1 to do so.

(9) We define E = {(x1, ϕ(x1)) : x1 ∈ Ē} ⊂ R2.

(10) Let N = #(Ē) = #(E). We assume N ≥ 2.

(11) We are given a function f : E −→ R.

(12) We are given a real number ξ.

(13) We are given a family of norms | · |z on P (z ∈ R2), and an Oracle, satisfying
conditions (1)–(4) in Section 5. We define the C2 norm as in that section.

(14) We assume that there exists Fcrude ∈ C2(R2), such that:

(15) Fcrude = f on E,

(16) ‖ Fcrude ‖C2(R2)≤ C̄3, and

(17) |∂2Fcrude − ξ| ≤ C̄3ε
−1|I0| on E.

We fix integers k1(ε) and ν0(ε), such that

(18) 1
10
ε100 < 2−k1(ε) < ε100 and

(19) 1
8
ε−2 < 2ν0(ε) < ε−2.

(20) We take the boiler–plate constants in this section to be c̄1, C̄1, C̄2 and C̄3

in (1)–(19) above, together with the constants called c0, C0, C1, C2 in Sec-
tion 5.

As explained in Section 2, the notion of a “controlled constant” is well-defined
thanks to (20). We make the Small ε Assumption:

(21) ε is less than a small enough controlled constant.

In this section, and in the next several sections, we assume (1)–(21) above.

We now define a function e2 ∈ C2
loc(c̄1ε

−1Iinterior0 × R), by setting

(22) e2(x1, x2) = x2 −ϕ(x1) for x1 ∈ c̄1ε
−1Iinterior0 , x2 ∈ R.

Note that (9) yields

(23) e2 = 0 on E,

while (6) implies the estimates

|∂αe2| ≤ C for |α| = 1, and |∂αe2| ≤ Cε|I0|
−1 for |α| = 2.
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Together with (3), the above estimates imply the following:

(24)

[
Let Q ⊂ c̄1ε

−1I0 × R be an open square. If e2 = 0 at some point of Q,

then ‖ e2 ‖C2(Q)≤ Cε|I0|
−1 .

Thanks to (7), we have the following:

(25) Given a point z ∈ c̄1ε
−1Iinterior0 × R, we can compute the jet Jz(

·e2) using C

operations and one call to the ϕ-Oracle.

Next, for each dyadic interval

(26) I ⊆ I0, we define a square

(27) Q(I) = (C̃QI× J)interior ∈ R2,

where C̃Q is a large enough controlled constant (to be picked in a moment),
and

(28) center (J) = ϕ ( center (I)).

If we pick C̃Q large enough, then (5) and (6) guarantee that

(29) For all x ∈ 1024I, ϕ(x) is well-defined and (x,ϕ(x)) belongs to the middle
half of Q(I). Also, for C̃Q large enough, (6) yields

(30) Q(I′) ⊂ Q(I) for I′ ⊂ I.

We now pick C̃Q to be a controlled constant, large enough to guarantee (29)
and (30).

In the next several sections, the function e2 and the squareQ(I) (I ⊂ I0 dyadic)
are as defined in this section. Note that, given I ⊂ I0 dyadic, we can trivially
compute the square Q(I) using work at most C, together with a single call to the
ϕ-Oracle.

Let I ⊂ I0 be dyadic. Then 1024C̃QI ⊂ c̄1ε
−1I0, by (21). Hence, e2 is well-

defined on 1024Q(I). Moreover, e2 = 0 at the center of Q(I), thanks to (28).
Therefore, (24) and (25) yield the following:

(31) For any dyadic I ⊆ I0, we have ‖ e2 ‖C2(1024Q(I))≤ Cε|I0|
−1.

(32) For any dyadic I ⊆ I0 and any given z ∈ 1024Q(I), we can compute Jz(e2)
using C operations and one call to the ϕ-Oracle.

Remarks

(33) As explained in the Introduction, one of the main ideas in our proof of
Theorem 1 is to introduce a Calderón–Zygmund decomposition of R2 into
squares Qν. For each Qν, either

E ∩Qν ⊂ {(x1, ϕ(x1)) : x1 ∈ R} or E ∩Qν ⊂ {(ϕ(x2), x2) : x2 ∈ R}

for a C2-function ϕ. (See (29), (30) in Section 0.)

Eventually, we will cut up each Qν into a grid of subsquares {Qν,i}, with
sidelengths δQν,i

comparable to ε · δQν
.
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The assumptions made in this section will (eventually) be applied to compute
interpolants on a given Qν,i. Our plan is then to combine our results for all the
Qν,i, to compute an interpolant on a given Qν. (See Sections 18 and 19 below.)

(34) One might be tempted to reduce matters to the case ϕ ≡ 0 in (5)–(9) above,
by making a change of variables such as x̃1 = x1, x̃2 = x2 − ϕ(x1). Unfor-
tunately, when we transform the C2-norm to take such a change of variables
into account, we lose the Approximate Translation Invariance property, because
ϕ is merely C2.

(35) Recall that we have now postulated an Oracle and a ϕ-Oracle (see Section 5
and assumptions (7), (8)). From now on, whenever we present an algorithm,
we regard the work charged by the Oracle, but not that charged by the
ϕ-Oracle, as part of the work of the algorithm in question. We will always
provide an upper bound for the number of calls made to the ϕ-Oracle in each
algorithm given below.

9. Marking the basic tree

In this section, we adopt the notation, assumptions, and boiler-plate constants of
Section 8. In particular, we recall the Small ε Assumption, and the assumption

(1) 1
10
ε100 < 2−k1(ε) < ε100.

For any dyadic interval

(2) I ⊆ I0,

we define

(3)
∧
(I) = (2−k1(ε)|I|Z2) ∩Q(I).

Note that

(4)
∧
(I) ⊂ Q(I) and #(Λ(I)) ≤ Cε−200, thanks to (1).

In this section, we suppose we are given an interval

(5) Ǐ ⊆ I0 dyadic, such that #(5Ǐ ∩ Ē) ≥ 2.

We recall from the Section 7 that we have defined a tree Tglobal(Ǐ) and a subset
Tdist(Ǐ) ⊂ Tglobal(Ǐ). Each node Ĩ ∈ Tdist(Ǐ) is of “type” A,B,C0 or C1. Each
Ĩ ∈ Tdist(Ǐ) of typeA or B is marked with two points xsleft(Ĩ) and xsrt(Ĩ), the endpoints

of the non-degenerate interval J(Ĩ)= convex hull of 5Ĩ+ ∩ Ē. (In particular, xsleft(Ĩ),

xsrt(Ĩ) ∈ 25 Ĩ ∩ Ē.) Each Ĩ ∈ Tdist(Ǐ) of type C1 is marked with a point x!(Ĩ),
the one and only element of 5Ĩ+ ∩ Ē. (In particular, x!(Ĩ) ∈ 25 Ĩ ∩ Ē.) For any
I ∈ Tglobal(Ǐ), we have also defined two points xrepleft(I) and x

rep
rt (I) as follows: If I = Ǐ,

then x
rep
left(I) = xsleft(Ǐ) and x

rep
rt (I) = xsrt(Ǐ). (This makes sense, since Ǐ is of type A

or B, thanks to (5)). If I ∈ Tglobal(Ǐ) � {Ǐ}, then I ∈ T loc(Ĩ) � {Ĩ} for one and only
one Ĩ ∈ Tdist(Ǐ); and Ĩ is of type A or B. (Here, T loc(Ĩ) is the “local tree” associated
to Ĩ; see Section 7.) We then have x

rep
left(I) = xsleft(Ĩ), and x

rep
rt (I) = xsrt(Ĩ). We have

seen that xrepleft(I), x
rep
rt (I) ∈ 25 I ∩ Ē.
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For each I ∈ Tglobal(Ǐ), we have also defined xleft(I), xrt(I) to be the endpoints
of I.

We recall from Section 8 that E = {(x,ϕ(x)) : x ∈ Ē}, and that (x,ϕ(x)) ∈ Q(I)
whenever x ∈ 25 I, I ⊆ I0 dyadic. Thus, we may define

(6) z
rep
left(I) = (xrepleft(I), ϕ(xrepleft(I))) ∈ E ∩Q(I) and

(7) zreprt (I) = (xreprt (I), ϕ(xreprt (I))) ∈ E ∩Q(I), for all I ∈ Tglobal(Ǐ).

Also, we may define

(8) zleft(I) = (xleft(I), ϕ(xleft(I))) ∈ Q(I) and

(9) zrt(I) = (xrt(I), ϕ(xrt(I))) ∈ Q(I), for all I ∈ Tglobal(Ǐ).

Similarly, for all Ĩ ∈ Tdist(Ǐ) of type A or B, we define

(10) zsleft(Ĩ) = (xsleft(Ĩ), ϕ(xsleft(Ĩ))) ∈ E ∩Q(Ĩ) and

(11) zsrt(Ĩ) = (xsrt(Ĩ), ϕ(xsrt(Ĩ))) ∈ E ∩Q(Ĩ).

For all Ĩ ∈ Tdist(Ǐ) of type C1, we define

(12) z!(Ĩ) = (x!(Ĩ), ϕ(x!(Ĩ))) ∈ E ∩Q(Ĩ).

Next, for each I ∈ Tglobal(Ǐ), we define a finite subset S(I) ⊂ Q(I). We take S(I)
to consist of the following points:

(13) All the points of
∧
(I) (see (3)).

(14) The points zrepleft(I), z
rep
rt (I), zleft(I), zrt(I).

(15) The points zsleft(I), z
s
rt(I) if I ∈ Tdist(Ǐ) and I is of type A or B.

(16) The point z!(I) if I ∈ Tdist(Ǐ) and I is of type C1.

Thanks to (4) and (6)–(12), we have

(17) S(I) ⊂ Q(I) and #(S(I)) ≤ Cε−200, for all I ∈ Tglobal(Ǐ).

The following algorithm computes the sets S(Ĩ) and the Whitney fields JS(Ĩ)(e2)

for each Ĩ ∈ Tdist(Ǐ).

Algorithm MMBT. (“Make and Mark the Basic Tree”): Given a dyadic interval
Ǐ ⊆ I0 such that #(5 Ǐ ∩ Ē) ≥ 2, we compute the tree Tdist(Ǐ), and mark its nodes
as follows:

• We mark each Ĩ ∈ Tdist(Ǐ) to indicate its type (A,B,C0 or C1).

• We mark each Ĩ ∈ Tdist(Ǐ) of type A or B to indicate the points zsleft(Ĩ), z
s
rt(Ĩ)

and the function values f(zsleft(Ĩ)), f(z
s
rt(Ĩ)).

• We mark each Ĩ ∈ Tdist(Ǐ) of type C1 to indicate the point z!(Ĩ) and the
function value f(z!(Ĩ)).

• We mark each Ĩ ∈ Tdist(Ǐ) to indicate the points zleft(Ĩ), zrt(Ĩ), z
rep
left(Ĩ), z

rep
rt (Ĩ)

and the function values f(zrepleft(Ĩ)), f(z
rep
rt (Ĩ)).
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• We mark each Ĩ ∈ Tdist(Ǐ) to indicate the square Q(Ĩ), the sets Λ(Ĩ), S(Ĩ),
and the Whitney field JS(Ĩ)(e2).

The total work used to perform the above computations is at most Cε−200N +
CN logN, together with at most Cε−200N calls to the ϕ-Oracle. The storage used
is at most Cε−200N.

Explanation: First, we apply Algorithm BT2 from Section 7. Thus, we obtain the
tree Tdist(Ǐ); mark each of its nodes as having type A,B,C0 or C1; compute the
points xleft(Ĩ), xrt(Ĩ) for each Ĩ ∈ Tdist(Ǐ); compute the points xsleft(Ĩ), x

s
rt(Ĩ) for each

Ĩ ∈ Tdist(Ǐ) of type A or B; and compute x!(Ĩ) for each Ĩ ∈ Tdist(Ǐ) of type C1.
Applying the ϕ-Oracle as needed, we can easily compute the points zleft(Ĩ),

zrt(Ĩ), z
s
left(Ĩ), z

s
rt(Ĩ), z!(Ĩ) as in the statement of Algorithm MMBT. We can then

look up the values of f at the points zsleft(Ĩ) and zsrt(Ĩ) for Ĩ of type A or B, and

z1(Ĩ) for Ĩ of type C1.
We next explain how to compute the points zrepleft(Ĩ), z

rep
rt (Ĩ) for each Ĩ ∈ Tdist(Ǐ).

For Ĩ = Ǐ, we have x
rep
left(Ĩ) = xsleft(Ĩ). and x

rep
rt (Ĩ) = xsrt(Ĩ); the points xsleft(Ĩ), x

s
rt(Ĩ)

are already known. For Ĩ ∈ Tdist(Ǐ) � {Ǐ}, let I# be the parent of Ĩ in the tree
Tdist(Ǐ). Then I# ∈ Tdist(Ǐ) is of type A or B, and Ĩ ∈ RO(I#) ⊂ T loc(I#) � {I#}.
(See Section 7.) Consequently, xrepleft(Ĩ) = xsleft(I

#) and x
rep
rt (Ĩ) = xsrt(I

#); the points

xsleft(I
#) and xsrt(I

#) are already known. Thus, we can compute xrepleft(Ĩ), x
rep
rt (Ĩ) for

each Ĩ ∈ Tdist(Ǐ). Invoking the ϕ-Oracle, we obtain z
rep
left(Ĩ), z

rep
rt (Ĩ), as promised.

We can then look up the values of f at the points zrepleft(Ĩ), z
rep
rt (Ĩ).

Next, for each Ĩ ∈ Tdist(Ǐ), we compute the square Q(Ĩ), as explained in the
section on “The Basic Set-up”. Each Q(Ĩ) requires a single application of the ϕ-
Oracle. It is now trivial to compute the

∧
(Ĩ) for all Ĩ ∈ Tdist(Ǐ), using (3). We

can then read off the set S(Ĩ) for each Ĩ ∈ Tdist(Ǐ), by recalling (13)–(16). Finally,
once we know S(Ĩ), we can read off the Whitney field JS(Ĩ)(e2) by using (32) from
Section 8.

Thus, we have computed everything promised in Algorithm MMBT. To esti-
mate the work and storage used by Algorithm MMBT, we have only to recall the
resources used by Algorithm BT2, as well as the estimates #(S(Ĩ)) ≤ Cε−200 (each
Ĩ ∈ Tdist(Ǐ)), and #(Tdist(Ǐ)) ≤ CN.

It is now trivial to check that the resources used by Algorithm MMBT are as
promised.

10. A partition of unity

In this section, we keep the assumptions, conventions and boiler-plate constants of
Section 8. As in Section 9, we suppose that we are given

(1) Ǐ ⊆ I0 dyadic, such that #(5 Ǐ ∩ Ē) ≥ 2.

Define an open set

(2) Ω(Ǐ) = {(x1, x2) ∈ R2 : x1 ∈ Ǐinterior, |x2 −ϕ(x1)| < |̌I|} ⊂ R2.
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We will introduce functions θ̃ defined on R2, and functions θ defined only
on Ω(Ǐ). We write suppθ to denote the set of all points z in Ω(Ǐ) such that θ is
not identically zero on any disc centered at z. As usual, we write supp θ̃ to denote
the set of all points z in R2 such that θ̃ is not identically zero on any disc centered
at z.

For each I ∈ Tglobal(Ǐ), we will define a function

(3) θI ∈ C2(Ω(Ǐ)), defined only on Ω(Ǐ), such that the following hold:

(4)
∑

I∈T global(Ǐ)

θI = 1 on Ω(Ǐ).

(5) suppθI ⊂ Q(I) for each I ∈ Tglobal(Ǐ).

(6) |∂αθI| ≤ C|I|−|α| on Ω(Ǐ), for |α| ≤ 2, I ∈ Tglobal(Ǐ).

(7) θI ≥ 0 on Ω(Ǐ) for each I ∈ Tglobal(Ǐ).

Moreover, we will compute the jets of the θI at each point of E.
To define the functions θI, we start by fixing cutoff functions χ0, χ1 ∈ C2(R),

with the following properties:

(8) χ1(t) = 1 for 1
2
≤ |t| ≤ 1.

(9) χ1(t) = 0 for |t| /∈ [
1

2.02
, 1.01

]
(10) χ1(t) ≥ 0 for all t ∈ R.

(11)
∣∣∣( d

dt

)�
χ1(t)

∣∣∣ ≤ C for 0 ≤ � ≤ 2, t ∈ R.

(12) χ0(t) = 1 for |t| ≤ 1.

(13) χ0(t) = 0 for |t| ≥ 1.01.

(14) χ0(t) ≥ 0 for all t ∈ R.

(15)
∣∣∣( d

dt

)�
χ0(t)

∣∣∣ ≤ C for 0 ≤ � ≤ 2, t ∈ R.

We suppose that, given t ∈ R and 0 ≤ � ≤ 2, we can compute
(

d
dt

)�
χi(t) for

i = 0, 1, with work at most C. It is trivial to construct such χ0, χ1.
Also, for each dyadic interval I, we fix a cutoff function χI ∈ C2(R), with the

following properties:

(16) χI = 1 on I, suppχI ⊂ (1.01)I, χI ≥ 0 on R, and

(17)
∣∣∣( d

dt

)�
χI(t)

∣∣∣ ≤ C|I|−� for 0 ≤ � ≤ 2, t ∈ R.

We suppose that, given t ∈ R, 0 ≤ � ≤ 2, and I a dyadic interval, we can

compute
(

d
dt

)�
χI(t) with work at most C. It is trivial to construct such χI.

Next, given I ∈ Tglobal(Ǐ), we define a cutoff function θ̃I ∈ C2(R2). The defini-
tion of θ̃I proceeds by cases.

Suppose I is a leaf of Tglobal(Ǐ). Then we define

(18) θ̃I(x1, x2) = χI(x1) · χ0

(
x2−ϕ(x1)

|I|

)
for (x1, x2) ∈ R2.
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Suppose I is an internal node of Tglobal(Ǐ). Then we define

(19) θ̃I(x1, x2) = χI(x1) · χ1

(
x2−ϕ(x1)

|I|

)
for (x1, x2) ∈ R2.

We recall that |ϕ′| ≤ C̄2 and |ϕ′′| ≤ C̄2ε|I0|
−1 ≤ C̄2|I|

−1 on c̄1ε
−1I0 ⊃ (1.01)I0 ⊃

(1.01)I; see (6) and (21) in Section 8. Hence, one obtains easily the estimate

(20) |∂αθ̃I| ≤ C|I|−|α| on R2, for |α| ≤ 2, I ∈ Tglobal(Ǐ). Also

(21) θ̃I ≥ 0 on R2, for all I ∈ Tglobal(Ǐ).

Let us study supp θ̃I. From (18), (19) and the defining properties of χ0, χ1, χI,
we have:

(22) supp θ̃I⊂ {(x1, x2)∈R2 : x1∈(1.01)I, |x2−ϕ(x1)|≤(1.01)|I|} for any I∈Tglobal(Ǐ).

Moreover,

(23) supp θ̃I ⊂ {(x1, x2) ∈ R2 : x1 ∈ (1.01)I, 1
2.02

|I| ≤ |x2 − ϕ(x1)| ≤ (1.01)|I|} for

any internal node I of Tglobal(Ǐ).

Note that {(x1, x2) ∈ R2 : x1 ∈ (1.01)I, |x2 − ϕ(x1)| ≤ (1.01)|I|} ⊂ Q(I), for all
I ∈ Tglobal(Ǐ). (This follows from (29) in Section 8.)

Together with (22), this yields the inclusion

(24) supp θ̃I ⊂ Q(I) for all I ∈ Tglobal(Ǐ).

We establish an additional property of supp θ̃I. From (2) in Section 7, we recall
the function δLS(x), defined for x ∈ R.

Now suppose I ∈ Tglobal(Ǐ), and let (x1, x2) ∈ supp θ̃I. We will show that

(25) c[δLS(x1) + |x2 −ϕ(x1)|] ≤ |I| ≤ C[δLS(x1) + |x2 −ϕ(x1)|].

Indeed, (22) gives |x2 − ϕ(x1)| ≤ (1.01)|I|, x1 ∈ (1.01)I; and Proposition BT12 in
Section 7 gives δLS(x1) ≤ C|I|, except for the case I = Ǐ.

In the case I = Ǐ, we still have δLS(x1) ≤ C|I|, by definition of δLS(x1), and
thanks to (1).

Thus, δLS(x1) + |x2 −ϕ(x1)| ≤ C|I|, which is half of (25).
To prove the other half, we proceed by cases. Suppose first that I is a leaf of

Tglobal(Ǐ).
Then, by conclusion (III) of Lemma BT1 in Section 7, we have |I| ≤ δLS(x1) ≤

[δLS(x1) + |x2 − ϕ(x1)|]. Note that (III) applies, thanks to our assumption (1).
On the other hand, suppose that I is an internal node of Tglobal(Ǐ). Then, since
(x1, x2) ∈ supp θ̃I, we learn from (23) that |I| ≤ (2.02)·|x2−ϕ(x1)| ≤ (2.02)[δLS(x1)
+|x2 − ϕ(x1)|]. Thus, in either case, we have |I| ≤ C · [δLS(x1) + |x2 − ϕ(x1)|],
completing the proof of (25).

From (22) and (25), we obtain the following useful result:

(26) Let I ∈ Tglobal(Ǐ), and let (x1, x2) ∈ supp θ̃I. Then x1 ∈ (1.01)I, and
c[δLS(x1) + |x2 −ϕ(x1)|] ≤ |I| ≤ C[δLS(x1) + |x2 −ϕ(x1)|].
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From (26), we obtain at once the following consequences:

(27) Let I1, I2 ∈ Tglobal(Ǐ), and suppose supp θ̃I1 ∩ supp θ̃I2 �= ∅. Then c|I1| ≤
|I2| ≤ C|I1|.

(28) Any given point z ∈ R2 lies in supp θ̃I for at most C distinct I ∈ Tglobal(Ǐ).

Next, we establish the following:

(29) Let z = (x1, x2) ∈ Ω(Ǐ) be given. Then there exists I ∈ Tglobal(Ǐ) such that
θ̃I(z) = 1.

In fact, (2) gives x1 ∈ Ǐ and |x2 −ϕ(x1)| < |̌I|.
The leaves of Tglobal(Ǐ) form a partition of Ǐ. Hence, there exists a leaf I1

of Tglobal(Ǐ) containing x1. The nodes of Tglobal(Ǐ) containing x1 are I1 ⊂ I2 ⊂
· · · ⊂ IL = Ǐ, where I�+1 = (I�)

+ (the dyadic parent of I�) for each � < L. Since
|x2 − ϕ(x1)| < |IL|, we have either

(30) |x2 −ϕ(x1)| ≤ |I1|, or

(31) 1
2
|I�| = |I�−1| < |x2 −ϕ(x1)| ≤ |I�| for some � (2 ≤ � ≤ L).

If (30) holds, then, since I1 is a leaf, and since x1 ∈ I1, we see from (12), (16), (18)
that θI1(x1, x2) = 1.

If instead (31) holds, then, since I� is an internal node and x1 ∈ I�, we learn
from (8), (16) and (19) that θ̃I�(x1, x2) = 1.

Thus (29) holds in all cases.
From (21) and (29), we see that

(32)
∑

I′∈T global(Ǐ)

θ̃I′ ≥ 1 on Ω(Ǐ).

Now it is easy to define our partition of unity on Ω(Ǐ). We set

(33) θI = θ̃I

/[∑
I′∈T global(Ǐ)

θ̃I′
]
on Ω(Ǐ), for each I ∈ Tglobal(Ǐ).

Note that θI is defined only on Ω(Ǐ). The desired properties (3)–(7) of the θI
now follow trivially from the properties of the θ̃I established above. Moreover,
from (26)–(28), we have:

(34) Let I ∈ Tglobal(Ǐ), and let (x1, x2) ∈ supp θI. Then x1 ∈ (1.01)I, and
c[δLS(x1) + |x2 −ϕ(x1)|] ≤ |I| ≤ C[δLS(x1) + |x2 −ϕ(x1)|].

(35) Let I1, I2 ∈ Tglobal(Ǐ), and suppose suppθI1 ∩ suppθI2 �= ∅. Then c|I1| ≤
|I2| ≤ C|I1|.

(36) Any given point of Ω(Ǐ) lies in supp θI for at most C distinct I ∈ Tglobal(Ǐ).

To prepare to compute the jets Jz(θI) for all z ∈ E, I ∈ Tglobal(Ǐ), we establish
the following result:

(37) Let z = (x1, x2) ∈ E, and let I ∈ Tglobal(Ǐ). If z ∈ supp θ̃I, then I ∈ Tdist(Ǐ), I
is of type C1, x1 = x!(I), and x1 ∈ (1.01)I.
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Indeed, suppose z = (x1, x2) ∈ E∩supp θ̃I, with I ∈ Tglobal(Ǐ). Then, since z ∈ E,
we have x1 ∈ Ē and x2 = ϕ(x1); see (9) in Section 8. Since (x1, x2) ∈ supp θ̃I and
x2 −ϕ(x1) = 0, it follows from (23) that I cannot be an internal node of Tglobal(Ǐ).
Moreover, since (x1, x2) ∈ supp θ̃I, (22) shows that x1 ∈ (1.01)I.

Thus, I is a leaf of Tglobal(Ǐ), and x1 ∈ (1.01)I ∩ Ē. Hence, conclusion (III) of
Lemma BT2 tells us that I ∈ Tdist(Ǐ), I is of type C1, and #(5I+ ∩ Ē) = 1. By
definition x!(I) is the one and only element of 5I+ ∩ Ē. On the other hand, we
know that x1 ∈ (1.01)I ∩ Ē ⊂ 5I+ ∩ Ē. Consequently, x1 = x!(I), completing the
proof of (37).

