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Steiner and Schwarz symmetrization
in warped products and

fiber bundles with density

Frank Morgan, Sean Howe and Nate Harman

Abstract

We provide very general symmetrization theorems in arbitrary di-
mension and codimension, in products, warped products, and certain
fiber bundles such as lens spaces, including Steiner, Schwarz, and
spherical symmetrization and admitting density.

1. Introduction

Symmetrization has always played a major role in geometry and analysis,
especially for the isoperimetric problem, but it is hard to provide compre-
hensive statements and proofs. Steiner symmetrization in RN replaces one-
dimensional slices with centered intervals. Schwarz symmetrization in RN

replaces (N−1)-dimensional slices with centered balls. Generalized Schwarz
symmetrization in RN replaces slices of some dimension 1 ≤ n ≤ N −1 with
centered balls. These results generalize readily to products M ×Rn. Spher-
ical symmetrization in R

N replaces slices by spheres about the origin with
spherical caps.

Antonio Ros [15, Sect. 3.2] gave a beautiful proof of symmetrization in
the context of manifolds with density. Our first Proposition 3 extends Ros to
warped products as asserted by Morgan [11, Thm. 3.2] and is general enough
to include spherical symmetrization (Rmk. 4) as well as Steiner and Schwarz
symmetrization. Proposition 5 treats the smooth case with an analysis of
when equality holds after Rosales et al. [17, Thm. 5.2]. Propositions 6 and 8
extend symmetrization to Riemannian fiber bundles with equidistant fibers
in which horizontal movement from fiber to fiber preserves or scales volume.
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Some simple examples are lens spaces (fibered by circles, Rmk. 7) as en-
visioned by Ros [16, 15, Thm. 2.11], similar Hopf circle fibrations of S2n+1

over CPn, the Hopf fibration of S7 by great S3s and of S15 by great S7s. We
were not, however, able to complete the proof by symmetrization envisioned
by Vincent Bayle (private communication) to prove the still open conjecture
that in R

N with a smooth, radial, log-convex density, balls about the origin
are isoperimetric [17, Conj. 3.12], because horizontal movement from fiber
to fiber does not preserve or scale volume.

Standard references on symmetrization are provided by Burago and Zal-
galler [2, Sect. 9.2] and Chavel [3, Sect. 6]. Gromov [7, Sect. 9.4] after [8,
5.A] provides some sweeping remarks and generalizations, including most of
our results.
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2. Symmetrization

A convenient general definition of perimeter in a metric space with density
is provided by Minkowski content or perimeter:

Definition 1. The Minkowski perimeter of a region R is the lower right
derivative

lim inf
Δr→0+

ΔV

Δr

for r enlargements. In a Riemannian manifold with continuous metric and
density, the right limit dV/dr exists and agrees with the usual definition of
perimeter as long as the boundary of R is rectifiable (see [6, Thm. 3.2.39]).
We will use the following routine lemma (f in the source is the negative of
our f).

Lemma 2. (cf. [12, Lemma 2.4]) Let f , h be real-valued continuous functions
on [a, b]. Suppose that the upper right derivative of f and the right derivative
of h satisfy

lim sup
Δx→0+

f(x + Δx) − f(x)

Δx
≤ lim

Δx→0+

h(x + Δx) − h(x)

Δx
.

Then f(b) − f(a) ≤ h(b) − h(a).



Symmetrization in warped products and fiber bundles 911

Proposition 3. (Symmetrization for warped products). Let B, F be
smooth, complete Riemannian manifolds. Consider a warped product B×g F
with continuous metric ds2 = db2 + g(b)2dt2 and continuous product density
Φ(b) · Ψ(t). Suppose that for some p ∈ F, geodesic balls about p are isoperi-
metric. Let R be a region of finite (weighted) perimeter. Then the Schwarz
symmetrization sym(R), obtained by replacing the slice in each fiber by a ball
about p of the same (weighted) volume, has the same volume and no greater
perimeter than R.

