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Stable Higgs G-sheaves

Tomás L. Gómez and Ignacio Sols

Abstract
For a connected reductive group G, we generalize the notion of

(semi)stable Higgs G-bundles on curves to smooth projective schemes
of higher dimension, allowing also Higgs G-sheaves, and construct the
corresponding moduli space.

Let X be a projective and smooth scheme over C. Recall that a Higgs
bundle on X is a vector bundle E together with a Higgs field, that is, a
homomorphism θ : E → E ⊗ ΩX , where ΩX is the cotangent bundle of X,
and such that θ ∧ θ = 0 ([6, 13, 8]). If dimX > 1, it is natural to consider
also Higgs sheaves, that is, to allow E to be a coherent sheaf, not necessarily
locally free. This has already been done by Simpson in [14]. On the other
hand, it is natural to consider Higgs G-bundles, where G is a reductive
algebraic group. The vector bundle is substituted by a principal G-bundle,
and the Higgs field by a homomorphism P (g) → ΩX , where g is the Lie
algebra of G. (Using the Killing form on the semisimple part of the Lie
algebra g′, extended to g by choosing a nondegenerate bilinear form on the
center z, this is equivalent to a section of P (g) ⊗ ΩX . See [15, §9])

In this article we will consider Higgs fields for principal G-sheaves on a
smooth projective complex scheme X, which are the analog of torsion free
sheaves when we work with an arbitrary reductive structure group G.

When working with principal bundles on schemes with dimension higher
than one, it is natural to enlarge the category. This is analogous to the
case of vector bundles, where we are led to consider also torsion free sheaves
or vector bundles with singular connections. In the first case we have the
moduli space of Gieseker-Maruyama, and on the second case that of Uhlen-
beck. Analogously, for principal bundles there are two approaches: that of
Schmitt [9, 11] and Gómez-Sols [5], which is a generalization of Gieseker-
Maruyama approach, and that of Balaji [2], which is a generalizations of
Uhlenbeck’s method.
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704 T. Gómez and I. Sols

Recall [5] that a principal G-sheaf on E is a tuple (P,E, ξ) where E is
a torsion free sheaf on X, P is a principal G-bundle on the open set UE

where E is locally free and ξ is an isomorphism

ξ : P (g′)
∼=−→ E|UE

.

The group of characters G→ C∗ of G is free. Let χi be a set of generators.
The numerical invariants of a principal G-sheaf are the Hilbert polynomial
of E and the Chern classes di ∈ H2(X,C) of the line bundles P (χi) induced
by the characters χi.

Recall that an isomorphism between two principal G-sheaves is a pair of
isomorphisms (β : P → P ′, γ : E → E ′) such that the following diagram is
commutative

P (g′)
ξ ��

β(g′)
��

E|UE

γ|UE
��

P ′(g′)
ξ′ �� E ′|UE

The isomorphism ξ and the Lie algebra structure g′ ⊗ g′ → g′ induce a ho-
momorphism E|U ⊗E|U −→ E|U which uniquely extends ([5, Lemma 0.25])
to a homomorphism

[ , ] : E ⊗ E −→ E∨∨ .

Likewise, the isomorphism ξ and the Killing form g′ ⊗ g′ → C induce a
homomorphism E|U ⊗E|U → OU which uniquely extends ([5, Lemma 0.18])
to a bilinear form

κ : E ⊗ E −→ OX .

Definition 0.1 A Higgs G-sheaf is a principal G-sheaf (P,E, ξ) together
with a Higgs field. By this we mean a homomorphism

Θ : E ⊕ zX −→ ΩX

(zX := z⊗OX) with Θ∧Θ = 0, where the wedge product Θ∧Θ is the section
of E∨∨ ⊗ Ω2

X extending the following section on U (which is defined using
the Lie algebra structure of E and its Killing form):

OU

Θ|∨EU
⊗Θ|∨EU−→ E|∨U⊗ΩU⊗E|∨U⊗ΩU

κ−1⊗κ−1−→ E|U⊗E|U⊗ΩU⊗ΩU

1
2
[,]⊗∧−→ E|U⊗Ω2

U

where, as usual, the last morphism is the combination of the Lie algebra
structure and the wedge product.
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An isomorphism of Higgs G-sheaves is an isomorphism (β, γ) of princi-
pal G-sheaves which is compatible with the Higgs field in the sense that the
following diagram is commutative

