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High-dimensional Menger-type
curvatures. Part I: Geometric

multipoles and multiscale inequalities

Gilad Lerman and J. Tyler Whitehouse

Abstract
We define discrete and continuous Menger-type curvatures. The

discrete curvature scales the volume of a (d + 1)-simplex in a real
separable Hilbert space H, whereas the continuous curvature inte-
grates the square of the discrete one according to products of a given
measure (or its restriction to balls). The essence of this paper is to
establish an upper bound on the continuous Menger-type curvature of
an Ahlfors regular measure μ on H in terms of the Jones-type flatness
of μ (which adds up scaled errors of approximations of μ by d-planes
at different scales and locations). As a consequence of this result we
obtain that uniformly rectifiable measures satisfy a Carleson-type es-
timate in terms of the Menger-type curvature. Our strategy combines
discrete and integral multiscale inequalities for the polar sine with the
“geometric multipoles” construction, which is a multiway analog of
the well-known method of fast multipoles.

1. Introduction

We introduce Menger-type curvatures of measures and show that they sat-
isfy a Carleson-type estimate when the underlying measures are uniformly
rectifiable in the sense of David and Semmes [2, 3]. The main development
of the paper (implying this Carleson-type estimate) is a careful bound on
the Menger-type curvature of an Ahlfors regular measure in terms of the
sizes of least squares approximations of that measure at different scales and
locations.
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Our setting includes a real separable Hilbert space H with dimension
denoted by dim(H) (possibly infinite), an intrinsic dimension d ∈ N, where
d < dim(H), and a d-regular (equivalently, d-dimensional Ahlfors regular)
measure μ on H . That is, μ is a locally finite Borel measure on H and
there exists a constant C ≥ 1 such that for all x ∈ supp(μ) and 0 < r ≤
diam(supp(μ)):
(1.1) C−1 · rd ≤ μ(B(x, r)) ≤ C · rd.

We denote the smallest constant C satisfying equation (1.1) by Cμ, and refer
to it as the regularity constant of μ. The estimates developed in this paper
only depend on the intrinsic dimension d and the regularity constant Cμ, and
no other parameter of either μ or H . In particular, they are independent of
the dimension of H .

Our d-dimensional discrete curvature is defined on vectors v1, . . . , vd+2 ∈
H . We denote the diameter of the set {v1, . . . , vd+2} by diam(v1, . . . , vd+1),
and the (d + 1)-dimensional volume of the parallelotope spanned by v2 −
v1, . . . , vd+2−v1 by Vold+1(v1, . . . , vd+2). Equivalently, Vold+1(v1, . . . , vd+2) is
(d+1)! times the volume of the simplex (i.e., convex polytope) with vertices
at v1, . . . , vd+2. The square of our d-dimensional curvature cd(v1, . . . , vd+2)
has the form

c2
d(v1, . . . , vd+2) =

1

d + 2
· Vol2d+1(v1, . . . , vd+2)

diam(v1, . . . , vd+2)d·(d+1)

d+2∑
i=1

1∏d+2
j=1
j �=i

‖vj − vi‖2
2

.

The one-dimensional curvature c1(v1, v2, v3) is comparable to the Menger
curvature [13, 11], cM(v1, v2, v3), which is the inverse of the radius of the
circle through the points v1, v2, v3 ∈ H . Indeed, we note that

c2
M(v1, v2, v3) =

4 sin2(v2 − v1, v3 − v1)

‖v2 − v3‖2
,

c2
1(v1, v2, v3)=

sin2(v2−v1, v3−v1)+ sin2(v1−v2, v3−v2)+ sin2(v1−v3, v2−v3)

3 · diam2(v1, v2, v3)

and consequently

1

12
· c2

M(v1, v2, v3) ≤ c2
1(v1, v2, v3) ≤ 1

4
· c2

M(v1, v2, v3) .

We thus view the Menger-type curvature cd as a higher-dimensional gener-
alization of the Menger curvature cM . Clearly, one can directly generalize
the Menger curvature to the following function of v1, . . ., vd+2:

(1.2)
Vold+1(v1, . . . , vd+2)∏d+2

i,j=1
i�=j

‖vi − vj‖
.

However, the methods developed here do not apply to that curvature (see
Remark 8.2).
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Essentially, this paper shows how the multivariate integrals of the dis-
crete d-dimensional Menger-type curvature can be controlled from above by
d-dimensional least squares approximations of μ, which are used to charac-
terize uniform rectifiability [2, 3].

We first exemplify this in the simplest setting of approximating μ by a
fixed d-dimensional plane at a given scale and location, indicated by the ball
B = B(x, t), for x ∈ supp(μ) and 0 < t ≤ diam(supp(μ)). We denote the
scaled least squares error of approximating μ at B = B(x, t) by a d-plane
(i.e., d-dimensional affine subspace) by

β2
2(x, t) = β2

2(B) = min
d−planes L

∫
B

(
dist(x, L)

diam(B)

)2
dμ(x)

μ(B)
.

Fixing λ > 0 and sampling sufficiently well separated simplices in Bd+2,
i.e., simplices in the set

(1.3) Uλ(B) =
{

(v1, . . . , vd+2) ∈ Bd+2 : min
1≤i<j≤d+2

‖vi − vj‖ ≥ λ · t
}

,

we bound β2
2(x, t) from below by averages of the squared curvature c2

d in the
following way:

Proposition 1.1. There exists a constant C0 = C0(d, Cμ) ≥ 1 such that

(1.4)

∫
Uλ(B(x,t))

c2
d(X) dμd+2(X) ≤ C0

λd(d+1)+4
· β2

2(x, t) · μ(B(x, t)),

for all λ > 0, x ∈ supp(μ), and t ∈ R with 0 < t ≤ diam(supp(μ)).

An opposite inequality is established in [8, Theorem 1.1]. An extension of
Proposition 1.1 to more general measures and to arbitrary simplices (while
slightly modifying the curvature) appears in [9].

We next extend the above estimate to multiscale least squares approxi-
mations. For this purpose we first define the Jones-type flatness [7, 2, 3] of
the measure μ when restricted to a ball B ⊆ H as follows

(1.5) Jd(μ|B) =

∫ diam(B)

0

∫
B

β2
2(x, t) dμ(x)

dt

t
.

This quantity measures total flatness or oscillation of μ around B by com-
bining the errors of approximating it with d-planes at different scales and
locations. The actual weighting of the β2 numbers is designed to capture
the uniform rectifiability of μ (see Section 4). We also define the continuous
Menger-type curvature of μ when restricted to B, cd(μ|B), as follows

cd(μ|B) =

√∫
Bd+2

c2
d(v1, . . . , vd+2) dμ(v1) . . . dμ(vd+2) .
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The primary result of this paper bounds the local Jones-type flatness
from below by the local Menger-type curvature in the following way.

Theorem 1.1. There exists a constant C1 = C1(d, Cμ) such that

c2
d (μ|B) ≤ C1 · Jd (μ|6·B) for all balls B ⊆ H.

This theorem is relevant for the theory of uniform rectifiability [2, 3]
(briefly reviewed in Section 4) and it in fact implies the following result.

Theorem 1.2. If H is a real separable Hilbert space and μ is a d-dimensional
uniformly rectifiable measure then there exists a constant C2 = C2(d, Cμ)
such that

(1.6) c2
d(μ|B) ≤ C2 · μ(B) for all balls B ⊆ H.

In [8] we establish the opposite direction of Theorem 1.1, and thus also
conclude the opposite direction of Theorem 1.2, that is, the Carleson-type
estimate of Theorem 1.1 implies the uniform rectifiability of μ. As such, we
obtain a characterization of uniformly rectifiable measures by the Carleson-
type estimate of equation (1.6) (extending a one-dimensional result of [11]).

When d = 1 a similar version of Theorem 1.1 was formulated and proved
in [14, Theorem 31] following an unpublished work of Peter Jones [6]. The
difference is that [14, Theorem 31] uses the larger β∞ numbers (i.e., the
analogs of the β2 numbers when using the L∞ norm instead of L2) and
restricts the support of μ to be contained in a rectifiable curve. The latter
restriction requires only linear growth of μ, i.e., one can consider Borel
measures satisfying only the RHS of equation (1.1).

The proof of Theorem 1.1 when d > 1 requires more substantial devel-
opment than that of [6] and [14, Theorem 31]. This is for a few reasons, a
basic one being the greater complexity of higher-dimensional simplices vis á
vis the simplicity of triangles. The result is that many more things can go
wrong while trying to control the curvature cd for d > 1, and we are forced
to invent strategies for obtaining the proper control.

A more subtle reason involves the difference between the L∞ and L2

quantities and the way that these interact with some pointwise inequalities.
In the case for d = 1 and the β∞ numbers, much of the proof (as recorded
in [14]) is driven by the “triangle inequality” for the ordinary sine function,
i.e., the subadditivity of the absolute value of the sine function. The “ro-
bustness” of this inequality combined with the simplicity of a basic pointwise
inequality between the sine function and the β∞ numbers results in a rela-
tively simple integration procedure. For d > 1 and the β2 numbers this whole
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framework breaks down. One such breakdown is that the “correct” analog
of the triangle inequality holds much more sparsely (see Proposition 3.3).
Other reasons will become apparent in the rest of the work.

In principal, there are two kinds of methods in the current work. We
refer to the first as geometric multipoles. It decomposes the underlying
multivariate integral over a set of well-scaled simplices (i.e., with comparable
edge lengths) according to multiscale regions in H , emphasizing in each
region approximations of the support of the measure by d-planes. We view
it as a d-way analog of the zero-dimensional fast multipoles method [4], which
decomposes an integral according to dyadic grids of R

n and emphasizes near-
field interactions. This method, which is rather implicit in [14, Theorem 31],
can be used to decompose integrals of many other multivariate functions.

Our second method relies on both discrete and integral multiscale in-
equalities for the Menger-type curvature (or more precisely the polar sine
function defined in Section 3). They allow us to bound c2

d(μ|B) by multi-
variate integrals restricted to sets of well-scaled simplices, so that geometric
multipoles can then be applied. When d = 1 both the multiscale inequality
and its application are rather trivial (see [14, Lemma 36] and the way it is
used in [14, Theorem 31]).

1.1. Organization of the paper

In Section 2 we describe the basic context, notation, definitions and related
elementary propositions. In Section 3 we review some geometric properties
of simplices as well as of the d-dimensional polar sine, and we decompose
simplices and correspondingly the Menger-type curvature according to scales
and configurations. Section 4 reviews aspects of the theory of uniform rec-
tifiability relevant to this work. In Section 5 we establish Proposition 1.1,
whereas in Section 6 we reduce Theorem 1.1 to three propositions, which we
subsequently prove in Sections 7-9. Section 10 contains a brief discussion
concluding this work.

2. Basic notation and definitions

We denote the support of the d-regular measure μ on H by supp(μ). The
inner product and induced norm on H are denoted by < ·, · > and ‖ · ‖.
For m ∈ N, we denote the Cartesian product of m copies of H by Hm and
the corresponding product measure by μm.

We summarize some notational conventions as follows. We typically
denote scalars larger than 1 by upper-case plain letters, e.g., C; arbitrary
integers by lowercase letters, e.g., i, j, and large integers by M and N ; real
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numbers by lower-case Greek or script letters, e.g., α0, r; subsets of Hm,
where m ∈ N, by upper-case plain letters, e.g., A; families of subsets (e.g.,
collections of balls) by calligraphic letters, e.g., B; subsets of N (used for
indexing) by capital Greek letters, e.g., Λ; and measures on H by Greek
lower-case letters, e.g., μ.

We reserve x, y and z to denote elements of H ; X, Y and Z to denote
elements of Hm for m ≥ 3; L for a complete affine subspace of H (possibly
a linear subspace); V to denote a complete linear subspace of H . If x ∈ R,
then we denote the corresponding ceiling and floor functions by �x� and 	x
.

If A ⊆ H , we denote its diameter by diam(A), its complement by Ac and
the restriction of μ to it by μ|A.

We denote the closed ball centered at x ∈ H of radius r by B(x, r),
and if both the center and radius are indeterminate, we use the notation B
or Q. For a ball B(x, r) and γ > 0, we denote the corresponding blow up
by γ ·B(x, r), i.e., γ ·B(x, r) = B(x, γ · r). If B is a family of balls, then we
denote the corresponding blow up by γ · B = {γ · B : B ∈ B} .

If L is a complete affine subspace of H and x ∈ H , we denote the distance
between x and L by dist(x, L), that is, dist(x, L) = miny∈L ‖x − y‖. If
n ≤ dim(H), we at times use the phrase n-plane to refer to an n-dimensional
affine subspace of H .

If B is a family of balls, then we denote the union of its elements by
⋃B,

and we distinguish the latter notation from
⋃

n∈Z
Bn, which is a family of

balls formed by the countable union of other families.
We fix the constant

(2.1) Cp = Cp(d, Cμ) =

⎧⎪⎨⎪⎩
√

5 · π2

4 · arcsin
(
2−(5/2·d+1) · C−2

μ

) , if d > 1;

1, if d = 1.

We also fix the following constant α0 and use its powers to provide appro-
priate scales:

α0 = α0(d, Cμ) = min

{
1

2 · C2
p

,

(
1

4 · C2
μ

)1/d
}

=

⎧⎪⎪⎨⎪⎪⎩
1

4 · C2
μ

, if d = 1;

1

2 · C2
p

, if d > 1.
(2.2)

Finally, for a fixed d-plane L and a ball B = B(x, t), we let

β2
2(B, L) = β2(x, t, L) =

∫
B

(
dist(x, L)

diam(B)

)2
dμ(x)

μ(B)
,

where β2
2(B, L) = 0 if μ(B) = 0. We note that

β2
2(B) = inf

L
β2

2(B, L).
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2.1. Notation corresponding to elements of Hn+1

Throughout this paper, we frequently refer to n-simplices in H for n ≥ 2
where usually n = d + 1. Rather than formulate our work with respect to
subsets of H , we work with ordered (n + 1)-tuples of the product space,
Hn+1, representing the set of vertices of the corresponding simplex in H .
Fixing n ≥ 2, we denote an element of Hn+1 by X = (x0, . . . , xn), and
for 0 ≤ i ≤ n, we let

(X)i = xi

denote the projection of X onto its ith H-valued coordinate. We make a
clear distinction between the symbol Xi, denoting an indexed element of the
product space Hn+1, and the coordinate (X)i which is a point in H . The
zeroth coordinate (X)0 = x0 is special in many of our calculations. With
some abuse of notation we refer to X both as an ordered set of d+2 vertices
and as a (d + 1)-simplex.

For 0 ≤ i ≤ n and X = (x0, . . . , xn) ∈ Hn+1, let X(i) be the following
element of Hn:

X(i) = (x0, . . . , xi−1, xi+1, . . . , xn).

That is, X(i) is the projection of X onto Hn that eliminates its ith coordi-
nate.

If X ∈ Hn+1, y ∈ H and 1 ≤ i ≤ n, we form X(y, i) ∈ Hn+1 as follows:

X(y, i) = (x0, . . . , xi−1, y, xi+1, . . . , xn)

That is, X(y, i) is obtained from X by replacing its ith coordinate (X)i

with y.

We say that X is non-degenerate if the set {x1 − x0, . . . , xn − x0} is lin-
early independent. For X ∈ Hn+1 as above, let L[X] denote the affine sub-
space of H of minimal dimension containing set of vertices of X, {x0, . . . , xn},
and let V [X] be the linear subspace parallel to L[X].

3. Simplices, polar sines, and Menger-type curvatures

We are only interested in simplices without any coinciding vertices, that is,
simplices represented by elements in the set

(3.1) S = {X ∈ Hd+2 : min(X) > 0}.

We note that the restriction to S is natural since μd+2
(
Hd+2 \ S

)
= 0. We

describe some properties and functions of such simplices as follows.
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3.1. Height, content and scale

Fixing X = (x0, . . . , xd+1) ∈ Hd+2 and 0 ≤ i ≤ d + 1, we define the height
of the simplex X through the vertex xi as

(3.2) hxi
(X) = dist (xi, L[X(i)]) .

We denote the minimal height by

(3.3) h(X) = min
xi

hxi
(X).