Thanks to (37), we have

(38) J(x1,x2)

( ∑
I′∈T global(Ǐ)

θ̃I′

)
=

∑
I′∈∧(x1)

J(x1,x2)(θ̃I′) for each (x1, x2) ∈ E, where

(39)
∧
(x1) = {I′ ∈ Tdist(Ǐ) : I′ is of type C1, x1 = x!(I

′), and x1 ∈ (1.01)I′} for
each x1 ∈ Ē.

Also from (37), we have

(40) J(x1,x2)(θ̃I) = 0 for any I ∈ Tglobal(Ǐ)�
∧
(x1), whenever (x1, x2) ∈ Ē.

Regarding the set
∧
(x1) in (39), we note that

(41) Each I ∈ ∧
(x1) is a leaf of Tglobal(Ǐ), and

(42) There are at most C distinct I ∈ ∧
(xi).

Here (41) and (42) hold for any x1 ∈ Ē. In fact, (41) is immediate from Propo-
sition BT9 in Section 7, and (42) follows from (41), together with Lemma BT1
(conclusion (IV)) in that same section.

We are now ready to compute the jets of the θI at the points of E.

Algorithm JPU. (“Jets for the Partition of Unity”). Assume we have already
carried out Algorithm MMBT in the section on “Marking the Basic Tree”.

For each x1 ∈ Ē, we compute the set
∧
(x1) ⊂ Tdist(Ǐ) as in (39).

For each z = (x1, x2) ∈ E ∩ Ω(Ǐ), and for each I ∈ ∧
(x1), we compute the

jet Jz(θI).

We have #(
∧
(x1)) ≤ C for each x1 ∈ Ē, and Jz(θI) = 0 whenever z = (x1, x2) ∈

E ∩Ω(Ǐ), I /∈ ∧
(x1).

The work used to carry out the above is at most CN, together with at most
CN calls to the ϕ-Oracle. The storage used is at most CN.

Explanation: The assertions regarding #(
∧
(x1)) and Jz(θI) for I /∈ ∧

(x1) are
immediate from (40) and (42). We recall that Algorithm MMBT marks each node
I of Tdist(Ǐ) to indicate whether it is of type C1; and in case I is of type C1, then
Algorithm MMBT marks I with the point x!(I).

We compute the
∧
(x1) for all x1 ∈ Ē by the following obvious procedure:
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First, we set all the
∧
(x1) = ∅. We then loop over all the nodes I ∈ Tdist(Ǐ).

For each such I, we check whether I is of type C1, and (1.01)I � x!(I).

If so, then we set x1 := x!(I), and we add I to the set
∧
(x1).

Thus, we can compute all the
∧
(x1), x1 ∈ Ē. Since #(Tdist(Ǐ)) ≤ CN, the work

and storage used to compute the
∧
(x1) (all x1 ∈ Ē) are also at most CN.

Next, for each z = (x1, x2) ∈ E, and for each I ∈ ∧
(x1), we compute the

jet Jz(θ̃I). Thanks to (41), this computation is accomplished by (18). For each
such z, I, the computation of Jz(θ̃I) takes work and storage at most C, together
with a single appeal to the ϕ-Oracle.

Finally, for each z = (x1, x2) ∈ E, we check to see whether z ∈ Ω(Ǐ); this holds
if and only if x1 ∈ Ǐinterior, since x2 = ϕ(x1). If z ∈ Ω(Ǐ), then, thanks to (38),
we have

(43) Jz(θI) = Jz(θ̃I)
/ ∑

I′∈∧
(x1)

Jz(θ̃I′),

where the division is performed in the ring of jets at z. (Thanks to (32), we have
that

∑
I′∈∧

(x1)
θ̃I′(z) ≥ 1, so that (43) makes sense.)

Since #(
∧
(x1)) ≤ C, and since we have already computed all the Jz(θ̃I′) in (43),

we can compute a single Jz(θI) from (43) using work and storage at most C.
Thus, we have computed all the

∧
(x1) (x1 ∈ Ē), and all the Jz(θI) (z =

(x1, x2) ∈ E ∩Ω(Ǐ), I ∈ ∧
(x1)).

The work and storage used are as promised. This completes our explanation
of Algorithm JPU.

We close this section by observing two simple consequences of (33), (39), (40):

(44) Let I ∈ Tglobal(Ǐ), and suppose z ∈ suppθI ∩ E. Then I ∈ Tdist(Ǐ), I is of type
C1, and z = z!(I).

More precisely,

(45) Let z = (x1, x2) ∈ E, and suppose I ∈ ∧
(x1). Then I ∈ Tdist(Ǐ), I is of type

C1, and z = z!(I).

(Here, we use also the definition of z!(I) in Section 9, together with assumption (9)
in Section 8.)

11. Simplifying a convex set

In this section, we use no boiler-plate constants. We work with the standard Eucli-
dean norm in RD. Our goal here is to present the following elementary algorithm:

Algorithm SCS. Suppose we are given the following data:

(1) A convex polyhedron K ⊂ RD, given by I constraints.

(2) A real number A > 0 such that |v| ≤ A for all v ∈ K.

(3) A real number ε > 0.

(4) A linear functional λ : RD −→ R.
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Then we compute a convex polyhedron K̃ ⊂ RD, with the following properties:

(5) K ⊆ K̃.

(6) Given ṽ ∈ K̃, there exists v ∈ K such that |v− ṽ| ≤ ε and λ(ṽ − v) = 0.

(7) K̃ is defined by at most C(A, ε,D) constraints.

(In particular, the number of constraints defining K̃ is bounded independently of I.)
The work and storage used to compute K̃ are at most a C(A, ε,D, I).

Explanation: We may trivially reduce matters to the case

(8) λ(v1, . . . , vD) = vD for (v1, . . . , vD) ∈ RD.

Assuming (8), we proceed as follows: From (2), we have

K ⊂ Q := {(v1, . . . , vD) ∈ RD : |v1|, |v2|, . . . , |vD| ≤ A} .

We subdivide Q into a grid of (closed) cubes {Qν}, each Qν having diameter
between 10−3ε and ε.

For each Qν, we compute Iν := λ(K∩Qν). Each Iν is a (possibly empty) closed
interval. Define

K# =
⋃
ν

{ v ∈ Qν : λ(v) ∈ Iν } ⊂ RD.

Thus, K ⊂ K# ⊂ RD, but K# needn’t be convex.
Let v# ∈ K#. Then, for some ν, we have v# ∈ Qν and λ(v#) ∈ Iν. By

definition of Iν, there exists v ∈ K∩Qν such that λ(v) = λ(v#). Since v#, v ∈ Qν,
we have |v− v#| ≤ ε. Thus, we have proven the following:

Given v# ∈ K#, there exists v ∈ K such that |v− v#| ≤ ε and λ(v − v#) = 0.

We define K̃ = convex hull (K#). Thus, K ⊂ K̃ ⊂ RD.
Note that K# is a union of at most I# closed rectangular boxes, where I# may

be computed from A, ε,D. Consequently, K̃ is a closed, convex polyhedron, defined
by at most Ĩ constraints, where Ĩ may be computed from A, ε,D.

Moreover, suppose ṽ ∈ K̃. Then we can write

ṽ =

J∑
j=1

tjv
#
j ,

with t1 + · · ·+ tJ = 1, tj ≥ 0 (each j), and v
#
j ∈ K# (each j).

For each v
#
j , there exists vj ∈ K such that |vj − v

#
j | ≤ ε and λ(vj − v

#
j ) = 0.

Setting

v =

J∑
j=1

tjvj ∈ K,

we have |v− ṽ| ≤ ε and λ(v− ṽ) = 0. Thus, K̃ satisfies (5), (6), (7). Moreover, one
checks easily that the work and storage needed to compute K̃ are less than a con-
stant computed from A, ε,D, I. This completes our explanation of Algorithm SCS.
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Remark. Let λ, K,A, ε, K̃ be as in Algorithm SCS. Suppose we are given a point
ṽ = (ṽ1, . . . , ṽD) ∈ K̃. Then by (6), there exists v = (v1, . . . , vD) ∈ K, such that
|v1 − ṽ1| ≤ ε, . . . , |vD − ṽD| ≤ ε, and λ(v − ṽ) = 0. In particular, |v − ṽ| ≤ D1/2ε.
Note that we can compute such a v by routine linear programming, once ṽ, K, λ, ε
are given.

The work and storage used to compute v are less than a constant computed
from D and I.

12. Simplifying a convex set of Whitney fields

In this section, we retain the notation, assumptions, and boiler-plate constants of
Section 8. We suppose we are given

(1) Ǐ ⊆ I0 (dyadic), such that #(5Ǐ ∩ Ē) ≥ 2.

We suppose that we have already carried out Algorithm MMBT with input Ǐ; see
Section 9. Thus, for each node I ∈ Tdist(Ǐ), we have computed the set S(I) and the
points zrepleft(I), z

rep
rt (I), zleft(I), zrt(I).

Recall that f is defined at zrepleft(I) and at zreprt (I). Also, recall the real numbers ξ
and ε from Section 8.

Under the above assumptions, we can carry out the following algorithm:

Algorithm SCSWF. (“Simplifying Convex Set of Whitney Fields”). Suppose
we are given an interval

(2) I ∈ Tdist(Ǐ)

and a convex polyhedron

(3) K ⊂ Wh(S(I)), defined by at most NC constraints.

Assume that for every �P = (Pz)z∈S(I) ∈ K, we have

(4) val(�P, z) = f(z) for z = z
rep
left(I), z

rep
rt (I);

(5) val(∂2
�P, zleft(I)) = ξ; and

(6) There exists F ∈ C2(Q(I)) such that ‖ F ‖C2(Q(I))≤ C and JS(I)(F) = �P.

Then we compute a convex polyhedron K̃ ⊂ Wh(S(I)), after which we can
respond to queries. (See (10)–(15) below.) The polyhedron K̃ satisfies the following
conditions:

(7) K ⊆ K̃

(8) K̃ is defined by at most ÑC constraints, where ÑC may be computed from ε

and the boiler-plate constants. (In particular, ÑC is independent of NC.)

(9) Every �P ∈ K̃ satisfies (4) and (5).

(10) A “query” consists of a Whitney field �̃
P = (P̃z)z∈S(I) ∈ K̃.
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The response to a query (10) consists of a Whitney field

(11) �P = (Pz)z∈S(I) ∈ K,

such that there exists a function FerrI ∈ C2(Q(I)), satisfying the following condi-
tions:

(12) JS(I)(F
err
I ) =

�̃
P − �P.

(13) |∂αFerrI | ≤ ε100|I|2−|α| on Q(I), for |α| ≤ 2.

(14) FerrI = 0 at zrepleft(I), z
rep
rt (I).

(15) ∂2F
err
I = 0 at zleft(I) and at zrt(I).

In particular, given any �̃
P ∈ K̃, there exist �P ∈ K and FerrI ∈ C2(Q(I)) satisfy-

ing (11)–(15).
The work and storage used to compute K̃, and the work and storage used to

answer a query, are less than C(ε,NC).

Explanation: Let V be the vector space of all Whitney fields �P = (Pz)z∈S(I) ∈
Wh(S(I)), such that: val(�P, z) = 0 for z = z

rep
left(I), z

rep
rt (I); and val(∂2

�P, zleft(I)) = 0.
Let L : (x1, x2) �→ A0 + A1x1 + A2x2 be the one and only linear function on R2

such that: L(z) = f(z) for z = z
rep
left(I), z

rep
rt (I); and ∂2L = ξ.

Next, let μ1, . . . , μm be an enumeration of the following linear functionals
on Wh(S(I)):

(Pz)z∈S(I) �→ ∂αPz(z)
/
|I|2−|α|, for z ∈ S(I), |α| ≤ 2; and

(Pz)z∈S(I) �→ [∂α(Pz − Pz′
)(z)]

/
|z− z′|2−|α|, for z, z′ ∈ S(I) distinct, |α| ≤ 2.

Since the intersection of the nullspaces of μ1, . . . , μm is just {0}, we can define a
Hilbert space norm on V ⊂ Wh(S(I)) by setting

|||�P|||2 =

m∑
j=1

(μj(�P))
2 for �P ∈ V .

We may trivially identify V with RD(D = dimV) so that the above norm agrees
with the usual Euclidean norm on RD.

Recall that #(S(I)) ≤ C(ε). Hence, Taylor’s theorem and the classical Whitney
extension theorem for finite sets tell us the following:

(16) Let F ∈ C2(Q(I)) satisfy:

(a) |∂αF| ≤ |I|2−|α| on Q(I), for |α| ≤ 2;

(b) F = 0 at zrepleft(I), z
rep
rt (I).

(c) ∂2F = 0 at zleft(I).

Then

(d) JS(I)(F) ∈ V , and |||JS(I)(F)||| ≤ C(ε).
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Conversely,

(17) Let �P ∈ V satisfy |||�P||| ≤ 1. Then there exists F ∈ C2(Q(I)) such that:

(a) |∂αF| ≤ C|I|2−|α| on Q(I), for |α| ≤ 2; and

(b) JS(I)(F) = �P.

Now let �P = (Pz)z∈S(I) ∈ K be given. By (4), (5) and definitions of L and V ,

we have �P − JS(I)(L) = (Pz − L)z∈S(I) ∈ V . Moreover, let F ∈ C2(Q(I)) be as
in (6). Then (4), (5), (6) yield F = f at zrepleft(I), z

rep
rt (I); and ∂2F(zleft(I)) = ξ. Since

also |∂αF| ≤ C on Q(I) for |α| ≤ 2 (by (6)), it follows that |∂α(F − L)| ≤ C|I|2−|α|

on Q(I), for |α| ≤ 2. Hence, applying (16) to the function F − L, we learn that

JS(I)(F− L) ∈ V and |||JS(I)(F− L)||| ≤ C(ε). Recalling that JS(I)(F) = �P by (6), we
conclude that

(18) �P − JS(I)(L) ∈ V , and |||�P − JS(I)(L)||| ≤ C(ε), for all �P ∈ K.

Let ε̂ > 0 be a small enough number, to be picked below. Let λ : V −→ R be
the linear functional

(19) λ(�P) = val(∂2
�P, zrt(I)). Define

(20) Kred := K− JS(I)(L).

Thus, by (3) and (18), we have the following:

(21) Kred ⊂ V is a convex polyhedron defined by at most NC constraints. More-
over,

(22) |||�P||| ≤ C(ε) for each �P ∈ Kred.

We now apply Algorithm SCS to the convex polyhedron Kred, the small num-
ber ε̂, the large constant C(ε), and the linear functional λ. Here, we identify V

with RD as noted above. The assumptions of Algorithm SCS hold here, thanks
to (21) and (22). (See the Section 11, on “Simplifying a Convex Set”.)

Thus, Algorithm SCS produces a convex polyhedron

(23) K̃red ⊂ V , defined by at most Ĩ constraints, where

(24) Ĩ may be computed from ε̂, ε and the boiler-plate constants. Moreover,

(25) Kred ⊆ K̃red,

and the Remark at the end of Section 11 yields the following:

(26) Given
�̃
Pred ∈ K̃red, we can compute �Pred ∈ Kred, such that |||

�̃
Pred − �Pred||| ≤

C(ε) · ε̂ and λ(
�̃
Pred − �Pred) = 0.
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Furthermore, the work and storage used to compute K̃red, and to compute �Pred

in (26), are less than a constant that may be computed from ε̂, ε,NC, and the
boiler-plate constants.

Let �̃Pred and �Pred be as in (26). Then, since �̃Pred ∈ K̃red ⊂ V and �Pred ∈ Kred ⊂ V ,
we have

(27) val(�̃Pred − �Pred, z) = 0 for z = zrepleft(I), z
rep
rt (I); and

(28) val(∂2[
�̃
Pred − �Pred], zleft(I)) = 0.

Also, since λ(
�̃
Pred − �Pred) = 0, we have

(29) val(∂2[
�̃
Pred − �Pred], zrt(I)) = 0.

Putting (26)–(29) into (17), we conclude that there exists FerrI ∈ C2(Q(I)), such that

(30) |∂αFerrI | ≤ C(ε) · ε̂ · |I|2−|α| on Q(I) for |α| ≤ 2; and

(31) JS(I)(F
err
I ) =

�̃
Pred − �Pred.

In particular, (27), (28), (29) and (31) yield

(32) FerrI (z) = 0 for z = z
rep
left(I), z

rep
rt (I); and

(33) ∂2F
err
I (z) = 0 for z = zleft(I), zrt(I).

Now define

(34) K̃ := K̃red + JS(I)(L) ⊂ V + JS(I)(L) ⊂ Wh(S(I)).

Thus, (23) and (24) show that:

(35) K̃ ⊂ Wh(S(I)) is a convex polyhedron defined by at most ÑC constraints,

where ÑC may be computed from ε̂, ε and the boiler-plate constants.

Moreover, in view of (20) and (34), the inclusion (25) yields

(36) K ⊆ K̃.

Also, (34) and the definitions of V and L imply the following:

(37) Every �̃
P ∈ K̃ satisfies: val(�̃P, z) = f(z) for z = z

rep
left(I), z

rep
rt (I); and

val(∂2
�̃
P, zleft(I)) = ξ.

Next, suppose we are given
�̃
P ∈ K̃. Then we set

�̃
Pred :=

�̃
P − JS(I)(L) ∈ K̃red

(see (34)).

From �̃
Pred, we compute �Pred ∈ Kred as in (26). We have seen that there exists

FerrI ∈C2(Q(I)) satisfying (30)–(33). We now set �P := �Pred+ JS(I)(L) ∈ K (see (20)).

Since �̃P − �P = �̃
Pred − �Pred, (31) is equivalent to

(38) JS(I)(F
err
I ) =

�̃
P − �P.
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Thus, given
�̃
P ∈ K̃, we have computed �P ∈ K such that there exists FerrI ∈

C2(Q(I)) with the following properties:

(39)

⎡
⎢⎢⎢⎢⎣

JS(I)(F
err
I ) = �̃

P − �P .

|∂αFerrI | ≤ C(ε) · ε̂|I|2−|α| on Q(I) for |α| ≤ 2 .

FerrI = 0 at zrepleft(I), z
rep
rt (I); and ∂2F

err
I = 0 at zleft(I), zrt(I) .

We now take ε̂ to be a constant of the form c(ε), picked small enough to
guarantee that

(40) C(ε) · ε̂ < ε100, with C(ε) as in (39).

With this choice of ε̂, the above computations produce a polyhedron K̃, and
answer queries, as promised in Algorithm SCSWF. Indeed, (7) holds, as we have
seen in (36). Also, (8) follows at once from (35), since we have taken ε̂ = c(ε).
Property (9) is precisely our result (37).

Regarding queries of the form (10), we see from (39), (40) that our algo-

rithm produces �P ∈ K as in (11), such that (12)–(15) are satisfied for some
FerrI ∈ C2(Q(I)).

Thus, our algorithm computes K̃ and answers queries, as promised in Algorithm
SCSWF.

Finally, the reader may easily check that the work and storage used to com-
pute K̃ or answer a query are as promised in Algorithm SCSWF.

Our explanation of that algorithm is complete.

13. Computing the basic polyhedra

In this section, we adopt the notation, assumptions and boiler-plate constants of
Section 8. We suppose that we are given an interval

(0) Ǐ ⊆ I0 (dyadic), with #(5 Ǐ ∩ Ē) ≥ 2.

We suppose that we have already carried out Algorithm MMBT from Section 9.
Thus, we have computed the tree Tdist(Ǐ) and its markings. In particular, for each
node Ĩ ∈ Tdist(Ǐ), we have computed a subset S(Ĩ) ⊂ Q(Ĩ), and the Whitney field
JS(Ĩ)(e2). We recall that Q(Ĩ′) ⊂ Q(Ĩ) for Ĩ′ ∈ RO(Ĩ), and that RO(Ĩ) is the set of

children of Ĩ in the tree Tdist(Ǐ). Recall also that #(S(Ĩ)) ≤ C(ε) and #(RO(Ĩ)) ≤ C

for each Ĩ ∈ Tdist(Ǐ); and that Tdist(Ǐ) has at most CN nodes.

Let Ĩ ∈ Tdist(Ǐ). We will say that a Whitney field �P ∈ Wh(S(Ĩ)) is “adapted”
to Ĩ if the following hold:

• val(�P, z) = f(z) for z = z
rep
left(Ĩ), and for z = z

rep
rt (Ĩ).

• val(∂2
�P, zleft(Ĩ)) = ξ (see Section 8 for ξ).
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• If Ĩ is of type A or B, then val(�P, z) = f(z) for z = zsleft(Ĩ), and for z = zsrt(Ĩ).

• If Ĩ is of type C1, then val(�P, z) = f(z) for z = z!(Ĩ).

To understand this definition, we recall that Algorithm MMBT has marked
each node Ĩ ∈ Tdist(Ǐ) as having “type” A,B,C0 or C1. If Ĩ is of type A or B, then
we have marked Ĩ with the points zsleft(Ĩ) and zsrt(Ĩ). If Ĩ is of type C1, then we

have marked it with the point z!(Ĩ). Each Ĩ ∈ Tdist(Ǐ) has been marked with the
two points zrepleft(Ĩ), z

rep
rt (Ĩ). All these points lie in the set E. We have also marked

each Ĩ ∈ Tdist(Ǐ) with the points zleft(Ĩ), zrt(Ĩ), which need not belong to E.

We are ready to present our algorithms.

Algorithm MOK. (“Make One K”): Suppose we are given the following data:

(1) A positive integer NC.

(2) A node Ĩ ∈ Tdist(Ǐ).

(3) For each Ĩ′ ∈ RO(Ĩ), a convex polyhedron K(Ĩ′) ⊂ Wh(S(Ĩ′)) defined by at
most NC constraints.

Assume that

(4) �P is adapted to Ĩ′ for each �P ∈ K(Ĩ′), Ĩ′ ∈ RO(Ĩ).

Then we compute a convex polyhedron

K(Ĩ) ⊂ Wh(S(Ĩ))

satisfying conditions (5), (6), (7) below; after which, we can respond to queries as
in (8). The polyhedron K(Ĩ) satisfies the following conditions:

(5) K(Ĩ) is defined at most C1(ε) constraints.

(In particular, the number of constraints in (5) is bounded independently of
the number of constraints in (3).)

(6) Each �P ∈ K(Ĩ) is adapted to Ĩ.

(7) Let F ∈ C2(2Q(Ĩ)) with norm ≤ 1. Suppose that JS(Ĩ)(F) is adapted to Ĩ, and

that for each Ĩ′ ∈ RO(Ĩ) there exists λĨ′ ∈ R such that JS(Ĩ′)(F−λĨ′e2) ∈ K(Ĩ′).
Then JS(Ĩ)(F) ∈ K(Ĩ).

Conversely, we can answer queries, as follows:

(8) Given �̃
P ∈ K(Ĩ), we can compute �PĨ′ ∈ K(Ĩ′) and λĨ′ ∈ R for each Ĩ′ ∈ RO(Ĩ),

such that there exist functions F, Ferr ∈ C2(Q(Ĩ)), satisfying the following
conditions:

(a) ‖ F ‖C2(Q(Ĩ))≤ 1+ ε.

(b) |∂αFerr | ≤ ε100 |̃I|2−|α| on Q(Ĩ), for |α| ≤ 2.

(c) Ferr = 0 at zrepleft(Ĩ) and at zreprt (Ĩ).

(d) ∂2F
err = 0 at zleft(Ĩ) and at zrt(Ĩ).

(e) JS(Ĩ)(F+ Ferr) = �̃
P.
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(f) JS(Ĩ′)(F− λĨ′e2) =
�PĨ′ for each Ĩ′ ∈ RO(Ĩ).

(g) If Ĩ is of type A or B, then F = f and Ferr = 0 at zsleft(Ĩ) and at zsrt(Ĩ).

(h) If Ĩ is of type C1, then F = f and Ferr = 0 at z!(Ĩ).

The work and storage used to compute K(Ĩ), and the work and storage used to
answer a query as in (8), are less than C(ε,NC). We make no calls to the ϕ-Oracle
here.

Explanation: Set

S+ = S(Ĩ) ∪
⋃

Ĩ′∈RO(Ĩ)

S(Ĩ′).

Then S+ ⊂ Q(Ĩ), and #(S+) ≤ C(ε).
Let V be the vector space of all families of real numbers (λĨ′)Ĩ′∈RO(Ĩ) indexed

by the nodes Ĩ′ ∈ RO(Ĩ). (If RO(Ĩ) is empty, then V = {0}.)

Applying Algorithm AUB4 from Section 6, we obtain a convex polyhedron
K+
AUB ⊂ Wh(S+), with the following properties (see the Remark after the expla-

nation of that algorithm):

(9) K+
AUB is defined by at most C(ε) constraints.

(10) Let F ∈ C2(2Q(Ĩ)), with norm ≤ 1. Then JS+(F) ∈ K+
AUB.

(11) Let �P+ ∈ K+
AUB. Then there exists F ∈ C2(Q(Ĩ)) with norm ≤ 1 + ε, such

that JS+(F) = �P+.

The work and storage used to compute K+
AUB are at most C(ε). We define

K++ to be the set of all (�P+, (λĨ′)Ĩ∈RO(Ĩ)) ∈ Wh(S+)⊕V , satisfying the following
conditions:

• �P+ ∈ K+
AUB.

• �P+
∣∣
S(Ĩ)

is adapted to Ĩ.

• �P+
∣∣
S(Ĩ′) − λĨ′JS(Ĩ′)(e2) ∈ K(Ĩ′), for each Ĩ′ ∈ RO(Ĩ).

