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Extreme cases
of weak type interpolation

Evgeniy Pustylnik

Abstract

We consider quasilinear operators T of joint weak type (a, b; p, q)
(in the sense of [2]) and study their properties on spaces Lϕ,E with
the norm ‖ϕ(t)f∗(t)‖Ẽ , where Ẽ is arbitrary rearrangement-invariant
space with respect to the measure dt/t. A space Lϕ,E is said to be
“close” to one of the endpoints of interpolation if the corresponding
Boyd index of this space is equal to 1/a or to 1/p. For all possi-
ble kinds of such “closeness”, we give sharp estimates for the func-
tion ψ(t) so as to obtain that every T : Lϕ,E → Lψ,E .

1. Introduction

Already the first theorems of real interpolation (e.g., the famous Marcin-
kiewicz theorem) have shown that various strong properties of linear opera-
tors on intermediate spaces can be derived from rather weak endpoint condi-
tions. This fact appeared to be especially important for integral operators,
which, in most cases, satisfy just these and not stronger conditions on end-
point spaces. Many powerful theorems on Sobolev type embedding, Fourier
series and transforms, differential and integral equations were proved, using
methods of weak type interpolation.

The initial theorems of weak type interpolation concerned the scales of
spaces with numerical parameters like Lp, Lpq etc. Every intermediate space
of such scales automatically is sufficiently “distant” from the endpoint spaces
so as to provide transformation of weak properties of operators into strong
ones. The situation changed, when considering arbitrary rearrangement-
invariant (r.i.) spaces which may be arbitrarily “close” to each other. In or-
der to estimate the position of a r.i. space G among others, D. Boyd [3]
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proposed special indices

πG = lim
t→0

ln dG(t)

ln t
, ρG = lim

t→∞
ln dG(t)

ln t
, where dG(t) = sup

f∈G

‖f(s/t)‖G
‖f(s)‖G ,

and proved that any linear operator with weak properties on the spaces
Lp0 , Lp1 (p0 < p1) is bounded on G if and only if

1

p1

< πG ≤ ρG <
1

p0

.

Strict inequalities between the Boyd indices of intermediate and of the end-
point spaces are also required in many other, more general theorems on weak
type interpolation (see, e.g., [7, Chapter II]).

Weak type interpolation theorems with strict inequalities between the
Boyd indices turn out to be useless in the so-called “extreme” (or “lim-
iting”) cases of various analytical problems, such as properties of integral
transforms on Zygmund spaces L logL and expL, embedding of Sobolev
spaces W k

p (Ω), when pk = n (dimension of Ω) etc. Generally speaking,
we get here a problem of weak type interpolation on intermediate spaces
with the same Boyd indices as for the endpoint spaces. These intermediate
spaces, in some sense, are “too close” to the endpoints of interpolation, so
that the (quasi)linear operators on them do not have “enough distance” for
getting strong properties and remain somewhere “between” strong and weak
estimates. For sharp results, we should correlate this “decay of strength”
with the “position” of each space under consideration.

Since the Boyd indices of all “close” spaces are equal to the same value,
we need a more delicate meter of their “positions”. Unfortunately, we do not
have any general characteristic which is able to replace the Boyd indices for
distinguishing spaces “near” the endpoints. That is why all known theorems
in this direction concern only special classes of spaces which have an intrinsic
parameterizations. Mostly they are the Lorentz spaces with the (quasi)norm
‖f‖G = ‖w(t)f∗(t)‖Lr , where 1 ≤ r ≤ ∞ and the weight w(t) depends on
additional parameters. Actually sharp results were obtained in [1] and [6]
for the cases of

w(t) = t1/p−1/r
(
ln
e

t

)ε
and w(t) = t1/p−1/r

(
ln
e

t

)ε (
ln ln

e2

t

)σ

,

where t ∈ (0, 1), ε, σ ∈ R. A next step of generalization was done in [5]
and [9], where the exterior norm in Lr was replaced by the norm in arbitrary

space Ẽ, which is rearrangement-invariant with respect to the measure dt/t
on (0, 1). This led to the spaces Lp,ε,E having the quasinorm

(1.1) ‖f‖Lp,ε,E
= ‖t1/p

(
ln
e

t

)ε
f∗(t)‖

�E
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and being termed spaces of Lorentz-Zygmund type. Properties of all these
spaces in weak type interpolation “near” the endpoint spaces may be de-
scribed as follows.