The n-content of X, denoted by Mn(X), is

(3.4) Mn(X) =
(
det

[{〈xi − x0, xj − x0〉
}n

i,j=1

]) 1
2

.

Alternatively, the n-content of X is the n-dimensional Lebesgue measure
of a parallelotope generated by the images of the vertices of X under any
isometric embedding of L[X] in R

n.
For X, we denote its largest edge length by

diam(X) = max
0≤i<j≤n

‖xi − xj‖,

and its minimal edge length by

min(X) = min
0≤i<j≤n

‖xi − xj‖.

Given a simplex X, we quantify the disparity between the largest and
smallest edges of X at x0 using the functions

maxx0(X) = max
1≤i≤d+1

‖xi − x0‖ and minx0(X) = min
1≤i≤d+1

‖xi − x0‖,

as well as the function

scalex0(X) =
minx0(X)

maxx0(X)
.

3.2. Polar sines and elevation sines

We define the d-dimensional polar sine of the element X = (x0, . . . , xd+1)
∈ S with respect to the coordinate xi, 0 ≤ i ≤ d + 1, as

(3.5) pdsinxi
(X) =

Md+1(X)∏
0≤j≤d+1

j �=i
‖xj − xi‖ ,
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and exemplify it in Figure 1(a). If X /∈ S, we let pdsinxi
(X) = 0. When

d = 1, the polar sine reduces to the ordinary sine of the angle between two
vectors. Unlike [10], our definition here only allows non-negative values of
the polar sine. We note that pdsinxi

(X) = 0 for some 0 ≤ i ≤ d + 1 if and
only if X is degenerate.

For n ≥ 1, X ∈ S, and 1 ≤ i ≤ n + 1, we also define the elevation angle
of xi − x0 with respect to V [X(i)], denoted by θi(X), to be the acute angle
such that

(3.6) sin(θi(X)) =
dist(xi, L[X(i)])

‖xi − x0‖ .

We exemplify it in Figure 1(b).

(a) The induced parallelotope and normalizing edges for computing p2 sinx0(X)

(b) The elevation angle θ1(X)

Figure 1: Exemplifying the concepts of polar sine and elevation angle for
tetrahedra of the form X = (x0, x1, x2, x3). The polar sine p2 sinx0(X) is
obtained by dividing the volume of the parallelotope in (a) by the lengths
of the corresponding edges through x0 (indicated in (a) by the thick lines,
where the two in the foreground are dark and the one in the background
is light). The elevation angle θ1(X) in (b) is the angle between the vector
x1 − x0 and its projection onto the face X(1).
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The polar sine has the following product formula in terms of elevation
angles [10]:

Proposition 3.1. If X = (x0, . . . , xd+1) ∈ Hd+2 and 1 ≤ i ≤ d + 1, then

pdsinx0
(X) = sin (θi(X)) · pd-1sinx0

(X(i)) .

Iterating this product formula we have the estimate

(3.7) 0 ≤ pdsinxi
(X) ≤ 1, for all 0 ≤ i ≤ d + 1.

3.2.1. Linear deviations and their use in bounding the polar sine

Fixing X ∈ Hd+2 and L an affine subspace of H , we define the �2 deviation
of X from L, denoted by D2(X, L), as follows:

(3.8) D2(X, L) =

( d+1∑
i=0

dist2 (xi, L)

)1/2

.

Using this quantity, we get the following upper bound on the polar sine,
which we establish in Appendix A.1.

Proposition 3.2. If X ∈ S and L is an arbitrary d-plane of H, then

pdsinx0
(X) ≤

√
2 · (d + 1) · (d + 2)

scalex0(X)

D2(X, L)

diam(X)
.

3.2.2. Concentration inequality for the polar sine

For X ∈ [supp(μ)]d+2, C ≥ 1, and 1 ≤ i < j ≤ d + 1, we define

(3.9) UC(X, i, j) =

=
{
y ∈ supp(μ) : pdsinx0

(X) ≤ C · (pdsinx0
(X(y, i)) + pdsinx0

(X(y, j))
)}

.

Using Cp of equation (2.1), we have the following concentration inequality
proved in [10].

Proposition 3.3. If X ∈ [supp(μ)]d+2 with x0 = (X)0, and 1 ≤ i < j ≤
d + 1, then the following inequality holds for all r ∈ R such that 0 < r ≤
diam(supp(μ)) :

μ
(
UCp(X, i, j) ∩ B(x0, r)

)
μ(B(x0, r))

≥
{

1, if d = 1;

0.75, if d > 1.
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3.3. Categorizing simplices by scales and configurations

We decompose the set S of equation (3.1) according to the size of scalex0(X)
and the configuration of the vertices of X.

3.3.1. Decomposing the set of simplices S according to scale

Here we categorize simplices according to their scales (defined with respect to
their zeroth coordinate x0) and distinguish between well-scaled and poorly-
scaled simplices (with respect to x0). For k ∈ N0 and p ∈ N we form the
following subset of S

(3.10) Sk,p =
{
X ∈ S : αk+p

0 < scalex0(X) ≤ αk
0

}
.

We can then decompose S by {Sk,p}k,p∈N.

Along these lines, we also denote the distinguished set of simplices

Ŝ = S0,3.

We refer to the elements of Ŝ as well-scaled simplices at x0, and the elements
of S \ Ŝ as poorly-scaled simplices at x0. Quantifiably, X ∈ S is well-scaled
at x0 if and only if

(3.11)
minx0(X)

maxx0(X)
> α3

0 .

A poorly-scaled triangle is exemplified in Figure 2.

Figure 2: Exemplifying a poorly-scaled triangle (at x0) for d = 1, k = 3,
and p = 1, where the radii of the outer and inner circles are α3

0 · ‖x1 − x0‖
and α4

0 · ‖x1 − x0‖ respectively. Note that if x2 is relocated outside the two
circles but still closer to x0 than x1, then the modified triangle is well-scaled.
Like all poorly-scaled triangles it is a single-handled rake, where the edge
connecting x0 and x1 is a handle and the edge connecting x2 and x1 is a
tine.
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For a ball Q in H and p ∈ N, we often use localized versions of the
sets S, Ŝ, and Sk,p, k ≥ 3, defined as

(3.12) S(Q) = S ∩ Qd+2 , Ŝ(Q) = Ŝ ∩ Qd+2 and Sk,p(Q) = Sk,p ∩ Qd+2 .

In most of the paper it will be sufficient to assume p = 1, however in
Section 9 we will need to consider the case p = 2, and we thus formulate
some corresponding definitions and propositions in other sections for both
p = 1 and p = 2. We note that if p = 1, then the sets Sk,1, k ≥ 3, partition

S \ Ŝ, whereas if p > 1, then they cover it.

3.3.2. Decomposing simplices in Sk,p according to configuration

So far we have decomposed the set of simplices S according to the ratio
between the shortest and longest lengths of edges at x0. Next, we further
decompose simplices according to ratios of lengths of other edges (at x0) and
the length of the largest edge length (at x0).

We start with some terminology, while fixing arbitrarily k ≥ 3, p ∈ {1, 2},
and X = (x0, . . . , xd+1) ∈ Sk,p . We say that an edge connecting x0 and xi,
1 ≤ i ≤ d + 1, is a handle if

(3.13)
‖x0 − xi‖
maxx0(X)

> αk
0

and a tine otherwise, i.e.,

αk+p
0 <

‖xi − x0‖
maxx0(X)

≤ αk
0.

This terminology is intended to evoke the image of the gardening imple-
ment known in English as a rake. We say that X is a rake, or a single-handled
rake, if it only has one handle. Similarly, X is an n-handled rake if it has n
handles for 1 ≤ n ≤ d. Clearly X ∈ Sk,p has at least one handle (obtaining
the maximal edge length at x0) and at most d of them (excluding the one
of minimal edge length at x0). We remark that these notions depend on our
fixed choice of p which will be clear from the context. A single-handled rake
and a double-handled rake are illustrated in Figures 2 and 3 respectively.

We partition Sk,p, p = 1, 2, according to the number of handles in the
elements X = (x0, . . . , xd+1) at x0. Formally, for 1 ≤ n ≤ d, we define the
sets:
(3.14)

Sn
k,p =

{
X =(x0, . . . , xd+1)∈Sk,p :

‖xi − x0‖
maxx0(X)

> αk
0 for exactly n vertices xi

}
.
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We note that

(3.15) Sk,p =
d⋃

n=1

Sn
k,p, and Sn

k,p ∩ Sn′
k,p = ∅, for 1 ≤ n �= n′ ≤ d.

In order to reduce unnecessary information regarding the position of the
handles at x0 we concentrate on the following subset of Sn

k,p.

Sn
k,p =

{
X ∈ Sn

k,p :
‖(X)� − x0‖
maxx0(X)

> αk
0 for all 1 ≤ � ≤ n

}
.

That is, Sn
k,p is the subset of Sn

k,p whose edges connecting x0 with x1, . . . , xn

are handles and whose edges connecting x0 with xn+1, . . . , xd+1 are tines.
We illustrate an element of S2

3,2 where d = 4 in Figure 3.

Figure 3: Example of a simplex X = (x0, x1, x2, x2, x4, x5) ∈ S2
3,2. The radii

of the outer and inner circles are α3
0‖x1 − x0‖ and α5

0‖x1 − x0‖ respectively.

Given a ball Q in H we denote the restrictions of the above sets to Qd+2

by Sn
k,p(Q) and Sn

k,p(Q) respectively.

3.4. Decomposing the Menger-type curvature

We decompose the continuous Menger-type curvature according to the re-
gions described above (Subsection 3.3). We start by expressing the discrete
and continuous d-dimensional Menger-type curvatures of X ∈ S and μ|Q
respectively in terms of the polar sine as follows:

(3.16) cd(X) =

√ ∑d+1
i=0 pd sin2

xi
(X)

(d + 2) · diam(X)d(d+1)

and

c2
d (μ|Q) =

1

d + 2

d+1∑
i=0

∫
Qd+2

pdsin2
xi

(X)

diam(X)d(d+1)
dμd+2(X)(3.17)

=

∫
Qd+2

pd sin2
x0

(X)

diam(X)d(d+1)
dμd+2(X).
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In order to control the continuous curvature c2
d (μ|Q) we break it into

“smaller” parts. We first decompose it according to the sets {Sk,1(Q)}k≥3

and Ŝ(Q) of Subsection 3.3.2 in the following way:

(3.18)

∫
Qd+2

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) =

=

∫
Ŝ(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) +

∑
k≥3

∫
Sk,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) .

We further break the terms of the infinite sum in equation (3.18) accord-
ing to the regions Sn

k,1(Q) of Subsection 3.3.2 in the following way:∫
Sk,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) =(3.19)

=
d∑

n=1

(
d + 1

n

) ∫
Sn

k,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X).

To verify this formula we first decompose Sk,1(Q) by Sn
k,1(Q), n=1, . . . , d,

according to equation (3.15). We then partition each Sn
k,1(Q), n = 1, . . . , d,

according to the subsets of indices representing the n handles. Clearly this
results in

(
d+1
n

)
subsets of Sn

k,1(Q), where one of these is associated with

Sn
k,p(Q). Now the integral of pdsin2

x0
(X)/ diam(X)d(d+1) over these subsets

is the same (due to the invariance of the polar sine to permutations fixing x0

and an immediate change of variables), and consequently equation (3.19) is
established.

Therefore, to control the LHS of equation (3.18) we only need to concen-
trate on the first term of the RHS of equation (3.18) and the terms of the
RHS of equation (3.19) for all k ≥ 3. This is what we do for the rest of the
paper.

4. Uniform rectifiability

We review here basic notions in the theory of uniform rectifiability [2, 3].
Even though the original theory is formulated in finite dimensional Euclidean
spaces, the part presented here generalizes to any separable real Hilbert
space.

4.1. A1 weights and ω-regular surfaces

Let Ld denote the d-dimensional Lebesgue measure on R
d. Given a locally

integrable function ω : R
d → [0,∞), we induce a measure on Borel subsets A
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of R
d by defining

ω(A) =

∫
A

ω(x) dLd(x).

We say that ω is an A1 weight if there exists C ≥ 1 such that for any ball Q
in R

d,
ω(Q)

|Q| ≤ C · ω(x), for Ld a.e. x ∈ Q.

We note that the measure induced by ω is doubling in the following
sense: ω(Q) ≈ ω(2 ·Q) for any ball Q. Consequently, the following function
is a quasidistance (i.e., a symmetric positive definite function satisfying a
relaxed version of the triangle inequality with controlling constant C ≥ 1
instead of one):

qdistω(x, y) =
d

√
ω
(
B
(x + y

2
,
|x − y|

2

))
, for all x, y ∈ R

d.

Given an A1 weight ω, we define ω-regular surfaces as follows.

Definition 4.1. Let ω be an A1 weight on R
d. A subset Γ of H is called

an ω-regular surface if there exists a function f : R
d → H and constants L

and C such that Γ = f(Rd),

(4.1) ‖f(x) − f(y)‖ ≤ L · qdistω(x, y), for all x, y ∈ R
d,

and

(4.2) ω
(
f−1(B(x, r))

) ≤ C · rd, for all x ∈ H and r > 0.

4.2. Two equivalent definitions of uniform rectifiability

We provide here two equivalent definitions of uniform rectifiability. Many
other definitions appear in [2, 3, 12, 16].

Given a Borel measure μ on H , we let

Ĥ =

{
H × R, if dim(H) < 2 · d;

H, otherwise,

and we define the induced measure μ̂ on Ĥ to be μ̂(A) = μ(A ∩ H), for all

Borel sets A ⊆ Ĥ.
We define d-dimensional uniformly rectifiable measures as follows:

Definition 4.2. A Borel measure μ on H is said to be d-dimensional uni-
formly rectifiable if it is d-regular and there exist an A1 weight ω on R

d along
with an ω-regular surface Γ ⊆ Ĥ such that μ̂

(
Ĥ \ Γ

)
= 0.
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David and Semmes [2, 3] have shown that the Jones-type flatness of
equation (1.5) can be used to quantify and thus redefine uniform rectifiability
as follows.

Theorem 4.1. A d-regular measure μ on H is uniformly rectifiable if and
only if there exists a constant C = C(d, Cμ) such that

Jd(μ|Q) ≤ C · μ(Q) for any ball Q in H.

We note that Theorem 1.2 is an immediate consequence of Theorems 1.1
and 4.1.

4.3. Multiscale resolutions and modified Jones-type flatness

Multiscale decomposition of supp(μ) are common in the theory of uniform
rectifiability [1, 15], and they are often used to compress information from
all scales and locations. Here we also use them to construct covers and
partitions of S ∩ [supp(μ)]d+2 and consequently control the Menger-type
curvature by a discretized Jones-type flatness.

Following the spirit of [1, 15] we cover supp(μ) by balls {Bn}n∈Z which
correspond to the length scales {αn

0}n∈Z. We then use them to construct a
corresponding sequence of partitions, {Pn}n∈Z of supp(μ).

We say that a collection of points En ⊆ supp(μ) is an n-net for supp(μ) if

1. ‖x − y‖ > αn
0 , for all x and y in En.

2. supp(μ) ⊆
⋃

x∈En

B(x, αn
0 ).

For each n ∈ Z, we arbitrarily form an n-net, En, and among all balls in the
family {B(x, 4 ·αn

0 )}x∈En we fix a subfamily Bn such that 1
4
·Bn is maximally

mutually disjoint. Since H is separable, supp(μ) is separable and Bn is
countable. Furthermore, we note that Bn covers supp(μ).

We index the elements of Bn by Λn = {1, 2, . . .}, which is either finite
or N, so that

(4.3) Bn = {Bn,j}j∈Λn
.

We define the corresponding multiresolution family for supp(μ) to be

(4.4) D =
⋃
n∈Z

Bn.

These resolutions can be replaced by multiscale partitions of supp(μ) in
the following manner (see proof in Appendix A.2).
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Lemma 4.3.1. For any n ∈ Z there exists a partition of supp(μ), Pn =
{Pn,j}j∈Λn, such that for any j ∈ Λn there exists a unique Bn,j ∈ Bn with

supp(μ)
⋂ 1

4
· Bn,j ⊆ Pn,j ⊆ supp(μ)

⋂ 3

4
· Bn,j .