E ⊕ zX

γ⊕id
��

Θ �� ΩX

id
��

E ′ ⊕ zX
Θ′

�� ΩX

A filtration

0 � E−l ⊆ E−l+1 ⊆ · · · ⊆ El−1 ⊆ El = E

is said orthogonal if E⊥
i = E−i−1 (where E⊥

i denotes the kernel of the compo-
sition E

κ−→ E∨ → E∨
i ), and it is called algebra filtration if [Ei, Ej] ⊂ E ∨∨

i+j

for all i, j.
Denote θ = Θ|E. Let θ∗ be the section of E∨∨ ⊗ ΩX extending the

following section on U

OU
θ∨−→ E∨|U ⊗ ΩU

κ−1−→ E|U ⊗ ΩU

The filtration is called compatible with the Higgs field if the image of θ∗ lies
in E∨∨

0 ⊗ΩX . This is equivalent to θ|E−1 = 0. Note that, if the Higgs field θ
is compatible with the filtration, then

(0.1) [θ∗, Ei] ⊂ E ∨∨
i ⊗ ΩX

for all i.

Definition 0.2 A Higgs G-sheaf is called (semi)stable if for all orthogonal
algebra filtrations E• compatible with the Higgs field the following condition
is satisfied

PE• =

l∑
i=−l

(
rPEi

− riPE

)
(�) 0

Now we will introduce the notion of S-equivalence. Let (P,Θ) = (P,E,
ξ,Θ) be a Higgs G-sheaf, and let E• be an admissible orthogonal algebra
filtration, by which we mean PE• = 0. In [5, Lemma 5.4] it is shown that
this produces a reduction of structure group (see section §1 for definitions
of standard constructions with principal G-bundles) PQ to a parabolic sub-
group Q ⊂ G on the open set U where it is a bundle filtration (E0 ⊕ zX is
the Lie algebra bundle of this reduction). Let Q � L be its Levi quotient,
and L ↪→ Q ⊂ G a splitting. We call the semistable Higgs G-sheaf

(PQ(Q � L ↪→ G),⊕Ei, ξ′, θ′)



706 T. Gómez and I. Sols

the associated admissible deformation of (P,Θ) (the homomorphisms Θi

is the homomorphisms induced by Θ on (⊕Ei) ⊕ zX the quotients Ei =
Ei/Ei−1, and ξ′ is the natural isomorphism between PQ(Q � L ↪→ G)(g′)
and ⊕Ei|U). If we iterate this process, it stops after a finite number of steps,
i.e. a Higgs G-sheaf is obtained which is isomorphic to all its admissible
deformations. We denote this by gr(P,Θ), call it the associated polystable
Higgs G-sheaf, and say that two semistable Higgs G-sheaves are S-equivalent
when their associated polystable Higgs G-sheaves are isomorphic.

The main result of this article is the following

Theorem 0.3 There is a quasi-projective coarse moduli space of S-equival-
ence classes of semistable Higgs G-sheaves with fixed numerical invariants.

A. Schmitt [12, Sec. 2.9.2] has communicated us that he has constructed the
moduli space of principal bundles together with a section of the vector bundle
associated to a representation. In particular, he considers Higgs bundles. His
proof easily extends to higher dimension, and will appear soon.

1. Preliminary definitions

Let ρ : G1 → G2 be a group homomorphism, and P1 a Higgs G1-bundle. The
extension of structure group is the principal G2-bundle P2 = (P1 × G2)/G1

(where G1 acts on the right of P1 by definition of principal bundle, and it acts
on G2 by left multiplication via the homomorphism ρ). It is denoted P1(ρ) or
just P1(G2) if the homomorphism is clear from the context. More generally,
when G1 acts on a scheme F (for instance, when F is the vector space of a
representation o G1), the associated fiber bundle is P1(F ) := (P1 × F )/G1.

Likewise, when ρ induces an isomorphism on the semisimple part of the
Lie algebra and (P1,Θ1) = (P1, E, ξ1,Θ) is a Higgs G1-sheaf, we define
(P2,Θ2) = (P1(ρ), E, ξ2,Θ) where ξ2 : P1(ρ)(g

′
2) = P1(g

′
1) → E|U is the

isomorphism induced by ξ and ρ.
Conversely, if P2 is a principal G2-bundle, a reduction of structure group

is a pair (P1, β) where P1 is a principal G1-bundle and β : P1(ρ) → P2 is
an isomorphism. Two reductions are isomorphic when there is an isomor-
phism ϕ of principal G1-bundles making the following diagram commutative

P1(ρ)
β ��

ϕ(ρ)
��

P2

=

��
P ′

1(ρ)
β′

�� P2
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When ρ is injective, there is a canonical bijection between the set of iso-
morphism classes of reductions of P2 and the set of sections of the associated
fibration P2(G2/G1).

A reduction of structure group of a Higgs G2-sheaf (P2,Θ2) under the
homomorphism ρ (again assuming that it induces an isomorphism between
the semisimple part of the Lie algebras) is a Higgs G1-sheaf (P1,Θ1) together
with an isomorphism between its extension by ρ and (P2,Θ2). The notion
of isomorphism between reductions is analogously defined. Note that such
a reduction is just a reduction of the principal bundle part.