Let a (quasi)linear operator T be of two weak types (a, b) and (p, q)
with a < p, b < q (all exact definitions will be given in the next sec-
tion). Considering the range space of such operators on any of the above-
mentioned spaces (except the cases of ε = 0, r = 1 or ε = 0, ρE = 1), we
obtain one and the same phenomenon: the exponent ε decreases by 1. In
particular, T : Lp,ε,E → Lq,ε−1,E. At the same time, for any non-limiting
value p1, a < p1 < p, the corresponding value of ε does not change, i.e.,
T : Lp1,ε,E → Lq1,ε,E , where q1 is connected with p1 like in any classical
interpolation theorem:

1

p1
=
τ

a
+

1 − τ

p
,

1

q1
=
τ

b
+

1 − τ

q
, 0 < τ < 1.

Thus “decay” of the weight function w(t) (as described above) should be
regarded as a consequence of “closeness” of the space Lp,ε,E to the endpoint
space Lp (as shown in [9], the Boyd indices of the space Lp,ε,E both are
equal to 1/p). An analogous situation occurs when the right endpoint (p, q)
of interpolation is replaced by the left endpoint (a, b).

The author is not aware of any example in the literature, where weak
type interpolation gives “decay” (change) of the weight function w(t) other
than the factor (ln e/t)−1 appearing in the norm of range spaces after inter-
polation. However, this constancy might be artificial, depending on the
special (power-logarithmic) form of the weight w(t). To our knowledge,
the systematic study of arbitrary weights in extreme cases of weak type
interpolation was never fulfilled before.

In the present paper we will investigate the spaces Lϕ,E with the norm

(1.2) ‖f‖Lϕ,E
= ‖ϕ(t)f∗(t)‖

�E

for arbitrary positive increasing functions ϕ(t). They generalize the no-
tion of spaces of Lorentz-Zygmund type, since the choice ϕ(t) = t1/p

(
ln e

t

)ε
gives (1.1). The spaces Lϕ,E with general ϕ were introduced in [11] as
ultrasymmetric spaces and studied in detail. However, the main weak type
interpolation theorem, proved in [11], also requires of these spaces to be
“distant” from the endpoint spaces. The present paper is intended to fill
up the existing gap in interpolation results, considering all possible cases of
weak type interpolation.

In spite of the special form of the norm (1.2), the spaces Lϕ,E comprise
most of classical spaces such as Lp, Lpq, L

pq(logL)ε and many other kinds of
Lorentz spaces. When the function ϕ(t) is “close” to t1/p, these spaces also
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include the corresponding Orlicz spaces. As shown in [11], the class of spaces
Lϕ,E coincides with the set of all r.i. spaces, which are interpolation between
the extreme spaces Λϕ,Mϕ, so that ϕ(t) is the fundamental function of
these spaces. The function ϕ(t) is quite suitable for measuring “proximity”
of spaces Lϕ,E to the endpoint spaces of interpolation.

For simplicity, we will consider only spaces of functions f(t) with t∈(0, 1)
and study the change of parameter ϕ in those interpolation processes, where
the space parameter Ẽ remains unchanged. The results for other situations
can be easily derived then, using general methods and theorems from [11].

The paper is organized as follows. In the next section we give some
needed information about ultrasymmetric spaces and weak type interpola-
tion. Then, in Section 3, we prove general assertions about spaces which are
“distant” from one of the endpoints of interpolation and show optimality of
them. Section 4 is devoted to proving the necessary and sufficient conditions

for the “decay factor” to be equivalent to classically known
(
ln e

t

)−1
. In Sec-

tion 5 we consider the “superclose” spaces, where this factor is stronger and
attains the possible maximum. At last, in Section 6, we give some general
sharp estimates for the “decay factor” and show how it becomes “slighter”
up to complete absence. While the results of Section 4 generalize some
known facts, the results of the last two sections have no predecessors.