Also, we define

(12) K = {�P+
∣∣
S(Ĩ)

: (�P+, (λĨ′)Ĩ′∈RO(Ĩ)) ∈ K++}.

Then K++ ⊂ Wh(S+)⊕ V and K ⊂ Wh(S(Ĩ)) are convex polyhedra defined by at
most C(ε,NC) constraints. (See (3).)

We can compute K++ and K using work and storage less than C(ε,NC).
Note that, by definition of K++ and K, we have

(13) Each �P ∈ K is adapted to Ĩ.

Moreover, let �P ∈ K be given. By definition of K, K++, we have �P = �P+
∣∣
S(Ĩ)

for some �P+ ∈ K+
AUB. From (11), we obtain a function F ∈ C2(Q(Ĩ)) with norm

≤ 1+ ε, such that JS+(F) = �P+, and consequently, JS(Ĩ)(F) =
�P+

∣∣
S(Ĩ)

= �P.
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Thus, we have proven the following:

(14) Given �P ∈ K, there exists F ∈ C2(Q(Ĩ)) with norm ≤ 1 + ε, such that

JS(Ĩ)(F) =
�P.

We can now apply Algorithm SCSWF, with inputs Ĩ, K, C(ε,NC) in place
of I, K,NC. (See Section 12.) Note that assumptions (4), (5), (6) of that algo-
rithm are satisfied here, thanks to (13) and (14).

Algorithm SCSWF computes a convex polyhedron K̃ ⊂ Wh(S(Ĩ)); after the
computation of K̃, we can answer queries, as explained below. The polyhedron K̃

satisfies the following conditions:

(15) K ⊂ K̃.

(16) K̃ is defined by at most C(ε) constraints.

Moreover, we can answer queries, as follows:

(17) A query consists of a Whitney field
�̃
P ∈ K̃.

(18) The response to a query �̃
P consists of a Whitney field �P ∈ K, such that there

exists a function Ferr ∈ C2(Q(Ĩ)), for which the following hold:

(a) JS(Ĩ)(F
err) =

�̃
P − �P.

(b) |∂αFerr | ≤ ε100 |̃I|2−|α| on Q(Ĩ), for |α| ≤ 2.

(c) Ferr = 0 at zrepleft(Ĩ) and at zreprt (Ĩ).

(d) ∂2F
err = 0 at zleft(Ĩ) and at zrt(Ĩ).

In particular, given �̃
P ∈ K̃, there exist �P ∈ K and Ferr ∈ C2(Q(Ĩ)) satisfy-

ing (18)(a)–(d).

The work and storage used to compute K̃ from K, and the work and storage
used to answer a query as in (17), (18), are less than C(ε,NC).

Finally, we set

(19) K(Ĩ) = {
�̃
P ∈ K̃ : �̃P is adapted to Ĩ}.

Thus, we have computed K(Ĩ), as promised in Algorithm MOK.
Let us check that K(Ĩ) satisfies (5), (6), (7), and then pass to the query algo-

rithm (8). First of all, (5) is immediate from (16) and (19); and (6) is immediate
from the definition (19).

We check (7). Thus, let F ∈ C2(2Q(Ĩ)) with norm ≤ 1. Suppose that JS(Ĩ)(F)

is adapted to Ĩ, and that JS(Ĩ′)(F − λĨ′e2) ∈ K(Ĩ′) for each Ĩ′ ∈ RO(Ĩ). We must

show that JS(Ĩ)(F) ∈ K(Ĩ).

From (10), we see that the Whitney field �P+ = JS+(F) belongs to K+
AUB.
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Also, �P+
∣∣
S(Ĩ)

= JS(Ĩ)(F) is adapted to Ĩ, by assumption. Furthermore, for each

Ĩ′ ∈ RO(Ĩ), we have

�P+
∣∣
S(Ĩ′) − λĨ′JS(Ĩ′)(e2) = JS(Ĩ′)(F) − λĨ′JS(Ĩ′)(e2) = JS(Ĩ′)(F− λĨ′e2) ∈ K(Ĩ′),

again by assumption. Comparing the above remarks with the definition of K++, we
see that (JS+(F), (λĨ′)Ĩ′∈RO(Ĩ)) ∈ K++, and consequently, (12) and (15) imply that

JS(Ĩ)(F) ∈ K̃. Since also JS(Ĩ)(F) is adapted to Ĩ (by assumption), we see from (19)

that JS(Ĩ)(F) ∈ K(Ĩ), completing the proof of (7).

Thus, we have proven (5), (6), (7) for our polyhedron K(Ĩ). One checks easily
that the work and storage used to compute K(Ĩ) as above are at most C(ε,NC).
Moreover, we have made no use of the ϕ-Oracle here. We now provide the query
algorithm (8).

Thus, let
�̃
P ∈ K(Ĩ) be given. By definition (19), we have

(20)
�̃
P ∈ K̃, and

(21)
�̃
P is adapted to Ĩ.

Applying the query algorithm (17), (18), we compute a Whitney field �P ∈ K such
that there exists Ferr ∈ C2(Q(Ĩ)) satisfying (18)(a)–(d). Let us fix such an Ferr.

The work and storage used to compute �P are at most C(ε,NC). We now recall
the definition (12). By routine linear programming, we can compute a point

(22) (�P+, (λĨ′)Ĩ′∈RO(Ĩ)) ∈ K++, such that

(23) �P+
∣∣
S(Ĩ)

= �P.

Since K++ is defined by at most C(ε,NC) constraints, the work and storage used
to compute the point (22) are at most C(ε,NC).

Comparing (22) with the definition of K++, we see that the following hold:

(24) �P+ ∈ K+
AUB.

(25) �P+
∣∣
S(Ĩ)

is adapted to Ĩ.

(26) �P+
∣∣
S(Ĩ′) − λĨ′JS(Ĩ′)(e2) ∈ K(Ĩ′) for each Ĩ′ ∈ RO(Ĩ).

Let us define

(27) �PĨ′ = �P+
∣∣
S(Ĩ′) − λI′JS(Ĩ′)(e2) for Ĩ

′ ∈ RO(Ĩ).

Thus, �PĨ′ ∈ K(Ĩ′) for Ĩ′ ∈ RO(Ĩ), as asserted in (8). Since the JS(Ĩ′)(e2) have been

precomputed by Algorithm MMBT, the work and storage used to compute the �PĨ′

from (27) are at most C(ε).
Next, note that (11) and (24) show that there exists

(28) F ∈ C2(Q(Ĩ)) with norm ≤ 1+ ε, such that

(29) JS+(F) = �P+.
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Thus, starting from our given
�̃
P ∈ K(Ĩ), we have computed �PĨ′ ∈ K(Ĩ′) and

λĨ′ ∈ R, for each Ĩ′ ∈ RO(Ĩ); and we have defined the functions F, Ferr ∈ C2(Q(Ĩ)).

One checks easily that the work and storage used to compute the �PĨ′ and λĨ′

from
�̃
P are at most C(ε,NC). Moreover, we have made no calls to the ϕ-Oracle

here.

It remains to show that �̃P,�PĨ′ , λĨ′ satisfy (8)(a)–(h). Let us check that these
assertions are correct. In fact, (8)(a) is just our result (28); and (8)(b), (c), (d)
hold, because our Ferr satisfies (18)(b), (c), (d). To check (8)(e), we note that

JS(Ĩ)(F+ Ferr) = �P+
∣∣
S(Ĩ)

+ JS(Ĩ)(F
err)

(by (29))
= �P + (�̃P − �P)

(by (18)(a) and (23))
= �̃

P.

Thus, (8)(e) holds.
Next, (27) and (29) show that

JS(Ĩ′)(F− λĨ′e2) =
�P+

∣∣
S(Ĩ′) − λĨ′JS(Ĩ′)(e2) =

�PĨ′

for each Ĩ′ ∈ RO(Ĩ), proving (8)(f).

Finally, to check (8)(g) and (8)(h), we argue as follows: From (25) and (29),
we see that JS(Ĩ)(F) is adapted to Ĩ. From (21) and (8)(e) (which we have already

proven), we see that JS(Ĩ)(F + Ferr) is adapted to Ĩ. Assertions (8)(g) and (8)(h)
follow trivially from the above remarks and the definition of “adapted”.

This completes our explanation of Algorithm MOK.

Algorithm MAK. (“Make All K’s”): For each Ĩ ∈ Tdist(Ǐ), we compute a convex
polyhedron K(Ĩ) ⊂ Wh(S(Ĩ)) satisfying the following conditions:

(30) K(Ĩ) is defined by at most C(ε) constraints.

(31) Each �P ∈ K(Ĩ) is adapted to Ĩ.

(32) Let F ∈ C2(2Q(Ĩ)). Suppose that the following hold:

(a) ‖ F ‖C2(2Q(Ĩ))≤ 1− C1ε (for large enough C1).

(b) F = f on E ∩Q(Ĩ).

(c) ∂2F(zleft(Ĩ)) = ξ.

Then JS(Ĩ)(F) ∈ K(Ĩ).

Moreover, after we have computed all the K(Ĩ), we can answer queries as follows:

(33) A query consists of a Whitney field �PǏ ∈ K(Ǐ).

(34) The response to a query (33) consists of a family of Whitney fields �PĨ ∈
K(Ĩ) and real numbers λ(Ĩ) (all Ĩ ∈ Tdist(Ǐ)), such that there exist functions
FĨ, F

err
Ĩ

∈ C2(Q(Ĩ)) (all Ĩ ∈ Tdist(Ǐ)) for which the following hold:

(a) λ(Ǐ) = 0 and �PǏ is the given Whitney field from (33).
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Moreover, for each Ĩ ∈ Tdist(Ǐ), we have:

(b) JS(Ĩ)(FĨ + Ferr
Ĩ
) = �PĨ

(c) JS(Ĩ′)(FĨ + [λ(Ĩ) − λ(Ĩ′)]e2) = �PĨ′ for each Ĩ′ ∈ RO(Ĩ).

(d) ‖ FĨ ‖C2(Q(Ĩ))≤ 1+ ε.

(e) |∂αFerr
Ĩ
| ≤ ε100 |̃I|2−|α| on Q(Ĩ), for |α| ≤ 2.

(f) Ferr
Ĩ

= 0 at zrepleft(Ĩ) and at zreprt (Ĩ).

(g) ∂2F
err
Ĩ

= 0 at zleft(Ĩ) and at zrt(Ĩ).

(h) If Ĩ is of type A or B, then FĨ = f and Ferr
Ĩ

= 0 at zsleft(Ĩ) and at zsrt(Ĩ).

(i) If Ĩ is of type C1, then FĨ = f and Ferr
Ĩ

= 0 at z!(Ĩ).

In particular, for any �PǏ ∈ K(Ǐ), there exist �PĨ ∈ K(Ĩ), λ(Ĩ) ∈ R and func-
tions FĨ, F

err
Ĩ
, satisfying (34)(a)–(i).

The work and storage used to compute all the K(Ĩ), and the work and storage
used to answer a query as in (33), (34), are at most C(ε)N. We make no calls to
the ϕ-Oracle.

Explanation: In our explanation of Algorithm MAK, the expression C1(ε) will
always denote the constant C1(ε) in (5).

By bottom-up recursion in the tree Tdist(Ǐ), we define a convex polyhedron K(Ĩ)
for each Ĩ ∈ Tdist(Ǐ), such that

(35) K(Ĩ) ⊂ Wh(S(Ĩ)) is defined by at most C1(ε) constraints, and each �P ∈ K(Ĩ)
is adapted to Ĩ.

Given Ĩ ∈ Tdist(Ǐ), we make the inductive assumption that such polyhedra K(Ĩ′)
have already been computed for all Ĩ′ ∈ RO(Ĩ). Taking NC := C1(ε), we see that
assumptions (1)–(4) hold.

Accordingly, we perform Algorithm MOK, to produce a polyhedron K(Ĩ) ⊂
Wh(S(Ĩ)), again satisfying (35), as well as (7) and (8). Thus, we compute all the
K(Ĩ) (Ĩ ∈ Tdist(Ǐ)), and we know that (30), (31) are satisfied. Note that the constant
C(ε) in (30) does not grow as we proceed recursively up the tree Tdist(Ǐ).

The work and storage used to compute a single K(Ĩ) from Algorithm MOK are
at most C(ε). Since Tdist(Ǐ) has at most CN nodes, the total work and storage used
to compute all the K(Ĩ) are at most C(ε)N. Moreover, once we have computed all
the K(Ĩ), we can answer queries as follows, for each Ĩ ∈ Tdist(Ǐ). (See (8).)

(36) Given �PĨ ∈ K(Ĩ), we can compute �PĨ′ ∈ K(Ĩ′) and λ(Ĩ, Ĩ′) ∈ R for each
Ĩ′ ∈ RO(Ĩ), such that there exist functions

(a) FĨ, F
err
Ĩ

∈ C2(Q(Ĩ)), satisfying the following:

(b) JS(Ĩ)(FĨ + Ferr
Ĩ
) = �PĨ.

(c) JS(Ĩ′)(FĨ − λ(Ĩ, Ĩ′)e2) = �PĨ′ for each Ĩ′ ∈ RO(Ĩ).
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(d) ‖ FĨ ‖C2(Q(Ĩ))≤ 1+ ε.

(e) |∂αFerr
Ĩ
| ≤ ε100 |̃I|2−|α| on Q(Ĩ), for |α| ≤ 2.

(f) Ferr
Ĩ

= 0 at zrepleft(Ĩ), and at zreprt (Ĩ).

(g) ∂2F
err
Ĩ

= 0 at zleft(Ĩ) and at zrt(Ĩ).

(h) If Ĩ is of type A or B, then FĨ = f and Ferr
Ĩ

= 0 at zsleft(Ĩ) and at zsrt(Ĩ).

(i) If Ĩ is of type C1, then FĨ = f and Ferr
Ĩ

= 0 at z!(Ĩ).

The work and storage used to produce the �PĨ′ and λ(Ĩ, Ĩ′) from �PĨ are at
most C(ε). Furthermore, our K(Ĩ) satisfy (7).

Our next task is to prove (32). To do so, let A be a large enough constant, to
be fixed below. (Later, we will take A to be a large enough controlled constant C′,
but not yet.) We recall that each Ĩ ∈ Tdist(Ǐ) satisfies Ĩ ⊆ Ǐ ⊆ I0. (See (0).)

By induction on Ĩ ∈ Tdist(Ǐ), we will prove the following:

(37) Let F ∈ C2(2Q(Ĩ)). Suppose that the following hold:

(a) ‖ F ‖C2(2Q(Ĩ))≤ 1−Aε
|Ĩ|
|I0|

.

(b) F = f on E ∩Q(Ĩ).

(c) ∂2F(zleft(Ĩ)) = ξ.

Then JS(Ĩ)(F) ∈ K(Ĩ).

Indeed, let us fix Ĩ ∈ Tdist(Ǐ) and assume that (37) holds for each Ĩ′ ∈ RO(Ĩ). We
will then prove (37) for the given Ĩ.

Thus, let F ∈ C2(2Q(Ĩ)), and assume (37)(a), (b), (c). From (37)(a) and the
Bounded Distortion Property, we have |∂αF| ≤ C on 2Q(Ĩ) for |α| ≤ 2.

Since also Q(Ĩ) has diameter at most C|̃I|, and since zleft(Ĩ), zleft(Ĩ
′) ∈ Q(Ĩ) for

Ĩ′ ∈ RO(Ĩ), it follows that |∂2F(zleft(Ĩ)) − ∂2F(zleft(Ĩ
′))| ≤ C|̃I|. Hence, by (37)(c),

the number

(38) λĨ′ := ∂2F(zleft(Ĩ
′)) − ξ

satisfies

(39) |λĨ′ | ≤ C|̃I| for each Ĩ′ ∈ RO(Ĩ).

Now fix Ĩ′ ∈ RO(Ĩ), and define

(40) F̃ := F− λĨ′e2 ∈ C2(2Q(Ĩ′)).

We recall that e2 = 0 on E, ∂2e2 = 1 on 2Q(Ĩ′), and

(41) ‖ e2 ‖C2(2Q(Ĩ′))≤ Cε|I0|
−1.

(See (22)–(24) and (31) in Section 8.)
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Consequently,

(42) F̃ = f on E ∩Q(Ĩ′), thanks to (37)(b); and

(43) ∂2F̃(zleft(Ĩ
′)) = ξ, by (38) and (40).

Moreover, from (37)(a), (39), (40) and (41), we obtain the estimate

(44) ‖ F̃ ‖C2(2Q(Ĩ′))≤ 1− Aε|Ĩ|
|I0|

+ Cε|Ĩ|
|I0|

.

If we take A to satisfy

(45) A ≥ 2C, with C as in (44),

then we obtain from (44) the estimate

(46) ‖ F̃ ‖C2(2Q(Ĩ′))≤ 1− 1
2
Aε

|Ĩ|
|I0|

.

However, since Ĩ′ ∈ RO(Ĩ), we know that Ĩ′ is a proper dyadic subinterval of Ĩ, and
therefore |̃I′| ≤ 1

2
|̃I|. Hence (46) yields

(47) ‖ F̃ ‖C2(2Q(Ĩ′))≤ 1− Aε|Ĩ′|
|I0|

.

We now pick A to be a controlled constant C′, large enough to satisfy (45).
Thus, (47) holds.

Our inductive assumption tells us that (37) holds for Ĩ′. Moreover, the func-
tion F̃ satisfies (37)(a), (b), (c), with Ĩ′ in place of Ĩ, as we see from (42), (43)
and (47). Consequently, JS(Ĩ′)(F̃) ∈ K(Ĩ′), i.e.,

(48) JS(Ĩ′)(F− λĨ′e2) ∈ K(Ĩ′).

(See (40).) We have proven (48) for each Ĩ′ ∈ RO(Ĩ).

Recall that we have assumed that F ∈ C2(2Q(Ĩ)) satisfies (37)(a), (b), (c).
Comparing the definition of “adapted to Ĩ” with (37)(b), (c), and see that

(49) JS(Ĩ)(F) is adapted to Ĩ.

Also from (37)(a), we have

(50) ‖ F ‖C2(2Q(Ĩ))≤ 1.

Recall that our polyhedron K(Ĩ) satisfies (7). Therefore, from (48), (49), (50),
we conclude that

(51) JS(Ĩ)(F) ∈ K(Ĩ).

We have thus shown that every F ∈ C2(2Q(Ĩ)) satisfying (37)(a), (b), (c) must also
satisfy (51).

This completes our inductive proof of (37).
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Since we have picked A in (37) to be a controlled constant C′, and since |̃I| ≤ |I0|

for each Ĩ ∈ Tdist(Ǐ), assertion (32) now follows from (37). We take up the query
algorithm (33), (34).

Let �PǏ ∈ K(Ǐ) be given, as in (33). By top-down recursion on Ĩ ∈ Tdist(Ǐ), we

compute for each such Ĩ a Whitney field �PĨ ∈ K(Ĩ) and real numbers λ(Ĩ, Ĩ′) indexed
by Ĩ′ ∈ RO(Ĩ). Also, for each such Ĩ, we define functions FĨ, F

err
Ĩ

∈ C2(Q(Ĩ)).

The recursion proceeds as follows: Suppose we have already computed �PĨ for

a given Ĩ ∈ Tdist(Ǐ). Applying the query algorithm (36), we compute �PĨ′ ∈ K(Ĩ′)
and λ(Ĩ, Ĩ′) ∈ R for each Ĩ′ ∈ RO(Ĩ). These are such that there exist functions
FĨ, F

err
Ĩ

∈ C2(Q(Ĩ)), satisfying (36)(a)–(i). We fix such functions FĨ, F
err
Ĩ
.

Since we are given �PǏ to start with, the above recursion computes all the �PĨ

(for Ĩ ∈ Tdist(Ǐ)) and λ(Ĩ, Ĩ′) (for Ĩ ∈ Tdist(Ǐ) and Ĩ′ ∈ RO(Ĩ)), and defines all the FĨ,

Ferr
Ĩ

(for Ĩ ∈ Tdist(Ǐ)).

Each application of (36) uses work and storage at most C(ε). Since the tree
Tdist(Ǐ) has at most CN nodes, the total work and storage used to compute all the
�PĨ and λ(Ĩ, Ĩ′) are at most C(ε)N.

OurWhitney fields �PĨ, numbers λ(Ĩ, Ĩ′), and functions FĨ, F
err
Ĩ

satisfy (36)(a)–(i).

Comparing (36)(a)–(i) with (34)(a)–(i) we see that (34)(a)–(i) hold, provided
the real numbers λ(Ĩ) (Ĩ ∈ Tdist(Ǐ)) satisfy the following conditions:

(52) λ(Ǐ) = 0.

(53) λ(Ĩ′) − λ(Ĩ) = λ(Ĩ, Ĩ′) for Ĩ ∈ Tdist(Ǐ), Ĩ′ ∈ RO(Ĩ).

However, since the λ(Ĩ, Ĩ′) have already been computed, an obvious top-down
recursion in the tree Tdist(Ǐ) computes numbers λ(Ĩ) (all Ĩ ∈ Tdist(Ǐ)) satisfying (52)
and (53).

The work and storage used to compute all the λ(Ĩ) are at most CN.

Thus, we have computed �PĨ ∈ K(Ĩ) and λ(Ĩ) ∈ R, for each Ĩ ∈ Tdist(Ǐ); and
we have defined functions FĨ, F

err
Ĩ

∈ C2(Q(Ĩ)), such that (34)(a)–(i) are satisfied.
Moreover, the work and storage used to perform the above computations are at
most C(ε)N.

This completes our explanation of the query algorithm (33), (34). Our expla-
nation of Algorithm MAK is also complete.

14. Local interpolants

In this section, we adopt the notation, assumptions and boiler-plate constants of
Section 8. We suppose we are given an interval

(0) Ǐ ⊆ I0 (dyadic), with #(5 Ǐ ∩ Ē) ≥ 2.

We suppose that we have carried out Algorithm MMBT from Section 9, and the
one-time work of Algorithm MAK from Section 13. Thus, for each node Ĩ ∈ Tdist(Ǐ),
we have computed the convex polyhedron K(Ĩ).
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Finally, we suppose that we are given a Whitney field

(1) �PǏ ∈ K(Ǐ).

Using the query algorithm within Algorithm MAK, we obtain from �PǏ a family of

Whitney fields �PĨ and real numbers λ(Ĩ) (each Ĩ ∈ Tdist(Ǐ)), for which there exist
functions FĨ, F

err
Ĩ

∈ C2(Q(Ĩ)) (each Ĩ ∈ Tdist(Ǐ)), such that the following hold:

(2) For Ĩ = Ǐ, we have λ(Ĩ) = 0 and �PĨ = �PǏ as in (1).

For each Ĩ ∈ Tdist(Ǐ), the following hold:

(3) �PĨ ∈ K(Ĩ); in particular, �PĨ is adapted to Ĩ.

(4) JS(Ĩ)(FĨ + Ferr
Ĩ
) = �PĨ.

(5) JS(Ĩ′)(FĨ + [λ(Ĩ) − λ(Ĩ′)]e2) = �PĨ′ for each Ĩ′ ∈ RO(Ĩ).

(6) ‖ FĨ ‖C2(Q(Ĩ))≤ 1+ ε.

(7) |∂αFerr
Ĩ
| ≤ ε100 |̃I|2−|α| on Q(Ĩ), for |α| ≤ 2.

(8) Ferr
Ĩ

= 0 at zrepleft(Ĩ) and at zreprt (Ĩ).

(9) ∂2F
err
Ĩ

= 0 at zleft(Ĩ) and at zrt(Ĩ).

(10) If Ĩ is of type A or B, then FĨ = f and Ferr
Ĩ

= 0 at zsleft(Ĩ) and at zsrt(Ĩ).

(11) If Ĩ is of type C1, then FĨ = f and Ferr
Ĩ

= 0 at z!(Ĩ).

Fix functions FĨ, F
err
Ĩ

as above. For each I ∈ Tglobal(Ǐ), we will define a function

F
#
I ∈ C2(Q(I)). To do so, we recall from Section 7 the following facts about the

trees Tglobal(Ǐ), Tdist(Ǐ), T loc(Ĩ):

(12) The children of a given node Ĩ in the tree Tdist(Ǐ) are precisely the intervals
Ĩ′ ∈ RO(Ĩ).

(13) Tglobal(Ǐ)� {Ǐ} is the disjoint union of T loc(Ĩ)� {Ĩ} over all Ĩ ∈ Tdist(Ǐ).

(14) Let I ∈ T loc(Ĩ) ∩ T loc(Ĩ′), with Ĩ, Ĩ′ ∈ Tdist(Ǐ) distinct.

Then either I = Ĩ′ ∈ RO(Ĩ), or I = Ĩ ∈ RO(Ĩ′).

(15) Let I be an internal node in the tree Tglobal(Ǐ), and let I1, I2 be its two dyadic
children. Then there exists Ĩ ∈ Tdist(Ǐ) such that I, I1, I2 ∈ T loc(Ĩ).

In particular, from (13), (14), we obtain the following:

(16) For any Ĩ ∈ Tdist(Ǐ), we have Tdist(Ǐ) ∩ T loc(Ĩ) = {Ĩ} ∪ RO(Ĩ).

(17) Any I ∈ Tglobal(Ǐ)�Tdist(Ǐ) belongs to T loc(Ĩ) for one and only one Ĩ ∈ Tdist(Ǐ).

We are now ready to define the functions F#I . Let I ∈ Tglobal(Ǐ).

Case 1: If I ∈ Tdist(Ǐ), then we define F
#
I = FI + FerrI + λ(I)e2.
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Case 2: Suppose I /∈ Tdist(Ǐ). Then I ∈ T loc(Ĩ) for one and only one Ĩ ∈ Tdist(Ǐ). We

define F
#
I = [FĨ + λ(Ĩ)e2]

∣∣
Q(I)

.