Remark. Although typically F is Rn or Sn, there are many other possibil-
ities such as the paraboloid {z = x2 + y2} [1, Thms. 5, 8], [13, Thm. 3.1(A)].
Also balls about the origin may be replaced by half-planes {xn ≤ c} (for
Rn−1×R+ as well as Rn) when these have finite weighted volume. If F is
a space of revolution about p, for all balls about p to be isoperimetric or
even stationary (constant generalized mean curvature [10, § 18.3]), the den-
sity Ψ must be rotationally symmetric; for half-planes, Ψ must be a function
of x1, x2, . . . , xn−1 times a function of xn.

Proof. The preservation of volume is just Fubini’s theorem for warped
products.

For small r, denote r-enlargements in B ×g F by a superscript r and
r-enlargements in fibers by a subscript r. Consider a slice {b0}×C = R(b0)
of R and a ball about the origin {b0} × D in the same fiber of the same
weighted volume. For general b, consider slices ({b0}×C)r(b) of enlargements
({b0} × C)r of {b0} × C and similarly slices ({b0} × D)r(b) of enlargements
({b0} × D)r of {b0} × D. If C were a single point, then ({b0} × C)r(b) =
{b} × Cr′ for some r′ independent of C, because the projection in F of a
shortest path γ from {b0} × C to a point in {b} × F is a shortest path γ1

in F and the length of γ depends only on the length of γ1. Hence for any C,
({b0} × C)r(b) = {b} × Cr′ and ({b0} × D)r(b) = {b} × Dr′ for the same r′.
Because the fiber density Ψ(t) is independent of b, {b}×C and {b}×D have
the same weighted volume. Since every {b} × Ds is isoperimetric for given
volume, the lower right derivative dV/dr for the family Cr is at least as great
as the right derivative dV/dr for the family Dr, and hence the upper right
derivative dr/dV for the family Cr is no greater than the right derivative
dr/dV for the family Dr. Consequently by Lemma 2, if Cr1 and Dr2 have the
same volume, r1 ≤ r2 ; conversely, when r1 = r2 = r′, the volumes satisfy

| {b} × Dr′| ≤ | {b} × Cr′|.

Therefore
({b0} × D)r(b) ⊆ sym(({b0} × C)r(b)).
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Since this holds for all b,

({b0} × D)r ⊆ sym(({b0} × C)r).

Since this holds for all b0,

(sym(R))r =
⋃
b0

({b0} × D)r ⊆
⋃
b0

sym(({b0} × C)r) ⊆ sym(Rr).

Consequently,
|(sym(R))r| ≤ |Rr|

and sym(R) has no more perimeter than R, as desired. �
Remark 4. (Spherical symmetrization). In Proposition 3, at least for
regions of finite volume, one may allow singular fibers as long as the union S
of such fibers has codimension 1 measure 0. An important example is view-
ing Rn+1 as the warped product {b ≥ 0} ×bn Sn with singular fiber {b = 0},
yielding so-called spherical symmetrization, using spherical caps to replace
slices by spheres about the origin. To prove this generalization of Proposi-
tion 3, suppose that there were a counterexample. Then its restriction to the
complement of an appropriate small r-neighborhood of the singular set S
would be a counterexample to the proof of Proposition 6. Note that the
symmetrization of the restriction is just the restriction of the symmetriza-
tion. Additional perimeter introduced by truncation is negligible for most
small r by the finite volume hypothesis [10, § 4.11].

Proposition 5 provides more general symmetrization with uniqueness for
regions (typically isoperimetric regions) which satisfy certain smoothness
hypotheses, as in the proof by Rosales et al. [17, Thm. 5.2] that in Rn with
density er2 , balls about the origin uniquely minimize perimeter for given
volume. For a special case, see Ritoré [14, § 1.3.2]; also see Monti [9]. Chlebík
et al. [4] provide in Euclidean space an analysis of uniqueness without such
smoothness hypotheses. Proposition 5 does not depend on Proposition 3.