We typically work with localized resolutions which we define as follows.
For Q a ball in H , we let m(Q) be the smallest integer m such that αm

0 ≤
diam(Q), i.e.,

(4.5) m(Q) =

⌈
ln(diam(Q))

ln(α0)

⌉
,

For n ≥ m(Q) we define

(4.6) Bn(Q) = {Bn,j ∈ Bn : Bn,j ∩ Q �= ∅} ,

and form the local multiresolution family as follows

(4.7) D(Q) =
⋃

n≥m(Q)

Bn(Q) .

We also define the set of indices (possibly empty)

Λn(Q) = {j ∈ Λn : Pn,j ∩ Q �= ∅}.

4.3.1. Jones-type flatness via multiscale resolutions

For a ball Q in H , and the local multiresolution D(Q), we define the corre-
sponding local Jones-type d-flatness as follows:

JD
d (μ|Q) =

∑
B∈D(Q)

β2
2(B) · μ(B).

Both quantities of Jones-type flatness, Jd and JD
d , are comparable. We will

only use the following part of the comparability whose proof practically
follows the same arguments of [15, Lemma 3.2]:

Proposition 4.1. There exists a constant C3 = C3(d, Cμ) such that for any
multiresolution family D on supp(μ):

(4.8) JD
d (μ|Q) ≤ C3 · Jd(μ|6·Q) for any ball Q in H .
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5. Proof of Proposition 1.1

We first note that Uλ(B(x, t)) is invariant under any permutation of the
coordinates. Thus, by the same argument producing equation (3.17) we
have the equality

(5.1)

∫
Uλ(B(x,t))

c2
d(X) dμd+2(X) =

∫
Uλ(B(x,t))

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X).

Furthermore, diam(X) ≥ λ · t and scalex0(X) ≥ λ for all X ∈ Uλ(B(x, t)).
Hence, applying Proposition 3.2 to the RHS of equation (5.1) we get that
for any d-plane L∫

Uλ(B(x,t))

c2
d(X) dμd+2(X) ≤(5.2)

≤ 2 · (d + 1)2 · (d + 2)2

λd(d+1)+4

∫
Uλ(B(x,t))

D2
2(X, L)

t2
dμd+2(X)

td(d+1)

=
8 · (d + 1)2 · (d + 2)2

λd(d+1)+4

d+1∑
i=0

∫
Uλ(B(x,t))

(
dist(xi, L)

2 · t
)2

dμd+2(X)

td(d+1)
.

For Pi, 0 ≤ i ≤ d+1, the projection of Hd+2 onto its ith coordinate, we have
the inclusion

(5.3) Pi(Uλ(B(x, t))) ⊆ B(x, t).

Hence, fixing 0 ≤ i ≤ d+1 and applying equation (5.3) and Fubini’s Theorem
to the corresponding term on the RHS of equation (5.2), we get the inequality∫

Uλ(B(x,t))

(dist(xi, L)

2 · t
)2 dμd+2(X)

td(d+1)
≤(5.4)

≤
(μ(B(x, t))

td

)d+1
∫

B(x,t)

(dist(xi, L)

2 · t
)2

dμ(xi)

=
(μ(B(x, t))

td

)d+1

· β2
2(x, t, L) · μ(B(x, t)).

Combining equations (5.2) and (5.4), while summing the RHS of equa-
tion (5.4) over 0 ≤ i ≤ d + 1 as well as applying the d-regularity of μ, we
obtain the following bound on the LHS of equation (1.4):∫

Uλ(B(x,t))

c2
d(X) dμd+2(X) ≤(5.5)

≤ 8 · (d + 1)2 · (d + 2)3

λd(d+1)+4
· Cd+1

μ · β2
2(x, t, L) · μ(B(x, t)).

Since L is arbitrary, taking the infimum over all L on the RHS of equa-
tion (5.5) proves the proposition. �
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6. Reduction of Theorem 1.1

We reduce Theorem 1.1 by applying the following decomposition of the mul-
tivariate integral c2

d (μ|Q), obtained by combining equations (3.18) and (3.19):

(6.1) c2
d(μ|Q) =

∫
Ŝ(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) +

+
∑
k≥3

d∑
n=1

(
d + 1

n

) ∫
Sn

k,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X).

In view of Proposition 4.1 and equation (6.1), we prove Theorem 1.1 by
establishing the following three propositions:

Proposition 6.1. There exists a constant C4 = C4(d, Cμ) such that

(6.2)

∫
Ŝ(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) ≤ C4

α6
0

· JD
d (μ|Q) .

Proposition 6.2. There exists a constant C5 = C5(d, Cμ) such that for any
ball Q in H∫

S1
k,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2 ≤ C5 · (k · d + 1) · (αd

0 · C2
p

)k·d · JD
d (μ|Q) .

Proposition 6.3. If 1 < n ≤ d, then there exists a constant C6 = C6(d, Cμ)
such that for any ball Q in H∫

Sn
k,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2 ≤ C6 · (k · d + 1)3 · (α0 · C2

p

)k·d · JD
d (μ|Q) .

Proposition 6.1 reduces the integration of the Menger-type curvature in
Theorem 1.1 to well-scaled simplices. We prove it in Section 7 by straight-
forward decomposition of the multivariate integral which we refer to as ge-
ometric multipoles.

Propositions 6.2 and 6.3 reduce the integration of the Menger-type cur-
vature in Theorem 1.1 to poorly-scaled simplices, which are single-handled
rakes in the former proposition and multi-handled rakes in the latter one.
We prove those propositions in Sections 8 and 9 respectively. Unlike Propo-
sition 6.1, the method of geometric multipoles is not sufficient for their proof.
Our basic idea is in the spirit of the proof of [6] (i.e., [14, Theorem 31]), and
trades any poorly-scaled simplex for a predictable sequence of well-scaled
simplices satisfying an extended version of the “triangle inequality” for the
polar sine (Proposition 3.3). We then apply the method of geometric multi-
poles to the well-scaled simplices of the sequence.
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7. Proof of Proposition 6.1 via geometric multipoles

Our proof of Proposition 6.1 generates approximate decompositions of the
Menger-type curvature of μ according to goodness of approximations by
d-planes at different scales and locations. We refer to this strategy as geo-
metric multipoles and see it as a geometric analog of the decomposition of
special potentials by near-field interactions at different locations, as applied
in the fast multipoles algorithm [4]. Unlike fast multipoles, which considers
interactions between pairs of points, geometric multipoles takes into account
simultaneous interactions between d + 2 points. While fast multipoles ne-
glects terms of distant interactions, d-dimensional geometric multipoles may
neglect locations and scales well-approximated by d-planes.

We first break the integral on the LHS of equation (6.2) into a sum of
integrals reflecting different scales and locations in Q ∩ supp(μ). Then we
control each such integral by β2

2(B) · μ(B) for a unique B ∈ D(Q).

For fixed m ≥ m(Q) (see equation (4.5)), we define

(7.1) Ŝ(m) =
{
X ∈ Ŝ : maxx0(X) ∈ (αm+1

0 , αm
0 ]
}

,

and we let Ŝ(m)(Q) denote the restriction of Ŝ(m) to the set Qd+2. The
argument m indicates the overall length scale of the elements and the sub-
script indicates the relative scaling between the edges at x0. We note that
the family

{
Ŝ(m)(Q)

}
m∈Z

partitions Ŝ(Q), and thus∫
Ŝ(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) =(7.2)

=
∑

m≥m(Q)

∫
Ŝ(m)(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X).

Next, fixing the length scale determined by m, we partition each Ŝ(m)(Q)
according to location in supp(μ) determined by the partition Pm. For fixed
m ≥ m(Q), j ∈ Λm, and Pm,j as in Lemma (4.3.1), let

(7.3) P̂m,j =
{
X ∈ Ŝ(m)(Q) : x0 ∈ Pm,j

}
.

We thus obtain the inequality∫
Ŝ(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) ≤

≤
∑

m≥m(Q)

∑
j∈Λm(Q)

∫
P̂m,j

pd sin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) .
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Fixing m , j ∈ Λm(Q), and Bm,j ∈ Bm(Q) such that

1

4
· Bm,j ∩ supp(μ) ⊆ Pm,j ⊆ 3

4
· Bm,j

(see Lemma 4.3.1) we will show that

(7.4)

∫
P̂m,j

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) ≤ C4

α6
0

· β2
2(Bm,j) · μ(Bm,j) .

Summing over j ∈ Λm(Q) and m ≥ m(Q) will then conclude the proposition.

We establish equation (7.4) by following the basic argument behind

Proposition 1.1. We first note that for all X ∈ P̂m,j ⊆ Ŝ(m)(Q)

(7.5)
α0

8
· diam (Bm,j) = αm+1

0 < maxx0(X) ≤ diam(X) .

Then, fixing an arbitrary d-plane L in H , and combining Proposition 3.2
with equation (7.5), we obtain the following inequality for all X ∈ P̂m,j

pdsin2
x0

(X)

diam(X)d(d+1)
≤(7.6)

≤ 2 · 82 · (d + 1)2 · (d + 2)2

α6 · α2
0

· D2
2 (X, L)

diam2 (Bm,j)
· 1(

α
d(m+1)
0

)d+1
.

Furthermore, if X = (x0, . . . , xd+1) ∈ P̂m,j, then x0 ∈ 3
4
·Bm,j, and ‖xi−x0‖ ≤

αm
0 = diam(Bm,j)/4 for all 1 ≤ i ≤ d + 1. Consequently, xi ∈ Bm,j for all

0 ≤ i ≤ d + 1, and thus

(7.7) P̂m,j ⊆ (Bm,j)
d+2 .

Combining equations (7.6) and (7.7) we obtain the bound

(7.8)

∫
P̂m,j

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) ≤

≤ 2 · 82 · (d + 1)2 · (d + 2)2

α6 · α2
0

∫
(Bm,j)

d+2

D2
2 (X, L)

diam2 (Bm,j)

dμd+2(X)(
α

d(m+1)
0

)d+1
.

Finally, applying the same types of computations to the RHS of equa-
tion (7.8) that led to equations (5.4) and (5.5) we obtain equation (7.4)
and hence the proposition. �
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8. Proof of Proposition 6.2 via multiscale inequalities

Here we develop a multiscale inequality for the polar sine that results in a
proof of Proposition 6.2. The basic idea is to take an X ∈ Sk,1 and carefully

construct a sequence of simplices, {Xn}n(X)
n=1 , well-scaled at x0 and depending

on X such that

(8.1) pdsinx0
(X) �

n(X)∑
j=1

pdsinx0
(Xj),

where neither the length of the sequence, n(X), nor the size of the compa-
rability constant in the above inequality (also depending on n(X)) are “too
large”.

Such a sequence will have zeroth coordinate x0 = (X)0, and overall length
scales progressing geometrically from minx0(X) to maxx0(X). In this way
the length of the sequence, n(X), will be such that

n(X) � log

(
maxx0(X)

minx0(X)

)
� k.

As mentioned previously, a similar approach used in the one-dimensional
case to control c2

M(μ) by the β∞ numbers [6, 14] was the inspiration for our
approach. However, generalizing it to higher-dimensions, as well as the β2

numbers, required us to go substantially beyond what was present for d = 1
in a few ways as shown throughout the arguments of the proof.

In order to construct these sequences and clearly formulate the inequal-
ities we require some development in terms of ideas and notation. Subsec-
tion 8.1 develops the notion of well-scaled sequences and a related discrete
multiscale inequality for the polar sine. Subsection 8.2 turns this inequal-
ity into a multiscale integral inequality. Finally, in Subsection 8.4 we prove
Proposition 6.2. Throughout this section we arbitrarily fix k ≥ 3 and take
p = 1 or p = 2 (depending on the context), where p = 2 is only needed for
definitions or calculations that will be used in Section 9.

8.1. From rakes to well-scaled sequences

We recall that S1
k,p is the set of rakes whose single handles are obtained at

their first coordinate, such that

αk+p
0 < scalex0(X) ≤ αk

0.

We explain here how to “decompose” elements of S1
k,p into a sequence of

well-scaled simplices satisfying an inequality of the form in equation (8.1).
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That is, we take an element with one very large edge at x0 and swap it for a
predictable sequence of elements, each with all edges at x0 comparable, such
that the sum of the polar sines controls that of the original simplex. This
involves (regrettably) some technical definitions and corresponding notation,
the first of which is the following shorthand notation for annuli.

If n ∈ Z and α0 is the fixed constant of equation (2.2), we use the
notation

(8.2) An(x, r) = B(x, αn
0 · r) \ B(x, αn+1

0 · r) .

8.1.1. Well-scaled pieces and augmented elements

We define a well-scaled piece for X ∈ S1
k,p to be a (k · d)-tuple of the form

(8.3) YX = (y1, . . . , yk·d) ∈
k·d∏
q=1

Ak−� q
d�(x0, maxx0 (X)) .

The coordinates of YX are grouped into k distinct clusters of d points, with
each individual cluster lying in a distinct annulus centered at x0 (see Fig-
ure 4 (a)).

For X ∈ S1
k,p and a well-scaled piece, YX , we define the augmentation of

X by YX as

(8.4) X = X × YX = (x0, . . . , xd+1, y1, . . . , yk·d) ∈ S1
k,p × Hk·d.

For a fixed augmented element X, we define two sequences in Hd+2, the
auxiliary sequence,

Φ̃k (X) =
{
X̃q

}k·d
q=0

,

and the well-scaled sequence

Φk (X) = {Xq}k·d+1
q=1 .

They will be used to formulate a multiscale inequality for the polar sine
function. We remark that the auxiliary sequence is auxiliary in the sense
that it is only used to establish the inequality of equation (8.1) for the well-
scaled sequence Φ(X).
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(a) simplex X and YX (b) auxiliary simplex X̃1

(c) well-scaled simplex X1 (d) well-scaled simplex X2

(e) well-scaled simplex X4 (f) well-scaled simplex X7

Figure 4: Illustration of the well-scaled piece and induced sequences. We
assume d = 3, k = 2, and p = 1 and a simplex X = (x0, . . . , x5) (we use the
case k = 2 for convenience of drawing even though X itself is well-scaled, but
we notice that the construction produces simplices of smaller scales). The
radii of the circles (ordered from outer to inner) are ‖x1 − x0‖, α0‖x1 − x0‖,
α2

0‖x1 − x0‖, and α3
0‖x1 − x0‖. The simplex X and the well-scaled piece

YX are shown in (a). The auxiliary simplex, X̃1, is exemplified in (b) as an
element mediating between the well-scaled simplex X1 shown next and the
original simplex X. The elements of the well-scaled sequence X1, X2, X4

and X7 are shown in (c)-(f) respectively (note that X7 is not listed in the
example below).
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8.1.2. The auxiliary sequence

If a ∈ Z, then let a ∈ {2, . . . , d + 1} denote the unique integer such that

a = a mod d. We form the auxiliary sequence
{
X̃q

}k·d
q=0

recursively as follows.

Definition 8.1. If X = (x0, . . . , xd+1) ∈ S1
k,p and

X = X × YX = (x0, . . . , xd+1, y1, . . . , yk·d),

then let Φ̃k(X) =
{
X̃q

}k·d
q=0

be the sequence of elements in Hd+2 defined

recursively as follows:
X̃0 = X,

and

(8.5) X̃q = X̃q−1

(
yq, q + 1

)
for 1 ≤ q ≤ k · d.

For example, if d = 3, then

X̃1 = (x0, x1, y1, x3, x4), X̃2 = (x0, x1, y1, y2, x4), X̃3 = (x0, x1, y1, y2, y3);

X̃4 = (x0, x1, y4, y2, y3), X̃5 = (x0, x1, y4, y5, y3), X̃6 = (x0, x1, y4, y5, y6).

where X̃1 is illustrated in Figure 4 (b).

In general, we note that the elements X̃q have the following form:
(8.6)

X̃q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x0, x1, y1, . . . , yq, xq+2, . . . , xd+1), if 1 ≤ q ≤ d − 1;

(x0, x1, yj·d+1, . . . , yq, yq−d+1, . . . , yj·d), if j · d < q < (j + 1) · d
for 1 ≤ j ≤ k − 1;

(x0, x1, y(j−1)·d+1, . . . , yj·d), if q = j · d for 1 ≤ j ≤ k.