Throughout the paper we write f � g instead of f ≤ Cg with some
constant C and f ≈ g if g � f, f � g (i.e., f is equivalent to g). We
say “a function f is almost increasing (decreasing)” if it is equivalent to
an increasing (decreasing) function g. We write X = Y for spaces with
equivalent (quasi)norms and X ⊂ Y for continuous embedding, as well as
T : X → Y will stand only for continuous operator T acting from X to Y .

2. Preliminaries

For the main definitions and properties concerning rearrangement invari-
ant (r.i.) spaces and interpolation theory, we refer the reader to the mono-
graphs [2] and [7]. We will consider only those r.i. spaces E which are exact
interpolation between L1 and L∞, using measurable functions with respect
to two kinds of measure: the standard Lebesgue measure dt and the homo-
geneous measure dt/t. We use letters with a tilde for spaces with the second

measure. Moreover, we denote by the same letter the spaces E and Ẽ if
they are obtained by the same interpolation functor from the basic couples:
E = F(L1, L∞), Ẽ = F(L̃1, L̃∞), where

‖f‖
�L1

=

∫ 1

0

|f(t)|dt
t
, ‖f‖

�L∞ = ‖f‖L∞ = sup
0<t<1

|f(t)|.
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The norms in the spaces E and Ẽ can be also connected without use of the
functor F , since ‖f‖

�E = ‖g‖E when g(u) = f(e−u), 0 < u <∞.

Let a function ϕ(t) be positive and almost increasing. Its lower and
upper extension indices are defined as

πϕ = lim
t→0

lnmϕ(t)

ln t
, ρϕ = lim

t→∞
lnmϕ(t)

ln t
, where mϕ(t) = sup

s

ϕ(st)

ϕ(s)
.

It is easy to check that ρϕ ≥ πϕ ≥ 0. In addition, we will always require of
both indices to be finite. For example, if ϕ(t) = t1/p

(
ln e

t

)ε
then πϕ = ρϕ =

1/p for any ε ∈ R, thus we may admit all p > 0. The ratio ϕ(t)/tσ is almost
increasing for any σ < πϕ and almost decreasing for any σ > ρϕ. Note also
that both indices do not change after replacing ϕ(t) by arbitrary equivalent
function.

The following properties of extension indices can be easily proved by the
reader:

i) if ϕ(t) = α(t)t±1/p then πϕ = πα ± 1/p, ρϕ = ρα ± 1/p;

ii) if ϕ(t) = α(t)ψ(t) then πϕ ≥ πα + πψ, ρϕ ≤ ρα + ρψ;

iii) if ϕ(t) = θ(ψ(t)) then πϕ ≥ πθπψ, ρϕ ≤ ρθρψ.

For arbitrary function ϕ as above and arbitrary r.i. space E, the corre-
sponding ultrasymmetric space Lϕ,E is defined as the space of all measurable
functions f such that

(2.1) ‖f‖Lϕ,E
= ‖ϕ(t)f∗(t)‖

�E <∞,

where, as usual, f∗ means the non-increasing rearrangement of f . The quan-
tity (2.1) is a quasinorm which becomes equivalent to a norm if ρϕ < 1; this

norm can be obtained from (2.1) via replacing f∗(t) by f∗∗(t) = 1
t

∫ t

0
f∗(s)ds.

Since we do not distinguish spaces with equivalent (quasi)norms, the para-
meter function ϕ can be replaced by any other equivalent function, that
gives a possibility to transform this parameter into a strictly increasing and
even smooth one.

For all needed properties of ultrasymmetric spaces, we refer the reader
to the paper [11], where these spaces were introduced and studied in detail.
In particular, we note that the dilation function dG(t) for any G = Lϕ,E is
equivalent to mϕ(t), so that the Boyd indices of G coincide with extension
indices of ϕ. The spaces Λϕ = Lϕ,L1 and Mϕ = Lϕ,L∞ are called respectively
Lorentz and Marcinkiewicz spaces, and any other ultrasymmetric space Lϕ,E
is intermediate and interpolation between them.
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For the simplicity, let us denote Λϕ = Λp and Mϕ = Mp if ϕ(t) = t1/p.
A (quasi)linear operator T is said to be of weak type (p, q) if T : Λp → Mq,
namely, if

(2.2) t1/q(Tf)∗(t) �
∫ 1

0

s1/pf∗(s)
ds

s

(of course, the right-hand side of this inequality can be finite for non-zero
functions f only if p <∞). Taking another pair of numbers a, b, let us denote
byW (a, b; p, q) the set of all quasilinear operators which are of two weak type
(a, b) and (p, q) simultaneously. The problem of weak type interpolation is to
describe those pairs of spaces G,H, for which any operator from W (a, b; p, q)
is bounded as an operator from G to H.