A family of Higgs G-sheaves parameterized by a complex scheme S is a
family of principal G-sheaves (PS, ES, ξS) (see [5, definition 0.5]) together
with a Higgs field ΘS : ES ⊕ p∗XzX → p∗XΩX , and an isomorphism between
two such families is an isomorphism as principal G-sheaves which is com-
patible with the Higgs fields.

We define the functor of semistable Higgs G-sheaves as the sheafification
of the functor which associates to each complex scheme S, locally of finite
type, the set of isomorphism classes of families of semistable Higgs G-sheaves
with fixed numerical invariants. As usual, on morphisms it is defined as
pullback.

Given a family of Higgs G2-sheaves (PS,ΘS) parameterized by a scheme
S, we defined the functor of reductions as the sheafification of the functor
which associates to each morphism f : S ′ → S the set of isomorphism classes
of families of reductions of (PS′,ΘS′).

Definition 1.1 A Lie algebra sheaf is a pair (E,ϕ) where E is a torsion
free sheaf and ϕ is a homomorphism

E ⊗ E −→ E∨∨

which induces a Lie algebra structure on the fibers where E is locally free. If
this Lie algebra is isomorphic to g′, we call it a g′-sheaf.

Definition 1.2 A non-zero homomorphism ξ : (⊗aE)⊕b → L ⊗ (detE)c is
called a tensor of type (a, b, c, L).

The moduli space for these tensors was constructed in [4], where they
were called decorated tuples of type I. See also [10].

We have already introduced filtrations of the form

0 � E−l ⊆ E−l+1 ⊆ · · · ⊆ El−1 ⊆ El = E

If we delete, from 0 onwards, all the non-strict inclusions, we obtain a strict
filtration

0 � Eλ1 � Eλ2 � · · · � Eλt � Eλt+1 = E λ1 < · · · < λt+1
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Conversely, from the strict filtration Eλ• we can recover the original one E•
by defining Em = Eλi(m)

, where i(m) is the maximum index with λi(m) ≤ m.

Definition 1.3 A balanced filtration is a filtration with
∑
i rkEi/Ei−1 = 0.

In terms of Eλ•, this is
∑
λi rkEλi

/Eλi−1
= 0.

Fix a polynomial δ with deg δ ≤ dimX − 1 and positive leading coeffi-
cient. A tensor is called δ-(semi)stable if for every balanced filtration Eλ•
it is

l∑
i=−l

(λi+1 − λi)
(
rPEλi

− rλi
PE

)
+ µ(ψ,Eλ•)δ (�) 0

where

µ(ψ,E•) = min
I∈I

{
λi1 + · · ·+ λia : ψ|(Eλi1

⊗···⊗Eλia
)⊕b 
= 0

}

and I is the set of multi-indexes I = (i1, . . . , ia).
Given a Lie algebra sheaf, using the canonical isomorphism (∧r−1E)∨ ⊗

detE ∼= E∨∨ we obtain a homomorphism

E ⊗E ⊗∧r−1E −→ detE ,

hence a Lie tensor, by which we mean a tensor ψ of type (r + 1, 1, 1,OX),
i.e.

ψ : E⊗r+1 −→ detE

which factors through E ∧ E ⊗ ∧r−1E and satisfies the Jacobi identity
(see [5, Definition 0.14]). From now on, we write a = r + 1.

(Note that in [5] a Lie tensor was defined as a tensor F⊗a → OX , i.e.
with values in OX , because E denoted E = F ⊗ detF . In this article we
change the definition, because it is more convenient when we have to deal
with the Higgs field.)

As we have already seen, the isomorphism ξ in a Higgs G-sheaf induces
a Lie algebra sheaf, and hence a Lie tensor we denote ψ1 : E⊗a → detE. On
the other hand, recall that θ : E → ΩX is the restriction Θ|E of the Higgs
field Θ : E ⊕ zX → ΩX . It induces a homomorphism

ψ2 : E⊗a = E ⊗ E⊗r id⊗det−→ E ⊗ detE
θ⊗id−→ ΩX ⊗ detE ,

The direct sum of these morphisms defines a tensor

(1.1) ψ = ψ1 ⊕ ψ2 : E⊗a ⊕ E⊗a −→ (OX ⊕ ΩX) ⊗ detE

which is a Higgs Lie tensor, by which we understand a tensor of type
(a, 2, 1,OX ⊕ ΩX) which satisfies the following closed conditions:
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1. It is “block-diagonal”, i.e., of the form(
ψ1 0
0 ψ2

)
,

where
ψ1 : E⊗a −→ detE

and
ψ2 : E⊗a −→ ΩX ⊗ detE

2. the first summand ψ1 is a Lie tensor,

3. the second summand ψ2 factors as follows

E ⊗ E⊗r id⊗ det−→ E ⊗ detE
θ⊗id−→ ΩX ⊗ detE ,

2. Boundedness

In this section we prove that the set of semistable Higgs G-sheaves is bound-
ed. We do this by considering the Higgs sheaf induced by the adjoint repre-
sentation.