In the special case where d = 1, the first two cases of equation (8.6) are

meaningless and X̃q = (x0, x1, yq) for all 1 ≤ q ≤ k.

8.1.3. The well-scaled sequence

We derive the well-scaled sequence Φk(X) from the auxiliary sequence Φ̃k(X)
as follows.

Definition 8.2. If X ∈ S1
k,p and X = X × YX = (x0, . . . , xd+1, y1, . . . , yk·d),

then let Φk(X) = {Xq}k·d+1
q=1 be the sequence of elements in Hd+2 such that

(8.7) Xq =

{
X̃q−1 (yq, 1) , if 1 ≤ q ≤ k · d;

X̃k·d, if q = k · d + 1.
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For example, if d = 3, then the first six elements of the sequence are

X1 = (x0, y1, x2, x3, x4), X2 = (x0, y2, y1, x3, x4), X3 = (x0, y3, y1, y2, x4);
X4 = (x0, y4, y1, y2, y3), X5 = (x0, y5, y4, y2, y3), X6 = (x0, y6, y4, y5, y3).

We illustrate X1, X2, X4 and even X7 in Figures 4 (c)–4 (f).

We also note that in the very special case where d = 1, then X1 =
(x0, y1, x2), Xq = (x0, yq, yq−1), 1 < q ≤ k · d + 1 and Xk·d+1 = (x0, x1, yk·d).

The following lemma shows that the elements Xq ∈ Φk (X), 1 ≤ q ≤
k · d + 1, are indeed well-scaled at the vertex x0. It follows directly from the
definition of the well-scaled sequence by checking that each of the coordinates
of the simplices Xq, q = 1, . . . , k · d + 1, are in the correct annulus centered
at x0.

Lemma 8.1.1. If X ∈ S1
k,p and X = X×YX, then each term of the sequence

Φk(X) = {Xq}k·d+1
q=1 is well-scaled at x0 and we have the following estimates:

(8.8) α
k+1−� q

d�
0 · maxx0(X) < maxx0(Xq) ≤ α

k−� q
d�

0 · maxx0(X),

if 1 ≤ q ≤ k · d, and

(8.9) α0 · maxx0(X) < minx0(Xq) ≤ maxx0(Xq) = maxx0(X),

if q = k · d + 1.

8.1.4. Augmented sets and a discrete multiscale inequality

Lemma 8.1.1 assures us that the elements Xq have the correct structure in
terms of relative scale, but we still have to assure ourselves that we can pick
the sequence Φ(X) = {Xq}k·d+1

q=1 so that it satisfies the inequality of equa-
tion (8.1). This is easy to accomplish as long as we impose some conditions
on this sequence as well as the auxiliary sequence as we are choosing them.
We clarify this as follows.

Using the constant Cp of Proposition 3.3, we form the set augmentation
of the set S1

k,p, denoted by S1
k,p, as follows:

S1
k,p =

{
X ∈ S1

k,p × [supp(μ)]k·d : Φ̃k(X) and Φk(X) satisfy the inequality

(8.10)

pdsinx0
(X̃q) ≤ Cp ·

(
pdsinx0

(Xq+1) + pdsinx0
(X̃q+1)

) ∀ 0 ≤ q < k · d
}
.

We note that this set has some complicated structure and that it is not
simply a product set. Essentially it is a set of augmented elements such that
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each coordinate is conditioned on the previous coordinates in such a way as
to satisfy a sequence of two-term inequalities. In this way the well-scaled
sequence Φ(X) satisfies an inequality of the form in equation (8.1) by simply
iterating the two-term inequality of equation (8.10).

In fact, the sets S1
k,p give rise to the following multiscale inequality, whose

direct proof (which we omit) is based on a simple iterative argument followed
by an application of the Cauchy-Schwartz inequality.

Lemma 8.1.2. If X ∈ S1
k,p, then the elements of the corresponding well-

scaled sequence Φk(X) = {Xq}k·d+1
q=1 satisfy the inequality

pdsin2
x0

(X) ≤ (k · d + 1) · C2·k·d
p

k·d+1∑
q=1

pd sin2
x0

(Xq) .

At this point, the motivation behind our construction of the well-scaled
and auxiliary sequences may become somewhat more apparent. Our con-
struction was governed by the iteration of the two-term inequality of equa-
tion (8.10), with the purpose of iteratively swapping out the simplices with

bad scaling, X̃q, for a well-scaled simplex, Xq, and a simplex X̃q+1 whose

scaling is slightly better than that of X̃q because fewer of its edges are grossly
disproportionate. In this way, we gradually move from bad to better, with
each stage leaving us with an acceptable “remainder”, i.e., Xq. We must be
somewhat careful in this process, because if we move too quickly, somewhere
down the line we will generate simplices with worse structure than what we
want. This is the basic reason that we have d interpolating coordinates, yi,
in a given annulus. We must make sure that while we are “growing” the
interpolating coordinates out from x0, they still remain concordant with the
length scales of the previous step.

8.2. Estimating the size of S1
k,p

We show here that for any X ∈ S1
k,p, the corresponding “slice” in S1

k,p is

uniformly “quite large” for each such X, and thus Lemma 8.1.2 can be
applied somewhat indiscriminately. Later in Section 8.3 we will use that
fact to show that the integral over S1

k,1, can be bounded in a meaningful
way by a corresponding integral over the set S1

k,1.

Once again, for the sake of clarity we need to rely on a bit of technical
notation to account for the structure of the set S1

k,p. While the notation is

a bit cumbersome, we believe that the idea is simple enough.
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8.2.1. Truncations and projections of S1
k,p

We fix 0 ≤ q ≤ k ·d. If X = (x0, . . . , yk·d) ∈ S1
k,p, then we define the qth trun-

cation of X to be the function Tq : S1
k,p → Hd+2+q, where

(8.11) Tq (X) =

{
X, if q = 0;

(x0, . . . , xd+1, y1, . . . , yq), if 1 ≤ q ≤ k · d.

The (d + 2 + q)-tuple Tq (X) is not to be confused with the projection
(X)q ∈ H. If A ⊆ S1

k,p, then we denote the image of A by Tq(A).

For X = (x0, . . . , yk·d) ∈ S1
k,p, we denote the pre-image of Tq (X) =

(x0, . . . , yq) by

(8.12) T−1
q (x0, . . . , yq) =

{
X ′ ∈ S1

k,p : Tq (X ′) = Tq (X) = (x0, . . . , yq)
}

,

where (x0, . . . , yq) is taken to mean X if q = 0.
Now, fixing 1 ≤ q ≤ k · d, we define the qth projection of X onto H . For

X = (x0, . . . , yk·d) ∈ S1
k,p, let

πq(X) = yq = (X)d+1+q .

The set πq

(
T−1

q−1 (x0, . . . , yq−1)
)

is composed of all possible qth coordinates
of the well-scaled pieces YX = (y1, . . . , yk·d) such that X ′ = X × YX ∈
T−1

q−1(x0, . . . , yq−1).
We note that in this way we are giving another clear indication of how

the coordinates yq of X ∈ S1
k,p are “conditioned” on the previous coordinates

(x0, . . . , xd+1, . . . , yq−1).

8.2.2. The “size” of S1
k,p

For any X ∈ S1
k,p and all 1 ≤ q ≤ k · d, we define the functions

(8.13) g1
k,q (X) = μ

(
πq

(
T−1

q−1 (Tq−1 (X))
))

.

The double subscript in this case is not intended to evoke the index p = 1, 2.
It is important to note that the functions g1

k,q(X) are independent of the
values of the coordinates y� for � > q, and as such, they are well defined on
the truncations Tq(X). That is, we always have the equality (with a slight
abuse of notation)

g1
k,q(X) = g1

k,q(Tq(X))

For 1 ≤ q ≤ k · d, the following proposition (which is proved in Ap-
pendix A.3) estimates the sizes of the functions g1

k,q (defined on S1
k,p):
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Proposition 8.1. If X ∈ S1
k,p and 1 ≤ q ≤ k · d, then

(8.14)

μ
(
B(x0, α

k−� q
d�

0 ·maxx0(X))
)
≥ g1

k,q (X) ≥ 1

2
·μ
(
B(x0, α

k−� q
d�

0 ·maxx0(X))
)
.

8.3. Multiscale integral inequality

Taking the product of the functions g1
k,q over q we have the strictly positive

function

(8.15) f 1
k (X) =

k·d∏
q=1

g1
k,q (X) .

Thus, if we take the measure induced by

(8.16)
dμd+2+k·d(X)

f 1
k (X)

∣∣∣∣∣
X∈S1

k,p

,

then we essentially obtain the measure dμd+2(X) over S1
k,p modified by a set

of conditional probability distributions on the coordinates yq for 1 ≤ q ≤ k·d.
As such, integrating a function of X according to the measure of equa-

tion (8.16) reduces (after Fubini’s Theorem) to integrating the function with
respect to μd+2. In this way we can turn Lemma 8.1.2 into a meaningful
integral inequality. We formulate such an inequality as follows, while using
the notation

Nk = (k + 1) · d + 2.

Proposition 8.2. If Q is a ball in H, k ≥ 3, and p = 1, 2, then∫
S1

k,p(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2 ≤(8.17)

≤ (k · d + 1) · C2·k·d
p

k·d+1∑
q=1

∫
S1

k,p(Q)

pdsin2
x0

(Xq)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

.

Proof. This proposition is a direct consequence of Lemma 8.1.2 and the
following equation∫

S1
k,p(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) =(8.18)

=

∫
S1

k,p(Q)

pdsin2
x0

(X)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

, ∀ ball Q ⊆ H .
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For simplification, we prove equation (8.18) for Q = H , however, the
idea applies to any ball Q in H . First, using Fubini’s Theorem we obtain

(8.19)

∫
S1

k,p

pdsin2
x0

(X)

diam (X)d(d+1)

dμNk(X)

f 1
k (X)

=

=

∫
S1

k,p

pdsin2
x0

(X)

diam (X)d(d+1)

(∫
{

YX :X×YX∈S1
k,p

} dμk·d(YX)

f 1
k (X)

)
dμd+2(X).

Then, we iterate the inner integral on the RHS of equation (8.19) and
get

(8.20)

∫
{

YX :X×YX∈S1
k,p

} dμk·d(YX)

f 1
k (X)

=

∫
π1(T−1

0 (X))
· · ·
∫

πq(T−1
q−1(x0,...,yq−1))

· · ·
∫

πk·d(T−1
k·d−1(x0,...,yk·d−1))

dμ (yk·d) · · · dμ(y1)∏k·d
q=1 g1

k,q (X)
,

for the sets πq

(
T−1

q−1(x0, . . . , yq−1)
)

conditionally defined given

yq−1 ∈ πq−1

(
T−1

q−2(x0, . . . , yq−2)
)
, for 2 ≤ q ≤ k · d.

For any fixed (x0, . . . , yq−1) ∈ H(d+1+q), by the definition of g1
k,q we have

the equality ∫
πq(T−1

q−1(x0,...,yq−1))

dμ(yq)

g1
k,q (X)

=(8.21)

=

∫
πq(T−1

q−1(x0,...,yq−1))

dμ(yq)

μ
(
πq

(
T−1

q−1(x0, . . . , yq−1)
)) = 1.

Applying this to the iterated integral on the RHS of equation (8.20) we
obtain

(8.22)

∫
{

YX :X×YX∈S1
k,p

} dμk·d(YX)

f 1
k (X)

= 1, for all X ∈ S1
k,p.

Combining equations (8.19) and (8.22), we conclude equation (8.18) and the
proposition. �

Remark 8.1. Since we do not take the time to establish the measurability
of f 1

k , one can instead follow an alternative strategy: Proposition 8.1 implies
that

f 1
k ≈

k·d∏
q=1

μ

(
B(x0, α

k−� q
d�

0 · maxx0(X))

)
,
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where the constant of comparability is at worst 2k·d. The latter function is
clearly measurable in X, and one can thus use it instead of f 1

k for Propo-
sition 8.2. Nevertheless such a strategy will increase the estimate on the
constant C1 of Theorem 1.1, and requires a slight change in the choice of α0

in equation (2.2).

8.4. Concluding the proof of Proposition 6.2

The rest of our analysis for Proposition 6.2 consists of taking each term from
the RHS of equation (8.17) and adapting the argument of Proposition 6.1.
The basic idea is to chop the set S1

k,1(Q) in a multiscale fashion depending on

the relative sizes of Xq and X. This requires some careful bookkeeping, but
it allows us to involve the very small (relative to diam(X)) length scales in
the integration, and this will produce a constant (uniform in q) that decays
rapidly enough with k.

More specifically, we verify the following proposition, whose combination
with Proposition 8.2 establishes Proposition 6.2.

Proposition 8.3. If 1 ≤ q ≤ k · d + 1, then there exists a constant C7 =
C7(d, Cμ) such that

(8.23)

∫
S1

k,1(Q)

pdsinx0
(Xq)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

≤ C7 · αk·d2

0 · JD
d (μ|Q)

for any ball Q ⊆ H.

Proof of Proposition 8.3. We partition the sets S1
k,1(Q) by the size of

maxx0(X). If m ≥ m(Q), then let

(8.24) S1
k,1(m)(Q) =

{
X ∈ Sk,1

1 (η̃)(Q) : maxx0(X) ∈ (αm+1
0 , αm

0 ]
}

.

Throughout the rest of the proof we fix m ≥ m(Q) and 1 ≤ q ≤ k · d+1,
and we further partition the set S1

k,p(m)(Q) according to location in supp(μ)

in order to reflect the quantity maxx0(Xq). Specifically, we define the scale
exponent of m and q

(8.25) sc(m, q) =

{
m + k − ⌈

q
d

⌉
, if 1 ≤ q ≤ k · d;

m, if q = k · d + 1.

The exponent sc(m, q) indicates the correct length scale for the decompo-
sition of the set S1

k,1(m)(Q). Specifically, according to the estimates of

Lemma 8.1.1, we have that

maxx0(Xq) ∈
(
α

sc(m,q)+2
0 , α

sc(m,q)
0

]
.
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Thus, for j ∈ Λsc(m,q)(Q), we let

(8.26) Psc(m,q),j =
{

X ∈ S1
k,1(m) : x0 ∈ Psc(m,q),j

}
,

and obtain the following cover of S1
k,1(m)(Q) :

(8.27) Psc(m,q)(Q) =
{

Psc(m,q),j

}
j∈Λsc(m,q)(Q)

.

Letting m ≥ m(Q) and j vary, the LHS of equation (8.23) satisfies the
following inequality:

(8.28)

∫
S1

k,1(Q)

pdsinx0
(Xq)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

≤

≤
∑

m≥m(Q)

[ ∑
j∈Λsc(m,q)(Q)

∫
Psc(m,q),j

pdsinx0
(Xq)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

]
.

Fixing j ∈ Λsc(m,q)(Q), in addition to the fixed k, m and q, we will
establish that
(8.29)∫

Psc(m,q),j

pdsinx0
(Xq)

diam(X)d(d+1)

dμNk(X)

f 1
k (X)

≤ C1 · αk·d2

0 · β2
2

(
Bsc(m,q),j

) · μ (Bsc(m,q),j

)
.

Equations (8.28) and (8.29) will directly imply Proposition 8.3.

We prove equation (8.29) as follows. Fix an arbitrary d-plane L. Since
the elements {Xq}k·d+1

q=1 are well-scaled at x0, by Proposition 3.2 and equa-
tion (3.11) we have the following bound on the LHS of equation (8.29):

(8.30)

∫
Psc(m,q),j

pdsin2
x0

(Xq)
dμNk(X)

diam(X)d(d+1) · f 1
k (X)

≤

≤ 2 · (d + 1)2 · (d + 2)2

α6
0

∫
Psc(m,q),j

D2
2(Xq, L)

diam(Xq)2
· dμNk(X)

diam(X)d(d+1) · f 1
k (X)

.

To bound the RHS of equation (8.30) we focus on the individual terms of

D2
2 (Xq, L)

diam2(Xq)
=

d+1∑
s=0

dist2 ((Xq)s, L)

diam2(Xq)
.

We arbitrarily fix 0 ≤ s ≤ d + 1 and note the following cases of possible
values of (Xq)s:
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Case 1: (Xq)s = x0. In this case q has no restriction, that is, 1 ≤ q ≤ k ·d+1.