In either case, we have

(18) F
#
I ∈ C2(Q(I)) for I ∈ Tglobal(Ǐ).

Observe that we have defined F
#
I for each I ∈ Tglobal(Ǐ), but we haven’t computed it.

There are an uncontrolled number of nodes I ∈ Tglobal(Ǐ), so we cannot afford to
make computations for each such I.

The goal of this section is to establish the basic properties of the functions F#I .
To do so, we first prepare to estimate the numbers λ(I) in (2)–(11). Recall from (3)
and the definition of “adapted” that the following hold, for each Ĩ ∈ Tdist(Ǐ):

(19) val(�PĨ, z) = f(z) for z = z
rep
left(Ĩ) and for z = z

rep
rt (Ĩ).

(20) val(∂2
�PĨ, zleft(Ĩ)) = ξ.

(21) val(�PĨ, z) = f(z) for z = zsleft(Ĩ) and for z = zsrt(Ĩ), if Ĩ is of type A or B.

(22) val(�PĨ, z) = f(z) for z = z!(Ĩ), if Ĩ is of type C1.

We are ready to estimate the λ(Ĩ).

Lemma 1. We have

(23) |λ(Ĩ) − λ(Ĩ′)| ≤ C|̃I| for each Ĩ ∈ Tdist(Ǐ) and Ĩ′ ∈ RO(Ĩ).

Moreover,

(24) |λ(Ĩ)| ≤ C|̌I| for each Ĩ ∈ Tdist(Ǐ).

Proof. Let Ĩ ∈ Tdist(Ǐ), Ĩ′ ∈ RO(Ĩ). Since ∂2e2 ≡ 1 (see Section 8), we learn
from (5) and (20) that

ξ = ∂2FĨ(zleft(Ĩ
′)) + [λ(Ĩ) − λ(Ĩ′)].

Similarly, (4), (9) and (20) yield ξ = ∂2FĨ(zleft(Ĩ)). Consequently,

(25) λ(Ĩ) − λ(Ĩ′) = ∂2FĨ(zleft(Ĩ)) − ∂2FĨ(zleft(Ĩ
′)).

Recall that zleft(Ĩ) ∈ Q(Ĩ), zleft(Ĩ
′) ∈ Q(Ĩ′) ⊂ Q(Ĩ), and that Q(Ĩ) has diameter less

than C|̃I|. Hence, from (6), we have

(26) |∂2FĨ(zleft(Ĩ)) − ∂2FĨ(zleft(Ĩ
′))| ≤ C|̃I|.

Assertion (23) now follows from (25) and (26).
We turn to assertion (24). Let Ĩ ∈ Tdist(Ǐ) be given. Passing from the root Ǐ

down to Ĩ in the tree Tdist(Ĩ), we obtain a finite sequence Ĩ0, Ĩ1, . . . , ĨL, with Ĩ0 = Ǐ,
ĨL = Ĩ, and Ĩ�+1 ∈ RO(Ĩ�) for 0 ≤ � < L.

In particular, Ĩ�+1 is a proper dyadic subinterval of Ĩ�, hence

(27) |̃I�+1| ≤ 1
2
|̌I�| for 0 ≤ � < L.
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Moreover (23) tells us |λ(Ĩ�+1) − λ(Ĩ�)| ≤ C|̃I�| for 0 ≤ � < L. Consequently,
since λ(Ĩ0) = λ(Ǐ) = 0 by (2), we have

|λ(Ĩ)| = |λ(ĨL)| ≤
∑

0≤�<L

|λ(Ĩ�+1) − λ(Ĩ�)| ≤ C
∑

0≤�<L

|̃I�|
(by (27))

≤ C′ |̃I0| = C′ |̌I|,

proving (24). �

Lemma 2. For each I ∈ Tglobal(Ǐ), we have

(28) ‖ F
#
I ‖C2(Q(I))≤ 1+ Cε.

Proof. Let Ĩ ∈ Tdist(Ǐ). Then Ĩ ⊆ Ǐ ⊆ I0 (see (0)). From Section 8, we recall that
‖ e2 ‖C2(Q(Ĩ))≤ Cε|I0|

−1. Hence, by (24),

(29) ‖ λ(Ĩ)e2 ‖C2(Q(Ĩ))≤ Cε|̌I| · |I0|−1 ≤ Cε.

Turning to (28), we proceed by cases.

Case 1: Suppose I ∈ Tdist(Ǐ). Then since |I| ≤ |I0| ≤ Cε (see (3) in Section 8), we
learn from (7) that

(30) ‖ FerrI ‖C2(Q(I))≤ Cε,

while (6) yields

(31) ‖ FI ‖C2(Q(I))≤ 1+ ε.

Since F
#
I = FI + FerrI + λ(I)e2 in this case, (28) follows from (29), (30), (31).

Case 2: Suppose I /∈ Tdist(Ǐ). Let Ĩ be the unique node of Tdist(Ǐ) such that
I ∈ T loc(Ĩ). Then Q(I) ⊂ Q(Ĩ), and, as in Case 1, we have ‖ FĨ ‖C2(Q(Ĩ))≤ 1 + ε,

and ‖ λ(Ĩ)e2 ‖C2(Q(Ĩ))≤ Cε. Since

F
#
I = [FĨ + λ(Ĩ)e2]

∣∣
Q(I)

in this case, we again have (28). �

Lemma 3. For each I ∈ Tglobal(Ǐ), we have

(32) F
#
I = f at zrepleft(I) and at zreprt (I).

Proof. Recall that e2 = 0 on E, and that z
rep
left(I), z

rep
rt (I) ∈ E. To check (32), we

proceed by cases.

Case 1: Suppose I ∈ Tdist(Ǐ). Then, for z = z
rep
left(I) or z = z

rep
rt (I), we have

F
#
I (z) = FI(z) + FerrI (z) + λ(I)e2(z)

= FI(z) + FerrI (z)
(by (4))

= val(�PI, z)
(by (19))

= f(z).

Thus, (32) holds in Case 1.
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Case 2: Suppose I /∈ Tdist(Ǐ). Let Ĩ be the one and only node in Tdist(Ǐ) for which
I ∈ T loc(Ĩ). Then I ∈ T loc(Ĩ) � {Ĩ}, and consequently, Ĩ is of type A or B, and
z
rep
left(I) = zsleft(Ĩ), and z

rep
rt (I) = zsrt(Ĩ). (See (14) in Section 7 and (6), (7), (10), (11)

in Section 9.) We know that zsleft(Ĩ), z
s
rt(Ĩ) ∈ E, hence e2 = 0 at those points. By

definition, at z = z
rep
left(I) = zsleft(Ĩ) and at z = z

rep
rt (I) = zsrt(Ĩ), we have

F
#
I (z) = FĨ(z) + λ(Ĩ)e2(z) = FĨ(z) = f(z),

thanks to (10). Thus (32) holds also in Case 2. �

Lemma 4. Let Ĩ ∈ Tdist(Ǐ), and let I ∈ T loc(Ĩ). Then, for |α| ≤ 1, we have

(33) |∂α(F#I − [FĨ + λ(Ĩ)e2])| ≤ Cε100|I|2−|α| on Q(I).

Proof. We proceed by cases.

Case 1: Suppose I ∈ Tdist(Ǐ). Then by (16), either I = Ĩ or I ∈ RO(Ĩ). By definition,

we have F#I = FI + FerrI + λ(I)e2 in that case. Therefore, if I = Ĩ, then (33) follows

at once from (7). On the other hand, suppose I ∈ RO(Ĩ). Then

(34) JS(I)(F
#
I − [FĨ + λ(Ĩ)e2]) = JS(I)(FI + FerrI + λ(I)e2) − JS(I)(FĨ + λ(Ĩ)e2)

= JS(I)(FI + FerrI ) − JS(I)(FĨ + [λ(Ĩ) − λ(I)]e2) = 0,

since JS(I)(FI + FerrI ) = �PI by (4), and JS(I)(FĨ + [λ(Ĩ) − λ(I)]e2) = �PI by (5).

Also, from (6), (28) and (29), we see that

(35) ‖ F
#
I − [FĨ + λ(Ĩ)e2] ‖C2(Q(I))≤ C.

Recall from Section 9 that
∧
(I) ⊆ S(I), and therefore any given point of Q(I)

lies within distance Cε100|I| of S(I). Therefore, (33) follows from (34), (35) and
Taylor’s theorem. Thus, (33) holds in Case 1.

Case 2: Suppose I /∈ Tdist(Ǐ). Then, by definition, F#I = [FĨ + λ(Ĩ)e2]|Q(I). Hence,
the left-hand side of (33) is zero, and thus (33) holds trivially in Case 2. �

Lemma 5. Let I ∈ Tglobal(Ǐ) be an internal node, and let I′ be one of the two
dyadic children of I. Then, for |α| ≤ 1, we have

(36) |∂α(F#I − F
#
I′ )| ≤ Cε100|I|2−|α| on Q(I′).

Proof. By (15), there exists Ĩ ∈ Tdist(Ǐ) such that I, I′ ∈ T loc(Ĩ). By Lemma 4, we

have |∂α(F#I −[FĨ+λ(Ĩ)e2])| ≤ Cε100|I|2−|α| on Q(I), and |∂α(F#I′ −[FĨ+λ(Ĩ)e2])| ≤
Cε100|I′|2−|α| on Q(I′), for |α| ≤ 1. Estimate (36) now follows trivially, since
|I′| = 1

2
|I| and Q(I′) ⊂ Q(I). �

Next, we discuss ∂2F
#
I at the points zleft(I), zrt(I). Recall that ∂2e2 ≡ 1. (See

Section 8.)
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Lemma 6. Let Ĩ ∈ Tdist(Ǐ), and let I ∈ T loc(Ĩ). Then

(37) ∂2F
#
I = ∂2FĨ + λ(Ĩ) at zleft(I) and at zrt(I).

Proof. We proceed by cases.

Case 1: Suppose I ∈ Tdist(Ǐ). Then by (16), either I = Ĩ or I ∈ RO(Ĩ). If I = Ĩ,

then by definition, F#I = FĨ + Ferr
Ĩ

+ λ(Ĩ)e2. Hence, at zleft(Ĩ) and at zrt(Ĩ), we have

∂2F
#
I = ∂2FĨ + ∂2F

err
Ĩ

+ λ(Ĩ) = ∂2FĨ + λ(Ĩ) by (9).

Thus, (37) holds for I = Ĩ. On the other hand, suppose I ∈ RO(Ĩ). Then by

definition, F#I = FI + FerrI + λ(I)e2. For z = zleft(I) or z = zrt(I), we have

(38) ∂2F
#
I (z) = ∂2(FI + FerrI )(z) + λ(I) = val (∂2

�PI, z) + λ(I), thanks to (4).

Moreover, (5) yields

(39) ∂2FĨ(z) + [λ(Ĩ) − λ(I)] = val (∂2
�PI, z).

Combining (38) and (39), we obtain (37). Thus (37) holds in Case 1.

Case 2: Suppose I /∈ Tdist(Ĩ). Then by definition, F#I = [FĨ + λ(Ĩ)e2]
∣∣
Q(I)

, from

which (37) follows trivially.
Thus, (37) holds in all cases. �

Lemma 7. Let I ∈ Tglobal(Ǐ) be an internal node, and let I1, I2 be its two dyadic
children, with I1 to the left of I2. Then

(40) ∂2F
#
I = ∂2F

#
I1

at zleft(I) = zleft(I1),

(41) ∂2F
#
I = ∂2F

#
I2

at zrt(I) = zrt(I2), and

(42) ∂2F
#
I1

= ∂2F
#
I2

at zrt(I1) = zleft(I2).

Proof. By (15), there exists Ĩ ∈ Tdist(Ǐ) such that I, I1, I2 ∈ T loc(Ĩ). Applying

Lemma 6, we learn that ∂2F
#
I = ∂2FĨ + λ(Ĩ) at zleft(I) and at zrt(I); ∂2F

#
I1

=

∂2FĨ + λ(Ĩ) at zleft(I1) and at zrt(I1); and ∂2F
#
I2

= ∂2FĨ + λ(Ĩ) at zleft(I2) and
at zrt(I2). Since zleft(I) = zleft(I1), zrt(I) = zrt(I2), and zrt(I1) = zleft(I2), we
obtain (40), (41) and (42). �

Next, we compare each F
#
I to the function Fcrude from Section 8. Recall from

that section that Fcrude ∈ C2(R2), and that:

(43) Fcrude = f on E;

(44) ‖ Fcrude ‖C2(R2)≤ C; and

(45) |∂2Fcrude − ξ| ≤ Cε−1|I0| on E.

Lemma 8. Let I ∈ Tglobal(Ǐ), and let z0 ∈ Q(I). Define

(46) G = F
#
I − {Fcrude + [∂2F

#
I (z0) − ∂2Fcrude(z0)]e2} on Q(I). Then

(47) |∂αG| ≤ C|I|2−|α| on Q(I), for |α| ≤ 2.
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Proof. We start by estimating [∂2F
#
I (z0) − ∂2Fcrude(z0)]. Since z

rep
left(I) ∈ E, (45)

gives

(48) |∂2Fcrude(z
rep
left(I)) − ξ| ≤ Cε−1|I0|.

Also, zrepleft(I), z0 ∈ Q(I), and

(49) diamQ(I) ≤ C|I|.

Hence, (44) yields

(50) |∂2Fcrude(z0) − ∂2Fcrude(z
rep
left(I))| ≤ C|I|.

From (48) and (50), we obtain

(51) |∂2Fcrude(z0) − ξ| ≤ Cε−1|I0|, thanks to the inclusions

(52) I ⊆ Ǐ ⊆ I0 (see (0)).

On the other hand, there exists Ĩ ∈ Tdist(Ǐ) such that I ∈ T loc(Ĩ). Lemma 4
then tells us that

(53) |∂2F
#
I − ∂2FĨ − λ(Ĩ)| ≤ Cε100|I| on Q(I).

(Recall that ∂2e2 ≡ 1.)
Moreover, (3) and (4) imply ∂2(FĨ+Ferr

Ĩ
) = ξ at zleft(Ĩ); hence, by (9), we have

(54) ∂2FĨ(zleft(Ĩ)) = ξ.

Since zleft(Ĩ) ∈ Q(Ĩ) and z0 ∈ Q(I) ⊂ Q(Ĩ), with diamQ(Ĩ) ≤ C|̃I|, we learn from (6)
that |∂2FĨ(z0) − ∂2FĨ(zleft(Ĩ))| ≤ C|̃I| ≤ C|̌I|. Together with (54), this gives

(55) |∂2FĨ(z0) − ξ| ≤ C|̌I|.

From (53), (55), Lemma 1, and (52), we obtain the estimate

(56) |∂2F
#
I (z0) − ξ| ≤ C|̌I| ≤ C|I0|.

Combining (51) and (56), we obtain our basic estimate for [∂2F
#
I (z0)−∂2Fcrude(z0)],

namely

(57) |∂2F
#
I (z0) − ∂2Fcrude(z0)| ≤ Cε−1|I0|.

On the other hand, we recall from Section 8 that ‖ e2 ‖C2(Q(I))≤ Cε|I0|
−1.

Therefore, by (57), we have ‖ [∂2F
#
I (z0) − ∂2Fcrude(z0)]e2 ‖C2(Q(I))≤ C.

Together with Lemma 2, estimate (44), and definition (46), this tells us that

(58) ‖ G ‖C2(Q(I))≤ C.

Next, we recall that zrepleft(I), z
rep
rt (I) ∈ E; hence, e2 = 0 and Fcrude = f at those

points. Recalling also Lemma 3 and definition (46), we conclude that

(59) G = 0 at zrepleft(I) and at zreprt (I).
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Also, since ∂2e2 ≡ 1, definition (46) gives ∂2G(z0) = 0; hence, by (49) and (58),
we have:

(60) |∂2G(zrepleft(I))| ≤ C|I|.

Let us write

(61) z
rep
left(I) = (x̄1, x̄2) and z

rep
rt (I) = (¯̄x1, ¯̄x2).

From Section 9, we recall that x̄2 = ϕ(x̄1) and ¯̄x2 = ϕ(¯̄x1). Moreover, from
Section 8, we recall that |ϕ′| ≤ C; hence,

(62) |¯̄x2 − x̄2| ≤ |z
rep
left(I) − z

rep
rt (I)| ≤ C|¯̄x1 − x̄1| ≤ C|I|.

(The last inequality in (62) follows from (49).)

Also, we recall from Section 9 that the points z
rep
left(I) and z

rep
rt (I) are distinct.

Hence, (62) yields

(63) ¯̄x1 �= x̄1.

Our plan is to estimate ∂1G(zrepleft(I)) by comparing G(zreprt (I)) with its Taylor ex-
pansion about zrepleft(I). From Taylor’s theorem and (58), we see that

|G(zreprt (I)) − [G(zrepleft(I)) + ∂1G(zrepleft(I)) · (¯̄x1 − x̄1) + ∂2G(zrepleft(I)) · (¯̄x2 − x̄2)]| ≤
≤ C|¯̄x1 − x̄1|

2 + C|¯̄x2 − x̄2|
2.

Hence, by (59), (60), (62), it follows that

|∂1G(zrepleft(I)) · (¯̄x1 − x̄1)| ≤ |∂2G(zrepleft(I)) · (¯̄x2 − x̄2)| + C|¯̄x1 − x̄1|
2 + C|¯̄x2 − x̄2|

2

≤ C|I| · C|¯̄x1 − x̄1|+ C|¯̄x1 − x̄1|
2 + C|¯̄x2 − x̄2|

2 ≤ C′|I| · |¯̄x1 − x̄1|.

This in turn tells us that

(64) |∂1G(zrepleft(I))| ≤ C′|I|,

thanks to (63).
From (58), (59), (60), (64) (together with Taylor’s theorem and (49)), we con-

clude that |G| ≤ C|I|2, |�G| ≤ C|I|, and |�2G| ≤ C on Q(I).
Thus, (47) holds. �

We can use Lemmas 7 and 8 to give a crude estimate for ∂α(F#I′ − F
#
I′′ ) on

Q(I′) ∩Q(I′′), for certain I′, I′′ ∈ Tglobal(Ǐ).

Lemma 9. Let I′, I′′ ∈ Tglobal(Ǐ). Suppose that the right endpoint of I′ coincides
with the left endpoint of I′′. Then

(65) |∂α(F#I′ − F
#
I′′ )| ≤ C(|I′|+ |I′′|)2−|α| on Q(I′) ∩Q(I′′), for |α| ≤ 2.

Proof. Let x0 = right endpoint (I′) = left endpoint (I′′). Note that I′ lies to the
left of I′′. Let I be the least common ancestor of I′ and I′′ in the tree Tglobal(Ǐ).



Nearly optimal interpolation of data in C2(R2). Part I 491

Descending from I to I′ in that tree, we obtain a finite sequence I′0, I
′
1, . . . , I

′
L′ ∈

Tglobal(Ǐ), such that

(66) I′0 = I, I′L′ = I′, and I′�+1 is a dyadic child of I′� for 0 ≤ � < L′.

Similarly, we obtain I′′0, I
′′
1, . . . , I

′′
L′′ ∈ Tglobal(Ǐ), such that

(67) I′′0 = I, I′′L′′ = I′′, and I′′�+1 is a dyadic child of I′′� for 0 ≤ � < L′′.

We prove a few elementary properties of the I′�, I
′′
� . First, we show that

(68) I′1 is the left dyadic child of I, and I′′1 is the right dyadic child of I.

Indeed, (66) and (67) tell us that I′1, I′′1 are dyadic children of I. We have
I′1 �= I′′1, since I is the least common ancestor of I′ and I′′. Therefore, (68) holds,
unless we have

(69) I′′1 is the left dyadic child of I, and I′1 is the right dyadic child of I.

However, (69) cannot hold, since I′ ⊂ I′1, I
′′ ⊂ I′′1, and I′ lies to the left of I′′. This

completes the proof of (68). Next we check that

(70) x0 is the right endpoint of I′�′ for 1 ≤ �′ ≤ L′ and

(71) x0 is the left endpoint of I′′�′′ for 1 ≤ �′′ ≤ L′′.

To see (70), (71), we note that I′�′ ⊂ I′1 and I′′�′′ ⊂ I′′1 for 1 ≤ �′ ≤ L′, 1 ≤ �′′ ≤ L′′.
Hence (69) shows that

(72) I′�′ lies to the left of I′′�′′ .

On the other hand,

(73) x0 ∈ (I′)closure ∩ (I′′)closure ⊂ (I′�′)
closure ∩ (I′′�′′)

closure.

Assertions (70) and (71) follow from (72) and (73).

From (66) and (70), we see that

(74) I′�+1 is the right dyadic child of I′�′ for 1 ≤ � < L′.

Similarly, (67) and (71) yield

(75) I′′�+1 is the left dyadic child of I′′� , for 1 ≤ � < L′′.

This concludes our discussion of the elementary properties of the I′�, I
′′
� .

Next, we bring in Lemma 7. From (70), (71) and the definition of zleft(I), zrt(I)
in Section 9, we see that the points zrt(I

′
�)(1 ≤ � ≤ L′) and zleft(I

′′
� ) (1 ≤ � ≤ L′′)

are all equal. Let z0 denote this common point.
From (74) and conclusion (41) of Lemma 7, we learn that

(76) ∂2F
#
I′
1
(z0) = ∂2F

#
I′
2
(z0) = · · · = ∂2F

#
I′
L′
(z0).
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Similarly, (75) and (40) yield the equalities

(77) ∂2F
#
I′′
1
(z0) = ∂2F

#
I′′
2
(z0) = · · · = ∂2F

#
I′′
L′′

(z0).

Moreover, (68) and (42) tell us that

(78) ∂2F
#
I′
1
(z0) = ∂2F

#
I′′
1
(z0).

In view of (76), (77), (78), we have ∂2F
#
I′
L′
(z0) = ∂2F

#
I′′
L′′

(z0). That is,

(79) ∂2F
#
I′ (z0) = ∂2F

#
I′′ (z0), where z0 = zrt(I

′) = zleft(I
′′).

(See (66) and (67).)

We now bring in Lemma 8. Note that

(80) z0 = zrt(I
′) = zleft(I

′′) ∈ Q(I′) ∩Q(I′′).

Hence, Lemma 8 tells us that

(81) |∂α(F#I′ − {Fcrude + [∂2F
#
I′ (z0) − ∂2Fcrude(z0)]e2})| ≤ C|I′|2−|α| on Q(I′), for

|α| ≤ 2.

Another application of Lemma 8 (and (80)) yields the estimate

(82) |∂α(F#I′′ − {Fcrude + [∂2F
#
I′′ (z0) − ∂2Fcrude(z0)]e2})| ≤ C|I′′|2−|α| on Q(I′′), for

|α| ≤ 2.

The conclusion (65) of Lemma 9 follows at once from (79), (81) and (82). �

From Lemma 5, we can sometimes obtain a sharper estimate for |∂α(F#I′ −F
#
I′′)|.

Lemma 10. Let I′, I′′ ∈ Tglobal(Ǐ). Assume I′, I′′ ⊂ Î for some dyadic interval Î of
length at most ε−2 · (|I′| + |I′′|). Then

(83) |∂α(F#I′ − F#I′′ )| ≤ Cε96 · (|I′|+ |I′′|)2−|α| on Q(I′) ∩Q(I′′) for |α| ≤ 1.

Proof. Let I be the least common ancestor of I′ and I′′ in Tglobal(Ǐ). Then

(84) |I| ≤ ε−2 · (|I′|+ |I′′|).

Descending from I to I′ in the tree Tglobal(Ǐ), we obtain a finite sequence I0, I1, . . . , IL
∈ Tglobal(Ǐ), such that I0 = I, IL = I′, and I�+1 is a dyadic child of I� for 0 ≤ � < L.
Note that |I�| = 2−�|I| for each �, and that Q(I0) ⊃ Q(I1) ⊃ · · · ⊃ Q(IL) = Q(I′).

Lemma 5 gives the estimate

|∂α(F#I� − F
#
I�+1

)| ≤ Cε100|I�|
2−|α| on Q(I�+1), for |α| ≤ 1, 0 ≤ � < L.

Summing on �, we find that

(85) |∂α(F#I − F
#
I′ )| ≤ Cε100|I|2−|α| on Q(I′), for |α| ≤ 1.

Similarly,

(86) |∂α(F#I − F
#
I′′ )| ≤ Cε100 |I|2−|α| on Q(I′′), for |α| ≤ 1.

Our desired conclusion (83) follows from (84), (85), (86). �
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Remark. In Lemma 10, we do not assume that the dyadic interval Î is a node of
the tree Tglobal(Ǐ).

We close this section with two simple observations.

Lemma 11. For the root Ǐ, we have

(87) JS(Ǐ)(F
#

Ǐ
) = �PǏ. (See (1).)

Proof. Since Ǐ ∈ Tdist(Ǐ), we have by definition: F#
Ǐ
= FǏ+Ferr

Ǐ
+λ(Ǐ)e2. Recalling (2)

and (4), we obtain (87). �

Lemma 12. Let I ∈ Tglobal(Ǐ). If I ∈ Tdist(Ǐ) and I is of type C1, then F
#
I = f

at z!(I).

Proof. By definition F
#
I = FI + FerrI + λ(I)e2. At z = z!(I) ∈ E, we have e2 = 0.

Hence, F#I (z!(I)) = (FI + FerrI )(z!(I)) = f(z!(I)), thanks to (11). �

15. Global interpolants

In this section, we adopt the notation, assumptions and boiler-plate constants from
Section 8. We suppose we are given an interval

(0) Ǐ ⊂ I0 (dyadic), with #(5 Ǐ ∩ Ē) ≥ 2.