Let E be a coherent OX-module. Endowing it with a Higgs field θ is
equivalent to endowing it with the structure of a OT∨X-module structure,
where T∨X is the total space of the cotangent vector bundle ΩX on X. In
other words, a Higgs sheaf (E, θ) (with E torsion free) can be thought of
as a coherent sheaf E on T∨X (of pure dimension dimX), and this gives
an equivalence of categories, called the spectral construction. Under this
correspondence, E = p∗E , where p : T∨X → X is the natural projection.
Therefore, the Hilbert polynomials coincide PE = PE if we define the polar-
ization on T∨X as the pullback of the polarization on X. For more details
on this, see [3] or [15, Lemma 6.8].

This point of view is very useful, because it allows us to reduce problems
for Higgs sheaves to problems for coherent sheaves. For instance, the proof
of the following lemma becomes straightforward (see also [14, Lemma 3.1]):

Lemma 2.1 (Higgs-Harder-Narasimhan) Let (E, θ) be a Higgs sheaf.
There exists a unique filtration

0 = E0 � E1 � E2 � · · · � El = E

of Higgs sheaves, i.e. inducing θi : Ei → Ei ⊗ ΩX , such that the induced
Higgs sheaf (Ei = Ei/Ei+1, θ

i : Ei → Ei ⊗ ΩX) is semistable for all i, and

(2.1) µmax(E, θ) := µ(E1) > µ(E2) > · · · > µ(El) =: µmin(E, θ)
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Given two torsion free sheaves (E1, θ1) and (E2, θ2), we define their tensor
product

(E1, θ1) ⊗′ (E2, θ2) = (E1 ⊗′ E2, θ1 ⊗ id + id⊗θ2),
where E1 ⊗′ E2 is the torsion free part of the tensor product.

Lemma 2.2 Let (E1, θ1) and (E2, θ2) be two Higgs sheaves.

1. If they are semistable, then their tensor product is also semistable.

2. In general we have

µmin((E1, θ1) ⊗′ (E2, θ2)) = µmin(E1, θ1) + µmin(E2, θ2) .

3. If there exists a nonzero homomorphism (E1, θ1) → (E2, θ2), then

µmin(E1, θ1) ≤ µmax(E2, θ2)

Proof. The first statement is [13, Corollary 3.8] (we remark that it is
reduced to the case dimX = 1, using the restriction to ample hypersurfaces,
and then using the relationship between stability and existence of solutions
to certain differential equations). The second statement is given without
Higgs field in [1, Proposition 2.9], but, using the first statement, their proof
also works when the Higgs field is non-zero. The third statement follows at
once from the spectral construction and the corresponding result for coherent
sheaves [7, Lemma 1.3.3] �

Let (P,E, ξ,Θ) be a Higgs G-sheaf. Let j : U ↪→ X be the open subset
where E is locally free. As usual, we denote θ = Θ|E. The homomorphism

f : E|U id⊗θ∗−→ E|U ⊗E|U ⊗ ΩX |U [,]⊗id−→ E|U ⊗ ΩX |U
induces a Higgs field

adθ = j∗f : E∨∨ −→ E∨∨ ⊗ ΩX

on E∨∨ ∼= j∗E|U (this isomorphism holds because U is big, i.e., the codimen-
sion of its complement is at least 2. Cfr. [5, Lemma 0.11]). The resulting
Higgs sheaf (E∨∨, adθ) is called the adjoint Higgs sheaf.

Proposition 2.3 A Higgs G-sheaf (P,E, ξ,Θ) is slope semistable if and
only if the associated adjoint Higgs sheaf (E∨∨, adθ) is slope semistable.
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Proof. We may and shall assume that G is semisimple. ⇐) If (P,E, ξ,Θ)
is not slope semistable, then there exists an orthogonal algebra filtration
E• ⊂ E, compatible with Θ and such that

l∑
i=−l

(λi+1 − λi)
(
r degEλi

− rλi
degE

)
> 0

This filtration induces a filtration E∨∨
• on E∨∨, and since the degree of a

torsion free sheaf is equal to the degree of its double dual, it still holds

(2.2)
l∑

i=−l

(λi+1 − λi)
(
r degE∨∨

λi
− rλi

degE∨∨)
> 0

Using (0.1),

adθ(E∨∨
λi

) = (j∗f)(E∨∨
λi

) = j∗[θ∗|U , Eλi
|U ] ⊂ j∗(Eλi

⊗ ΩX |U) = E∨∨
λi

⊗ ΩX ,

and therefore, (2.2) implies that (E∨∨, adθ) is unstable.