Proposition 5. (Smooth case with uniqueness). Let B, F be smooth
Riemannian manifolds. Consider a smooth warped product B×g F with met-
ric ds2 = db2 + g(b)2dt2 and product density Φ(b) · Ψ(t). Suppose that for
some p ∈ F, geodesic balls about p are isoperimetric. Let R be a measurable
set in B ×g F . Suppose that its topological boundary ∂R meets almost every
fiber smoothly (or not at all). Let R′ denote its Schwarz symmetrization.
Suppose that ∂R′ also meets almost every fiber smoothly and that its inter-
section with other fibers contributes nothing to the area of ∂R′. Then R′ has
the same volume and no greater perimeter than R. If they have the same
perimeter and balls about the origin are uniquely isoperimetric in F (up to
measure 0), then R = R′ up to a set of measure zero.
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Proof. The preservation of volume is just Fubini’s theorem for warped
products.

Let B0 be the set of points b in B for which ∂R and ∂R′ are both smoothly
transverse to the fiber over b. By hypothesis, almost every fiber meets ∂R
and ∂R′ smoothly. By Sard’s Theorem, almost every fiber meets ∂R and ∂R′

transversely. Hence almost all points of B lie in B0. For now we consider
b ∈ B0. Let 0 ≤ θ < π/2 denote the angle that ∂R makes with the horizontal;
at each point of ∂R let v be the horizontal vector in that direction with
magnitude tan θ. (If ∂R is locally the graph of a function f : B → F , then
v = ∇f , and the component of v in any direction gives the rate of change
of f in that direction.) The analogous v′ for ∂R′ has constant magnitude
in each fiber. Because the metric g depends only on b and the density is a
product density, horizontal movement just scales volume. If we vary b, any
additional change in volume is due to v. Since corresponding slices have the
same volumes, these changes must be the same in Rb and R′

b:

(2.1)
ˆ

∂Rb

±v =

ˆ
∂R′

b

v′,

where the ± sign depends on the local orientation of ∂Rb. The element of
area dA of ∂R satisfies

(2.2) dA =

ˆ
∂Rb

√
1 + v2 db.

By Jensen’s Theorem and the convexity of the function h(x) =
√

1 + x2,

(2.3)
ˆ̂

∂Rb

√
1 + v2 ≥

√
1 +

( ˆ̂

∂Rb

|v|
)2

,

where the caret over the integral sign indicates normalization by the measure
of the domain of integration. Let ρ denote the ratio of the areas of ∂R′

b

and ∂Rb. By hypothesis ρ ≤ 1. By (2.1),

(2.4)

√
1 +

( ˆ̂

∂Rb

|v|
)2

≥
√

1 +
(
ρ

ˆ̂

∂R′
b

|v′|
)2

≥ ρ

√
1 +

( ˆ̂

∂R′
b

|v′|
)2

,

because h(x) =
√

1 + x2 satisfies h(ρx) ≥ ρh(x) for any 0 ≤ ρ ≤ 1, with
equality only if ρ = 1. Since |v′| is constant on ∂R′

b,

(2.5)

√
1 +

( ˆ̂

∂R′
b

|v′|
)2

=
ˆ̂

∂R′
b

√
1 + v′2.
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Finally,

(2.6)
ˆ

∂R′
b

√
1 + v′2 db = dA′.

Assembling inequalities (2.2)–(2.6) yields

dA ≥ dA′,

with equality only if ρ = 1. Integration yields

|∂R| ≥
ˆ

B0

dA ≥
ˆ

B0

dA′ = |∂R′|

because by hypothesis the slices over B0 include almost all of the area of ∂R′.
If equality holds, then for almost all slices, dA = dA′, ρ = 1, and by the
uniqueness hypothesis, Rb = R′

b (up to measure 0). Almost all other slices
are empty. Consequently R = R′ up to a set of measure zero. �

Remark. If we assume for example that ∂R and ∂R′ are smooth, then it
follows that R = R′.