Case 2: (Xq)s = x1. In this case q = k · d + 1 (see equations (8.6)-(8.7)) and
thus sc(m, q) = m.

Case 3: (Xq)s = xi, where 2 ≤ i ≤ d + 1. In this case 1 ≤ q ≤ d (see
equations (8.6)-(8.7)) and thus sc(m, q) = m + k − 1.

Case 4: (Xq)s = y�, where 1 ≤ � ≤ k ·d. In this case for each 1 ≤ q ≤ k ·d+1,
we have the following restriction on �: max{1, q − d} ≤ � ≤ q and thus

(8.31) max
{

1,
⌈q

d

⌉
− 1

}
≤
⌈

�

d

⌉
≤
⌈q

d

⌉
.

The calculation of the upper bound varies slightly according to which case
we consider.

Considering the first three cases simultaneously, we let 0 ≤ i ≤ d+1 and
examine the integrals decomposing the RHS of equation (8.30), each of the
form ∫

Psc(m,q),j

(
dist (xi, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

.

Per Fubini’s Theorem we obtain the equality

(8.32)

∫
Psc(m,q),j

(
dist (xi, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

=

=

∫
T0

(
Psc(m,q),j

)
(∫

{
YX :X×YX∈Psc(m,q),j

} dμk·d(YX)

diam2(Xq) · f 1
k (X)

)

· dist2(xi, L)
dμd+2(X)

diam(X)d(d+1)
.

To bound the inner integral on the RHS of equation (8.32) we first note
that

(8.33) diam(X) ≥ maxx0(X) = ‖x0 − x1‖ > αm+1
0 for all X ∈ T0

(
Psc(m,q),j

)
.

Combining Lemma 8.1.1 with equations (8.25) and (8.33) we see that

(8.34) diam(Xq) ≥ maxx0(Xq) > α
sc(m,q)+1
0 .

Since diam
(
Bsc(m,q),j

)
= 8 · αsc(m,q)

0 , we rewrite equation (8.34) as follows:

(8.35) diam(Xq) ≥ α0

8
· diam

(
Bsc(m,q),j

)
.
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Combining equations (8.22) and (8.35), we obtain that if X ∈ T0

(
Psc(m,q),j

)
,

then

(8.36)

∫
{

YX :X×YX∈Psc(m,q),j

} dμk·d(YX)

f 1
k (X) · diam2(Xq)

≤ 64

α2
0

· 1

diam2(Bsc(m,q),j)
.

By the definition of Psc(m,q),j , S1
k,1(m) and S1

k,1(m) we have the equality

T0

(
Psc(m,q),j

)
=

⋃
x0∈Psc(m,q),j

[ ⋃
x1∈Am(x0,1)

{(x0, x1)} × [Ak(x0, ‖x1 − x0‖)]d
]
.

From this we trivially obtain the inclusion

T0

(
Psc(m,q),j

)
⊆

⋃
x0∈Psc(m,q),j

{x0} × B(x0, α
m
0 ) × [

B(x0, α
m+k
0 )

]d
.

Applying this together with the inequalities of equations (8.33) and (8.36) to
the RHS of equation (8.32) gives the following inequality for all 0 ≤ i ≤ d+1:

(8.37)

∫
Psc(m,q),j

(
dist (xi, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

≤

≤ 64

α
d(d+1)+2
0

∫
Psc(m,q),j

∫
B(x0,αm

0 )

∫
[B(x0,αm+k

0 )]
d

( dist (xi, L)

diam
(
Bsc(m,q),j

))2dμd+2(X)

[αm
0 ]d(d+1)

.

Assume Case 1, that is, i = 0. Then, after iterating the integral on the
RHS of equation (8.37), applying the defining property of d-regular measure
and the inclusion Psc(m,q),j ⊆ Bsc(m,q),j, we see that the term on the RHS of
equation (8.37) has the bound

(8.38)
64 · Cd+1

μ

α
d(d+1)+2
0

· αk·d2

0 · β2
2

(
Bsc(m,q),j , L

) · μ (Bsc(m,q),j

)
.

Assume Case 2, that is, i = 1, and recall that in this case q = k · d + 1
and sc(m, q) = m. Thus we have the inclusion

B(x0, α
m
0 ) ⊆ Bsc(m,q),j , for all x0 ∈ Psc(m,q),j .

Hence, iterating the integral on the RHS of equation (8.37) and then apply-
ing similar arguments to Case 1, we obtain the following bound for the LHS
of equation (8.37):

(8.39)
64 · 4d · Cd+1

μ

α
d(d+1)+2
0

· αk·d2

0 · β2
2 (Bm,j , L) · μ (Bm,j) .
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Next, assume Case 3, that is, 2 ≤ i ≤ d + 1 and recall that in this
case 1 ≤ q ≤ d and sc(m, q) = m + k − 1. Using the fact that Psc(m,q),j ⊆
3
4
· Bsc(m,q),j , and the defining property of d-regular measures we have the

inequality

μ
(
Psc(m,q),j

) ≤ μ
(3

4
· Bsc(m,q),j

)
≤ Cμ · (3 · αm+k−1

0

)d
.

Furthermore, we have the inclusion

B
(
x0, α

m+k
0

) ⊆ Bsc(m,q),j , for all x0 ∈ Psc(m,q),j.

Iterating the integral as in the previous calculations, the LHS of equa-
tion (8.37) is bounded by

(8.40)
64 · 3d · Cd+1

μ

α
d(d+1)+d+2
0

· αk·d2

0 · β2
2

(
Bsc(m,q),j , L

) · μ (Bsc(m,q),j

)
.

Therefore, taking the maximal coefficient from equations (8.38), (8.39)
and (8.40), the LHS of equation (8.37) has the following uniform bound
for all 0 ≤ i ≤ d + 1:

(8.41)
3d · 27 · Cd+1

μ

α
d(d+1)+d+2
0

· β2
2

(
Bsc(m,q),j , L

) · μ (Bsc(m,q),j

)
.

At last we consider Case 4, where the terms in the sum comprising the
RHS of equation (8.30) are of the form:∫

Psc(m,q),j

(
dist (y�, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

,

where 1 ≤ l ≤ k · d.
Iterating the integral and applying equation (8.35), we obtain

(8.42)

∫
Psc(m,q),j

(
dist (y�, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

≤

≤ 64

α2
0

∫
T0

(
Psc(m,q),j

)
(∫

{
YX :X×YX∈S1

k,p

}
(

dist (y�, L)

diam
(
Bsc(m,q),j

))2
dμk·d(YX)

f 1
k (X)

)

· dμd+2(X)

diam(X)d(d+1)
.

In order to bound the RHS of equation (8.42), we first calculate a uniform
bound in 1 ≤ l ≤ k · d for the interior integral. Then, completing the
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integration with respect to X ∈ T0

(
Psc(m,q),j

)
will give the desired bound in

terms of the corresponding β2 number.

For fixed X ∈ T0

(
Psc(m,q),j

)
and 1 ≤ � ≤ k ·d, after iterating the interior

integral on the RHS of equation (8.42) and applying equation (8.21) we have
that

(8.43)

∫
{

YX :X×YX∈S1
k,p

}
(

dist (y�, L)

diam
(
Bsc(m,q),j

))2
dμk·d(YX)

f 1
k (X)

=

=

∫
π1(T−1

0 (X))
· · ·

∫
π�(T−1

�−1(x0,...,y�−1))

(
dist (y�, L)

diam
(
Bsc(m,q),j

))2
dμ (y�) · · · dμ(y1)∏�

s=1 g1
k,s

,

where we used the notation g1
k,s defined in equation (8.13). Given X ∈

Psc(m,q),j we fix (x0, . . . , y�−1) = T�−1(X) and calculate a bound for the inte-

gral ∫
π�(T−1

�−1(x0,...,y�−1))

(
dist (y�, L)

diam
(
Bsc(m,q),j

))2
dμ (y�)

g1
k,�

.

We first obtain an upper bound for

1

g1
k,�

=
1

μ
(
π�

(
T−1

�−1(x0, . . . , y�−1)
)) ,

and then complete the integration.
To obtain that bound, we apply Proposition 8.1 to get that for all 1 ≤

� ≤ k · d:

(8.44) μ
(
π�

(
T−1

�−1(x0, . . . , y�−1)
)) ≥ 1

2
· μ

(
B

(
x0, α

k−� �
d�

0 · maxx0(X)

))
.

Next, applying equations (8.25), (8.31) and (8.33) as well as the fact that
α0 < 1, we note that

(8.45) α
k−� �

d�
0 · maxx0(X) ≥ α

k−� �
d�+m+1

0 ≥ α
k−� q

d�+m+2

0 = α
sc(m,q)+2
0 .

We note that the RHS of equation (1.1) extends to all r > 0 and apply it to
obtain the following bound

(8.46) μ
(
B
(
x0, α

sc(m,q)+2
0

))
≥ 1

C2
μ

·
(

α2
0

4

)d

· μ (Bsc(m,q),j

)
.

Finally, combining equations (8.44), (8.45) and (8.46) we conclude that

(8.47) μ
(
π�

(
T−1

�−1(x0, . . . , y�−1)
)) ≥ 1

2 · C2
μ

·
(

α2
0

4

)d

· μ (Bsc(m,q),j

)
.
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Noting that π�

(
T−1

�−1(x0, . . . , y�−1)
) ⊆ Bsc(m,q),j and applying equation

(8.47), we have the inequality∫
π�(T−1

�−1(x0,...,y�−1))

( dist (y�, L)

diam
(
Bsc(m,q),j

))2

· dμ(y�)

μ
(
π�

(
T−1

�−1(x0, . . . , y�−1)
)) ≤

≤ 2 · 4d · C2
μ

α2·d
0

· β2
2

(
Bsc(m,q),j

)
.(8.48)

Then, applying this and equation (8.21) to the RHS of equation (8.43), we

have the following inequality for all X ∈ T0

(
Psc(m,q),j

)
:

(8.49)∫
{

YX :X×YX∈S1
k,p

}
( dist (y�, L)

diam
(
Bsc(m,q),j

))2dμk·d(YX)

f 1
k (X)

≤ 2 · 4d · C2
μ

α2·d
0

·β2
2

(
Bsc(m,q),j

)
.

Furthermore, noting that∫
T0

(
Psc(m,q),j

) dμd+2(X)

diam(X)d(d+1)
≤ Cd+1

μ

α
d(d+1)
0

· αk·d2

0 · μ (Bsc(m,q),j

)
,

per equations (8.42) and (8.49), we have the following uniform bound for all
1 ≤ � ≤ k · d:

(8.50)

∫
Psc(m,q),j

(
dist (y�, L)

diam(Xq)

)2
dμNk(X)

f 1
k (X) · diam(X)d(d+1)

≤

≤ 128 · 4d · Cd+3
μ

αd2+3·d+2
0

· αk·d2

0 · β2
2(Bsc(m,q),j) · μ

(
Bsc(m,q),j

)
.

Finally, taking largest coefficient from equations (8.41) and (8.50), we
have the bound∫

Psc(m,q),j

D2 (Xq, L)

diam2(Xq)

dμNk(X)

f 1
k (X) · diam(X)d(d+1)

≤

≤ (d + 2) · 128 · 4d · Cd+3
μ

αd2+3·d+2
0

· αk·d2

0 · β2
2(Bsc(m,q),j , L) · μ (Bsc(m,q),j

)
.

Therefore, taking the infimum over all such d-planes L we obtain the bound∫
Psc(m,q),j

D2 (Xq, L)

diam2(Xq)

dμNk(X)

f 1
k (X) · diam(X)d(d+1)

≤

≤ (d + 2) · 128 · 4d · Cd+3
μ

αd2+3·d+2
0

· αk·d2

0 · β2
2(Bsc(m,q),j) · μ

(
Bsc(m,q),j

)
.

Combining this with equation (8.30) establishes the conclusion of equa-
tion (8.29). �
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Remark 8.2. The interpolation procedure applied above verifies the intuitive
idea that the small length scales ought not to contribute much information
when the overall length scale of a simplex is large. One reason that our
argument will not work for the curvature specified in equation (1.2) is that
such a curvature is “resistant” to our current interpolation procedure. The
gains of small length scales made via the interpolation is nullified by the very
singular behavior of this curvature on simplices with bad scaling. In a sense,
this curvature incorporates too much information for our current method to
handle, and if the continuous version of this curvature can be bounded by
the Jones-type flatness (in the spirit of Theorem 1.1), then we must use a
different method to show it.

9. Proof of Proposition 6.3

Due to the similarity of various parts of the proof of Proposition 6.3 with
the ideas and computations of Section 8, this current section focuses mostly
on the new ideas required to prove the proposition, including some technical
notation and statements. Computations and ideas presented previously are
referenced to as needed.

We define the constant

Nn = 2n−1 − 1,

and we remark that Nn and Nk (defined in Subsection 8.3) are two different
constants. We also define the constant

Mn = d + 2 + Nn = d + 1 + 2n−1.

We recall that Sn
k,1 is the set of multi-handled rakes whose handles occur

at their first n coordinates and whose tines occur at their last d + 1 − n
coordinates.

Here we adapt the methods of Section 8 to deal with the problems present
in integrating the curvature over the regions Sn

k,1. Our adaptation consists
of two stages. First we split the simplex X ∈ Sn

k,1 into a sequence of single-
handled rakes using an interpolation procedure similar to that of section 8.
The basic idea is to use such a procedure to “break off” each of the n handles
from the simplex X, thereby forming a sequence of single-handled rakes with
elements denoted by Xs. This procedure generates an “augmentation” of
dμd+2(X), as well as an integral inequality along the lines of Proposition 8.2
of Section 8.3.

Once we have made this exchange, we can again apply the methods
of Section 8.1 to the single-handled rakes obtained from the first step and
obtain the proper control in terms of the β2 numbers.
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The result is that we exchange integrals over dμd+2(X) for integrals over
a “doubly augmented” measure (depending on a much larger “variable”)
which allows us to incorporate the necessary information from small scales.
Simply put, we iterate the methods of Section 8.1 in an highly adaptive way.
We remark that the type of analysis done in this section was unnecessary in
the case d = 1 due to the extreme simplicity of the “combinatorial structure”
of triangles. Much of the work that we had to do revolved around dealing
with the problems of disparities of scale that arise from the more complicated
structure of (d + 1)-simplices for d ≥ 2.

9.1. Rake sequences and pre-multiscale inequality

We define a short-scale piece for X ∈ Sn
k,1 to be an Nn-tuple of the form

(9.1) ZX = (z1, . . . , zNn) ∈ [Ak(x0, maxx0(X))]Nn ,

and illustrate it in Figure 5 (a).
For X ∈ Sn

k,1 and ZX we define an augmentation of X by ZX as

(9.2) X = X × ZX = (x0, . . . , xd+1, z1, . . . , zNn) ∈ Sn
k,1 × HNn.

We note that X ∈ HMn and that all coordinates of ZX are in the annulus
centered at x0 and determined by maxx0(X).

For X we construct a sequence of single-handled rakes,

Ψ(X) = {Xs}2n−1

s=1 ,

in Hd+2 (à la the construction in Section 8.1.1) and use them to formulate
an inequality for the polar sine on Sn

k,1 á la equation (8.1). The major
difference is that the Xs are not well-scaled, and the length of the sequence
is determined by 1 < n ≤ d, not k. Despite the fact that they are not
necessarily well-scaled, we can construct them so that their scaling is better
than the original simplex X, i.e.,

scalex0(X
s) ≥ scalex0(X).

Just as before, in order to get the type of sequence we want, we must
first define an auxiliary sequence which will only be used to construct the
desired type of sequence.

Definition 9.1. If X ∈ Sn
k,1 and X = X ×ZX = (x0, . . . , xd+1, z1, . . . , zNn),

then let Zj
m, j = 0, . . . , n− 1, m = 1, . . . , 2j, be the doubly indexed sequence

of elements of Hd+2 defined recursively as follows:

Z0
1 = X,

and for 0 ≤ j < n− 1 and σj denoting the transposition of n−j−1 and n−j
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(acting on Zj
m by replacing its coordinates at those indices)

(9.3) Zj+1
2m−1 = Zj

m

(
n − j, z2j+(m−1)

)
,

and

(9.4) Zj+1
2m = σj

(
Zj

m

(
n − j − 1, z2j+(m−1)

))
.