We suppose that we have carried out Algorithm MMBT from Section 9, Algorithm
JPU from Section 10, and the one-time work of Algorithm MAK from Section 13.
Thus, for each Ĩ ∈ Tdist(Ǐ), we have computed the convex polyhedron K(Ĩ).

Finally, we suppose that we are given a Whitney field

(1) �PǏ ∈ K(Ǐ).

Using the query algorithm within Algorithm MAK, we obtain from �PǏ a family of

Whitney fields �PĨ and real numbers λ(Ĩ), indexed by the nodes Ĩ ∈ Tdist(Ǐ).
In Section 14, we defined a function

(2) F
#
I ∈ C2(Q(I)) for each I ∈ Tglobal(Ǐ).

From Section 10, we recall the open set

(3) Ω(Ǐ) = {(x1, x2) ∈ R2 : x1 ∈ Ǐinterior, |x2 −ϕ(x1)| < |̌I|},

and the partition of unity

(4)
∑

I∈T global(Ǐ)

θI = 1 on Ω(Ǐ), with

(5) suppθI ⊂ Q(I) for each I ∈ Tglobal(Ǐ).
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Recall that the θI are defined only on Ω(Ǐ), and that supp θI is the set of all
points z in Ω(Ǐ) such that θI does not vanish identically in any neighborhood of z.

In this section, we establish the basic properties of the function

(6) F# :=
∑

I∈T global(Ǐ)

θIF
#
I ∈ C2(Ω(Ǐ)).

Recall that, in Section 8, we supposed that we are given a real number τ, used to
fix a dyadic grid Gτ. Whenever we speak of a “dyadic” interval I in this section,
or in Sections 10 or 14, our interval I is dyadic with respect to Gτ.

Recall also, from Section 4, the following definition:

(7) Let τ, x1 ∈ R, and let k0, � ∈ Z, with k0 > 0. Let Î be the interval of length
2k0+� in Gτ containing x1. Then we say that (x1, �) is “k0-regular” for Gτ, if
every I ∈ Gτ such that |I| ≤ 2� and 3I � x1 satisfies I ⊂ Î.

Definition (7) will enter into the basic properties of the function F#. To see
this, we make the following further definitions:

We fix an integer k0, such that

(8) 2k0−10 < ε−1 < 2k0 .

For z = (x1, x2) ∈ Ω(Ǐ), we define

(9) δLS(z) = δLS(x1) + |x2 −ϕ(x1)| = δLS(x1) + |e2(z)|.

(See equation (2) in Section 7, for the definition of δLS(x1).)

Let I ∈ Tglobal(Ǐ), and let z = (x1, x2) ∈ Ω(Ǐ). Recall (see (34) in Section 10)
that if z ∈ suppθI, then

(10) x1 ∈ (1.01)I and c1δLS(z) < |I| < C1δLS(z).

For the rest of this section, we fix c1, C1 as in (10).

For z ∈ Ω(Ǐ), we define an integer �(z) by

(11) 2�(z)−1 < C1δLS(z) ≤ 2�(z).

Thus, whenever z = (x1, x2) ∈ Ω(Ǐ) and I ∈ Tglobal(Ǐ) satisfy z ∈ suppθI, we
then have

(12) x1 ∈ (1.01)I and c · 2�(z) < |I| < 2�(z).

Lemma 1. Let z = (x1, x2) ∈ Ω(Ǐ). Assume that either

(13) (x1, �(z)) is k0-regular for the grid Gτ or

(14) 2�(z)+k0 > ε1/2 |̌I|.

Then there exists a dyadic interval Î, such that for every I ∈ Tglobal(Ǐ) satisfying
z ∈ suppθI, we have

(15) I ⊂ Î and |̂I| < ε−2|I|.
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Proof. First, assume (13). Let Î be the dyadic interval of length 2k0+�(z) contain-
ing x1. By assumption (13) and definition (7), we know that:

Any dyadic interval I such that x1 ∈ 3I and |I| ≤ 2�(z) satisfies I ⊂ Î.

Hence, (12) shows that any I ∈ Tglobal(Ǐ) such that z ∈ suppθI satisfies I ⊂ Î.
Any such I also satisfies |I| > c · 2�(z) = c · 2−k0 |̂I| > c′ε|̂I|, thanks to (12) and (8).
Thus, (15) holds for every I ∈ Tglobal(Ǐ) such that z ∈ suppθI. This proves our
lemma under hypothesis (13).

On the other hand, suppose (14) holds. We take Î = Ǐ, and check that (15)
holds for every I ∈ Tglobal(Ǐ) such that z ∈ suppθI. Indeed, any such I satisfies
I ⊂ Ǐ, simply because I ∈ Tglobal(Ǐ). Moreover, for such I, (8), (12) and (14) yield

|I| > c · 2�(z) > c · 2−k0ε1/2 |̌I| > c′′ · ε3/2 |̌I| > ε2 |̌I|.

Thus, (15) holds for all I ∈ Tglobal(Ǐ) such that z ∈ supp θI. This proves Lemma 1
under assumption (14). �

Lemma 2. Let z = (x1, x2) ∈ Ω(Ǐ). Assume that either

(16) (x1, �(z)) is k0-regular for the grid Gτ, or

(17) 2�(z)+k0 > ε1/2 |̌I|.

Let I′, I′′ ∈ Tglobal(Ǐ), and suppose z ∈ suppθI′ ∩ supp θI′′ . Then

(18) |∂α(F#I′ − F
#
I′′ )(z)| ≤ Cε96|I′|2−|α| for |α| ≤ 1.

Proof. By Lemma 1, together with Lemma 10 from Section 14, we have

(19) |∂α(F#I′ − F
#
I′′ )| ≤ Cε96 · (|I′|+ |I′′|)2−|α| on Q(I′) ∩Q(I′′) for |α| ≤ 1.

Recalling (5) and (12), we see that

(20) z ∈ supp θI′ ∩ suppθI′′ ⊂ Q(I′) ∩Q(I′′), and

(21) |I′′| < 2�(z) < C|I′|.

Conclusion (18) now follows at once from (19), (20), (21). �

Dropping the assumptions (16), (17), we can still prove a crude version of (18).

Lemma 3. Let z = (x1, x2) ∈ Ω(Ǐ), and let I′, I′′ ∈ Tglobal(Ǐ). If z ∈ suppθI′ ∩
suppθI′′ , then

(22) |∂α(F#I′ − F
#
I′′ )(z)| ≤ C|I′|2−|α| for |α| ≤ 1.

Proof. From (12), we have c|I′| ≤ |I′′| ≤ C|I′|. Hence, without loss of generality, we
may suppose |I′′| ≤ |I′|. Thus

(23) |I′′| ≤ |I′| ≤ C|I′′|.

Let Ĩ′′ be the dyadic interval containing I′′, of length

(24) |̃I′′| = |I′|.
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Since I′, I′′ ∈ Tglobal(Ǐ), we know that |I′| ≤ |̌I| and I′′ ⊂ Ǐ. Thus, Ǐ and Ĩ′′ are
both dyadic intervals containing I′′, and moreover |̃I′′| ≤ |̌I| by (24). Consequently,

(25) I′′ ⊂ Ĩ′′ ⊂ Ǐ.

Next, we observe a useful corollary of conclusion (II) of Lemma BT1 in Sec-
tion 7, namely:

(26) Let I1, I2, I3 be dyadic intervals. If I1, I3 ∈ Tglobal(Ǐ) and I1 ⊂ I2 ⊂ I3, then
also I2 ∈ Tglobal(Ǐ).

From (25), (26) we conclude that

(27) Ĩ′′ ∈ Tglobal(Ǐ).

Moreover, since z = (x1, x2) ∈ suppθI′ ∩ supp θI′′ , we know from (12) that

(28) x1 ∈ (1.01)I′ ∩ (1.01)I′′ ⊂ (1.01)I′ ∩ (1.01)Ĩ′′.

Together with (24) and the fact that I′ and Ĩ′′ are dyadic, this implies that either

(a) I′ = Ĩ′′, or
(b) The right endpoint of I′ coincides with the left endpoint of Ĩ′′, or
(c) The right endpoint of Ĩ′′ coincides with the left endpoint of I′.

Consequently, Lemma 9 in Section 14 tells us that |∂α(F#I′−F
#

Ĩ′′
)| ≤ C·(|I′|+|̃I′′|)2−|α|

on Q(I′) ∩Q(Ĩ′), for |α| ≤ 2. Thanks to (24), this is equivalent to

(29) |∂α(F#I′ − F
#

Ĩ′′
)| ≤ C|I′|2−|α| on Q(I′) ∩Q(Ĩ′′), for |α| ≤ 2.

On the other hand, by (25), there exists a finite sequence of dyadic intervals,

(30) Ĩ0 ⊃ Ĩ1 ⊃ · · · ⊃ ĨL, such that

(31) Ĩ0 = Ĩ′′, ĨL = I′′, and Ĩ�+1 is a dyadic child of Ĩ� for 0 ≤ � < L.

In particular,

(32) Q(Ĩ′′) = Q(Ĩ0) ⊃ Q(Ĩ1) ⊃ · · · ⊃ Q(ĨL) = Q(I′′) and

(33) |̃I�| = 2−� |̃I0| = 2−� |̃I′′| = 2−�|I′| for 0 ≤ � ≤ L.

By (31), together with Lemma 5 from Section 14, we have∣∣∂α(F#
Ĩ�

− F
#

Ĩ�+1
)
∣∣ ≤ Cε100 |̃I�|

2−|α|

on Q(Ĩ�+1), for |α| ≤ 1, � < L. Hence, by (32) and (33), we have∣∣∂α(F#
Ĩ�

− F
#

Ĩ�+1
)
∣∣ ≤ Cε100 · 2−�|I′|2−|α|

on Q(I′′), for 0 ≤ � < L, |α| ≤ 1.

Summing over �, and recalling (31), we conclude that

(34) |∂α(F#
Ĩ′′

− F
#
I′′)| ≤ Cε100|I′|2−|α| on Q(I′′), for |α| ≤ 1.
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Now from (29), (32) and (34), we obtain

(35) |∂α(F#I′ − F
#
I′′ )| ≤ C|I′|2−|α| on Q(I′) ∩Q(I′′), for |α| ≤ 1.

From (5), we have z ∈ suppθI′ ∩ suppθI′′ ⊂ Q(I′) ∩Q(I′′). Consequently, the
conclusion (22) of Lemma 3 follows at once from (35). �

Recall that F# is defined by (6), with the θI and F
#
I satisfying the following:

(36)
∑

I∈T global(Ǐ)

θI = 1 on Ω(Ǐ).

(37) suppθI ⊂ Q(I) for each I ∈ Tglobal(Ǐ).

(38) |∂αθI| ≤ C|I|−|α| for |α| ≤ 2, I ∈ Tglobal(Ǐ).

(39) θI ≥ 0 for each I ∈ Tglobal(Ǐ).

(40) Any given z ∈ Ω(Ǐ) belongs to suppθI for at most C distinct I ∈ Tglobal(Ǐ).

(41) Let I′, I′′ ∈ Tglobal(Ǐ). If supp θI′ ∩ suppθ′′I �= ∅, then c|I′| ≤ |I′′| ≤ C|I′|

(42) ‖ F
#
I ‖C2(Q(I))≤ 1+ Cε, for I ∈ Tglobal(Ǐ).

Indeed, (36)–(41) may be found in Section 10, and (42) is Lemma 2 in Sec-
tion 14. (See (3)–(7), (35), (36) in Section 10.)

Recall that |I| ≤ 1 for I ∈ Tglobal(Ǐ), thanks to (0), together with assumption (3)
in Section 8.

The above remarks, together with Lemmas 2 and 3, allow us to apply Lemma
GPU from Section 5. Thus, we obtain Lemmas 4 and 5 below.

Lemma 4. Let z = (x1, x2) ∈ Ω(Ǐ). Assume that either

(43) (x1, �(z)) is k0-regular for the grid Gτ, or

(44) 2�(z)+k0 > ε1/2 |̌I|.

Then

(45) |Jz(F
#)|z ≤ 1+ Cε.

Lemma 5. For any z ∈ Ω(Ǐ), we have

(46) |Jz(F
#)|z ≤ C.

We next investigate how well JS(I)(F
#) agrees with the given Whitney field �PǏ

in (1).

Lemma 6. Let �PǏ in (1) be given by

(47) �PǏ = (Pz)z∈S(Ǐ).

Then for z ∈ S(Ǐ) ∩Ω(Ǐ) such that

(48) |e2(z)| ≥ ε4 |̌I|, we have

(49) |∂α(F# − Pz)(z)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1.
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Proof. Let I ∈ Tglobal(Ǐ). Descending from Ǐ to I in the tree Tglobal(Ǐ), we obtain a
finite sequence of dyadic intervals I′0 ⊃ I′1 ⊃ · · · ⊃ I′L, such that each I′� belongs
to Tglobal(Ǐ), I′0 = Ǐ, I′L = I, and I′�+1 is a dyadic child of I′� for 0 ≤ � < L. In

particular, |I′�| = 2−� |̌I| for each �, and Q(I′0) ⊃ Q(I′1) ⊃ · · · ⊃ Q(I′L) = Q(I). By
Lemma 5 in Section 14, we have

|∂α(F#
I′
�
− F

#
I′
�+1

)| ≤ Cε100 |I′�|
2−|α|

on Q(I′�+1), for |α| ≤ 1, 0 ≤ � < L. Consequently,

|∂α(F#I′
�
− F

#
I′
�+1

)| ≤ Cε100 · 2−� |̌I|2−|α|

on Q(I), for |α| ≤ 1, 0 ≤ � < L. Summing over �, we see that

(50) |∂α(F#
Ǐ
− F

#
I )| ≤ Cε100 |̌I|2−|α| on Q(I), for |α| ≤ 1.

Estimate (50) holds for all I ∈ Tglobal(Ǐ).

Now suppose z = (x1, x2) ∈ Ω(Ǐ), and suppose that |e2(z)| = |x2 − ϕ(x1)| ≥
ε4 |̌I|. Then, for |α| ≤ 1, we have

(51) |∂α(F#
Ǐ
− F#)(z)| = |∂α{

∑
I∈T global(Ǐ)

θI · (F#Ǐ − F
#
I )}(z)|

≤ C
∑

I∈Tglobal(Ǐ)
suppθI�z

∑
α′+α′′=α

|∂α′
θI(z)| · |∂α′′

(F#
Ǐ
− F

#
I )(z)|.

(52) There are at most C terms on the right-hand side of (51). For each of those
terms, we have c · [δLS(x1) + |x2 −ϕ(x1)|] ≤ |I| ≤ C · [δLS(x1) + |x2 −ϕ(x1)|],
and thus |I| ≥ c|x2 − ϕ(x1)| ≥ cε4 |̌I|.

Consequently, for each term on the right in (51), we have

(53) |∂α′
θI(z)| ≤ C|I|−|α′| ≤ Cε−4 |̌I|−|α′|, while (50) gives

(54) |∂α′′
(F#

Ǐ
− F#I )(z)| ≤ Cε100 |̌I|2−|α′′|, since z ∈ suppθI ⊂ Q(I).

Using (52), (53), (54) to estimate the right-hand side of (51), we learn that

(55) |∂α(F#
Ǐ
− F#)(z)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1, whenever z ∈ Ω(Ǐ) and |e2(z)| ≥

ε4 |̌I|.

Finally, suppose z ∈ Ω(Ǐ) ∩ S(Ǐ), and suppose that |e2(z)| ≥ ε4 |̌I|. Recall-
ing (47) and Lemma 11 from Section 14, we see that conclusion (49) follows from
estimate (55). �

Next, we study how F# behaves at the points of E ∩Ω(Ǐ).

Lemma 7. F# = f on E ∩Ω(Ǐ).
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Proof. Fix z ∈ E ∩Ω(Ǐ). Let I ∈ Tglobal(Ǐ), and suppose suppθI � z. Then by (44)
in Section 10, I ∈ Tdist(Ǐ), I is of type C1, and z = z!(I). Hence, by Lemma 12 in

Section 14, F#I (z) = f(z). Thus, we have shown that

(56) F
#
I (z) = f(z) whenever z ∈ E ∩Ω(Ǐ), I ∈ Tglobal(Ǐ), suppθI � z.

The conclusion of Lemma 7 follows at once from (4), (6) and (56). �

We close this section with the following algorithm:

Algorithm CJF# (“Compute the Jet of F#”). Given the Whitney field �PǏ ∈ K(Ǐ)
as in (1), we compute the Whitney field JE∩Ω(Ǐ)(F

#). The work and storage used

to do so are at most CN. (Here, we do not count the work or storage of Algorithm
MMBT, Algorithm JPU, or Algorithm MAK.) We make no calls to the ϕ-Oracle.

Explanation: Fix a point

(57) z = (x1, x2) ∈ E ∩Ω(Ǐ).

From Section 10, we recall the following:

(58) Any I ∈ Tglobal(Ǐ) such that suppθI � z belongs to
∧
(x1). Each I ∈ ∧

(x1) be-
longs to Tdist(Ǐ), is of type C1, and satisfies z = z!(I). We have #(

∧
(x1)) ≤ C.

(59) Moreover, we have precomputed
∧
(x1) as well as Jz(θI) for each I ∈ ∧

(x1);
see Algorithm JPU.

In view of (58) and the definition of F#, we have

(60) Jz(F
#) =

∑
I∈∧

(x1)

Jz(F
#
I )z Jz(θI),

and there are at most C summands in (60).

Let I ∈ ∧
(x1). Then (58) gives

(61) z = z!(I) ∈ S(I).

Moreover, since I ∈ Tdist(Ǐ), equation (4) in Section 14, and the definition of F#I in
that section, together yield

(62) JS(I)(F
#
I ) = �PI + λ(I)JS(I)(e2).

We have precomputed JS(I)(e2) in Algorithm MMBT, and we have precomputed �PI

and λ(I) in the query algorithm within Algorithm MAK. Consequently, Jz(F
#
I ) may

be computed from (61), (62) using work and storage at most C. Therefore, Jz(F
#)

may be computed from (59), (60) using work and storage at most C. (Here, we
do not count the work or storage of the Algorithm MMBT, Algorithm JPU, or
Algorithm MAK.)

Looping over all z ∈ E ∩ Ω(Ǐ), we thus compute JE∩Ω(Ǐ)(F
#) using work and

storage at most CN. Note that we have made no calls to the ϕ-Oracle here. This
concludes our explanation of Algorithm CJF#.
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16. An almost OK interpolant

The set-up of this section is as follows: We adopt the notation, assumptions and
boiler-plate constants of Section 8.

We suppose we are given an interval

(0) Ǐ ⊂ I0 (dyadic), such that Ē ⊂ Ǐinterior and N = #(Ē) ≥ 2.

Observe that (0) strengthens the assumption made on Ǐ in several previous sections.
We work with the open rectangle

(1) R(Ǐ) = Q(Ǐ) ∩ [̌Iinterior × R] ⊂ R2.

Note that E ⊂ R(Ǐ). We suppose we are given a finite subset

(2) S00 ⊂ R(Ǐ), such that

(3) #(S00) ≤ ε−200, and

(4) For every z = (x1, x2) ∈ S00, we have |e2(z)| = |x2 −ϕ(x1)| > 4ε4 |̌I|.

Finally, we suppose we are given a base point

(5) z00 ∈ S00.

This completes the list of the assumptions made in this section. We recall a
few relevant definitions. For any x1 ∈ R, we define

(6) δLS(x1) = inf{r > 0 : [x1 − r, x1 + r] contains at least two points of Ē}, as in
Section 7.

For any point z = (x1, x2) ∈ Ǐ× R, we define

(7) δLS(z) = δLS(x1) + |x2 −ϕ(x1)|, as in Section 15.

Moreover, for all such z, we define an integer �(z) by

(8) 2�(z)−1 < C1δLS(z) ≤ 2�(z), with C1 as in equations (10), (11) in Section 15.

(In Section 15, we defined δLS(z) and �(z) only for z ∈ Ω(Ǐ); here, we define these
quantities for all z = (x1, x2) ∈ Ǐ× R.)

As in equation (8) of Section 15, we fix an integer k0, such that

(9) 2k0−10 < ε−1 < 2k0 .

The notion “(x1, �) is k0-regular for the grid Gτ” has been defined in Section 4,
and used, for example, in Lemma 1 in Section 15. Recall that we have picked a
dyadic grid Gτ in Section 8; see (1) in that section. Our goal here is to present the
following algorithm:

Algorithm AOK (“Almost OK Interpolant”): We compute a convex polyhedron
K00 ⊂ Wh(S00), defined by at most C(ε) constraints, such that the following hold:

(A) Let F ∈ C2(2Q(Ǐ)). Suppose F = f on E, ∂2F(z00) = ξ, and ‖ F ‖C2(2Q(Ǐ))≤
1− Cε for a large enough controlled constant C. Then JS00

(F) ∈ K00.
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(B) (Query Algorithm) After computing K00, we can answer queries as follows:

• A query consists of a Whitney field �P ∈ K00.

• The response to a query �P ∈ K00 is a Whitney field �PE ∈ Wh(E), such that
there exists a function F ∈ C2(R(Ǐ)), having the following properties:

JS00
(F) = �P; JE(F) = �PE; F = f on E; ∂2F(z00) = ξ;

moreover, if a given point z = (x1, x2) ∈ R(Ǐ) satisfies either

(i) (x1, �(z)) is k0-regular for the grid Gτ or

(ii) 2k0+�(z) > ε1/2 |̌I|,

then
|Jz(F)|z ≤ 1+ Cε.

For any z ∈ R(Ǐ), we have |Jz(F)|z ≤ C.

The computation of K00 uses work at most C(ε)N logN, storage at most C(ε)N,
and at most C(ε)N calls to the ϕ-Oracle.

The work and storage used to answer a query are at most C(ε)N. The query
algorithm makes no calls to the ϕ-Oracle.

Explanation: We start by making some simple observations on the geometry of
the sets S(Ǐ), Ω(Ǐ), R(Ǐ), Q(Ǐ). Next, we present the construction of the polyhe-
dron K00. Then we prove that K00 has property (A) above. After that, we present
the query algorithm in (B). Finally, we estimate the computer resources used to
compute K00 and answer queries. The geometrical observations are as follows:
Recall that

(10) Ω(Ǐ) = {(x1, x2) ∈ R2 : x1 ∈ Ǐinterior, |x2 −ϕ(x1)| < |̌I|} ⊂ R2.

See equation (2) in Section 10. We check the inclusions

(11) Ω(Ǐ) ⊂ R(Ǐ) ⊂ Q(Ǐ).

Indeed, let z = (x1, x2) ∈ Ω(Ǐ). Since
∑

I∈T global(Ǐ) θI = 1 on Ω(Ǐ), we have

z ∈ supp θI for some I ∈ Tglobal(Ǐ). Recalling that suppθI ⊂ Q(I) ⊂ Q(Ǐ), we
conclude that z ∈ Q(Ǐ), and thus Ω(Ǐ) ⊂ Q(Ǐ). Since also every (x1, x2) ∈ Ω(Ǐ)
satisfies x1 ∈ Ǐinterior, (11) is now obvious from (1).

Next, we prove the following:

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Let z=(x1, x2)∈R2, with x1∈ Ǐinterior and 2ε4 |̌I| ≤ |x2 −ϕ(x1)| ≤ 1
10
|̌I| .

Then there exists z′=(x′1, x
′
2)∈S(Ǐ) ∩Ω(Ǐ) , with the following properties:

• |z′ − z| < Cε100 |̌I| .

• ε4 |̌I| < |x′2 −ϕ(x′1)| <
1
4
|̌I| .

• The closed line segment joining z′ to z is contained in Ω(Ǐ) .
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To see this, we recall from Section 9 that

(13) S(Ǐ) ⊃ ∧
(Ǐ) = (2−k1(ε)|̌I|Z2) ∩Q(Ǐ), where

(14) 1
10
ε100 < 2−k1(ε) < ε100.

Now let z = (x1, x2) ∈ R2, with

(15) x1 ∈ Ǐinterior and 2ε4 |̌I| ≤ |x2 − ϕ(x1)| ≤ 1
10
|̌I|.

Then there exists

(16) x′1 ∈ Ǐinterior ∩ 2−k1(ε) |̌I|Z, such that

(17) |x′1 − x1| < Cε100 |̌I|.

(This follows from the fact that any interval of length greater than 1 contains an
integer.)

Fix such an x′1, and fix

(18) x′2 ∈ 2−k1(ε)|̌I|Z such that

(19) |x′2 − x2| < Cε100 |̌I|. Then

(20) z′ := (x′1, x
′
2) ∈ 2−k1(ε)|̌I|Z2 satisfies

(21) |z′ − z| < Cε100 |̌I|.

Let z′′ = (x′′1, x
′′
2) lie on the closed line segment joining z′ to z. Then

(22) x′′1 ∈ Ǐinterior, since x1, x
′
1 ∈ Ǐinterior.

Since |�e2| ≤ C on Ǐinterior × R, it follows that |e2(z
′′) − e2(z)| ≤ Cε100 |̌I|, i.e.,

|[x′′2 −ϕ(x′′1)] − [x′2 − ϕ(x′1)]| ≤ Cε100 |̌I|.

Hence, by (15), we have

(23) ε4 |̌I| < |x′′2 −ϕ(x′′1)| <
1
4
|̌I|.

Comparing (22) and (23) with definition (10), we see that z′′ ∈ Ω(Ǐ). Thus,

(24) The closed line segment joining z′ to z is contained in Ω(Ǐ).