The following proposition provides for certain fiber bundles associated
to Riemannian submersions a similar symmetrization in a related warped
product. A Riemannian submersion π : M → B has the property that dπ,
restricted to the orthogonal complement of its kernel, is an isometry. It
follows that fibers are equidistant and that locally parallel transport normal
to one fiber yields a diffeomorphism with any nearby fiber, which we assume
preserves or scales volume.

Proposition 6. (Symmetrization for fiber bundles) Consider a smooth
Riemannian submersion M → B with density Φ and a smooth warped prod-
uct B×g F with product density Φ′. Assume that geodesic balls about a fixed
point p in F are isoperimetric in every fiber of B×g F , with no more perime-
ter than any competitor in the corresponding fiber of M . Further assume that
parallel transport normal to the fibers from Mb1 to Mb2 scales volume on the
fibers by (g(b2)/g(b1))

n. Suppose that M is compact or more generally that:

(1) B is compact or more generally has positive injectivity radius and

(2) for some r0 > 0, for r < r0 the r-tube about a fiber Mb under parallel
translation from that fiber has metric

ds2 = (1 + o(1))(db2 + dt2)

Here db is in the direction of parallel translation; dt, which depends
on b, is the metric along fibers; and o(1) approaches 0 as r approaches 0,
uniformly in b.
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Let R be a region of finite perimeter. Consider the Schwarz symmetrization
sym(R) in the warped product B ×g F , which replaces the slice of R in each
fiber with a ball about p of the same volume in the corresponding fiber of
B×gF . Then sym(R) has the same volume and no greater perimeter than R.

Remark. For the simplest lens spaces (see Rmk. 7), M = S3 and Mb =
F = S1. In general, Gromov [7, Sect. 9.4] suggests taking F to be R or R+

with an appropriate density for which balls about p = 0 are isoperimetric to
reduce a product of well-understood factors to two dimensions.

Proof. The preservation of volume is just Fubini’s theorem for Riemannian
submersions.

As in the proof of Proposition 3 denote r-enlargements in M by a su-
perscript r and r-enlargements in fibers by a subscript r. Let r be a small
positive number less than both r0 and the injectivity radius of B. Con-
sider a slice C = R(b0) of R and a ball D of the same volume about the
origin in the corresponding fiber of B ×g F . For general b, let C ′ denote
the image of C in Mb under normal parallel transport and let D′ denote
the copy of D in {b} ×g Rn. Such horizontal movement just scales volume,
in M by hypothesis and in B ×g F because the density is by hypothesis a
product density. Therefore |C ′| = |D′|. As in the proof of Proposition 3,
|Dr(b)| = |D′

r′|, but due to the twisting in fiber bundles, it is not necessarily
true that |Cr(b)| = |C ′

r′|. By the uniformity hypothesis (2), the map by
parallel transport based at Mb0 from B ×g F to M distorts the metric by
1 + o(1), uniform over M . Therefore

C ′
r′ ⊆ Cr+o(r)(b).

Since by hypothesis each D′
r′ has no more perimeter than any competitor

in the corresponding fiber of M , the lower right derivative dV/dr for the
family C ′

r′ is at least as great as the right derivative dV/dr for the fam-
ily D′

r′, and hence the upper right derivative dr/dV for the family C ′
r′ is no

greater than the right derivative dr/dV for the family D′
r′. Consequently by

Lemma 2, if Cr1 and Dr2 have the same volume, r1 ≤ r2 ; conversely, when
r1 = r2 = r′, the volumes satisfy

|D′
r′| ≤ |C ′

r′|.
Hence

Dr(b) ⊆ sym(Cr+o(r)(b)).