⇒) If (E∨∨, adθ) is unstable, let F∨∨
• ⊂ E∨∨ be its Higgs-Harder-Narasimhan

filtration (Lemma 2.1), and let F• ⊂ E be the induced filtration on E defined
as Fi = F∨∨

i ∩E. Denote

(2.3) λi = −r!µ(F i)

and Eλi
= Fi, thus giving a filtration

0 � Eλ1 � Eλ2 � · · · � Eλt+1 = E

Using degE = 0, it is easy to check that the filtration is balanced.
We claim that it is an algebra filtration. Indeed, let (λi, λj, λk) be a triple

with λi + λj < λk. We need to show

[Eλi
, Eλj

] ⊂ E∨∨
λk−1

Let k′ be the minimum integer such that E∨∨
λk′−1

contains [Eλi
, Eλj

]. The

morphism

Eλi
⊗Eλj

[,]−→ E∨∨
λk′−1

/E∨∨
λk′−2

is nonzero. It follows from (2.3), Lemma 2.2 (2) and (3) that λi +λj ≥ λk′−1

which in turn implies λk′−1 < λk, proving the claim.
Therefore, E• is a balanced algebra filtration, or equivalently (by corol-

lary [5, Lemma 5.10]), an orthogonal filtration.
We claim that Θ is compatible with this reduction. Let i(Θ) be the

minimum index i such that Θ∗(OX) ⊂ E∨∨
λi

⊗ΩX It follows that adθ(E∨∨
λ ) ⊂

E∨∨
λ+λi(θ)

⊗ ΩX . Since the Higgs-Harder-Narasimhan filtration is a filtration

of Higgs sheaves, this forces λi(Θ) ≤ 0, thus proving the claim.
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Finally, the inequality

∑
(λi+1 − λi)

(
r degEλi

− rλi
degE

)
> 0

follows from (2.1), proving that (P,E, ξ,Θ) is not slope semistable. �

Proposition 2.4 The set of isomorphism classes of sheaves E occurring in
semistable Higgs G-bundles (E, P, ξ,Θ), and having fixed numerical invari-
ants, is a bounded set.

Proof. Let F ⊂ E be a subsheaf. A semistable Higgs sheaf (P,E, ξ,Θ)
is slope semistable, therefore (E∨∨, adθ) is a slope semistable Higgs sheaf
by proposition 2.3. Since F ⊂ E∨∨, it follows from [14, Lemma 3.3] that
µ(F ) ≤ µ(E) +K, where K is a constant depending only on the rank of E
and the chosen polarization of X. The well-known theorem of Simpson [14,
Thm 1.1] says that the set in the statement is then bounded. �

Proposition 2.5 There exists a polynomial δ0 of degree dimX − 1 and
positive leading coefficient such that for all δ > δ0, a Higgs G-sheaf is
(semi)stable if and only if the associated Higgs g′-tensor is δ-(semi)stable.

Proof. We have seen (1.1) that the Higgs Lie tensor associated to a Higgs
G-sheaf is of the form ψ = ψ1 + ψ2 = ψ1 + θ ⊗ det. For a multi-index
I = (i1, . . . , ia), denote λI = λi1 + · · · + λia and EI = Eλi1

⊗ · · · ⊗ Eλia
.

Using this notation,

µ(ψ,Eλ•) = min
I∈I

{
λI : ψ|E⊕2

I

= 0

}
= min

I∈I
{
λI : ψ1|EI


= 0 or ψ2|EI

= 0

}

= min
(

min
I∈I

{
λI : ψ1|EI


= 0},min
I∈I

{
λI : θ|Ei1


= 0 and det |Ei2
⊗···⊗Eia


= 0
})

= min
(

min
I∈I

{
λI : ψ1|EI


= 0},min
I∈I

{
λi1 : θ|Ei1


= 0
})

=: min
(
µ21, µ10

)
Note that if θ is identically zero, µ10 is not defined, and then µ(ψ,Eλ•)=µ21.
The notation µ21 and µ10 reminds us that the tensors come from a homo-
morphism ϕ : E ⊗ E → E∨∨ and a homomorphism θ : E → ΩX .