In what follows we always assume that a < p. Since we consider all
spaces defined on the finite interval (0, 1), we should require also that b < q
—otherwise we might take H = Mb for any G. From (2.2) and from the
analogous inequality with a, b in place of p, q, we obtain immediately that,
for any T ∈W (a, b; p, q),

(Tf)∗(t) �
∫ 1

0

f∗(s) min

{
s1/a

t1/b
,
s1/p

t1/q

}
ds

s

or, explicitly,

(Tf)∗(t) � t−1/b

∫ tm

0

s1/af∗(s)
ds

s
+ t−1/q

∫ 1

tm
s1/pf∗(s)

ds

s
,(2.3)

m =
1/b− 1/q

1/a− 1/p
.

The right-hand side of this inequality itself is a quasilinear operator S(f∗)
acting from Λa into Mb and from Λp into Mq; it was introduced in [4] and
is usually termed Calderón operator for the interpolation interval (a, b; p, q).
The inequality (2.3) means that this operator is maximal on the set of op-
erators W (a, b; p, q), i.e., it alone should be tested on any space G in the
problem of weak type interpolation. We come to the following main asser-
tion.

Theorem 2.1 (A. P. Calderón) All operators T ∈W (a, b; p, q) are boun-
ded from G to H if and only if S : G→ H.

An operator T satisfying (2.3) was said in [1] to be of joint weak type
(a, b; p, q). This definition is larger than two separate weak types (a, b) and
(p, q), because it admits the value p = ∞. We also will use this extension in
what follows.
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It is worth to note that due to (2.3) the boundedness of the opera-
tor S may be checked only on non-increasing functions (moreover, |Sf(t)| ≤
S(f∗)(t) for any measurable function f if a ≥ 1). It is also convenient to
represent S as the sum S = S1 + S2, where

(2.4) S1f(t) = t−1/b

∫ tm

0

s1/af(s)
ds

s
, S2f(t) = t−1/q

∫ 1

tm
s1/pf(s)

ds

s
.

The functions Sf(t) and S2f(t) are obviously decreasing for any nonnegative
f(s), but the function S1f(t) may be not such even for decreasing f(s). That
is why we cannot consider the first summand in the relation

(2.5) ‖Sf(t)‖Lϕ,E
= ‖ϕ(t)Sf(t)‖

�E ≤ ‖ϕ(t)S1f(t)‖
�E + ‖ϕ(t)S2f(t)‖

�E

as the norm of S1f(t) in the space Lϕ,E.

3. Weak type interpolation for “distant” spaces

Due to the inequalities a < p, b < q we will mention the point (a, b) as the
left endpoint and the point (p, q) as the right endpoint of the interpolation
problem. The relation (2.5) allows us to consider operators S1, S2 separately,
and it turns out that each of them is connected with a space “closeness” to
one of the endpoints only.

Further on we will use the notations

ϕ(t) = t1/pα(t) =
t1/a

α̃(t)
, ψ(t) = t1/qβ(t) =

t1/b

β̃(t)

and put γ(t) = β(t1/m), γ̃(t) = β̃(t1/m). We set σ = 1/a − 1/p so that

1/b − 1/q = σm. We also require that all functions α, α̃, β, β̃ be (almost)
increasing in order to provide the spaces Lϕ,E, Lψ,E being intermediate in
the couples Λa,Λp and Mb,Mq respectively1.

Recall that the Boyd indices of a space Lϕ,E are equal to the extension
indices of the parameter function ϕ(t), thus this space is “close” to the right
endpoint if πα = 0 and to the left endpoint if π

�α = 0; otherwise we say that
the space Lϕ,E is “distant” from the corresponding endpoint. In this section
we study only the cases of “distant” spaces.