Since this holds for all b,

Dr ⊆ sym(Cr+o(r)).
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Since this holds for all b0,

(sym(R))r =
⋃

b0∈R

Dr ⊆
⋃

b0∈R

sym(Cr+o(r)) ⊆ sym(Rr+o(r)).

Consequently, |(sym(R))r| ≤ |Rr+o(r)|, and sym(R) has no more perimeter
than R, as desired. �
Remark 7. As in Remark 4, at least for regions of finite volume, one may
allow singular fibers where the projection fails to be a submersion, as long as
the union S of such fibers has codimension 1 measure 0. An example is the
fibration of S3 in C2 by orbits of the action mapping (z1, z2) to (eikθz1, e

ilθz2).
If k = l = 1, this is just the smooth Hopf fibration, but for general integers
k, l the orbits through (1, 0) or (0, 1) are singular. These circle fibrations
lift to the lens spaces and generalize to all odd dimensions.

Similarly the uniformity hypothesis (1) on B is not necessary. The sec-
ond uniformity hypothesis (2) probably is not necessary (see Prop. 8), but
our method of proof seems to need it. Of course if R is compact then hy-
potheses (1) and (2) are not necessary.

In the unwarped case, including the lens spaces, the 1 + o(1) factor in
the proof is unnecessary, because distance from a point in a fixed fiber in
the lens space is no greater than its value in the product (see [5, Prop. 8.6]).

Another interesting example is the cone over an n-dimensional Rieman-
nian manifold M0, which can be viewed as a warped product {b ≥ 0}×bn M0.
If regions in M0 have no less perimeter than balls of the same volume in Sn,
the cone can be compared to {b ≥ 0} ×bn Rn = Rn+1 [11, §3].

The following proposition relaxes the uniformity hypotheses of Proposi-
tion 6 for smooth regions and provides a framework for the analysis of when
equality holds.

Proposition 8. (Smooth case for fiber bundles). Consider a smooth
Riemannian submersion M → B with density and a smooth warped product
B×g F with product density. Assume that geodesic balls about a fixed point p
in F are isoperimetric in every fiber of B×g F , with no more perimeter than
any competitor in the corresponding fiber of M . Further assume that parallel
transport normal to the fibers from Mb1 to Mb2 scales volume on the fibers by
(g(b2)/g(b1))

n. Let R be a measurable set in M . Suppose that its topological
boundary ∂R meets almost every fiber smoothly (or not at all). Let R′ denote
its Schwarz symmetrization in the warped product B×g F, which replaces the
slice of R in each fiber with a ball about p of the same volume. Suppose that
∂R′ also meets almost every fiber smoothly and that its intersection with
other fibers contributes nothing to the area of ∂R′. Then R′ has the same
volume and no greater perimeter than R.
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Remark. One may allow singular fibers, as long as the union of such fibers
has codimension 1 measure 0. In cases where there is always twisting, as
in the lens space examples of Remark 7, if R′ has the same perimeter as R,
then R must be a union of fibers.

Proof. The proof is almost identical to the proof of Proposition 5. We
cannot hypothesize that M has a product density, so we have added the
hypothesis that parallel transport scales volume. Equation (2.2) becomes a
(favorable) inequality due to the twisting in the fiber bundle. Everything
else remains the same. �
Note added in proof. More generally isoperimetric uniqueness follows
from uniqueness in slices as shown by a Betta-Brock-Mercaldo-Posteraro
preprint “On isoperimetric inequalities with respect to infinite measures” us-
ing piecewise smooth (polyhedral) approximations after De Giorgi and by
standard geometric measure theory as in a Chlebik-Cianchi-Fusco paper [4]
and with density in a Cianchi-Fusco-Maggi-Pratelli paper “On the isoperi-
metric deficit in Gauss space”. This approach provides the easiest and most
natural proof of uniqueness even in Gauss space, where an isoperimetric slice
must be one of the two half-lines with the given volume.
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