We claim that, for any filtration Eλ•, µ(ψ,Eλ•) ≤ 0, with equality if
and only if it is an orthogonal algebra filtration compatible with the Higgs
field. This is proved in two steps: first note that µ10 ≥ 0 if and only
if the filtration is compatible with the Higgs field (θ|E−1 = 0) and recall
from [5, Lemma 1.3] that µ21 ≥ 0 is equivalent to being an algebra filtration.
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Therefore, µ(ψ,Eλ•) ≥ 0 if and only if both conditions apply, i.e. if and only
if it is an orthogonal algebra filtration. On the other hand, it was shown in
the same place that µ21 ≤ 0 for all filtration, because g′ is semisimple, and
therefore µ(ψ,Eλ•) = min(µ21, µ10) ≤ 0. Combining both observations, the
claim follows.

⇒) To check (semi)stability, consider an orthogonal algebra filtration
Eλ• which is compatible with the Higgs field. This implies µ(ψ,Eλ•) = 0,
and the result follows.

⇐) By proposition 2.4, the set S1 of torsion free sheaves E occur-
ring as Higgs Lie tensors associated to (semi)stable Higgs G-sheaves of
given numerical invariants is a bounded set. On the other hand, to check
δ-(semi)stability of a tensor, it suffices to consider filtrations Eλ• such that
|λi| is bounded with a constant B independent of the polynomial δ ([4,
Lemma 3.4.4]). This implies the boundedness of the set of balanced filtra-
tions S2 = {Eλ• ⊂ E : E ∈ S1 , |λi| < B} which we need to consider when
checking the semistability of the tensor. Therefore, there is a polynomial δ0
such that ∑

(λi+1 − λi)
(
rPEλi

− rλi
PE

) ≺ δ0

for all filtrations in S2. Let Eλ• be a filtration in S2. If it is an algebra
filtration, then µ21 = 0, and hence µ(ψ,Eλ•) = 0 and the result follows.

If it is not an algebra filtration, then µ21 < 0, thus µ(ψ,Eλ•) ≤ −1.
Therefore, for all δ � δ0, it is

∑
(λi+1 − λi)

(
rPEλi

− rλi
PE

)
+ δµ(ψ,Eλ•) ≺

δ0 + δµ(ψ,Eλ•) � δ0 − δ ≺ 0 . �

3. Construction of the moduli space

3.1. Construction of the schemes T and T1

Proposition 2.4 says that the set of isomorphism classes of sheaves E occur-
ring in semistable Higgs G-sheaves of fixed numerical invariants is bounded,
and so we can choose an integer m large enough so that E(m) and ΩX((r+
1)m) are generated by global sheaves and their higher cohomology vanish
for all such E.

Definition 3.1 A based Higgs G-sheaf (q, E, P, ξ,Θ) is a Higgs G-sheaf
(E, P, ξ,Θ) together with a quotient q : V ⊗ OX(−m) → E which induces
an isomorphism between V and H0(E(m)). We analogously define based
tensors, based Lie tensors, etc. . .
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Let (q, E, ϕ : E ⊗ E → E∨∨, θ : E → ΩX) be a based semistable
Higgs Aut(g′)-sheaf. The quotient q corresponds to a point in the Hilbert
scheme H of quotients of V ⊗ OX(−m) with Hilbert polynomial P and
trivial determinant. Let l be an integer such that l > m, and denote
W = H0(OX(l − m)). We obtain, from q(l) : V ⊗ OX(l − m) � E(l),
a linear map V ⊗W → H0(E(l)), and, from this,

∧
P (l)(V ⊗W ) → ∧

P (l)H0(E(l)) ∼= C

hence a point in P
( ∧

P (l)(V ∨ ⊗ W∨)
)
. For l large enough, this gives the

Grothendieck embedding of H in a projective space.
As we have already seen, a Higgs G-sheaf (E, P, ξ,Θ) induces a tensor

ψ = ψ1 ⊕ ψ2 : E⊗a ⊕ E⊗a −→ (OX ⊕ ΩX) ⊗ detE

with a = r + 1. Choosing an isomorphism α : detE → OX , we obtain a
homomorphism

V ⊗a ⊕ V ⊗a

��

BOX
⊕BΩX

H0(E(m))⊗a ⊕H0(E(m))⊗a

��

H0(OX(am)) ⊕H0(ΩX(am))

=

��

H0(E⊗a(am) ⊕ E⊗a(am)) �� H0((OX(am) ⊕ ΩX(am)) ⊗ detE)

∼=
��

If we change the isomorphism α this homomorphism will just be multiplied
by a scalar, so we get a well defined point in

P′ = P(Hom(V ⊗a ⊕ V ⊗a, BOX
⊕ BΩX

))

Using the polarization induced on H by Grothendieck’s embedding, we en-
dow the product H × P′ with a polarization OX(b, b′), where b and b′ are
integers with

b′

b
=
P (l)δ(m) − δ(l)P (m)

P (m) − aδ(m)

Let Z be the closure in H × P′ of the points corresponding to δ-semistable
based tensors, and let Zss ⊂ Z be the open subset corresponding to those
that are δ-semistable. Let T ⊂ Zss be the closed subscheme of those corre-
sponding to Higgs Lie tensors.