Lemma 3.1 Let ρα < σ, γ(t) � α(t) and f = f∗. Then

‖ψ(t)S1f(t)‖
�E � ‖f‖Lϕ,E

.

1As shown in [1] and [9], some ultrasymmetric spaces can be studied, not being inter-
mediate, if to use their embedding into intermediate spaces of other types. Here we do
not get out of the set of ultrasymmetric spaces.
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Proof. By immediate substitution we obtain from (2.4) that

‖ψ(t)S1f(t)‖
�E =

∥∥β(t)t−σm
∫ tm

0

ϕ(s)f(s)
sσ

α(s)

ds

s

∥∥
�E

≈ ∥∥γ(t)t−σ ∫ t

0

ϕ(s)f(s)
sσ

α(s)

ds

s

∥∥
�E
,

since ‖g(tm)‖
�E ≈ ‖g(t)‖

�E for m > 0 and any g ∈ Ẽ (see [9, Lemma 1.2]).
Taking ε = (σ − ρα)/2, we obtain that the function sσ−ε/α(s) is almost
increasing, thus

‖ψ(t)S1f(t)‖
�E �

∥∥γ(t)t−σ · tσ−ε
α(t)

∫ t

0

ϕ(s)f(s)
ds

s1−ε
∥∥
�E

(3.1)

�
∥∥t−ε ∫ t

0

ϕ(s)f(s)sε−1ds
∥∥
�E

for arbitrary γ(t) � α(t).

Consider an operator

Ug(t) = t−ε
∫ t

0

g(s)sε−1ds

and show that it is bounded in any space Ẽ. In virtue of interpolation prop-
erties of such spaces, it suffices to show that U is bounded in the “extreme”
spaces L̃1 and L∞. For the first of them, we obtain (assuming g(t) ≥ 0):

‖Ug‖
�L1

=

∫ 1

0

t−ε
(∫ t

0

g(s)sε−1ds

)
dt

t
=

∫ 1

0

g(s)sε−1

(∫ 1

s

t−ε−1dt

)
ds

=
1

ε

∫ 1

0

g(s)sε−1(s−ε − 1)ds �
∫ 1

0

g(s)
ds

s
= ‖g‖

�L1
.

Analogously, for the space L∞, we obtain that

‖Ug‖L∞ = sup
t
t−ε

∫ t

0

g(s)sε−1ds ≤ ‖g‖L∞ · sup
t
t−ε

∫ t

0

sε−1ds =
1

ε
‖g‖L∞ .

Thus U is bounded in any space Ẽ and the relation (3.1) implies that

‖ψ(t)S1f(t)‖
�E � ‖U(ϕf)(t)‖

�E � ‖ϕ(t)f(t)‖
�E,

which coincides with ‖f‖Lϕ,E
. �

An analogous assertion can be proved for the left endpoint of interpola-
tion as well.
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Lemma 3.2 Let ρ
�α < σ, γ̃(t) � α̃(t) and f = f∗. Then

‖ψ(t)S2f(t)‖
�E � ‖f‖Lϕ,E

.

Proof. As in the previous proof, we have

‖ψ(t)S2f(t)‖
�E =

∥∥ tσm
β̃(t)

∫ 1

tm
ϕ(s)f(s)

α̃(s)

sσ
ds

s

∥∥
�E

=
∥∥ tσ

γ̃(t)

∫ 1

t

ϕ(s)f(s)
α̃(s)

sσ
ds

s

∥∥
�E
.

For the same ε = (σ − ρ
�α)/2, the function α̃(s)/sσ−ε is almost decreas-

ing, thus

‖ψ(t)S2f(t)‖
�E �

∥∥ tσ

γ̃(t)
· α̃(t)

tσ−ε

∫ 1

t

ϕ(s)f(s)
ds

s1+ε

∥∥
�E

(3.2)

�
∥∥tε ∫ 1

t

ϕ(s)f(s)s−ε−1ds
∥∥
�E
.