Realizing that this is a fairly technical definition, we remark that its
purpose is only to give a sensible and formal framework for isolating the in-
dividual handles of the original simplex X. Furthermore, any such method
must work under the restrictions imposed by the two-term inequality for
the polar sine. As such, we must have some sort of iterative scheme which
allows us to swap out one at a time. For this reason, we construct the dif-
ferent generations of the simplices Zj

m, with the simplices of each successive
generation having one less handle than the previous generation. The final
generation will have only one handle, and this is the sequence of simplices
that we really want to work with.

Using the (n−1)th-generation of elements of the auxiliary sequence above
we define the rake sequence Ψk

(
X
)

as follows.

Definition 9.2. If X ∈ Sn
k,1, X = X × ZX , and Zj

m as above, then let

Ψk

(
X
)

= {Xs}2n−1

s=1 be the sequence of elements in Hd+2 such that

(9.5) Xs = Zn−1
s , for 1 ≤ s ≤ 2n−1.

We note that the simplex Xs has exactly three coordinates taken from
the original simplex X: the “base” vertex x0, the handle vertex xis for some
index 1 ≤ is ≤ n, and the tine xi for some n + 1 ≤ i ≤ d + 1. The rest
of the coordinates are taken from the short scale piece ZX . This fact is
apparent from following the recursive definitions, as well as the fact that Xs

can have only one possible handle, this handled being inherited from one of
the handles for X.

For example, if d = 3 and n = 3, then the simplex X has three handles
located at the first 3 coordinates, with the 4th coordinate being the tine.

Hence the sequences Ψ̃k

(
X
)

and Ψk

(
X
)

fit into the following tree:

Z2
1 = (x0, x1, z2, z1, x4) = X1

Z1
1 = (x0, x1, x2, z1, x4)

��������

��������

Z2
2 = (x0, x2, z2, z1, x4) = X2

X =(x0, x1, x2, x3, x4)

�����������������

�����������������

Z2
3 = (x0, x1, z3, z1, x4) = X3

Z1
2 = (x0, x1, x3, z1, x4)

��������

��������

Z2
4 = (x0, x3, z3, z1, x4) = X4
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We illustrate the elements Z1
2 and Z2

2 of this tree in Figures 5 (b) and 5 (c)
respectively.

(a) simplex X and ZX (b) auxiliary simplex Z1
2

(c) rake simplex X2 = Z2
2

Figure 5: Illustration of the short-scale piece and elements of the auxiliary
and rake sequences. Here X is a 3-handled rake. Note that the coordinates of
ZX are contained in a single annulus rather than many annuli as was the case
for YX . The element Z1

2 = (x0, x1, x3, z1, x4) of the auxiliary sequence has
two handles rather than three (as X). The element Z2

2 = (x0, x2, z2, z1, x4)
has one handle and indeed it is in the rake sequence (denoted by X2).

We note that the information provided by the original simplex X =
(x0, x1, x2, x3, x4) has been “distributed” over the new sequence of simplices,
and in a very real sense has been “decoupled”. As such, this will allow us
to pursue our analysis of these simplices more or less independently.

The following lemma establishes that all elements of Ψk

(
X
)

are single-
handled rakes, and follows directly from the definition of the rake sequence.

Lemma 9.1.1. If X ∈ Sn
k,1, X = X × ZX, and Xs ∈ Ψk

(
X
)

with 1 ≤ s ≤
2n−1, then each Xs is a rake, and for 0 ≤ k′ ≤ k − 1, we have that

(9.6) Xs ∈ S1
k′,2.
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We remark that we take the tolerance for the subscript index to be
p = 2 in Lemma 9.1.1, and this is simply because in our construction of the
rakes, Xs, we lose a tiny bit of accuracy in determining the relative lengths
of the smallest and largest edges at x0. This slight change in accuracy is
accounted for by the extra power of α0 in determining the length of the
interval that scalex0(X

s) sits in.
Using the ideas of Section 8.2 we construct a set augmentation of Sn

k,1,

denoted by Sn
k,1, which has a uniformly large size for a given X ∈ Sn

k,1 in
the sense given by Proposition 8.1, and is such that we have a version of
equation (8.1). Using the constant Cp of Proposition 3.3, we define the set
augmentation Sn

k,1 as

Sn
k,1 =

{
X ∈ Sn

k,1 × [supp(μ)]Nn : for all 0 ≤ j < n − 1 and 1 ≤ m ≤ 2j,

the sequence Zj
m satisfies the inequalities:

pdsinx0

(
Zj

m

) ≤ Cp

[
pdsinx0

(
Zj+1

2m−1

)
+ pdsinx0

(
Zj+1

2m

)]}
.(9.7)

The sequence Ψk

(
X
)

gives rise to the following pre-multiscale inequality
for the polar sine, which is analogous to Lemma 8.1.2 and similarly can
be immediately proved by iterative application of the defining inequality
followed by the Cauchy-Schwartz inequality.

Lemma 9.1.2. If X ∈ Sn
k,1, then the sequence of single-handled rakes

Ψk(X) = {Xs}2n−1

s=1 satisfy the inequality

pdsin2
x0

(X) ≤ 2n−1 · C2·(n−1)
p

2n−1∑
s=1

pdsin2
x0

(Xs).

Just as in Subsection 8.2, for 0 ≤ s ≤ Nn we define the truncations, Ts,
the projections πs, and the functions

(9.8) gn
k,s

(
X
)

= μ
(
πs

(
T−1

s−1

(
Ts−1(X)

)))
, for all 1 ≤ s ≤ Nn.

These functions are again positive and satisfy similar estimates as before.
Specifically, adapting the proof of Proposition 8.1 to our current purposes
we can demonstrate the following.

Proposition 9.1. If X ∈ Sn
k,1 and 1 ≤ s ≤ Nn, then

(9.9) μ
(
B(x0, α

k
0 · maxx0(X))

) ≥ gn
k,s

(
X
) ≥ 1

2
· μ (B(x0, α

k
0 · maxx0(X))

)
.
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Analogous to the normalizing function f 1
k of Section 8.3, we then define

(9.10) fn
k

(
X
)

=
Nn∏
s=1

gn
k,s

(
X
)
,

and the corresponding “augmentation” of the measure dμd+2(X) (restricted
to X ∈ Sn

k,1)

(9.11)
dμMn(X)

fn
k (X)

∣∣∣∣∣
Sn

k,1

.

The following proposition is then established in parallel to Proposition 8.2
(i.e., applying the inequality of Lemma 9.1.2 together with a direct relation
between plain and augmented integration as in equation (8.18)).

Proposition 9.2. If Q is a ball in H, then∫
Sn

k,1(Q)

pdsin2
x0

(X)

diam(X)d(d+1)
dμd+2(X) ≤

≤ 2n−1 · C2·(n−1)
p

Nn∑
s=1

∫
Sn

k,1(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) .

We now focus on applying the methods of Section 8 to the individual
terms on the RHS of the inequality above.

9.2. Generating multiscale discrete and integral inequalities

The individual integrals on the RHS of Proposition 9.2 are similar to the
integral on the LHS of Proposition 6.2, mainly because the argument Xs,
1 ≤ s ≤ Nn, is a rake. In principle, one would like to change variables
in order to directly apply Proposition 6.2 to these integrals. We avoid
this for various reasons. The most immediate is because the region Sn

k,1,
1 < n ≤ d − 1, is relatively complicated, and any change of variables would
be further obstructed by the normalization of the function fn

k . Furthermore,
for a rake Xs that is poorly-scaled, we must somehow use the small length
scales present in Xs, and these may not be accessible via such a change of
variables. As such, we find it more straightforward to adapt the methods of
Section 8 to the individual terms on the RHS of Proposition 9.2.

Throughout the rest of this section, we fix 1 < n ≤ d − 1, k ≥ 3, and
1 ≤ s ≤ Nn.
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9.2.1. The decomposition of Sn
k,1 according to scalex0(X

s)

We first decompose Sn
k,1 according to the variety of the rakes {Xs}Nn

s=1, the
only meaningful variation being the length of the handle and size of the
function scalex0(X

s). Furthermore, following the argument leading to equa-
tion (3.19) we may assume that the handle occurs at the first coordinate
of Xs.

The initial task is accounting for the discrepancies of scale for Xs, that
is we must decompose the set Sn

k,1 according to scalex0(X
s). Let

R̂s =
{
X ∈ Sn

k,1 : Xs is well-scaled at x0

}
.

By construction, the scaling of the simplices Xs is no worse (actually slightly
better) than that of the original simplex X, and thus for 2 ≤ k′ ≤ k − 1 we
define the sets

Rs
k′ =

{
X ∈ Sn

k,1 : Xs ∈ S1
k′,2

}
.

Furthermore, if Q is a ball in H , then we restrict those sets to Qd+2 as before
to obtain R̂s(Q) and Rs

k′(Q), and we note the following set equality:

(9.12) Sn
k,1(Q) = R̂s(Q)

⋃ k−1⋃
k′=2

Rs
k′(Q).

This decomposition (which is not a partition because the sets Rs
k′(Q) may

overlap) yields the following inequality

(9.13)

∫
Sn

k,1(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) ≤

≤
∫

R̂s(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) +

k−1∑
k′=2

∫
Rs

k′ (Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) .

Note that the inequality of equation (9.13) is analogous to the equality of
equation (6.1), with one of the differences being the fact that we now only
need to control a finite sum, rather than an infinite one. The rest of our
efforts focus on showing that each term on the RHS above is “small” with
respect to the quantity JD

d (μ|Q), that is, we can control them by something
that looks basically like αk·d

0 · JD
d (μ|Q).

The first term on the RHS of equation (9.13) can be controlled via geo-
metric multipoles. In fact, via the well-scaling of Xs and the small length
scales produced by the interpolation procedure, we get such control by chop-
ping it according to the length scales of Xs, and then following the computa-
tions of Section 8.4 on these pieces. The result is the following proposition,
whose proof appears in Appendix A.4
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Proposition 9.3. If Q is a ball in H, then there exists a constant C8 =
C8(d, Cμ) such that

(9.14)

∫
R̂s(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) ≤ C8 · αk·d·(d−n+2)

0 · JD
d (μ|Q) .

We note that the coefficient α
k·d·(d−n+2)
0 is larger than the coefficient αk·d2

0

of Proposition 8.3, and this is because the n-handled simplex X has fewer
small length scales to work with. In the previous case we had d “small”
edges helping us obtain a sufficiently small coefficient in k. In the current
case we have less help because now there are only d+1−n small edges, and
the coefficient is hence slightly larger.

The terms of the finite sum on the RHS of equation (9.13) require further
analysis before we can establish the appropriate bounds, and we develop this
in the rest of the section.

9.3. Doubly-augmented elements and a multiscale inequality

We fix 2 ≤ k′ ≤ k − 1 and concentrate on the set Rs
k′. The integral over the

augmented region Rs
k′ can be exchanged for yet another augmented integral,

but we must perform two different types of augmentations. The first element
is defined as follows. If X ∈ Rs

k′ , then we take a well-scaled piece for the
rake Xs ∈ S1

k′,2,

YXs = (y1, . . . , yk′·d) ∈
k′·d∏
q=1

Ak′−� q
d�(x0, maxx0 (Xs)),

and we form the “doubly-augmented” element

X × YXs = (x0, . . . , xd+1, z1, . . . , zNn, y1, . . . , yk′·d) ∈ Rs
k′ × Hk′·d.

The “variable” X × YXs is the underlying piece of information that controls
our process, but the actual simplex driving our decisions is Xs. As such, we
introduce the symbol X × YXs for clarity, and we focus our development on
another type of augmentation. We clarify this as follows.

If X ∈ Rs
k′ and YXs is a well-scaled piece for Xs, then we form the

augmented element
Xs = Xs × YXs,

which is an augmentation of the type introduced in Subsection 8.1. We then
form the sequences

Φ̃k′(Xs) =
{

X̃s
q

}k′·d

q=0
and Φk′(Xs) =

{
Xs

q

}k′·d+1

q=1
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as given in Definitions 8.1 and 8.2 of Subsection 8.1, and we note that
these depend only on Xs. Following this line of reasoning we define the set
augmentation

Rs
k′ : =

{
X × YXs : X ∈ Rs

k′ and the sequences Φ̃k′(Xs) and Φk′(Xs)

satisfy, for all 0 ≤ q < k′ · d, the inequality

pdsinx0

(
X̃s

q

) ≤ Cp ·
[
pdsinx0

(
Xs

q+1

)
+ pdsinx0

(
X̃s

q+1

)]}
.

(9.15)

We have the following inequality which is a direct application of Lemma 8.1.2.

Lemma 9.3.1. If X × YXs ∈ Rs
k′, then the well-scaled sequence Φk′(Xs) ={

Xs
q

}k′·d+1

q=1
satisfies the inequality

pdsin2
x0

(Xs) ≤ (k′ · d + 1) · C2·k′·d
p

k′·d+1∑
q=1

pdsin2
x0

(
Xs

q

)
.

With these definitions, we formulate our ultimate multiscale integral in-
equality whose proof is hardly different from the proof of Proposition 9.2.

Lemma 9.3.2. If Q is a ball in H then∫
Rs

k′ (Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) ≤

≤ C2k′·d
p · (k′ · d + 1)

k′·d+1∑
q=1

∫
Rs

k′(Q)

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · f 1

k′ (Xs)
.

The terms on the RHS of Lemma 9.3.2 can be controlled by geometric
multipoles as in the proofs of Propositions 6.2 and 9.3. However, the com-
putations here have more information to take into account because we are
dealing with various length scales at the same time, i.e., those of the doubly-
indexed well-scaled element Xs

q as well as the original simplex X. We per-
form these computations in Appendix A.5 and conclude the following bounds
on the terms on the RHS of Lemma 9.3.2 and thus also Proposition 6.3.

Proposition 9.4. If Q is a ball in H and 2 ≤ k′ ≤ k − 1, then there exists
a constant C9 = C9(d, Cμ) such that
(9.16)∫

Rs
k′(Q)

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · fd

k′ (Xs)
≤ C9 · αk·d·(d−n+1)

0 · JD
d (μ|Q) .

We remark that the coefficient α
k·d(d−n+1)
0 is slightly worse than the coef-

ficient produced in analyzing the set R̂s(Q), the reason being that the poor
scaling of Xs ∈ Rs

k′(Q) deprives us (in a small way) of that extra factor.
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10. Discussion

We defined the Menger-type curvature of the restriction of μ to the ball B
by integrating a special real-valued function of Hd+2 over μ|d+2

B . This pa-
per and [8] show that this Menger-type curvature measures a cumulative
flatness or oscillation of μ around the ball B. More precisely, these papers
compare the Menger-type curvature with the Jones-type flatness, where the
comparison depends only on the regularity of μ and the dimension d.

Broader perspectives and open directions for this and [8] are provided
in [8]. In particular, [8, Section 6] shows that it is possible to suggest many
other functions on Hd+2, or discrete curvatures as we refer to them, whose
integral over μ|d+2

B is comparable to the Jones-type flatness of μ around B.
Some of those curvatures are more easily bounded in terms of the Jones-

type flatness since they are less singular than the curvature used in this
paper. For example, one possible discrete curvature (though not directly
exemplified in [8]) is ch(X) for X ∈ Hd+2, whose square is expressed in
terms of the minimal height h(X) of equation (3.3):

(10.1) c2
h(X) =

h2(X)

diam(v1, . . . , vd+2)d·(d+1)+2
.

For such curvatures, the technically involved application of the interpolating
multiscale inequalities (pursued in Sections 8 and 9) is unnecessary. Indeed,
the method of Section 7 is sufficient to control the integral of c2

h(X) over
μ|d+2

B by JD
d (μ|B), and it works as well for a wide variety of such curvatures.

However, we were interested here in controlling the more singular curva-
ture cd by the Jones-type flatness. The reason for this is the comparability
of cd with the Menger curvature when d = 1. On the other hand, the cur-
vature of equation (10.1) is not comparable to the Menger curvature when
d = 1 and the simpler interpolation technique of Jones [6] is unnecessary as
well then.