On X × T there is a tautological sheaf FT and homomorphisms

FT ⊗ FT ⊗∧r−1FT −→ p∗
P′OX(1)

FT ⊗ detFT −→ p∗ΩX ⊗ p∗
P′OX(1)
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Defining ET = FT ⊗ detFT ⊗ p∗
P′OX(−1) these give homomorphisms

ET ⊗ ET −→ E∨∨
T

ET −→ p∗XΩX

Proposition 3.2 The scheme T represents the functor of based δ-semistable
Higgs Lie tensors.

Call an open subset of T GIT-saturated when it is SL(V )-invariant and,
if an orbit SL(V ) · p lies on it, all the orbits in the closure of SL(V ) · p also
lie on it. If an open subset is GIT-saturated, its good quotient is an open
subset of the GIT quotient of T .

Recall that, for a “high” polynomial δ, a Higgs g′-sheaf is (semi)stable
if and only if the corresponding Higgs Lie tensor is δ-(semi)stable (proposi-
tion 2.5).

Proposition 3.3 There is a GIT-saturated open subset U of T correspond-
ing to Higgs Lie sheaves whose Lie algebra structure is semisimple. The
subscheme T ′ ⊂ U , corresponding to those whose Lie algebra structure is
isomorphic to g′ at points where E is locally free, is a union of connected
components.

Proof. The subset of points corresponding to Higgs Lie tensors whose Lie
algebra structure is semisimple is open, because the non-vanishing of the
determinant of the Killing form is an open condition. Assume this open
set were not GIT-saturated. This would imply there is a point p in U and
a 1-PS subgroup λ of SL(V ), such that the limit limt→0 λ(t) · p exists and
corresponds to a Lie tensor whose Lie structure is not semisimple. This
translates into the existence of an orthogonal algebra filtration E• with∑

(λi+1 − λi)
(
rPEλi

− rλi
PE

)
= 0

such the the graded Lie algebra structure induced on the graded sheaf grE•
is identically zero (cf. [5, §4]). But this is not possible, because, given a
semisimple Lie algebra and an orthogonal algebra filtration of it, the associ-
ated graded Lie algebra is also semisimple (cf. [5, Lemma 5.2]). The second
assertion follows from the rigidity of semisimple Lie algebras. �

Consider the restricted family (ET ′, ϕT ′ : ET ′ ⊗ ET ′ −→ E∨∨
T ′ , θT ′ :

ET ′ −→ p∗XΩX) parameterized by T ′. Let T1 be the closed subset de-
fined by the condition that [θ, θ] is identically zero. The restricted family
(ET1 , ϕT1 : ET1 ⊗ ET1 −→ E∨∨

T1
, θT1 : ET1 −→ p∗XΩX) can be thought of

as a family of Higgs Aut(g′)-sheaves. The group PGL(V ) acts on T1, and,
arguing as before proposition 1.8 in [5], the action lifts to this family.
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Proposition 3.4 With this action, the family becomes a universal family
with group PGL(V ) for the functor of Higgs Aut(g′)-sheaves.

Proof. Analogous to [5, Prop 1.8]. See [5, Def. 0.29] for the definition of
universal family. �

3.2. Construction of the schemes T2 and T ′
2

The rest of the construction of the moduli space is very similar to that in [5],
so we will just give a sketch of it. The next step is to construct a scheme
T2 → T1, finite and étale, which parameterizes reductions of structure group
under the homomorphism ρ2 : G/Z → Aut(g′). Note that G/Z is just the
connected component of Aut(g′), so if P is a principal Aut(g′) bundle, the set
of reductions under ρ2 is the set of sections of the associated fibration P (F ),
where F is the finite group Aut(g′)/(G/Z). If P (F ) is a trivial filtration then,
this set is an F -torsor, and if it is not trivial, this set is empty. For this
reason T2 → T1 is finite and étale.