Consider a linear operator

V g(t) = tε
∫ 1

t

g(s)s−ε−1ds, g(s) ≥ 0.

Like for the operator U from the previous proof, we have

‖V g‖
�L1

=

∫ 1

0

tε
(∫ 1

t

g(s)s−ε−1ds

)
dt

t
=

∫ 1

0

g(s)s−ε−1

(∫ s

0

tε−1dt

)
ds

=
1

ε

∫ 1

0

g(s)s−ε−1 · sεds =
1

ε
‖g‖

�L1

and

‖V g‖L∞ = sup
t
tε

∫ 1

t

g(s)s−ε−1ds ≤ ‖g‖L∞ · sup
t
tε

∫ 1

t

s−ε−1ds ≤ 1

ε
‖g‖L∞.

The interpolation properties of spaces Ẽ and the inequality (3.2) give as
before that

‖ψ(t)S2f(t)‖
�E � ‖V (ϕf)(t)‖

�E � ‖f‖Lϕ,E
,

and the lemma is proved. �
Corollary 1 If

ϕ(t) = t1/pθ(t1/a−1/p), ψ(t) = t1/qθ(t1/b−1/q)

for some function θ with 0 < πθ ≤ ρθ < 1 then T : Lϕ,E → Lψ,E for any
(quasi)linear operator T ∈ W (a, b; p, q).
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Proof. Obviously, α(t) = θ(t1/a−1/p) and β(t) = θ(t1/b−1/q) whence γ(tm) =
β(t) = α(tm). Using properties of extension indices, we easily find that

ρα = ρϕ − 1

p
= ρθ

(
1

a
− 1

p

)
<

1

a
− 1

p
= σ,

thus the conditions of Lemma 3.1 are fulfilled and ‖ψ(t)S1f(t)‖
�E � ‖f‖Lϕ,E

.
Analogously,

γ̃(tm) = β̃(t) = t1/b−1/q
/
θ(t1/b − t1/q) = α̃(tm),

ρ
�α =

1

a
− πϕ =

1

a
− 1

p
− πθ

(
1

a
− 1

p

)
<

1

a
− 1

p

and all conditions of Lemma 3.2 are fulfilled too, giving that

‖ψ(t)S2f(t)‖
�E � ‖f‖Lϕ,E

.

It remains to refer to the inequality (2.5). �

Remark. For the case of finite p, q, this assertion can also be derived from
some general interpolation theorems from [11].

In every assertion of this section we may take γ(t) = α(t) (and thus
γ̃(t) = α̃(t)), which is due to the space Lϕ,E being “distant” from the
corresponding endpoint of interpolation. Denoting the ratio γ(t)/α(t) =
α̃(t)/γ̃(t) by κ(t), we obtain that it may be taken equivalent to 1 in any
“distant” case of interpolation. As we will see in the following sections, in
the “close” cases this is not so and k(t) = o(1) as t → 0. That is why we
will call κ(t) decay factor of interpolation.

At the last of section, let us show that the decay factor cannot be es-
sentially bigger than 1, i.e., it is always bounded. For the operator S1 and
arbitrary non-increasing function f , we have

‖ψ(t)S1f(t)‖
�E ≥ ∥∥γ(t)t−σ ∫ t

t/2

ϕ(s)f(s)
sσ−1

α(s)
ds

∥∥
�E

≥ ∥∥κ(t)ϕ(
t

2

)
f(t)t−σ

∫ t

t/2

sσ−1ds
∥∥
�E
≈ ‖κ(t)ϕ(t)f(t)‖

�E ,

since ϕ(t/2) ≈ ϕ(t) for any function ϕ with finite extension indices. Now,
if κ(t) is unbounded, the norm of κϕf can be infinite for some f ∈ Lϕ,E,
while the norm of ψS1f must be finite by Lemma 3.1, and we come to
contradiction. The operator S2 can be considered similarly.
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4. General spaces of Lorentz-Zygmund type