A. Appendix

A.1. Proof of Proposition 3.2

Proposition 3.2 follows from the two observations:

(A.1) pdsinx0
(X) ≤ 2 · (d + 1)

scalex0(X)
· h(X)

diam(X)
,

and

(A.2) h(X) ≤
√

2 ·
⌈d + 1

2

⌉
· D2(X, L), for any d-plane L.

The two equations follow from elementary geometric estimates as follows.
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A.1.1. Proof of Equation (A.1)

We first note that

max
0≤i≤d+1

Md(X(i)) ≤ (d + 1) · max
1≤i≤d+1

Md(X(i)).

Indeed, if the maximum on the LHS of the above equation is obtained at
1 ≤ i ≤ d + 1, then the above inequality is trivial. If on the other hand
this maximum is obtained at i = 0, then the inequality follows from the fact
that the d-content of a face of a (d + 1)-simplex is less than the sum of the
d-contents of the other faces (this is since the d-content does not increase
under projections and is subadditive on R

d).
Then, using the fact that the product of any height of a (d + 1)-simplex

with the d-content of the opposite side is a constant (proportional to the
(d + 1)-content of the simplex), we obtain that

min
1≤i≤d+1

hxi
(X) · max

1≤i≤d+1
Md(X(i)) = h(X) · max

0≤i≤d+1
Md(X(i)).

Combining the last two equations we deduce the inequality

(A.3) min
1≤i≤d+1

hxi
(X) ≤ (d + 1) · h(X) .

Next, by equation (3.6), Proposition 3.1, and also equation (3.7) we obtain
that

pd sinx0
(X) ≤ min

1≤i≤d+1

hxi
(X)

‖xi − x0‖ ≤
min

1≤i≤d+1
hxi

(X)

minx0(X)
.

Applying equation (A.3) to the RHS above, we have that

pdsinx0
(X) ≤ (d + 1) · h(X)

minx0(X)
.

Finally, applying the definition of scalex0(X) as well as the bound: diam(X)
≤ 2 · maxx0(X) to the latter equation establishes equation (A.1), and con-
sequently the current proposition.

A.1.2. Proof of Equation (A.2)

We may assume that X is non-degenerate, because otherwise h(X) = 0
and the bound holds trivially. Furthermore, since orthogonal projection
decreases distances and reduces dimension of subspaces, we may assume
that dim(H) = d + 1, in particular, H = R

d+1.
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Our proof utilizes the comparability of the height of the simplex repre-
sented by X and its width w(X), which is given by the following infimum
over all d-planes L:

(A.4) w(X) = 2 min
L

max
x∈ the convex hull of X

dist(x, L).

Equivalently, the width w(X) is the shortest distance between any two paral-
lel d-planes supporting the convex hull of X, i.e., the convex hull is trapped
between them and its boundary touches them. Gritzman and Lassak [5,
Lemma 3] established the following bound on h(X) in terms of w(X):

(A.5) h(X) ≤
⌈

d + 1

2

⌉
· w(X).

Equation (A.2) thus follows from combining equation (A.5) with the
following bound on w(X), which we verify below.

(A.6) w(X) ≤
√

2 · D2(X, L) for an arbitrary d-plane L ,

We verify equation (A.6), and thus conclude equation (A.2), as follows.
For a given d-plane L, let L1 and L2 be the two unique translates of L sup-
porting the simplex represented by X and let wL(X) denote the distance
between L1 and L2. Furthermore, let xL1 be a vertex of X contained in L1

and xL2 be a vertex contained in L2. The d-planes L1 and L2 separate R
d+1

into three regions, being the two disjoint half spaces of R
d+1 and the inter-

mediate region bounded by the d-planes whose closure contains the simplex
represented by X.

If L is contained in one of the disjoint half spaces described above, then
we may assume that L1 sits between L and L2. We establish equation (A.6)
in this case as follows:

w(X) ≤ wL(X) = dist (xL2 , L1) ≤ dist (xL2 , L) ≤ D2(X, L).

In the second case, where the plane L is contained in the intermediate
region, we obtain equation (A.6) in the following way.

w(X) ≤ wL(X) = dist (xL1 , L) + dist (xL2 , L)

≤
√

2 · (dist2 (xL1 , L) + dist2 (xL2 , L)
)1/2 ≤

√
2 · D2(X, L).

A.2. Proof of Lemma 4.3.1

Given the n-net En, let

B′
n = {B(x, 4 · αn

0 )}x∈En.
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We note that both B′
n and 1

4
· B′

n cover supp(μ) since En is an n-net. We
take Bn to be a subfamily of B′

n such that 1
4
· Bn is a maximal, mutually

disjoint collection of balls. In this case, we note that Bn still provides a
cover of supp(μ) due to the maximality.

The idea is to categorize the elements B′ ∈ 1
4
· [B′

n \ Bn] according to the
first element of 1

4
· Bn they intersect, and then use this to take the “appro-

priate” part of B′. Then, once this is done, for each j ∈ Λn the element
Pn,j is formed by adding these appropriate pieces to the corresponding ball
1
4
· Bn,j. We clarify this as follows.

If 1
4
· [B′

n \ Bn] = ∅, then we take the partition Pn = {Pn,j}j∈Λm
, where

for fixed j ∈ Λn

Pn,j = supp(μ) ∩ 1

4
· Bn,j, for Bn,j ∈ Bn.

We thus assume that 1
4
· [B′

n \ Bn] �= ∅, and we index the elements of
1
4
· [B′

n \ Bn] by the set Ωn = {1, 2, . . .}, which is either finite or N, i.e.,
1
4
· [B′

n \ Bn] = {B′
m}m∈Ωn . From this set of balls, we then recursively form

the following sets. For m = 1, let

B̄′
1 = B′

1 ∩
(⋃ 1

4
· Bn

)c

,

and for m ≥ 2, let

B̄′
m = B′

m

⋂(⋃ 1

4
· Bn

⋃m−1⋃
i=1

B̄′
i

)c

.

Note that the elements of
{
B̄′

m

}
m∈Ωn

are mutually disjoint, and that supp(μ)
is covered by the collection of sets

1

4
· Bn

⋃ {
B̄′

m

}
m∈Ω

.

Let the function gn : 1
4
· [B′

n \ Bn] → Λn be defined as follows:

(A.7) gn (B′) = min
{

j ∈ Λn :
1

4
· Bn,j ∩ B′ �= ∅

}
.

It follows from the maximality of 1
4
· Bn that for every B′ ∈ 1

4
· B′

n, there
exists a B ∈ 1

4
· Bn such that B ∩ B′ �= ∅. Consequently, the minimum of

equation (A.7) is obtained at an element of Λn, and taking

(A.8) Pn,j = supp(μ)
⋂ (

1

4
· Bn,j

⋃ ⋃
gn(B′

m)=j

B̄′
m

)
,

we note that the sets Pn,j are disjoint and cover supp(μ). The desired set
inclusions follow from the definition of Pn,j and observing that B′ ⊆ 3

4
·Bn,j

for any B′ ∈ 1
4
· [B′

n \ Bn] such that gn (B′) = j.
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A.3. Proof of Proposition 8.1

First, for any X ∈ S1
k,p, along with Z ∈ [supp(μ)]d+2 such that (Z)0 =

(X)0 = x0, as well as 0 < r ≤ diam(supp(μ)) and 1 ≤ j ≤ k · d, the
following estimate holds

(A.9) μ (B(x0, r))≥μ
(
UCp(Z, 1, j + 1)

⋂
A0(x0, r)

)
≥ 1

2
· μ (B(x0, r)) > 0.

In other words, there is a sufficient amount of supp(μ) in the annu-
lus A0(x0, r) satisfying the relaxed two-term inequality defined by the set
UCp(Z, 1, j + 1). Furthermore, for such X we have the inequality maxx0(X)
≤ diam(X) ≤ diam(supp(μ)), and we note that the radius

(A.10) r = α
k−� j

d�
0 · maxx0(X)

is in the above range for all 1 ≤ j ≤ k · d, i.e., 0 < r ≤ diam(supp(μ)).
Substituting this choice of radius into equation (A.9) we obtain the estimate

μ

(
B(x0, α

k−� j
d�

0 · maxx0(X))

)
≥(A.11)

≥ μ
(
UCp

(
Z, 1, j + 1

) ⋂
Ak−� j

d�(x0, maxx0(X))
)

≥ 1

2
· μ(B(x0, α

k−� j
d�

0 · maxx0(X))
)
.

Next, we will prove that for X ∈ S1
k,p and X̃q−1, 1 ≤ q ≤ k · d, of the

sequence Φ̃k(X):

UCp

(
X̃q−1, 1, q + 1

) ⋂
Ak−� q

d�(x0, maxx0(X)) =(A.12)

= πq

(
T−1

q−1 (x0, . . . , yq−1)
)
.

Taking Z = X̃q−1 in equation (A.11) and noting equation (A.12) establishes
the proposition.

We start by proving equation (A.9). The inequality of the LHS of equa-
tion (A.9) is trivial, and to prove the inequality of the RHS of equation (A.9)
we note that

μ
(
UCp

(
Z, 1, j + 1

)⋂
A0(x0, r)

)
=(A.13)

= μ
(
UCp

(
Z, 1, j + 1

)⋂
B(x0, r)

)
+ μ (A0(x0, r))

− μ
([

UCp

(
Z, 1, j + 1

)⋂
B(x0, r)

]⋃
A0(x0, r)

)
.

By formulating lower bounds for the terms on the RHS of the above equation
we can then establish the inequality on the RHS of equation (A.9).
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With the above assumptions on X, Z, and r, by Proposition 3.3 we have
the inequality

(A.14) μ
(
UCp

(
Z, 1, j + 1)

) ∩ B(x0, r)
) ≥ 3

4
· μ(B(x0, r)).

Furthermore, by the d-regularity and the constant α0 (equation (2.2)) we
have the inequality

(A.15) μ (A0(x0, r)) ≥
(
1 − αd

0 · C2
μ

) ≥ 3

4
· μ(B(x0, r)).

Noting the inclusion[
UCp

(
Z, 1, j + 1

)⋂
B(x0, r)

]⋃
A0(x0, r) ⊆ B(x0, r),

we obtain

μ
([

UCp

(
Z, 1, j + 1

)⋂
B(x0, r)

]⋃
A0(x0, r)

)
≤ μ(B(x0, r)).

Finally, applying this and equations (A.14) and (A.15) to the RHS of equa-
tion (A.13) we obtain

(A.16) μ
(
UCp

(
Z, 1, j + 1

)⋂
A0(x0, r)

)
≥ 1

2
· μ(B(x0, r)),

and thus conclude equation (A.9).
Next, for a fixed (x0, . . . , yq−1) = Tq−1(X), we establish equation (A.12)

via the inclusion

UCp

(
X̃q−1, 1, q + 1

) ⋂
Ak−� q

d�(x0, maxx0(X)) ⊆
⊆ πq

(
T−1

q−1 (x0, . . . , yq−1)
)
.(A.17)

The opposite inclusion follows directly from the definitions of the sets
UCp(X̃q−1, 1, q + 1), 1 ≤ q ≤ k · d, and S1

k,p (see equations (3.9) and (8.10)).

Our approach to proving equation (A.17) is to fix 1 ≤ q ≤ k · d and take
an arbitrary point

(A.18) y′
q ∈ UCp

(
X̃q−1, 1, q + 1

) ⋂
Ak−� q

d�(x0, maxx0(X)) .

We then iteratively use the inequality of equation (A.9) to construct an
element

X ′ = (x0, . . . , yq−1, y
′
q, . . . , y

′
k·d) ∈ T−1

q−1 (x0, . . . , yq−1) ,



High-dimensional Menger-type curvatures Part I 545

so that

y′
q = πq(X

′) ∈ πq

(
Tq

(
π−1

q−1(πq−1(X))
))

.

Fixing 1 ≤ q ≤ k · d and y′
q satisfying equation (A.18), we recursively

form the sequence {y′
i}k·d

i=q+1 together with additional elements of an auxiliary

sequence
{
X̃ ′

i

}k·d
i=q

as follows. First we initialize the auxiliary sequence by

defining

X̃ ′
q = X̃q−1(y

′
q, q + 1) .

Next, given q + 1 ≤ i ≤ k · d and assuming that {y′
i}i−1

i=q and
{
X̃ ′

i

}i−1

i=q
have

already been defined, we fix arbitrarily

(A.19) y′
i ∈ UCp(X̃

′
i−1, 1, i + 1) ∩ Ak−� i

d�(x0, maxx0(X)) ,

and form

X̃ ′
i = X̃ ′

i−1(y
′
i, i + 1) .

This procedure is well defined since equation (A.9) implies that for each
q + 1 ≤ j ≤ k · d:

μ
(
UCp

(
X̃ ′

j−1, 1, j + 1
) ⋂

Ak−� j
d�(x0, maxx0(X))

)
> 0 .

Finally, forming

X ′ = (x0, . . . , yq−1, y
′
q, . . . , y

′
k·d) = X × Y ′

X ∈ H(k+1)·d+2 ,

we note that Y ′
X is a well-scaled element for X and the elements of the

sequences

Φ̃k(X
′) =

{
X̃q

}k·d
q=0

and Φk(X
′) = {Xq}k·d+1

q=1

satisfy the inequality

pdsinx0
(X̃j−1) ≤ Cp

(
pdsinx0

(Xj) + pdsinx0

(
X̃j

))
.

Therefore, X ′ ∈ S1
k,p. Furthermore, Tq−1(X

′) = (x0, . . . , yq−1), and thus

X ′ ∈ π−1
q−1(πq−1(x0, . . . , yq−1)).

Since πq(X
′) = y′

q, equation (A.17) and consequently equation (A.12) are
now established.
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A.4. Proof of Proposition 9.3

For m ≥ m(Q) we define

(A.20) R̂s(m)(Q) =
{

X ∈ R̂s(Q) : maxx0(X) ∈ (αm+1
0 , αm

0 ]
}

,

and this gives the following decomposition of the integral∫
R̂s(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) =

=
∑

m≥m(Q)

∫
R̂s(m)(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) .(A.21)

Fixing m ≥ m(Q), we partition R̂s(m)(Q) according to maxx0 (Xs) in the
following way.

If X ∈ R̂s(m), then Lemma 9.1.1 and the well scaling of Xs imply

(A.22) maxx0(X
s) ∈ (

αk
0 · maxx0(X), αk−3

0 · maxx0(X)
]

.

According to equations (A.20) and (A.22), we use the following scale expo-
nent:

(A.23) sc(m, k) = m + k − 3 ≥ m(Q).

Since
{
Psc(m,k),j

}
j∈Λsc(m,k)(Q)

covers Q ∩ supp(μ), we cover R̂s(m)(Q) by

(A.24) P̂sc(m,k),j =
{

X ∈ R̂s(m) : x0 ∈ Psc(m,k),j

}
, for all j ∈ Λsc(m,k)(Q).

Hence we obtain the inequality

(A.25)

∫
R̂s(Q)

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) ≤

≤
∑

m≥m(Q)

∑
j∈Λsc(m,k)(Q)

∫
P̂sc(m,k),j

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) .

Now we fix m ≥ m(Q) and j ∈ Λsc(m,k)(Q) and concentrate on the
individual terms of the RHS of equation (A.25). Obtaining the “proper”
bounds here will clearly imply the proposition.

We fix an arbitrary d-plane L. If X ∈ P̂sc(m,k),j , then equations (A.20)
and (A.22) imply

diam(Xs) ≥ αm+k+1
0 =

α4
0

8
· diam(Bsc(m,k),j).
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Applying this and Proposition 3.2 we get that

(A.26)

∫
P̂sc(m,k),j

pdsin2
x0

(Xs)

diam(X)d(d+1)

dμMn
(
X
)

fn
k

(
X
) ≤

≤ 27 · (d + 1)2 · (d + 2)2

α14
0

∫
P̂sc(m,k),j

D2
2 (Xs, L)

diam2(Bsc(m,k),j)

· dμMn
(
X
)

fn
k

(
X
) · diam(X)d(d+1)

.

Hence we focus on the individual terms of

D2
2 (Xs, L)

diam
(
Bsc(m,k),j

) .

We arbitrarily fix 0 ≤ t ≤ d+1 and note the cases for the possible values
of (Xs)t . Per Lemma 9.1.1 and the construction of the elements Xs we have
the following cases.