Also, note that

(25) ε4 |̌I| < |x′2 −ϕ(x′1)| <
1
4
|̌I|,

since we may take z′′ = z′ in (23). Moreover, (20) and (24) tell us that z′ ∈
(2−k1(ε)|̌I|Z2) ∩Ω(Ǐ), and therefore

z′ ∈ (2−k1(ε)|̌I|Z2) ∩Q(Ǐ) =
∧

(Ǐ) ⊂ S(Ǐ),

thanks to (11) and (13). Thus,

(26) z′ ∈ S(Ǐ) ∩Ω(Ǐ).

The proof of (12) is complete, thanks to (21), (24), (25), (26).
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Next, we present the algorithm to construct the polyhedron K00. The algorithm
proceeds in several steps.

Step 0: Using the ϕ-Oracle, we compute the Whitney field JE(e2).

Step 1: We execute Algorithm MMBT from Section 9.

Step 2: We execute Algorithm JPU from Section 10.

Step 3: We perform the one-time work of Algorithm MAK from Section 13.

Thus, we compute the convex polyhedron K(Ǐ) ⊂ Wh(S(Ǐ)), which satisfies
conditions (30)–(32) in Section 13. In particular, K(Ǐ) is defined by at most C(ε)
constraints.

After Step 3, we will be able to respond to queries, as in (33), (34) of Section 13.

Step 4: We compute the set

(27) S+ := S00 ∪ S(Ǐ).

Note that

(28) S+ ⊂ Q(Ǐ) and #(S+) ≤ Cε−200.

This follows from (1), (2), (3), together with the definition of the set S(Ǐ) in
Section 9.

Step 5: By applying algorithm AUB4 from Section 6, we compute a convex poly-
hedron

(29) K+
AUB ⊂ Wh(S+), defined by at most C(ε) constraints, such that the

following hold:

(30) Let F ∈ C2(2Q(Ǐ)) with norm ≤ 1. Then JS+(F) ∈ K+
AUB.

(31) Let �P ∈ K+
AUB. Then there exists F ∈ C2(Q(Ǐ)) with norm ≤ 1 + ε such

that JS+(F) = �P+.

Step 6: Let A be a constant to be specified later. (We will later take A to be
a large enough controlled constant.) We compute the convex polyhedron K++ ⊂
Wh(S+)⊕ R, defined as follows:

(32) K++ = {(�P+, λ) ∈ Wh(S+)⊕ R : �P+ ∈ K+
AUB, |λ| ≤ A|̌I|,

�P+|S(Ǐ) + λJS(Ǐ)(e2) ∈ K(Ǐ), val (∂2
�P+, z00) = ξ}.

Recall that JS(Ǐ)(e2) was already computed (along with many other things) in

Step 1 above. Also, K(Ǐ) and K+
AUB were computed in Steps 3 and 5. Hence, we

can compute K++ from (32), once we know the constant A.

Step 7: We compute the convex polyhedron

(33) K00 := {(�P+|S00
) : (�P+, λ) ∈ K++} ⊂ Wh(S00).
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Since K(Ǐ) and K+
AUB, are defined by at most C(ε) constraints, we see by examining

Steps 6 and 7 that

(34) K00 ⊂ Wh(S00) and K++ ⊂ Wh(S+) ⊕ R are defined by at most C(ε)
constraints.

This completes the computation of K00, except that we have not yet picked the
constant A in Step 6.

We now prove that K00 has property (A) for a suitable choice of the constant A.
To do so, let

(35) F ∈ C2(2Q(Ǐ)) with norm ≤ 1−Aε, and assume that

(36) F = f on E, and ∂2F(z00) = ξ.

We will prove that

(37) JS00
(F) ∈ K00,

under certain assumptions on the constant A. To prove (37), we define

(38) �P+ = JS+(F) and

(39) λ = ∂2F(z00) − ∂2F(zleft(Ǐ)) = ξ− ∂2F(zleft(Ǐ)).

By (30) and (35), we have

(40) �P+ ∈ K+
AUB.

From (35), we obtain the estimate

(41) |λ| = |∂2F(z00) − ∂2F(zleft(Ǐ))| ≤ C diamQ(Ǐ) ≤ C′ |̌I|. We suppose that

(42) A > C′, with C′ as in (41).

Then (41) yields at once

(43) |λ| ≤ A|̌I|.

Recall that ‖ e2 ‖C2(2Q(Ǐ))≤ Cε|I0|
−1; see estimate (31) in Section 8. Hence, (41)

yields also

(44) ‖ λe2 ‖C2(2Q(Ǐ))≤ Cε|̌I| · |I0|−1 ≤ Cε, thanks to (0).

From (35) and (44), we see that the function

(45) F̃ := F+ λe2 ∈ C2(2Q(Ǐ)) has norm

(46) ‖ F̃ ‖C2(2Q(Ǐ))≤ 1−Aε+ Cε.

We recall that e2 = 0 on E and ∂2e2 = 1 on Ǐ × R. Hence, (36), (39) and (45)
imply the equalities

(47) F̃ = f on E, and

(48) ∂2F̃(zleft(Ǐ)) = ∂2F(zleft(Ǐ)) + λ = ξ.
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Comparing (46), (47), (48) with property (32) in the statement of Algorithm
MAK in Section 13, we see that

(49) JS(Ǐ)(F̃) ∈ K(Ǐ), provided

(50) A ≥ C′′ for a large enough controlled constant C′′.

Recalling (27), (38) and (45), we see that (49) is equivalent to the inclusion

(51) �P+|S(Ǐ) + λJS(Ǐ)(e2) ∈ K(Ǐ).

Note also that

(52) val (∂2
�P+, z00) = ξ, since (38) holds and ∂2F(z00) = ξ.

Thus, assuming thatA satisfies (42) and (50), we find that (�P+, λ)∈Wh(S+)⊕ R

satisfies (40), (43), (51) and (52). Hence, recalling the definitions (32), (33), we
conclude that

(53) (�P+, λ) ∈ K++ and �P+|S00
∈ K00, if A satisfies (42), (50).

By (27) and (38), we have �P+
∣∣
S00

= JS00
(F). Thus, (53) tells us that (37) holds,

provided A satisfies (42), (50).

We now pick A to be a controlled constant, large enough to satisfy (42) and (50).
Then we have proven that (35), (36) together imply (37).

Since A is a controlled constant, the fact that (35) and (36) together imply (37)
completes the proof of property (A) for our polyhedron K00.

We pass to the query algorithm (B) of Algorithm AOK. Suppose we are given
a query

(54) �P ∈ K00.

We first explain how to compute the response �PE ∈ Wh(E) to the query (54);
then we prove that there exists a function F ∈ C2(R(Ǐ)) having the properties
asserted in (B).

To compute the response �PE, we proceed as follows: Recall that K00 and K++

are convex polyhedra, defined by at most C(ε) constraints. Hence, thanks to (33)
and (54), routine linear programming allows us to compute a point

(55) (�P+, λ) ∈ K++, such that

(56) �P+|S00
= �P.

Recall that we have picked A to be a controlled constant. Hence, from (55) and
definition (32), we see that:

(57) �P+ ∈ K+
AUB;

(58) |λ| ≤ C|̌I|;

(59) �P+|S(Ǐ) + λJS(Ǐ)(e2) ∈ K(Ǐ); and
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(60) val (∂2
�P+, z00) = ξ.

Recall that we have computed JS(Ǐ)(e2) in Step 1 of the one-time work.
Hence, we can now compute the Whitney field

(61) �PǏ = (PǏ,z)z∈S(Ǐ) :=
�P+|S(Ǐ) + λJS(Ǐ)(e2).

Inclusion (59) tells us that

(62) �PǏ ∈ K(Ǐ).

Accordingly, we can carry out the query algorithm within Algorithm MAK, for the
query �PǏ in (62). (See (33), (34) in the statement of that algorithm in Section 13,
and recall that we have carried out the one-time work of Algorithm MAK in Step 3
above.)

We are now in position to apply Algorithm CJF# in Section 15, taking as
data the Whitney field �PǏ in (61), (62). (Note that by this point, we have already
executed Algorithms MMBT, JPU and AlgorithmMAK, as assumed in Section 15.)

Applying Algorithm CJF#, we compute a Whitney field

(63) �PCJ = (PCJ,z)z∈E ∈ Wh(E)

such that there exists a function F# ∈ C2(Ω(Ǐ)), with the following properties:

(64) Let z = (x1, x2) ∈ Ω(Ǐ). Then |Jz(F
#)|z ≤ C.

(65) Moreover, let z = (x1, x2) ∈ Ω(Ǐ). If either (x1, �(z)) is k0-regular for the
grid Gτ or 2k0+�(z) > ε1/2 |̌I| then |Jz(F

#)|z ≤ 1+ Cε.

(66) F# = f on E ∩Ω(Ǐ) = E; see (0).

(67) JE(F
#) = �PCJ.

(68) For z ∈ S(Ǐ) ∩Ω(Ǐ) such that |e2(z)| > ε4 |̌I|, we have |∂α(F# − PǏ,z)(z)| ≤
Cε96 |̌I|2−|α| for |α| ≤ 1.

Indeed, (64), (65), (66) and (68) hold, thanks to Lemmas 5, 4, 7 and 6 in Section 15

(respectively); (67) holds because �PCJ is the Whitney field computed from �PǏ by
Algorithm CJF#, and because E ∩Ω(Ǐ) = E thanks to (0).

We now compute the Whitney field

(69) �PE := �PCJ − λJE(e2) ∈ Wh(E).

(Recall that the Whitney field JE(e2) has been computed in Step 0.)

The Whitney field �PE is the answer to our query (54).

Thus, we have shown how to compute the response �PE to a query �P ∈ K00.
We prepare to show that there exists a function F ∈ C2(R(Ǐ)) having the properties
asserted in (B) of Algorithm AOK.

To do so, we first return to (57). By (31) and (57), there exists a function

(70) F+ ∈ C2(Q(Ǐ)) with norm ≤ 1+ ε, such that

(71) JS+(F+) = �P+.
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Let us fix such an F+, as well as an F# as in (64)–(68). By (61) and (71), we
have

(72) �PǏ = JS(Ǐ)(F
+ + λe2), hence

(73) �PǏ,z = Jz(F
+ + λe2) for all z ∈ S(Ǐ).

Therefore (68) tells us that

(74) |∂α(F# − λe2 − F+)(z)| ≤ Cε96 |̌I|2−|α|, for |α| ≤ 1 and z ∈ S(Ǐ)∩Ω(Ǐ) such
that |e2(z)| > ε4 |̌I|.

Note that F# − λe2 − F+ ∈ C2(Ω(Ǐ)) thanks to (11), since F# ∈ C2(Ω(Ǐ)) and
e2, F

+ ∈ C2(Q(Ǐ)).

We estimate the norm of F# − λe2 − F+ in C2(Ω(Ǐ)).
We recall that ‖ e2 ‖C2(Q(Ǐ))≤ Cε|I0|

−1 by (31) in Section 8. Hence, (11), (58)

and (0) together imply that

(75) ‖ λe2 ‖C2(Ω(Ǐ))≤ Cε|̌I| · |I0|−1 ≤ Cε.

Also, (11) and (70) yield

(76) ‖ F+ ‖C2(Ω(Ǐ))≤ 1+ ε.

From (64), we have also

(77) ‖ F# ‖C2(Ω(Ǐ))≤ C.

From (75), (76), (77) and the Bounded Distortion Property, we see that

(78) |∂α(F# − λe2 − F+)| ≤ C on Ω(Ǐ) for |α| ≤ 2.

Now let z = (x1, x2) ∈ Ω(Ǐ), and suppose that

(79) 2ε4 |̌I| ≤ |x2 −ϕ(x1)| ≤ 1
10
|̌I|.

Applying observation (12), we obtain a point

(80) z′ = (x′1, x
′
2) ∈ S(Ǐ) ∩Ω(Ǐ) such that

(81) |z′ − z| < Cε100 |̌I|,

(82) ε4 |̌I| < |x′2 − ϕ(x′1)| <
1
4
|̌I|, and

(83) The closed line segment joining z′ to z is contained in Ω(Ǐ).

By (74), (80) and (82), we have

(84) |∂α(F# − λe2 − F+)(z′)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1.

From (78) and (83), we see that

(85) |∂α(F#−λe2−F+)| ≤ C for |α| ≤ 2, everywhere on the closed line segment
joining z′ to z.
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From (81), (84), (85) and Taylor’s theorem, we conclude that

|∂α(F# − λe2 − F+)(z)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1.

Thus, we have proven the following:

(86) Let z = (x1, x2) ∈ Ω(Ǐ), and suppose 2ε4 |̌I| ≤ |x2 −ϕ(x1)| ≤ 1
10
|̌I|.

Then |∂α(F# − λe2 − F+)(z)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1.

We note also that

(87) ∂2F
+(z00) = ξ,

thanks to (60) and (71).

We prepare to patch together the functions F+ and F# − λe2, using a partition
of unity.

Fix functions θin, θout ∈ C2(R), with the following properties:

(88) θin + θout = 1 on R.

(89) 0 ≤ θin ≤ 1 and 0 ≤ θout ≤ 1 on R.

(90) θin(t) = 1 and θout(t) = 0 for |t| ≤ 2.

(91) θin(t) = 0 and θout(t) = 1 for |t| ≥ 4.

(92)
∣∣∣( d

dt

)k
θin(t)

∣∣∣, ∣∣∣( d
dt

)k
θout(t)

∣∣∣ ≤ C for k = 0, 1, 2 and t ∈ R.

For (x1, x2) ∈ R(Ǐ) = Q(Ǐ) ∩ [̌Iinterior × R], we set

(93) χin(x1, x2) = θin

(
x2−ϕ(x1)

ε4|Ǐ|

)
and χout(x1, x2) = θout

(
x2−ϕ(x1)

ε4|Ǐ|

)
.

Note that χin, χout are defined only on R(Ǐ). Let us establish the basic properties
of these cutoff functions. Immediately from (88)–(93), we have the following:

(94) χin + χout = 1 on R(Ǐ).

(95) 0 ≤ χin ≤ 1 and 0 ≤ χout ≤ 1 on R(Ǐ).

(96) χin(x1, x2) = 1 and χout(x1, x2) = 0 for |x2 −ϕ(x1)| ≤ 2ε4 |̌I|.

(97) χin(x1, x2) = 0 and χout(x1, x2) = 1 for |x2 −ϕ(x1)| ≥ 4ε4 |̌I|.

We check that also

(98) |∂αχin|, |∂
αχout| ≤ C · (ε4 |̌I|)−|α| on R(Ǐ), for |α| ≤ 2.

To verify (98), recall that |�e2| ≤ C and |�2e2| ≤ C · (ε−1|I0|)
−1 on Ǐ × R; see

Section 8. Thus, on R(Ǐ),

(99) |∂αe2| ≤ C · (ε−1|I0|)
1−|α| ≤ C · (ε4 |̌I|)1−|α| for 1 ≤ |α| ≤ 2. (See (0).)

On the other hand, for |α| ≤ 2, ∂αχin(z) is a sum of terms of the form

(100)

{(
d
dt

)k
θin(t)

∣∣∣∣t= e2(z)

ε4|Ǐ|

}
· k

Π
μ=1

(
∂αμe2(z)

ε4 |̌I|

)
,
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with α1+ · · ·+αk = α, and with each |αμ| ≥ 1. By (92) and (99), each term (100)
has absolute value

≤ C · k

Π
μ=1

[
(ε4 |̌I|)1−|αμ|

ε4 |̌I|

]
= C · (ε4 |̌I|)−|α|.

Hence, |∂αχin(z)| ≤ C · (ε4 |̌I|)−|α| on R(Ǐ), for |α| ≤ 2. The same argument applies
to |∂αχout(z)|, completing the proof of (98).

As a consequence of (1), (10) and (97), we have the following:

(101) Let (x1, x2) ∈ R(Ǐ)�Ω(Ǐ). Then χin = 0 and χout = 1 in a neighborhood
of (x1, x2).

The basic properties of χin, χout are (94)–(98) and (101). We now define

(102) F = χin · (F# − λe2) + χout · F+ ∈ C2(R(Ǐ)).

(This makes sense thanks to (101). Recall that F# ∈ C2(Ω(Ǐ)) and e2, F
+ ∈

C2(Q(Ǐ)).) We establish the basic properties of F. Let z ∈ S00. Then by (4), (97)
and (102), we have F = F+ in a neighborhood of z. Consequently, (56), (60)
and (71) tell us that

(103) JS00
(F) = �P and

(104) ∂2F(z00) = ξ.

On the other hand, let z = (x1, x2) ∈ E. Then z ∈ R(Ǐ) (as we observed just
after (1)); and e2(z) = x2 − ϕ(x1) = 0. Hence, (96) applies, and therefore F =
F#−λe2 in a neighborhood of z. In view of the above remarks and (66), (67), (69)
we have

(105) F = f on E and

(106) JE(F) = JE(F
#) − λJE(e2) = �PCJ − λJE(e2) = �PE.

Next, we establish the following: Let z = (x1, x2) ∈ R(Ǐ). Then

(107) |Jz(F)|z ≤ C.

(108) Moreover, if either (x1, �(z)) is k0-regular for the grid Gτ or 2k0+�(z) >
ε1/2 |̌I|, then |Jz(F)|z ≤ 1+ Cε.

To check (107), (108), we proceed by cases.

Case 1: Suppose |x2 −ϕ(x1)| < 2ε4 |̌I|.

Then (x1, x2) ∈ Ω(Ǐ) (see (1) and (10)), and (96) applies. Hence, F = F# − λe2
in a neighborhood of z. Consequently, (107) and (108) follow from (64), (65)
and (75).

Case 2: Suppose |x2 −ϕ(x1)| > 4ε4 |̌I|.
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Then (97) applies. Hence, F = F+ in a neighborhood of z. Consequently, (107)
and (108) follow from (70).

Case 3: Suppose 2ε4 |̌I| ≤ |x2 − ϕ(x1)| ≤ 4ε4 |̌I|.

Then, as in Case 1, (x1, x2) ∈ Ω(Ǐ), and (75) applies. Hence, (64), (65) imply
the following:

(109) |Jz(F
# − λe2)|z ≤ C.

(110) Moreover, if either (x1, �(z)) is k0-regular for the grid Gτ or 2k0+�(z) >
ε1/2 |̌I|, then |Jz(F

# − λe2)|z ≤ 1+ Cε.

Also, (70) tells us that

(111) |Jz(F
+)|z ≤ 1+ ε.

Since we are in Case 3, (86) applies. Thus,

(112) |∂α(F# − λe2 − F+)(z)| ≤ Cε96 |̌I|2−|α| for |α| ≤ 1.

Recall that F is given by (102), with χin and χout satisfying (94), (95), (98).

We define δz := ε4 |̌I|, and note that

(113) 0 < δz < 1,

thanks to (0) and assumption (3) in Section 8. The above remarks, together with
Lemma GPU in Section 5, imply (107), (108). Thus, (107) and (108) hold in all
cases.

Given a query �P as in (54), we have thus computed a response �PE in (69), and
proven that the function F ∈ C2(R(Ǐ)) satisfies (103)–(108). This completes our
explanation of part (B) of Algorithm AOK.

It remains to estimate the computer resources used by Algorithm AOK. We
begin with the one-time work.

Step 0 requires work and storage CN and N calls to the ϕ-Oracle.

Step 1 uses work less than C(ε)N logN, storage at most C(ε)N, and at most
C(ε)N calls to the ϕ-Oracle.

Step 2 uses work and storage at most CN, and at most CN calls to the ϕ-Oracle.

Step 3 uses work and storage at most C(ε)N, and makes no calls to the ϕ-Oracle.

Step 4 uses work and storage at most C(ε), and makes no calls to the ϕ-Oracle.

Step 5 uses work and storage at most C(ε) (thanks to (28)), and makes no calls
to the ϕ-Oracle.

Step 6 uses work and storage at most C(ε), and makes no calls to the ϕ-Oracle.
(Here, we use the fact that K+

AUB and K(Ǐ) are defined by at most C(ε)
constraints, and that #(S+) ≤ C(ε).)

Step 7 uses work and storage at most C(ε) (thanks to (34)), and makes no calls
to the ϕ-Oracle.
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The above remarks may be easily verified by looking up the computer resources
used by Algorithms MMBT, JPU, and MAK.

Consequently, the computer resources used to compute K00 are as promised.

We turn our attention to the query algorithm (B).

Starting from a query �P as in (54), we first compute (�P, λ) as in (55), (56). This
linear programming requires work and storage at most C(ε), and makes no calls
to the ϕ-Oracle.

Next, we compute the Whitney field �PǏ in (61). Again, this step requires work
and storage at most C(ε), and makes no calls to the ϕ-Oracle (because we already
computed JS(Ǐ)(e2) in Step 1).

We then carry out the query algorithm from Algorithm MAK, for the query �PǏ.
This requires work and storage at most C(ε)N, and makes no calls to the ϕ-Oracle.

The next step is to execute Algorithm CJF#, taking as data the Whitney
field �PǏ. This step produces the Whitney field �PCJ, and uses work and storage at
most CN, without calling on the ϕ-Oracle.

Finally, we compute �PE from �PCJ using (69).
Since the Whitney field JE(e2) was computed already in Step 0, this last step

uses work and storage at most CN, and makes no calls on the ϕ-Oracle.
In view of the above remarks, the computer resources used to answer a query

as in (B) are as promised in Algorithm AOK.

17. Almost optimal interpolants

The interpolants F produced by Algorithm AOK fall short of satisfying the desired
estimate ‖ F ‖C2≤ 1 + Cε. In this section, we remedy this defect by averaging
over an ensemble of dyadic grids. We recall our convention that (i.j) denotes
equation (j) in Section i.

The setting for this section is slightly different from that given in Section 8. In
this section, we make the following assumptions:

(1) We are given a positive real number ε.

(2) We are given an open square Q00 = I00×J00 ⊂ R2 with sidelength δQ00
=

|I00| ≤ ¯̄C1ε.

(3) We are given a finite set Ē ⊂ I00.

(4) Let ϕ ∈ C2(¯̄c1ε
−1I00), where ¯̄c1ε

−1 > 1.

(5) On the interval ¯̄c1ε
−1I00, we have |ϕ′| ≤ ¯̄C2 and |ϕ′′| ≤ ¯̄C3ε|I00|

−1.

(6) Given a point x1 ∈ ¯̄c1ε
−1I00, a “ϕ-Oracle” computesϕ(x1), ϕ

′(x1), ϕ′′(x1),
charging us “work”

(7) WϕO ≥ 1 for the service.

(8) Let E = {(x1, ϕ(x1)) : x1 ∈ Ē} ⊂ R2.

(9) We assume E ⊂ Q00.
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(10) We assume that N = #(E) = #(Ē) ≥ 2.

(11) We are given a function f : E → R.

(12) We are given a real number ξ.

(13) We are given a family of norms | · |z on P (z ∈ R2), and an Oracle, satisfying
conditions (1)–(4) in Section 5. We define C2-norms as in that section.

(14) We assume there exists Fcrude ∈ C2(R2), such that ‖ Fcrude ‖C2(R2)≤ ¯̄C4,

Fcrude = f on E, and |∂2Fcrude − ξ| ≤ ¯̄C5ε
−1|I00| on E.

(15) In this section, we take the boiler–plate constants to be ¯̄C1, ¯̄c1,
¯̄C2,

¯̄C3,
¯̄C4,

¯̄C5,
and the constants called c0, C0, C1, C2 in Section 5.

Our choice (15) gives meaning to the notion of a “controlled constant” in this
section.

We make the following

Small ε Assumption

(16) ε is less than a small enough controlled constant.

This concludes our enumeration of the assumptions made in this section.

Given the above objects and assumptions, we introduce the following auxiliary
objects. We fix a half-open interval I0 = [a, b), such that

(17) I00 is contained in the middle half of I0,

(18) 50|I00| ≤ |I0| ≤ 200|I00|, and

(19) |I0| is an integer power of 2.

Thanks to (19), we can fix a real number t0, such that

(20) I0 ∈ Gt0 (see Section 4.)

We introduce integers k0, kmax, k1(ε), ν0(ε) such that

(21) 10−5|I00| ≤ 2kmax ≤ 10−4|I00|.

(22) 2k0−10 < ε−1 < 2k0 ,

(23) 1
10
ε100 < 2−k1(ε) < ε100, and

(24) 1
8
ε−2 < 2ν0(ε) < ε−2.

From Section 4, we recall the set T(k0, kmax), having the following properties:

(25) T(k0, kmax) ⊂ [0, 2kmax ].

(26) #(T(k0, kmax)) = 2k0 .

(27) Let x1 ∈ R, � ∈ Z. If � ≤ kmax − k0, then there are at most 100 distinct
t ∈ T(k0, kmax) such that (x1, �) is not k0-regular for the grid Gt0+t.
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For t ∈ T(k0, kmax), we define

(28) τ(t) = t0 + t and

(29) I0,t = I0 + t.

From (20), (28), (29), we have

(30) I0,t ∈ Gτ(t) for t ∈ T(k0, kmax).

Also, (21) and (25) give T(k0, kmax) ⊂ [0, 10−4 |I00|]. Hence, by (17) and (29),
we have

(31) I00 ⊂ (I0,t)
interior.

In addition, (18) and (29) give

(32) 50|I00| ≤ |I0,t| ≤ 200|I00 |.

From (31) and (32), we have

(33) 10−4 ¯̄c1ε
−1I0,t ⊂ ¯̄c1ε

−1I00,

with ¯̄c1 as in (4), (5), (6). Observations (30)–(33) hold for all t ∈ T(k0, kmax).