Now we consider reductions under the homomorphism ρ′2 : G/Z ′ → G/Z,
where Z ′ is the center of G′ = [G,G]. Note that G/Z ′ ∼= G/Z×G/G′, and ρ′2
is just projection to the first factor. For a principal G/Z-bundle (on a big
open set U of X), giving a reduction of structure group to G/Z ′ is just
giving a principal G/G′-bundle. Since G/G′ ∼= C∗q, this is equivalent to
giving a set of q line bundles on U , or equivalently on X, whose Chern
classes di ∈ H2(X,C) are fixed by the numerical invariants. On the other
hand, the Lie algebra of the group G/Z ′ is z. A Higgs field for a principal
G/Z-sheaf is a homomorphism E → ΩX , but a Higgs field for a principal
G/Z ′-sheaf is a homomorphism E⊕ zX → ΩX , i.e. we have to give a section
of z∨ ⊗ ΩX . Therefore, these reductions are parameterized by the scheme

T ′
2 = H0(X, z∨ ⊗ ΩX) × Jd1 × · · · × Jdq × T2 −→ T2

The details of the construction of T2 and T ′
2 are the same as the construction

of R2 and R′
2 in [5, §2], so we just state the final result.

Proposition 3.5 There is a family of Higgs G/Z ′-sheaves parameterized by
a scheme T ′

2 and a natural action of G/G′ × PGL(V ), providing it with a
structure of universal family with group G/G′ × PGL(V ) for the functor of
Higgs G/Z ′-sheaves.

We remark that the action of G/G′ on T ′
2 is trivial, but its lift to the

family is not.
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3.3. Construction of the scheme T3

Finally we consider reductions under the homomorphism ρ3 : G → G/Z ′.
If H is a group, we denote by H the sheaf of sets of sections of the trivial
H-bundle X×H . We denote by Ȟ i

et(X,H) the Czech étale cohomology set.
The short exact sequence of groups

1 −→ Z ′ −→ G −→ G/Z ′ −→ 1

gives rise to an exact sequence of pointed sets

Ȟ1
et(X,Z

′) −→ Ȟ1
et(X,G) −→ Ȟ1

et(X,G/Z
′) −→ Ȟ2

et(X,Z
′)

It is Ȟ i
et(X,Z

′) ∼= H i(X;Z ′), i = 1, 2, the singular cohomology with coef-
ficients in Z ′. A principal G/Z ′-bundle gives a point in Ȟ1

et(X,G/Z
′), and

it admits a reduction of structure group to G if and only if its image in
H2(X;Z ′) is zero. In this case, the set of reductions is an H1(X;Z ′)-torsor.
In general we have to deal with principal bundles which are defined only on
a big open set of X, but, as shown in [5, §3], this does not affect the first
cohomology group, thus obtaining the following result.

Proposition 3.6 There is a scheme R3 → R′
2, finite and étale, which is a

universal space with group PGL(V ) for the functor of Higgs G-sheaves.

We remark that, in general, there is no tautological Higgs G-sheaf pa-
rameterized by R3. This is why we do not get a universal family, but just
a universal space (cfr. [5, Def. 0.30]) with group PGL(V ) (recall that in
proposition 3.5 the action of G/G′ on T ′

2 was trivial).

3.4. Construction of quotient

Now the same arguments as in [5, §4] provide the following theorem.

Theorem 3.7There is a quasi-projective moduli scheme of semistable Higgs
G-sheaves with fixed numerical invariants. There is an open subscheme
whose closed points are in canonical bijection with isomorphism classes of
stable Higgs G-sheaves.

This moduli space is not expected to be projective, but it would be very
interesting to prove that the fibers of the Hitchin map are projective, as it
happens with Higgs bundles in dimension one.

In this article we have defined Higgs fields for principal sheaves. Another
approach is to start with a singular principal bundle, as defined in [9, 4],
and define Higgs fields on them. This could be specially interesting if we
wanted to consider a specific group G (orthogonal, symplectic, . . . ) because
then we can choose a representation which is well adapted to the group.
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For instance, if G is the orthogonal group and if we choose the standard
representation, a Higgs singular principal bundle would be a torsion free
sheaf with a non-degenerate symmetric bilinear form (by this we mean that
the induced homomorphism E → E∨ is injective) together with a homo-
morphism θ : E → E ⊗Ω respecting the bilinear form (i.e., skew-symmetric
with respect to the bilinear form). The condition of stability would then be
defined in terms of orthogonal filtrations of E which are respected by the ho-
momorphism. To follow these ideas, [12, Sec. 2.9.2] is relevant. If dimX = 1
these approaches are equivalent, but they are not if dimX > 1. Under good
conditions, we can expect that these two approaches give birational moduli
spaces.

The moduli space of Higgs principal bundles on curves plays a central
role in the Geometric Langlands Program. One can expect that the moduli
spaces constructed in this article could be used to generalize that program
to projective varieties of dimension higher than one.

It would be interesting to study the structure of these moduli spaces.
Since the moduli spaces of torsion free sheaves on a projective scheme can al-
ready be quite complicated (non-reduced, . . . ), likewise these moduli spaces
are expected to be difficult to describe in general.
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