Case 1: t ∈ {0, 1, d + 1}. In this case we note that by our construction
(Xs)0 = x0, (Xs)1 = xis for 1 ≤ is ≤ n, and (Xs)d+1 = xi, where n + 1 ≤
i ≤ d + 1.

Case 2: 2 ≤ t ≤ d. In this case, again by the construction we have that
(Xs)t = z�, for exactly d − 1 distinct indices �, 1 ≤ � ≤ 2n−2 +

⌈
s
2

⌉− 1.
Assume Case 1. Per Fubini’s, the corresponding terms on the RHS of

equation (A.26) are

(A.27)

∫
P̂sc(m,k),j

dist2 ((Xs)t , L)

diam2
(
Bsc(m,k),j

) dμMn
(
X
)

fn
k

(
X
) · diam(X)d(d+1)

=

=

∫
T0(P̂sc(m,k),j)

dist2 ((Xs)t , L)

diam2
(
Bsc(m,k),j

) dμd+2(X)

diam(X)d(d+1)
.

Equation (A.22) and Lemma 9.1.1 imply the set inclusion

(A.28) T0

(
P̂sc(m,k),j

)
⊆

⋃
x0∈Psc(m,k),j

{x0} ×
d+1∏
i=1

B(x0, α
pi
0 ),

where

pi =

⎧⎪⎨⎪⎩
m + k − 3, if i = is, (See Case 1 above);

m + k, if n + 1 ≤ i ≤ d + 1;

m, otherwise.
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Equation (A.28) then yields the following bound on the RHS of equa-
tion (A.27)

(A.29)

∫
T0(P̂sc(m,k),j)

dist2 ((Xs)t , L)

diam2 (B)

dμd+2(X)

diam(X)d(d+1)
≤

≤ 1

α
d(d+1)
0

∫
Psc(m,k),j

∫
∏d+1

i=1 B(x0,α
pi
0 )

dist2 ((Xs)t , L)

diam2
(
Bsc(m,k),j

) dμ(xd+1) · · ·dμ(x0)

[αm
0 ]d(d+1)

.

Applying the usual calculations (see the proofs of Propositions 6.1 and 6.2)
to the RHS of equation (A.29), we obtain the following bound on the RHS
of equation (A.27)

(A.30)
3d · Cd+1

μ · αk·d·(d−n+2)
0

α
d(d+1)+3·d
0

· β2
2

(
Bsc(m,k),j, L

) · μ (Bsc(m,k),j

)
.

For Case 2, we iterate the integral to obtain the equality

(A.31)

∫
P̂sc(m,k),j

dist2(z�, L)

diam2(Bsc(m,k),j)

dμMn
(
X
)

fn
k

(
X
) =

=

∫
T0(P̂sc(m,k),j)

(∫
{ZX :X×ZX∈P̂sc(m,k),j}

dist2(z�, L)

diam2(Bsc(m,k),j)

dμNn(ZX)

fn
k

(
X
) )

· dμd+2(X)

diam(X)d(d+1)
.

To uniformly bound for the inner integral, it is sufficient to uniformly
bound∫

π�(T−1
�−1(x0,...,z�−1))

(
dist (z�, L)

diam
(
Bsc(m,q),j

))2
dμ(z�)

μ
(
π�

(
T−1

�−1 (x0, . . . , z�−1)
)) .

Proposition 9.1, equation (A.20), and the d-regularity of μ imply

(A.32) μ
(
π�

(
T−1

�−1 (x0, . . . , z�−1)
)) ≥ 1

2 · C2
μ

·
(

α4
0

4

)d

· μ (Bsc(m,k),j

)
.

Furthermore, π�

(
T−1

�−1 (x0, . . . , z�−1)
) ⊆ Bsc(m,k),j , and thus

(A.33)

∫
π�(T−1

�−1(x0,...,z�−1))

dist2 (z�, L)

diam2(Bsc(m,k),j)

dμ(z�i
)

μ
(
π�

(
T−1

�−1(x0, . . . , z�−1)
)) ≤

≤ 2 · 4d · C2
μ

α4·d
0

· β2
2(Bsc(m,k),j , L).
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Therefore the inner integral on the RHS of equation (A.31) is bounded by∫
{ZX :X×ZX∈P̂sc(m,k),j}

dist2 (z�i
, L)

diam2(Bsc(m,k),j)

dμNn(ZX)

fn
k

(
X
) ≤(A.34)

≤ 2 · 4d · C2
μ

α4·d
0

· β2
2(Bsc(m,k),j).

Applying equation (A.28) gives the following upper bound for the RHS of
equation (A.31):

(A.35)
2 · 4d · Cd+3

μ

α
d(d+1)+6·d
0

· αk·d·(d−n+2)
0 · β2

2(Bsc(m,k),j, L) · μ (Bsc(m,k),j

)
.

Applying equations (A.30) and (A.35) to the RHS of equation (A.26) and
then taking the infimum over all d-planes L establishes the proposition.

A.5. Proof of Proposition 9.4

Fixing 2 ≤ k′ ≤ k − 1, 1 ≤ q ≤ k′ · d + 1, and m ≥ m(Q), we define

(A.36) Rs
k′(m)(Q) =

{
X × YXs ∈ Rs

k′(Q) : maxx0(X) ∈ (αm+1
0 , αm

0 ]
}

.

This gives the following decomposition of the integral on the LHS of equa-
tion (9.14)

(A.37)

∫
Rs

k′(Q)

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · fd

k′ (Xs)
=

=
∑

m≥m(Q)

∫
Rs

k′(m)(Q)

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · fd

k′ (Xs)
.

Fixing m ≥ m(Q), we partition Rs
k′(m)(Q) according to maxx0

(
Xs

q

)
in

the following way. By Lemma 9.1.1, for X ∈ Rs
k′ we have that

(A.38) αm+k−k′+2
0 ≤ maxx0(X

s) < αm+k−k′−2
0 .

If k′ = k − 1, then the upper bound on the RHS of equation (A.38) is too
large since we always have that maxx0(X

s) ≤ αm
0 < αm−1

0 . So, we amend
equation (A.38) in the following way. Let

(A.39) e(m, k′) =

{
m + k − k′ − 2, if 2 ≤ k′ ≤ k − 2;

m, if k′ = k − 1.
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We note that e(m, k′) ≥ m and

(A.40) α
e(m,k′)+4
0 ≤ maxx0(X

s) ≤ α
e(m,k′)
0 .

Now, combining Lemma 8.1.1 and equation (A.40) we have the following
estimate
(A.41)

maxx0

(
Xs

q

) ∈
⎧⎪⎨⎪⎩
(
α

k′+e(m,k′)−� q
d�+5

0 , α
k′+e(m,k′)−� q

d�
0

]
, if 1 ≤ q ≤ k′ · d;(

α
e(m,k′)+1
0 , α

e(m,k′)
0

]
, if q = k′ · d + 1.

Hence we define the scale exponent as follows
(A.42)

sc(m, k′, q) = sc(m, k, k′, q) =

{
k′ + e(m, k′) −

⌈q

d

⌉
, if 1 ≤ q ≤ k′ · d;

e(m, k′), if q = k′ · d + 1.

We note that the scale exponent is independent of s, and furthermore, we
have the inequality

(A.43) sc(m, k′, q) ≥ e(m, k′), for all 1 ≤ q ≤ k′ · d + 1.

Next,
{
Psc(m,k′,q),j

}
j∈Λsc(m,k′,q)(Q)

covers Q ∩ supp(μ), and so we cover

Rs
k′(m)(Q) by

(A.44) Psc(m,k′,q),j =
{
X × YXs ∈ Rs

k′(m) : x0 ∈ Psc(m,k′,q),j

}
,

for j ∈ Λsc(m,k′,q)(Q). Letting m ≥ m(Q) and j vary we obtain the inequality

(A.45)

∫
Rs

k′

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · fd

k′ (Xs)
≤

≤
∑

m≥m(Q)

∑
j∈Λsc(m,k′,q)(Q)

∫
Psc(m,k′,q),j

pdsin2
x0

(Xs
q )

diam(X)d(d+1)

dμMn+k′·d(X × YXs)

fn
k

(
X
) · fd

k′ (Xs)
.

Fixing m ≥ m(Q) and j ∈ Λsc(m,k′,q)(Q), we now concentrate on the terms
of the RHS of equation (A.45). We note that the “proper” control on these
terms implies the proposition.

Let L be an arbitrary d-plane. If X × YXs ∈ Psc(m,k′,q),j, then by equa-

tions (A.41) and (A.42)

diam (Xs
q) ≥ α

sc(m,k′,q)+5
0 =

α5
0

8
· diam

(
Bsc(m,k′,q),j

)
.
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Applying this and Proposition 3.2 we obtain the inequality

(A.46)

∫
Psc(m,k′,q),j

pdsin2
x0

(
Xs

q

) dμMn+k′·d(X × YXs)

diam(X)d(d+1) · fn
k

(
X
) · fd

k′ (Xs)
≤

≤ 27 · (d + 1)2 · (d + 2)2

α16
0

∫
Psc(m,k′,q),j

D2
2

(
Xs

q , L
)

diam2
(
Bsc(m,k′,q),j

)
· dμMn+k′·d(X × YXs)

diam(X)d(d+1) · fn
k

(
X
) · fd

k′ (Xs)
.

To bound the RHS of equation (A.46), we focus on the individual terms of

D2
2

(
Xs

q , L
)

diam2
(
Bsc(m,k′,q)

) .
Fixing 0 ≤ t ≤ d + 1, per equations (8.6)-(8.7) and Lemma 9.1.1, we have
the following cases:

Case 1:
(
Xs

q

)
t
= x0. In this case q has no restriction, that is, 1 ≤ q ≤ k′ · d.

Case 2:
(
Xs

q

)
t

= xis . In this case q = k′ · d + 1 because xis is the handle
of Xs, and only the last element of the sequence has this handle. Hence
sc(m, k′, q) = k′ + e(m, k′) by equation (A.42).

Case 3:
(
Xs

q

)
t
= xi, for n + 1 ≤ i ≤ d + 1. In this case 1 ≤ q ≤ d since only

the first d elements of the sequence contain the tines Xs.

Case 4:
(
Xs

q

)
t
= z�, where 1 ≤ � ≤ 2n−2 +

⌈
s
2

⌉− 1. We again have 1 ≤ q ≤ d
as in case 3.

Case 5:
(
Xs

q

)
t

= yi, where 1 ≤ i ≤ k′ · d. In this case, for each 1 ≤ q ≤
k′ · d + 1, we have the following restriction on the quantity

⌈
i
d

⌉
, just as in

equation (8.31):

(A.47) max
{

1,
⌈q

d

⌉
− 1

}
≤
⌈

i

d

⌉
≤
⌈q

d

⌉
.

For the first three cases, per Fubini’s the corresponding terms of equa-
tion (A.46) reduce to

(A.48)

∫
T0

(
Psc(m,k′,q),j

) dist2
((

Xs
q

)
t
, L
)

diam2
(
Bsc(m,k′,q),j

) dμd+2(X)

diam(X)d(d+1)
.
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For the set Psc(m,k′,q),j, equation (A.38) and Lemma 9.1.1 imply the set in-

clusion

(A.49) T0

(
Psc(m,k′,q),j

)
⊆

⋃
x0∈Psc(m,k′,q),j

{x0} ×
d+2∏
i=1

B(x0, α
pi
0 ),

where

(A.50) pi =

⎧⎪⎨⎪⎩
m + k, if n + 1 ≤ i ≤ d + 1;

e(m, k′), if i = is;

m, otherwise.

Via the usual computations and noting the values of sc(m, k′, q) and e(m, k′),
the RHS of equation (A.48) has the bound

(A.51)
3d · Cd+1

μ

α
d(d+1)+3·d
0

· αk·d·(d−n+1)
0 · β2

2

(
Bsc(m,k′,q),j, L

) · μ (Bsc(m,k′,q),j
)
.

Assume Case 4. Fix 1 ≤ � ≤ 2n−2 +
⌈

s
2

⌉ − 1 and iterate the integral to
obtain

(A.52)

∫
Psc(m,k′,q),j

(
dist (z�, L)

diam
(
Bsc(m,k′,q),j

))2 dμMn+k′·d (X × YXs

)
diam(X)d(d+1) · fn

k

(
X
) · fd

k′ (Xs)

=

∫
T0

(
Psc(m,k′,q),j

)
(∫

{ZX :X×ZX∈Rs
k′}

(
dist (z�, L)

diam
(
Bsc(m,k′,q),j

))2
dμNn (ZX)

fn
k (X)

)
· dμd+2(X)

diam(X)d(d+1)
.

Again we want to control the inner integral, and this clearly reduces to
controlling the quantity

(A.53)

∫
π�(T−1

�−1(x0,...,z�−1))

(
dist (z�, L)

diam
(
Bsc(m,k′,q),j

))2
dμ(z�)

μ
(
π�

(
T−1

�−1(x0, . . . , z�−1)
)) .

To do this, we use the definitions of sc(m, k′, q) and e(m, k′) obtaining

m + k − 3 ≤ sc(m, k′, q) ≤ m + k − 2.

Hence, Proposition 9.1 and the d-regularity of μ imply the following for all
1 ≤ � ≤ 2n−2 +

⌈
s
2

⌉− 1:

(A.54) μ
(
π�

(
T−1

�−1(x0, . . . , z�−1)
)) ≥ α4·d

0

2 · 4d · C2
μ

· μ (Bsc(m,k′,q),j
)
.
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Moreover, for fixed (x0, . . . , z�−1) ∈ T�−1

(
Psc(m,k′,q),j

)
, we have that

(A.55) π�

(
T−1

�−1(x0, . . . , z�−1)
) ⊆ B

(
x0, α

k
0 · maxx0(X)

) ⊆ 3

4
· Bsc(m,k′,q),j.

Applying equations (A.54) and (A.55) to equation (A.53), we see that equa-
tion (A.53), and hence the inner integral of equation (A.52) is bounded

(uniformly in X ∈ T0

(
Psc(m,k′,q),j

)
) by

(A.56)
2 · 4d · C2

μ

α4·d
0

· β2
2

(
Bsc(m,k′,q),j, L

)
.

Applying equations (A.56), (A.49), and the usual computations to the RHS
of equation (A.52) gives

(A.57)

∫
Psc(m,k′,q),j

(
dist (z�, L)

diam
(
Bsc(m,k′,q),j

))2 dμMn
(
X × YXs

)
diam(X)d(d+1) · fn

k

(
X
) · fd

k′ (Xs)
≤

≤ 2 · 4d · Cd+3
μ

α
d(d+1)+4·d
0

· αk·d·(d−n+1)
0 · β2

2

(
Bsc(m,k′,q),j, L

) · μ (Bsc(m,k′,q),j
)
.

At last we consider Case 5. Here we must be a little bit careful in
how we use notation, in the sense that we must remember the pertinent
“variables”. In this case we make the following harmless abuse of notation
for the truncation T0, taking

T0(X
s) = T0(X × Yxs) = X,

instead of T0(X
s) = Xs as we originally defined the notion in Section 8.2.1.

Then, via the usual computations, for 1≤ i ≤k′·d and X∈ T0

(
Psc(m,k′,q),j

)
we have

(A.58)

∫
{

YXs :X×YXs∈Psc(m,k′,q),j
}
(

dist (yi, L)

diam
(
Bsc(m,k′,q),j

))2
dμk′·d (YXs)

fd
k′ (Xs)

≤

≤ 2 · 4d · C2
μ

α6·d
0

· β2
2

(
Bsc(m,k′,q),j, L

)
.

Hence, iterating the integral over Psc(m,k′,q),j gives the inequality

(A.59)

∫
Psc(m,k′,q),j

(
dist (yi, L)

diam
(
Bsc(m,k′,q),j

))2 dμMn
(
X × YXs

)
diam(X)d(d+1) · fn

k

(
X
) · fd

k′ (Xs)

≤ 2 · 4d · Cd+3
μ

α
d(d+1)+6·d
0

· αk·d·(d−n+1)
0 · β2

2

(
Bsc(m,k′,q),j, L

) · μ (Bsc(m,k′,q),j
)
.
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At long last, applying equations (A.51), (A.57), and (A.59) to the RHS
of equation (A.46) and taking the infimum over all d-planes L proves the
desired proposition.
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