Lemma 1. Let t ∈ T(k0, kmax). Then assumptions (8.1)–(8.21) hold here, with
our present τ(t) and I0,t in place of τ and I0 in Section 8, respectively. Moreover,
we can take the constants in (8.20) to be controlled constants independent of t.

Proof. (8.1) simply asserts that τ(t) is a real number.

(8.2) asserts that 0 < ε < c̄1. We take c̄1 = 10−4 ¯̄c1; (8.2) holds thanks to our
Small ε Assumption (16).

(8.3) asserts that I0,t ∈ Gτ(t) and |I0,t| ≤ C̄1ε. This follows from (30), (32)

and (2), with C̄1 = 200 ¯̄C1.

(8.4) asserts that Ē ⊂ I0,t is finite. This follows from (3) and (31).

(8.5) asserts that ϕ ∈ C2(c̄1ε
−1I0,t). This follows from (4) and (33), since we

have taken c̄1 = 10−4 ¯̄c1.

(8.6) asserts that on c̄1ε
−1I0,t we have |ϕ′| ≤ C̄2 and |ϕ′′| ≤ C̄2ε|I0,t|

−1. Thanks
to (33), and thanks to our choice c̄1 = 10−4 ¯̄c1, this follows from (5) and (32),

with C̄2 = ¯̄C2 + ¯̄C3 · 200.
(8.7), (8.8) assert that, given any x1 ∈ c̄1ε

−1I0,t, the ϕ-Oracle computes ϕ(x1),
ϕ′(x1), ϕ′′(x1), and charges us “work” WϕO ≥ 1. Since we have taken
c̄1 = 10−4 ¯̄c1, this follows from (6), (7), (33).

(8.9) asserts that E = {(x1, ϕ(x1)) : x1 ∈ Ē} ⊂ R2, which is just (8).

(8.10) asserts that N = #(E) = #(Ē) ≥ 2, which is just (10).

(8.11) asserts that we are given f : E → R, which is just (11).

(8.12) asserts that we are given a real number ξ; that’s just (12).
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(8.13) asserts that we are given a family of norms | · |z on P (z ∈ R2), and an Oracle,
as in Section 5. That’s just (13). We use the same constants c0, C0, C1, C2

in (8.13) as in (13).

(8.14)–(8.17) assert the existence of a function Fcrude ∈ C2(R2) such that Fcrude = f
on E, |∂2Fcrude − ξ| ≤ C̄3ε

−1|I0,t| on E, and ‖ Fcrude ‖C2(R2)≤ C̄3.

This follows from (14), with C̄3 = ¯̄C4 +
¯̄C5, thanks to (32).

(8.18), (8.19) are just (23) and (24).

(8.20) declares that the boiler-plate constants for Section 8 are c̄1, C̄1, C̄2, C̄3,
together with c0, C0, C1, C2. Recall from our discussion of (8.1)–(8.19)

that c̄1 = 10−4 ¯̄c1, C̄1 = 200 ¯̄C1, C̄2 = ¯̄C2 + 200 ¯̄C3, C̄3 = ¯̄C4 + ¯̄C5; and
c0, C0, C1, C2 are as in (13), (i.e., as in (1)–(4) in Section 5).

Hence, by (15), all the boiler-plate constants of Section 8 are controlled
constants in the sense of the present section.

It follows that any controlled constant in the sense of Section 8 is also a con-
trolled constant (in the sense of the present section), that does not depend on t.
Consequently, (8.21) follows from our Small ε Assumption (16). The proof of
Lemma 1 is complete �

Thanks to Lemma 1, the definitions made in Section 8 make sense here, and
the observations made there are valid here (with τ(t) and I0,t in place of τ and I0,
respectively). Also, as observed in the proof of Lemma 1, any controlled constant
in the sense of Section 8 is also a controlled constant (in the sense of the present
section), that does not depend on t.

From Section 8, we recall that we have defined the open square

(34) Q(I0,t) ⊂ R2, with sidelength

(35) δQ(I0,t) = C̃Q|I0,t|,

for a controlled constant C̃Q independent of t. We recall (8.29), which tells us in
particular that

(36) (x1, ϕ(x1)) belongs to the middle half of Q(I0,t) for all x1 ∈ I0,t.

Note that (36) implies

(37) δQ(I0,t) ≥ |I0,t|, i.e., C̃Q ≥ 1 in (35).

As in Section 16, we introduce the open rectangle

(38) R(I0,t) = Q(I0,t) ∩ [Iinterior0,t × R].

We have (34)–(38) for all t ∈ T(k0, kmax). The following result relates Q(I0,t) and
R(I0,t) to Q00 (see (2), (9)).

Lemma 2. For any t ∈ T(k0, kmax), we have

(39) Q00 ⊂ R(I0,t) and

(40) 2Q(I0,t) ⊂ CQ00.
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Proof. Let z̃ = (x̃1, x̃2) ∈ E. Then x̃1 ∈ I00 ⊂ Iinterior0,t , and x̃2 = ϕ(x̃1); see (3), (8)
and (31). Consequently, z̃ lies in the middle half of Q(I0,t); see (36). Also, z̃ ∈ Q00

by (9). Hence,

(41) Q00 intersects the middle half of Q(I0,t).

In addition, we know from (2), (32), (35) and (37) that

δQ00
= |I00| ≤ 1

50
|I0,t| ≤ 1

50
δQ(I0,t) =

C̃Q

50
|I0,t| ≤ C|I00|.

Thus,

(42) 50δQ00
≤ δQ(I0,t) ≤ CδQ00

.

From (41) and (42), we see that (40) holds, and

(43) Q00 ⊂ Q(I0,t).

Moreover, Q00 = I00 × J00 ⊂ I00 ×R ⊂ (I0,t)
interior ×R; see (2) and (31). Together

with (43), this gives Q00 ⊂ Q(I0,t) ∩ [(I0,t)
interior × R] = R(I0,t); see (38). This

proves (39), completing the proof of Lemma 2. �

We are now ready to present the main result of this section.

Algorithm AOI. (“Almost Optimal Interpolant”): We suppose we are given the
objects and assumptions (1)–(16). Suppose also that we are given a finite subset

(44) S00 ⊂ Q00, such that

(45) #(S00) ≤ ε−200, and

(46) |x2 −ϕ(x1)| > ε3|I00| for all (x1, x2) ∈ S00.

Finally, suppose we are given a base point

(47) z00 ∈ S00.

Then we compute a convex polyhedron K(S00, Q00, z00) ⊂ Wh(S00), defined by at
most C(ε) constraints, such that the following hold for a large enough controlled
constant CA:

(48) Let F ∈ C2(CAQ00) with norm ≤ 1 − CAε, and suppose that F = f on E
and ∂2F(z00) = ξ. Then JS00

(F) ∈ K(S00, Q00, z00).

(49) After we have computed K(S00, Q00, z00), we can answer queries as follows:

A query consists of a Whitney field �P ∈ K(S00, Q00, z00). The response to

a query �P consists of a Whitney field �PE ∈ Wh(E), such that there exists
F ∈ C2(Q00) with norm ≤ 1 + Cε, such that F = f on E, ∂2F(z00) = ξ,

JS00
(F) = �P, JE(F) = �PE.
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The computation of K(S00, Q00, z00) uses work at most C(ε)N logN, and storage
at most C(ε)N; and makes at most C(ε)N calls to the ϕ-Oracle. To answer a given
query as in (49), we use work and storage at most C(ε)N, and we make no calls
to the ϕ-Oracle.

Explanation: We start by computing I0, t0, k0, kmax, k1(ε), ν0(ε) and T(k0, kmax)
as in (17)–(27). For each t ∈ T(k0, kmax), we compute τ(t) and I0,t from (28), (29),
as well as Q(I0,t) as in Section 8 and (34)–(38). These trivial computations use
work and storage at most C(ε), and make at most C(ε) calls to the ϕ-Oracle.

We prepare to apply Algorithm AOK (from Section 16), for each t∈T(k0, kmax).
To do so, we first check that the assumptions of Section 16 hold here, provided we
set Ǐ = I0,t, and take I0,t and τ(t) in place of I0, τ respectively.

Indeed, Lemma 1 tells us that the assumptions of Section 8 hold. The boiler-
plate constants of Section 16 are those of Section 8. We have seen in Lemma 1 that
those constants are controlled (in the sense of the present section) and independent
of t.

The remaining assumptions of Section 16 are (16.0)–(16.5). Let us check that
those assumptions hold here.

(16.0) asserts that I0,t ⊂ I0,t, I0,t ∈ Gτ(t), Ē ⊂ Iinterior0,t , and N = #(Ē) ≥ 2.

These assertions follow from (30), (3), (31), and (10).

(16.1) defines R(I0,t), precisely as in (38).

(16.2) asserts that S00 ⊂ R(I0,t), which follows from (44) and (39).

(16.3) asserts that #(S00) ≤ ε−200, which is just (45).

(16.4) asserts that |x2 −ϕ(x1)| > 4ε4|I0,t| for all (x1, x2) ∈ S00.

This assertion follows from (46), since ε3|I00| > 4ε4|I0,t|, by (32) and (16).

(16.5) asserts that z00 ∈ S00, which is just (47).

Thus, as claimed, the assumptions of Section 16 hold here, with I0,t in place
of Ǐ, I0,t in place of I0, and τ(t) in place of τ. The boiler-plate constants of
Section 16 may be taken here to be controlled constants independent of t.

Note that our present k0 is the same as the k0 in Section 16. (See (22)
and (16.9).) We now make the following definitions:

For x1 ∈ R, we define

(50) δLS(x1) = inf{r > 0 : [x1 − r, x1 + r] contains at least two points of Ē}.

For z = (x1, x2) ∈ Q00, we define

(51) δLS(z) = δLS(x1) + |x2 −ϕ(x1)|;

and we define �(z) for such z by

(52) 2�(z)−1 < C1δLS(z) ≤ 2�(z).

Here, C1 is the controlled constant from equation (16.8). Note that C1 is indepen-
dent of t, since it is computed from the boiler-plate constants of Section 16.
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Our definitions (50), (51), (52) agree with definitions (16.6), (16.7), (16.8).
More precisely, (50) is the same as (16.6), while definitions (16.7), (16.8) are more
general than our present definitions (51), (52). (Here, we assume z ∈ Q00, whereas
for (16.7), (16.8) we assume merely that z ∈ I0,t ×R. As usual, we are taking I0,t
in place of Ǐ. We know that Q00 ⊂ I0,t × R; see (38) and (39).) Note that �(z) is
independent of t, for fixed z ∈ Q00.

We can now pass to the next steps in Algorithm AOI.

For each t ∈ T(k0, kmax), we perform the one-time work of Algorithm AOK,
taking I0,t in place of Ǐ, I0,t in place of I0, and τ(t) in place of τ.

Thus, for each t ∈ T(k0, kmax), we obtain a convex polyhedron

(53) K00(t) ⊂ Wh(S00), defined by at most C(ε) constraints, such that the
following hold:

(54) Let F ∈ C2(2Q(I0,t)) with norm ≤ 1−Cε for large enough C, and suppose
F = f on E and ∂2F(z00) = ξ. Then JS00

(F) ∈ K00(t).

(55) After computing K00(t), we can answer queries as follows: A query consists

of a Whitney field �P ∈ K00(t). The response to a query �P is a Whitney field
�PE
t ∈ Wh(E), such that there exists Ft ∈ C2(R(I0,t)) with the following

properties:

(a) Ft = f on E, ∂2Ft(z00) = ξ, JS00
(Ft) = �P, JE(Ft) = �PE

t .

(b) Let z = (x1, x2) ∈ Q00. Then |Jz(Ft)|z ≤ C. Moreover, if either

(i) (x1, �(z)) is k0-regular for the grid Gτ(t) or

(ii) 2k0+�(z) > ε1/2|I0,t|

then |Jz(Ft)|z ≤ 1+ Cε.

(In (55)(b), we have taken z ∈ Q00 rather than z ∈ R(I0,t). That’s allowed, thanks
to (39).)

We recall the following from Algorithm AOK:

(56) The computation of a single K00(t) uses work at most C(ε)N logN, and
storage at most C(ε)N; and it makes at most C(ε)N calls to the ϕ-Oracle.
To answer a query as in (55), we use work and storage at most C(ε)N,
and make no calls to the ϕ-Oracle.

The polyhedron K(S00, Q00, z00) is defined as

(57) K(S00, Q00, z00) =
⋂

t∈T(k0,kmax)

K00(t).

Since #(T(k0, kmax)) = 2k0 ≤ Cε−1, we have

(58) K(S00, Q00, z00) ⊂ Wh(S00) is a convex polyhedron, defined by at most
C(ε) constraints.
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Once we have computed all the K00(t)(t∈T(k0, kmax)), we can compute K(S00, Q00,

z00) from (57), using work and storage at most C(ε), and making no calls to the
ϕ-Oracle.

We now check that our polyhedron K(S00, Q00, z00) satisfies (48).

Indeed, let F ∈ C2(CAQ00) with norm ≤ 1−CAε, and suppose F = f on E and
∂2F(z00) = ξ. If CA is a large enough controlled constant, then (40) shows that F ∈
C2(2Q(I0,t)) with norm ≤ 1 − CAε, for each t ∈ T(k0, kmax). Consequently, (54)
yields JS00

(F) ∈ K00(t) for each t ∈ T(k0, kmax). By definition (57), we therefore
have JS00

(F) ∈ K(S00, Q00, z00), completing the proof of (48).

Next, we provide the query algorithm (49). Suppose we have finished the
computation of K(S00, Q00, z00). Then, for each t ∈ T(k0, kmax), we can answer

queries as in (55). Now let �P ∈ K(S00, Q00, z00) be a query. We must compute

a response �PE ∈ Wh(E) such that there exists F ∈ C2(Q00) with the properties

asserted in (49). By (57), we have �P ∈ K00(t) for each t ∈ T(k0, kmax). Hence,

applying (55) for each such t, we compute Whitney fields �PE
t ∈ Wh(E) for which

there exist Ft ∈ C2(R(I0,t)) satisfying (55)(a) and (55)(b). Recalling (39), we see
that each Ft belongs to C2(Q00). We now define

(59) F = [#(T(k0, kmax))]
−1

∑
t∈T(k0,kmax)

Ft ∈ C2(Q00) and

(60) �PE = [#(T(k0, kmax))]
−1

∑
t∈T(k0,kmax)

�PE
t ∈ Wh(E).

This is the long-promised averaging over the ensemble of dyadic grids. Note that,
once we know the �PE

t for each t ∈ T(k0, kmax), we can compute �PE from (60) using
work and storage at most C(ε)N, without calling on the ϕ-Oracle.

Let us check that �PE and F have the desired properties given in (49). First of
all, since (55)(a) holds for each t ∈ T(k0, kmax), (59) and (60) yield at once that

(61) F = f on E, ∂2F(z00) = ξ, JS00
(F) = �P, and JE(F) = �PE.

Using (55)(b), we will prove that

(62) ‖ F ‖C2(Q00)≤ 1+ Cε.

From (61), (62), we will be assured that our �PE from (60) correctly answers the

query �P, as in (49). To prove (62), we fix z = (x1, x2) ∈ Q00, and note that

(63) |Jz(F)|z ≤ [#(T(k0, kmax))]
−1 ·

∑
t∈T(k0,kmax)

|Jz(Ft)|z, thanks to (59).

We distinguish two cases.

Case 1: Suppose 2k0+�(z) > ε1/2|I0|. Then, for each t ∈ T(k0, kmax), we have
2k0+�(z) > ε1/2|I0,t|; see (29). Consequently, (55)(b)(ii) applies, and thus |Jz(Ft)|z ≤
1+ Cε for each t ∈ T(k0, kmax). Therefore, (63) yields the estimate

(64) |Jz(F)|z ≤ 1+ Cε in Case 1.
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Case 2: Suppose 2k0+�(z) ≤ ε1/2|I0|. Then (18), (21) and (16) tell us that

2k0+�(z) ≤ 200ε1/2 |I00| ≤ 200ε1/2 · (105 · 2kmax) ≤ 2kmax .

Thus, k0 + �(z) ≤ kmax. Accordingly, (27) applies.
From (27), (28), we learn that:

(65) There are at most 100 distinct t ∈ T(k0, kmax) such that (x1, �(z)) is not
k0-regular for the grid Gτ(t).

Together with (55)(b), this tells us the following:

(66) We have |Jz(Ft)|z ≤ 1+Cε for all but at most 100 distinct t ∈ T(k0, kmax).
Moreover, |Jz(Ft)|z ≤ C for all t ∈ T(k0, kmax).

From (63), (66), we obtain the estimate

|Jz(F)|z ≤ 1+ Cε +
100

#[T(k0, kmax)]
· C.

Recalling that #[T(k0, kmax)] = 2k0 > cε−1 (see (26) and (22)), we conclude that

(67) |Jz(F)|z ≤ 1+ Cε in Case 2.

From (67) and (64), we see that |Jz(F)|z ≤ 1 + Cε for all z ∈ Q00, completing
the proof of (62). Thus, our query algorithm answers queries correctly.

In view of the comments provided above (regarding work, storage and calls to
the ϕ-Oracle), it is now trivial to check that our use of computer resources is as
promised in the statement of Algorithm AOI.

18. Almost optimal interpolants, version 2

In this section, we adopt the following assumptions:

(1) We are given a positive real number ε.

(2) We are given an open squareQ00 = I00×J00 ⊂ R2, with δQ00
= |I00| ≤ C̄1ε.

(3) We are given a finite set Ē ⊂ I00.

(4) A function ϕ is given in C2(c̄1ε
−1I00), where c̄1ε

−1 > 1.

(5) On c̄1ε
−1I00, we have |ϕ′| ≤ C̄2 and |ϕ′′| ≤ C̄3ε|I00|

−1.

(6) Given a point x1 ∈ c̄1ε
−1I00, a “ϕ-Oracle” computesϕ(x1), ϕ

′(x1), ϕ′′(x1),
charging us “work”

(7) WϕO
≥ 1 for the service.

(8) E = {(x1, ϕ(x1)) : x1 ∈ Ē} ⊂ R2.
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(9) We assume E ⊂ Q00.

(10) N = #(E) = #(Ē) ≥ 2.

(11) We are given a function f : E → R.

(12) We are given an interval IΓ ⊂ R, with |IΓ | ≤ C̄4ε
−1|I00|.

(13) We are given a family of norms | · |z on P (z ∈ R2), and an Oracle, satisfying
conditions (1)–(4) in Section 5. We define C2 norms as in that section.

(14) We assume that there exists Fcrude ∈ C2(R2), such that ‖ Fcrude ‖C2(R2)≤
C̄5, Fcrude = f on E, and ∂2Fcrude(z) ∈ IΓ for all z ∈ E.

(15) In this section, we take the boiler-plate constants to be c̄1, C̄1, C̄2, C̄3, C̄4, C̄5

above, together with the constants called c0, C0, C1, C2 in Section 5.

We make the following Small ε Assumption:

(16) ε is less than a small enough controlled constant.

The main result of this section is as follows:

Algorithm AOI, Version 2. Suppose we are given the above objects and assump-
tions, as well as the following data:

(17) A finite subset S00 ⊂ Q00, such that

(18) #(S00) < ε200 and

(19) |x2 −ϕ(x1)| > ε3|I00| for all (x1, x2) ∈ S00.

(20) A base point z00 ∈ S00.

Then we compute a convex polyhedron K ⊂ Wh(S00), defined by at most C(ε)
constraints, such that the following hold for a large enough controlled constant CA:

(21) Let F ∈ C2(CAQ00) with norm ≤ 1 − CAε. Suppose F = f on E and
∂2F(z00) ∈ IΓ . Then JS00

(F) ∈ K.

(22) After we have computed K, we can answer queries as follows: A query

consists of a Whitney field �P ∈ K. The response to a query �P ∈ K is a
Whitney field �PE ∈ Wh(E) such that there exists F ∈ C2(Q00) with the
following properties: ‖ F ‖C2(Q00)≤ 1 + Cε; F = f on E; ∂2F(z00) ∈ IΓ ;

JS00
(F) = �P; JE(F) = �PE.

The computation of K uses work at most C(ε)N logN, storage at most C(ε)N, and
at most C(ε)N calls to the ϕ-Oracle. To answer a query as in (22), we use work
and storage at most C(ε)N, and make no calls to the ϕ-Oracle.

Explanation: We first compute a finite list of points

(23) ξ1, . . . , ξνmax ∈ IΓ , such that

(24) Any given ξ ∈ IΓ satisfies |ξ− ξν| ≤ ε|IΓ | for some ν, and

(25) νmax ≤ Cε−1.
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For each ν, we note that assumptions (1)–(14) of Section 17, as well as (16) in
Section 17, hold here, with ξν in place of ξ. Moreover, the boiler-plate constants
given in (15) of Section 17 are controlled constraints in the sense of this section.
(See (15).)

In addition, assumptions (44)–(47) of Section 17 hold here. (We leave to the
reader the trivial verification of the above remarks.) Hence, for each ν, we may
perform Algorithm AOI, with ξν in place of ξ. Thus, for each ν, we obtain a
convex polyhedron

(26) Kν ⊂ Wh(S00), defined by at most C(ε) constraints, such that the follow-
ing hold, for a large enough controlled constant Ĉ > 1:

(27) Let F ∈ C2(ĈQ00) with norm ≤ 1− Ĉε, and suppose that F = f on E and
∂2F(z00) = ξν. Then JS00

(F) ∈ Kν.

(28) After we have computed Kν, we can answer queries, as follows: A query

consists of a Whitney field �P ∈ Kν. The response to a query �P ∈ Kν is a
Whitney field �PE

ν ∈ Wh(E) such that there exists Fν ∈ C2(Q00) with the
following properties: ‖ Fν ‖C2(Q00)≤ 1+Cε; Fν = f on E; ∂2Fν(z00) = ξν;

JS00
(Fν) = �P, JE(Fν) = �PE

ν.

The computation of a single Kν requires work ≤ C(ε)N logN, storage ≤ C(ε)N,
and at most C(ε)N calls to the ϕ-Oracle. Thanks to (25), the same holds for the
computation of all the Kν.

Once we have computed all the Kν, the work and storage used to answer a
query in (28) are at most C(ε)N; and we make no calls to the ϕ-Oracle in (28).
For the rest of this section, we fix Ĉ as in (27). As in many previous sections, we
work with the function

(29) e2(x1, x2) = x2 −ϕ(x1), defined for (x1, x2) ∈ ĈQ00.

From (5), we see that on ĈQ00, we have: |∂1e2| ≤ C, ∂2e2 ≡ 1, ∂2
12e2 =

∂2
22e2 = 0, and |∂2

1e2| ≤ Cε|I00|
−1. Note also that e2 = 0 at any point of E, and

∅ �= E ⊂ Q00 ⊂ ĈQ00. Moreover, ε|I00|
−1 ≥ c; see (2). By the above remarks and

Taylor’s theorem, we have

(30) ‖ e2 ‖C2(ĈQ00)
≤ Cε|I00|

−1.

We have

(31) e2 = 0 on E, and ∂2e2 ≡ 1 on ĈQ00, as noted many times before.

Next, let F ∈ C2(ĈQ00), and suppose F = f on E and ∂2F(z00) ∈ IΓ . Then
there exists ν such that |ξν − ∂2F(z00)| ≤ ε|IΓ | ≤ C|I00| (see (12) and (24)). Fix
such a ν, and define

F̃ = F+ [ξν − ∂2F(z00)]e2 ∈ C2(ĈQ00), μ = [∂2F(z00) − ξν].

Then F̃ = f on E, ∂2F̃(z00) = ξν, and

‖ F̃ ‖C2(ĈQ00)
≤‖ F ‖C2(ĈQ00)

+C|I00| · Cε|I00|−1 (by (30)).
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If ‖ F ‖C2(ĈQ00)
≤ 1−CAε for a large enough controlled constant CA > Ĉ then

we have shown that ‖ F̃ ‖C2(ĈQ00)
≤ 1− Ĉε, F̃ = f on E, and ∂2F̃(z00) = ξν; hence

JS00
(F̃) ∈ Kν, by (27). For the rest of this section, we fix CA as above.
Thus, we have proven the following:

(32) Let F ∈ C2(CAQ00) with norm ≤ 1 − CAε. Suppose F = f on E and
∂2F(z00) ∈ IΓ . Then for some ν (1 ≤ ν ≤ νmax), and for some real
number μ, we have JS00

(F) ∈ Kν + μJS00
(e2) and |μ| ≤ CB|I00|.

For the rest of this section, we fix CB as in (32).

We now continue with our description of Algorithm AOI-Version 2.

(33) We compute the Whitney fields JS00
(e2) and JE(e2).

Thanks to (10) and (18), this requires work and storage at most C(ε)N, and
at most C(ε)N calls to the ϕ-Oracle.

We define a convex polyhedron K ⊂ Wh(S00) as follows:

(34) A given �P ∈ Wh(S00) belongs to K if and only if

(35) val(∂2
�P, z00) ∈ IΓ ,

and moreover �P can be represented in the form

(36) �P =

νmax∑
ν=1

λν�Pν + μJS00
(e2), where μ, λ1, . . . , λνmax are real numbers,

(37) |μ| ≤ CB|I00|; λν ≥ 0 for each ν, λ1 + · · · + λνmax = 1, and

(38) �Pν ∈ Kν for each ν.

Then K ⊂ Wh(S00) is a convex polyhedron defined by at most C(ε) constraints.
We can compute K from JS00

(e2) and the Kν, using work and storage at most C(ε).

Moreover, given �P ∈ K, we can compute μ, λ1, . . . , λνmax ,
�P1, . . . ,�Pνmax satisfy-

ing (36), (37), (38). The work and storage used to do so are at most C(ε), and no
calls to the ϕ-Oracle are involved.