The spaces of Lorentz-Zygmund type with norm (1.1) generalize the classical
Lorentz-Zygmund spaces from [1] only in one direction: the exterior norm

in Lr is replaced by the norm in arbitrary Ẽ. Thus they do not comprise
even spaces from [6] with weights containing repeated logarithms. A more
careful consideration of proofs from [5] and [9] shows that all results can
be extended to the case, when a power of logarithm in the weight function

is replaced by an arbitrary almost increasing function A(u), u =
(
ln e

t

)−1
,

satisfying the so-called ∆2-condition: A(2u) ≈ A(u). We obtain a partial
case of ultrasymmetric spaces Lϕ,E with parameter functions

(4.1) ϕ(t) = t1/pα(t) = t1/pA

((
ln
e

t

)−1
)
,

that will be called general spaces of Lorentz-Zygmund type. Note that, for
the function α(t) itself, the ∆2-condition for the function A(u) transforms
into relation α(t2) ≈ α(t).

It is easy to check that both extension indices of function (4.1) are equal
to 1/p, thus we do not get any new result in “distant” cases. For “close”
cases, we have the following main assertion:

Theorem 4.1 The decay factor for general spaces of Lorentz-Zygmund type

Lϕ,E with ρE < 1 is equivalent to
(
ln e

t

)−1
.

Proof. At first, let us show that S : Lϕ,E→Lψ,E whenever γ(t)�
(
ln e

t

)−1
α(t).

Since all conditions of Lemma 3.1 are fulfilled, we have to consider only the
operator S2:

‖ψ(t)S2f(t)‖
�E =

∥∥β(t)

∫ 1

tm
ϕ(s)f(s)

ds

sα(s)

∥∥
�E

=
∥∥γ(t) ∫ 1

t

ϕ(s)f(s)
ds

sα(s)

∥∥
�E

�
∥∥ (

ln
e

t

)−1
∫ 1

t

ϕ(s)f(s)
ds

s

∥∥
�E
.

Recall that ‖g(t)‖
�E = ‖g(e−u)‖E for any function g, thus

‖ψ(t)S2f(t)‖
�E �

∥∥ 1

1 + u

∫ 1

e−u

ϕ(s)f(s)
ds

s

∥∥
E
≤ ∥∥1

u

∫ u

0

ϕ(e−v)f(e−v) dv
∥∥
E
.

The last term of these inequalities is ‖Pg‖E, where g(v) = ϕ(e−v)f(e−v)
and P is the usual Hardy operator, which is bounded in any r.i. space E
with ρE < 1. Thus

‖Pg‖E � ‖g‖E =
∥∥g(

ln
1

t

) ∥∥
�E

= ‖ϕ(t)f(t)‖
�E,

and the required boundedness of the Calderón operator is proved.
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Now we proceed to proving that the decay factor κ(t) = γ(t)/α(t) cannot

be made “slighter” than
(
ln e

t

)−1
, namely, for γ(t) = λ(t)

(
ln e

t

)−1
α(t), the

operator S does not act from Lϕ,E to Lψ,E if the function λ(t) is unbounded.
For simplicity, we exclude the case2 p = ∞.

It was already mentioned before that the parameter function ϕ(t) may
be always supposed to be continuous, smooth and strictly increasing; denote
by ϕ−1 its converse function. By condition p < ∞ we have ϕ(+0) = 0 and
we also may suppose that ϕ(1) = 1.

Let h(u) ∈ E be a decreasing function such that the product

λ
(
ϕ−1(e−u)

)
h(u)

does not belong to E (this function necessarily exists, since the function λ(t)
is unbounded). Without loss of generality, we may assume that the function
uh(u) is increasing, replacing, if needed, h(u) by h∗∗(u). (The last function
has the same properties as h(u), since it is greater than h(u), but belongs

to E whenever ρE < 1.) Define g(t) = h
(
ln e

t

)
, then g(t) belongs to Ẽ and

is increasing, while the function g(t) ln e
t

is decreasing. All the more, the
function g(t)/t is decreasing too.