We will prove that (21), (22) hold for the above K.

Let us start with (21). Thus, suppose F ∈ C2(CAQ00) with norm ≤ 1 − CAε,
and suppose that F = f on E and ∂2F(z00) ∈ IΓ . We will show that JS00

(F) ∈ K.

Indeed, val(∂2JS00
(F), z00) = ∂2F(z00) ∈ IΓ , hence (35) holds for �P = JS00

(F).

Moreover, (32) shows that we can represent �P in the form (36), (37), (38), by taking

a single λν to equal 1, and all the rest of the λν equal to 0. Thus, �P = JS00
(F)

belongs to K, as claimed. This proves (21).

We turn to the query algorithm (22).

Suppose we have finished the computation of K. Then we have computed
JS00

(e2), JE(e2), and all the Kν. Let �P ∈ K be given. We compute μ, λ1, . . . , λνmax ,
�P1, . . . ,�Pνmax as in (36), (37), (38).
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For each ν = 1, . . . , νmax, we then apply the query algorithm (28) for the query
�Pν ∈ Kν; see (38). Thus, for each ν, we compute a Whitney field �PE

ν ∈ Wh(E) for
which there exists a function Fν ∈ C2(Q00) of norm ≤ 1+ Cε, such that

(39) Fν = f on E, ∂2Fν(z00) = ξν, JS00
(Fν) = �Pν, JE(Fν) = �PE

ν.

Let us fix functions Fν as above. We compute

(40) �PE =

νmax∑
ν=1

λν�P
E
ν + μJE(e2) ∈ Wh(E), and define

(41) F =

νmax∑
ν=1

λνFν + μe2 ∈ C2(Q00).

From (31), (36), (37), (39), (40), (41), we conclude that

(42) F =

νmax∑
ν=1

λνf = f on E;

(43) JS00
(F) =

νmax∑
ν=1

λν�Pν + μJS00
(e2) = �P and

(44) JE(F) =

νmax∑
ν=1

λν�P
E
ν + μJE(e2) = �PE.

Moreover, since �P ∈ K, we know that �P satisfies (35). Hence, (43) implies that

(45) ∂2F(z00) ∈ IΓ .

Also, since each Fν has norm at most 1+Cε in C2(Q00), estimates (30) and (37)
tell us that

(46) ‖ F ‖C2(Q00)≤
νmax∑
ν=1

λν · (1 + Cε) + CB|I00| · Cε|I00|−1 ≤ 1+ C′ε.

Our results (42)–(46) show that �PE and F are as asserted in the query algo-

rithm (22). Thus, we have successfully responded to the query �P, proving (22).

The reader may easily check that the computer resources used to carry out
Algorithm AOI-Version 2 are as promised. This completes our explanation of
Algorithm AOI-Version 2.

19. Almost optimal interpolants, version 3

In this section, we make the following assumptions:

(1) We are given a number ε > 0.

(2) We are given an open square Q0 = I0 × J0 such that |I0| ≤ C̄1.

(3) A given function ϕ∈C2(2I0) satisfies |ϕ
′|≤ C̄2 and |ϕ′′|≤ C̄3|I0|

−1 on 2I0.
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(4) Given x1 ∈ 2I0, a ϕ-Oracle returns ϕ(x1), ϕ
′(x1), ϕ′′(x1), charging us

“work” WϕO ≥ 1 to do so.

(5) We are given a finite set Ē ⊂ I0; let N = #(Ē).

(6) We define E = {(x1, ϕ(x1)) : x1 ∈ Ē}.

(7) We assume that E ⊂ Q0.

(8) We are given a function f : E → R.

(9) We are given a family of norms | · |z on P (z ∈ R2), and an Oracle, satisfying
conditions (1)–(4) in Section 5. We define C2 norms as in that section.

(10) We are given a finite set S0 ⊂ Q0.

(11) We assume that #(S0) < ε−100.

(12) We assume that |x2 −ϕ(x1)| > ε3δQ0
for all (x1, x2) ∈ S0.

(13) We are given a base point z0 ∈ S0.

(14) We are given a convex polyhedron Γ(z0) ⊂ P, defined by at most C̄4

constraints.

(15) We assume that |∂α(P1 − P2)(z0)| ≤ C̄5δ
2−|α|

Q0
for |α| ≤ 2, P1, P2 ∈ Γ(z0).

(16) We assume that there exists Fcrude ∈ C2(R2) such that ‖ Fcrude ‖C2(R2)≤
C̄6, Fcrude = f on E, and Jz0

(Fcrude) ∈ Γ(z0).

(17) We take the boiler-plate constants for this section to be C̄1, . . . , C̄6 in
assumptions (1)–(16) above, together with c0, C0, C1, C2 in (1)–(4) of Sec-
tion 5. We assume that C̄6 ≥ 1 in (16).

(18) We assume that ε is less than a small enough controlled constant.

This concludes the list of assumptions made in this section.

Our goal here is to present the following algorithm:

Algorithm AOI, Version 3. Given the above assumptions we compute a con-
vex polyhedron K ⊂ Wh(S0), defined by at most C(ε) constraints, such that the
following hold for a large enough controlled constant CA:

(19) Let F ∈ C2(2Q0) with norm ≤ 1 − CAε. Suppose that F = f on E and
Jz0

(F) ∈ Γ(z0). Then JS0
(F) ∈ K.

(20) After computing K, we can answer queries as follows: A query consists of

a Whitney field �P ∈ K. The response to a query �P ∈ K is a Whitney field
�PE ∈ Wh(E) for which there exists F ∈ C2(Q0) with norm ≤ 1+ Cε, such

that F = f on E, Jz0
(F) ∈ Γ(z0), JS0

(F) = �P and JE(F) = �PE.

The computation of K uses work≤C(ε)(N+2) log(N+2) and storage≤C(ε)(N + 2),
and makes ≤ C(ε)(N + 2) calls to the ϕ-Oracle.

To answer a query as in (20), we use work and storage at most C(ε) · (N+ 2),
and we make no calls to the ϕ-Oracle.
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Explanation: First of all, note that our present assumptions, unlike those made
in many previous sections, allow for the possibilities E = ∅, #(E) = 1. Hence, we
write N + 2 above, so that we get a sensible result for log(N + 2) in case N = 0.

When E = ∅, we have Wh(E) = {0}, and the equation JE(F) = �PE in (20) holds

vacuously for �PE = 0.
We begin the work of achieving (19), (20). We first compute a set S+ such that

(21) S0 ⊂ S+ ⊂ Q0,

(22) #(S+) ≤ 2 · ε−100,

(23) |x2 −ϕ(x1)| > ε3δQ0
for all (x1, x2) ∈ S+, and

(24) For any z ∈ Q0 there exists z+ ∈ S+ such that |z − z+| < ε2δQ0
.

We can trivially compute such an S+, using work and storage at most C(ε),
and making at most C(ε) calls to the ϕ-Oracle.

We will compute a convex polyhedron K+ ⊂ Wh(S+), defined by at most C(ε)
constraints, such that the following hold for a large enough controlled constant CA:

(25) Let F ∈ C2(2Q0) with norm ≤ 1 − CAε. Suppose that F = f on E, and
that Jz0

(F) ∈ Γ(z0). Then JS+(F) ∈ K+.

(26) After computing K+, we can respond to queries as follows: A query consists

of a Whitney field �P+ ∈ K+. The response to a query �P+ ∈ K+ is a Whitney
field �PE for which there exists F ∈ C2(Q0) with norm ≤ 1+Cε, such that

F = f on E, Jz0
(F) ∈ Γ(z0), JS+(F) = �P+, and JE(F) = �PE.

(27) Moreover, the computation of K+ uses work ≤ C(ε)(N + 2) log(N + 2),
storage at most C(ε) · (N + 2), and at most C(ε) · (N + 2) calls to the
ϕ-Oracle. To respond to a query as in (26), we use work and storage at
most C(ε) · (N+ 2), and we make no calls to the ϕ-Oracle.

Once we compute K+ as above, we can simply set K = {�P|S0
: �P ∈ K+}. It is

then trivial to check all the assertions made in the statement of Algorithm AOI-
Version 3. Thus, our task is to compute K+, as above. We explain how to do so.

We partition Q0 into a grid of congruent squares {Q̃ν}, with

(28) δQ̃ν
= δ̄ for each ν, where cεδQ0

≤ δ̄ ≤ CεδQ0
. Thus,

(29) The number of squares Q̃ν is at most Cε−2.

For each Q̃ν, we can trivially compute an open square Qν, such that

(30) Q0 ∩ 3Q̃ν ⊂ Qν ⊂ Q0, and

(31) δQν
= 5δ̄ = 5δQ̃ν

, for each ν.

The computation of all the Q̃ν and Qν uses work and storage C(ε), and involves
no calls to the ϕ-Oracle.



526 C. Fefferman

Next, we introduce cutoff functions θ̃ν ∈ C2(R2), with the following properties:

(32) θ̃ν ≥ 0 on R2, θ̃ν ≥ 1 on Q̃ν, θ̃ν = 0 outside 2Q̃ν;

(33) |∂αθ̃ν| ≤ Cδ̄−|α| = Cδ
−|α|

Q̃ν
on R2, for |α| ≤ 2.

We may take θ̃ν such that, given z and Q̃ν, we can compute Jz(θ̃ν) using work
and storage at most C. We then define a partition of unity on Q0, by setting

(34) θν = θ̃ν
/∑

ν′
θ̃ν′ on Q0, for each ν.

Thus, the θν are defined only on Q0. For each ν, we have

(35) θν ∈ C2(Q0), θν ≥ 0 on Q0, suppθν ⊂ Q0 ∩ 2Q̃ν ⊂ Qν.

Here and below, suppθν denotes the set of points z ∈ Q0 such that θν does not
vanish identically in any neighborhood of z. Moreover,

(36) |∂αθν| ≤ Cδ̄−|α| ≤ C′δ−|α|

Qν
on Q0, for |α| ≤ 2; and

(37)
∑
ν

θν = 1 on Q0.

In addition,

(38) Given z ∈ R2, and given Q̃ν, we can compute Jz(θν) using work and
storage at most C.

For each ν, we compute JE(θν); this takes work and storage at most C(ε) · (N+2),
and requires no calls to the ϕ-Oracle.

Let z ∈ supp θν ∩ supθν′ . Then by (24), there exists z+ ∈ S+ such that
|z − z+| < ε2δQ0

< Cεδ̄. (See (28).) Since z ∈ 2Q̃ν ∩ 2Q̃ν′ by (35), and since

δQ̃ν
= δQ̃ν′ = δ̄, it follows that z+ ∈ 3Q̃ν ∩ 3Q̃ν′ .

Also, z+ ∈ S+ ⊂ Q0. Thus, z
+ ∈ Q0∩3Q̃ν and z+ ∈ Q0∩3Q̃ν′ . Consequently,

z+ ∈ Qν ∩Qν′ , thanks to (30). Thus, we have proven the following:

(39) Let z ∈ supp θν ∩ supp θν′ . Then there exists z+ ∈ S+ such that z+ ∈
Qν ∩Qν′ , and |z − z+| < ε2δQ0

.

For each ν, let us write

(40) Qν = Iν × Jν, and define

(41) Eν = E ∩Qν,

(42) Ēν = {x1 : (x1, x2) ∈ Eν},

(43) Sν = S+ ∩Qν.

Note that Sν is non-empty, thanks to (30), (31), and (24) applied to the center
of Qν.
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For each ν, we pick

(44) z0,ν ∈ Sν.

The computation of all the Eν, Ēν, Sν, z0,ν uses work at storage at most C(ε) ·
(N + 2), and requires no calls to the ϕ-Oracle. Next, let

(45) I0Γ = {∂2P(z0) : P ∈ Γ(z0)}.

Since Γ(z0) ⊂ P is a convex polyhedron defined by at most C constraints, it
follows that I0Γ is an interval. Moreover, we can compute I0Γ using work and storage
at most C, without making calls to the ϕ-Oracle.

Thanks to our assumption (15), we have

(46) |I0Γ | ≤ CδQ0
.

Suppose F ∈ C2(Q0), with norm at most C̄6. (See (16).) Then |∂2F(z) −
∂2F(z0)| ≤ CδQ0

for all z ∈ Q0. Hence, for a large enough controlled constant C#,
the following holds:

(47) Let IΓ = {ξ ∈ R : distance (ξ, I0Γ ) ≤ C#δQ0
}.

(48) Let F ∈ C2(Q0) with norm at most C̄6 (as in (16)), and suppose that
Jz0

(F) ∈ Γ(z0). Then ∂2F(z) ∈ IΓ for all z ∈ Q0.

Moreover IΓ is an interval of length

(49) |IΓ | ≤ CδQ0
.

The main step in our computation of K+ is to do the following, for each of
the Qν:

(50) We compute a convex polyhedron Kν ⊂ Wh(Sν), defined by at most C(ε)
constraints, such that the following hold for a large enough controlled
constant CA:

(51) Let F ∈ C2(CAQν) with norm ≤ 1 − CAε. Suppose F = f on Eν and
∂2F(z0,ν) ∈ IΓ . Then JSν

(F) ∈ Kν.

(52) After computing Kν, we can answer queries as follows: A query consists

of a Whitney field �P ∈ Kν. The response to a query �P ∈ Kν is a Whitney
field �PE

ν ∈ Wh(Eν) such that there exists F ∈ C2(Qν) with norm ≤ 1+Cε,

satisfying F = f on Eν, ∂2F(z0,ν) ∈ IΓ , JSν
(F) = �P, JEν

(F) = �PE
ν .

(53) The computation of Kν uses work ≤ C(ε)(N + 2) log(N + 2), storage ≤
C(ε)(N + 2), and at most C(ε)(N + 2) calls to the ϕ-Oracle.

(54) To respond to a query as in (52), we use work and storage at most C(ε)·
(N+ 2), and make no calls to the ϕ-Oracle.

We first explain how to achieve (50)–(54) for each ν; then we explain how to
use (50)–(54) to compute K+ and satisfy (25), (26), (27).
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To achieve (50)–(54), we distinguish two cases.

The Easy Case: #(Eν) < 2.

The Hard Case: #(Eν) ≥ 2.

We first tackle the Hard Case. Recall that (18.x) denotes expression (x) in
Section 18.

We check the following:

(55) Assumptions (18.1)–(18.14) hold here, with our present Qν = Iν × Jν,
Eν, Ēν and Nν := #(Eν), respectively, in place of Q00 = I00 × J00, E, Ē
and N in Section 18. Moreover, the constants listed in (18.15) may be
taken here to be controlled constants (in the sense of the present section;
see (17)). Consequently, the “small ε assumption” (18.16) follows from
our present small ε assumption (18).

Indeed,

(18.1) just says that ε is a positive real number; this is our assumption (1).

(18.2) says that Qν = Iν × Jν is an open square, with δQν
≤ Cε. We have

defined Qν to be an open square with sidelength 5δ̄. Hence, δQν
≤ Cε, by (2)

and (28).

(18.3) says that Ēν ⊂ Iν is a finite set. This follows from (40), (41), (42), since E
is a finite set.

(18.4) says that ϕ∈C2(cε−1Iν), with cε−1>1. We know that Iν ⊂ I0, by (2), (30)
and (40). Also, |Iν| = 5δ̄ < Cε|I0|. Hence,

(56) cε−1Iν ⊂ 2I0 and |I0|
−1 ≤ Cε|Iν|

−1.

Consequently, (18.4) follows from (3) and (18).

(18.5) asserts that |ϕ′| ≤ C and |ϕ′′| ≤ Cε|Iν|
−1 on cε−1Iν. These estimates follow

from (3) and (56).

(18.6) and (18.7) assert that, given x1 ∈ cε−1Iν, the ϕ-Oracle returns ϕ(x1),
ϕ′(x1), ϕ′′(x1), and charges us work WϕO ≥ 1. This follows from (4) and (56).

(18.8) asserts that Eν = {(x1, ϕ(x1)) : x1 ∈ Ēν}. This follows from (6), (41), (42).

(18.9) says that Eν ⊂ Qν. This follows from (41).

(18.10) says that Nν = #(Eν) = #(Ēν) ≥ 2.
We have Nν = #(Eν) by definition, and #(Eν) = #(Ēν) thanks to (18.8),

which we just proven. We have Nν ≥ 2 because we are in the Hard Case.

(18.11) says that f : Eν → R, which follows from (8), (41).

(18.12) says that IΓ is an interval, and that |IΓ | ≤ Cε−1|Iν|. Since |Iν| = 5δ̄, this
follows from (28) and (49).

(18.13) is the same as our present (9).

(18.14) asserts here that Fcrude ∈ C2(R2), ‖ Fcrude ‖C2(R2)≤ C, Fcrude = f on Eν,
and ∂2Fcrude(z) ∈ IΓ for all z ∈ Eν.

Except for the assertion ∂2Fcrude(z) ∈ IΓ , the above properties of Fcrude are
assumed here in (16), since Eν ⊂ E by (41).
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Moreover, Jz0
(Fcrude) ∈ Γ(z0) and ‖ Fcrude ‖C2(Q0)≤ C̄6, by (16). Hence,

∂2Fcrude(z) ∈ IΓ for all z ∈ Q0, thanks to (48). In particular, ∂2Fcrude(z) ∈ IΓ
for all z ∈ Eν ⊂ E; see (7) and (41).

This completes the proof of our Claim (55).

Next, we check that

(57) Assumptions (18.17)–(18.20) hold here, with Sν, Qν, z0,ν in place of S00,
Q00, z00 in Section 18.

Indeed,

(18.17) says that Sν ⊂ Qν (and Sν finite), which follows from (43).

(18.18) says that #(Sν) < ε−200, which follows from (22) and (43).

(18.19) asserts that |x2 − ϕ(x1)| > ε3δQν
for all (x1, x2) ∈ Sν. This estimate

follows from (23) and (43), since Qν ⊂ Q0 by (30).

Finally, (18.20) says that z0,ν ∈ Sν, which we know from (44).

This completes our verification of (57).

Thanks to (55) and (57), we may apply Algorithm AOI-Version 2. Thus, we
compute a convex polyhedron Kν, satisfying (50)–(54). This concludes our discus-
sion of (50)–(54) in the Hard Case #(Eν) ≥ 2.

We pass to the Easy Case #(Eν) < 2.

We refer to Section 6, and to the Remark in that section, following the discus-
sion of Algorithm AUB4.

Thus, using work and storage at most C(ε) (and no calls to the ϕ-Oracle), we
compute a convex polyhedron KAUB

ν ⊂ Wh(Sν ∪ Eν), defined by at most C(ε)
constraints, such that the following hold:

Let F ∈ C2(2Qν) with norm ≤ 1. Then JSν∪Eν
(F) ∈ KAUB

ν .

Let �P ∈ KAUB
ν . Then there exists F ∈ C2(Qν) with norm ≤ 1+ Cε, such that

JSν∪Eν
(F) = �P. We now set

Kν = {�P|Sν
: �P ∈ KAUB

ν , val (�P, z) = f(z) for all z ∈ Eν, val (∂2
�P, z0,ν) ∈ IΓ }.

It is trivial to check that (50)–(54) hold.
This completes our discussion of (50)–(54) in the Easy Case. Thus, we have

achieved (50)–(54) in all cases.

We now use our Kν from (50)–(54) to define and compute K+, and establish
(25), (26), (27). We take

(58) K+ = {�P ∈ Wh(S+) : �P|Sν
∈ Kν for each ν, and �P|z0

∈ Γ(z0)}.

Thus, K+ ⊂ Wh(S+) is a convex polyhedron defined by at most C(ε) constraints.
Moreover, once we have computed the Kν, it takes work and storage at most C(ε)
to compute K+ from (58).
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Let us check that (25) holds for our K+. Suppose F ∈ C2(2Q0) with norm
≤ 1−CAε, and suppose also that F = f on E and Jz0

(F) ∈ Γ(z0). For each ν, we have
CAQν ⊂ 2Q0, since Qν ⊂ Q0 and δQν

= 5δ̄ ≤ CεδQ0
. Therefore, F ∈ C2(CAQν)

with norm ≤ 1 − CAε, and F = f on Eν by (41). Also, ∂2F(z0,ν) ∈ IΓ , by (48).
(Recall that z0,ν ∈ Sν ⊂ S+ ⊂ Q0.) Consequently, (51) tells us that JSν

(F) ∈ Kν

for each ν. Since also Jz0
(F) ∈ Γ(z0) by assumption, a glance at (58) shows that

JS+(F) ∈ K+, completing the proof of (25).

We pass to the query algorithm (26). Thus, suppose we are given a query
�P+ ∈ K+. By definition (58), we have �P+|Sν

∈ Kν for each ν, and

(59) �P+ = (Pz)z∈S+, with Pz0 ∈ Γ(z0).

Applying the query algorithm (52) to the query �P+|Sν
, we obtain for each ν a

Whitney field

(60) �PE
ν = (PE,z

ν )z∈Eν
∈ Wh(Eν)

for which there exists

(61) Fν ∈ C2(Qν) with norm ≤ 1+ Cε such that

(62) Fν = f on Eν, ∂2F(z0,ν) ∈ IΓ ,

(63) JSν
(Fν) = �P+|Sν

, and

(64) JEν
(Fν) = �PE

ν .

The �PE
ν may be computed from �P+ using work and storage at most C(ε)·(N+2),

and without calls to the ϕ-Oracle; see (43) and (54).

From (63) and (59), we obtain in particular that Jz0
(Fν) = �Pz0 ∈ Γ(z0) when-

ever z0 ∈ Sν. Also, since z0 ∈ S0 ⊂ S+ (see (13) and (21)), we learn from (43)
that z0 ∈ Qν implies z0 ∈ Sν. Consequently,

(65) Jz0
(Fν) = Pz0 for all ν such that Qν � z0.

We bring in the partition of unity (35)–(38). Let us define F ∈ C2(Q0) and

(66) �PE = (PE,z)z∈E ∈ Wh(E), by setting

(67) F =
∑
ν

θνFν on Q0, and

(68) PE,z =
∑

Qν�z

Jz(θν)z P
E,z
ν for all z ∈ E.

Since supp θν ⊂ Qν and Fν ∈ C2(Qν) for each ν, (67) makes sense, and F ∈
C2(Q0). Also, (41), (60) and (64) yield Jz(Fν) = PE,z

ν for Qν � z, z ∈ E. Hence,
comparing (67) and (68), we find that Jz(F) = PE,z for each z ∈ E, i.e.,

(69) JE(F) = �PE.

Let us check that F and �PE have all the properties promised in (26).
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We start by estimating the C2 norm of F.

Fix z ∈ Q0, and suppose z ∈ supp θν ∩ suppθν′ . Then z ∈ Qν ∩Qν′ . By (39),
there exists z+ ∈ S+ ∩Qν ∩Qν′ such that

(70) |z− z+| < ε2δQ0
< Cεδ̄ (see (28)).

Thus, z+ ∈ Sν ∩ Sν′ , by (43). Therefore, (59) and (63) tell us that Jz+(Fν) =

Jz+(Fν′) = Pz+

. In particular,

(71) Jz+(Fν − Fν′) = 0.

Also, (61) and the Bounded Distortion Property imply that

Fν − Fν′ ∈ C2(Qν ∩Qν′),

and

(72) |∂α(Fν − Fν′)| ≤ C on Qν ∩Qν′ , for |α| ≤ 2.

From (70), (71), (72) and Taylor’s theorem, we learn that

(73) |∂α(Fν − Fν′)(z)| ≤ C · (εδ̄)2−|α| ≤ Cεδ̄2−|α| for |α| ≤ 1,

whenever suppθν ∩ supp θν′ � z. We recall that

(74) |∂αθν(z)| ≤ Cδ̄−|α| for |α| ≤ 2, and that

(75) |Jz(Fν)|z ≤ 1+ Cε for supp θν � z;

see (36) and (61). Note also that z ∈ suppθν for at most C distinct θν; see (30),
(31), (35), and recall that the Q̃ν form a grid of squares of sidelength δ̄. Also,
recall that δ̄ ≤ CεδQ0

≤ Cε < 1 (see (2) and (28)), and that θν ≥ 0,
∑

νθν = 1

on Q0.
The above remarks and Lemma GPU from Section 5 tell us that

(76) |Jz(F)|z ≤ 1+ Cε.

Since z ∈ Q0 is arbitrary in (76), we conclude that

(77) ‖ F ‖C2(Q0)≤ 1+ Cε.

Next, let z∈E. For any ν such that suppθν�z, we have z∈Qν ∩ E=Eν; hence
Fν(z) = f(z) by (62). Consequently, (67) and (37) give F(z) =

∑
νθν(z)f(z) = f(z).

Thus,

(78) F = f on E.

Next, let z ∈ S+. For any ν such that supp θν � z, we have z ∈ Qν ∩ S+ = Sν;
hence, (59) and (63) tell us that Jz(Fν) = Pz. Consequently, (67) and (37) give
Jz(F) =

∑
νJz(θν)z P

z = Pz, for all z ∈ S+. That is,

(79) JS+(F) = �P+.
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In particular,

(80) Jz0
(F) = Pz0 ∈ Γ(z0),

thanks to (13) and (59).

Our results (69), (77), (78), (79), (80) show that F and �PE are as promised

in (26). Thus, we have succeeded in answering the query �P+ ∈ K+. This completes
our discussion of the query algorithm (26).

The reader may easily check that the computer resources used to compute K+

and answer queries (26) are as asserted in (27).
Our explanation of Algorithm AOI-Version 3 is complete. With AOI-Version 3,

we have carried out Step I of the strategy presented in the Introduction. In [4], we
will carry out Step II and complete our interpolation algorithm for C2(R2).
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