Further on we will use the fact that the functions g(t) and g(ϕ(t)) have

equivalent norms in any space Ẽ. Indeed, the correspondence g(t) 	→ g(ϕ(t))

is a linear operator, which is an isometry on L∞ and an isomorphism on L̃1:∫ 1

0

g(t)
dt

t
=

∫ 1

0

g(ϕ(s))
ϕ′(s)
ϕ(s)

ds ≈
∫ 1

0

g(ϕ(s))
ds

s
,

because sϕ′(s) ≈ ϕ(s) due to the condition p <∞.
Let us check the action of operator S2 on the function f(t) = g(ϕ(t))/ϕ(t)

which is known now as decreasing and belonging to Lϕ,E. We obtain that

‖ψ(t)S2f(t)‖
�E ≈ ∥∥γ(t) ∫ 1

t

g(ϕ(s))
ds

sα(s)

∥∥
�E
≥ ∥∥γ(t)g(ϕ(t))

∫ 1

t

ds

sα(s)

∥∥
�E
.

But α(t) ≈ α(t2), hence∫ 1

t

ds

sα(s)
�

∫ √
t

t

ds

sα(s2)
� 1

α(t)
ln
e

t

and
‖ψ(t)S2f(t)‖

�E � ‖λ(t)g(ϕ(t)‖
�E ≈ ‖λ (

ϕ−1(e−u)
)
h(u)‖E.

This inequality contradicts to the action S : Lϕ,E → Lψ,E , since the left-hand
side here is infinite, while the function f belongs to Lϕ,E . �

2This case requires a special care even when α(t) is a power of logarithm. The corre-
sponding proof was done in [10]; it can be extended to general case by standard modifi-
cation.
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Analogous results can be obtained if one considers the general spaces of
Lorentz-Zygmund type “near” the left endpoint of interpolation. A space
Lϕ,E is of such a type if

ϕ(t) = t1/a/α̃(t) and α̃(t2) ≈ α̃(t);

the decay factor κ(t) is now equal to α̃(t)/γ̃(t).

Theorem 4.2 The decay factor for general spaces of Lorentz-Zygmund type

Lϕ,E “near” the left endpoint of interpolation is equivalent to
(
ln e

t

)−1
when-

ever πE > 0.

Proof. This theorem can be derived from Theorem 4.1 by the use of some
general methods from the paper [11] such as duality principle and special
transformations of the measure on (0, 1). We give here another (direct) proof
in the general style of this paper, but only for the sufficiency part. Namely,
we show that S : Lϕ,E → Lψ,E whenever

γ̃(t) � α̃(t) ln
e

t
.

We have

‖ψ(t)S1 f(t)‖
�E =

∥∥ 1

β̃(t)

∫ tm

0

ϕ(s)f(s)α̃(s)
ds

s

∥∥
�E

=
∥∥ 1

γ̃(t)

∫ t

0

ϕ(s)f(s)α̃(s)
ds

s

∥∥
�E

�
∥∥ ∫ t

0

ϕ(s)f(s)
(
ln
e

s

)−1 ds

s

∥∥
�E
.

After change of variable s = e−v in the integral and passing from norms in Ẽ
to norms in E, we obtain that

‖ψ(t)S1f(t)‖
�E �

∥∥ ∫ ∞

u

ϕ(e−v)f(e−v)
dv

v

∥∥
E
.

Denoting

g(v) = ϕ(e−v)f(e−v),

we see that the last term here is the norm of Qg, where Q is the second
(conjugate) operator Hardy. As known, this operator is bounded in any r.i.
space E provided the lower Boyd index πE > 0. In result

‖ψ(t)S1f(t)‖
�E � ‖g(u)‖E = ‖ϕ(t)f(t)‖

�E,

and the sufficiency part of the theorem is proved. �
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5. “Superclose” spaces

The condition ρE < 1 in Theorem 4.1 and the condition πE > 0 in Theo-
rem 4.2 are essential and, in general, cannot be omitted. This can be shown
on the following example. Let α(t) ≡ 1 and E = L1. Then Lϕ,E = Λp and
the best possible action of the Calderón operator is S : Λp → Mq. We can
obtain an action S : Lϕ,E → Lψ,E only if Mq ⊂ Lψ,E, which is equivalent
to the condition t−1/q ∈ Lψ,E, i.e., ‖ψ(t)t−1/q‖

�L1
< ∞. The last inequality

means that ∫ 1

0

β(t)
dt

t
≈

∫ 1

0

γ(t)
dt

t
<∞,

so that the relation γ(t)/α(t) ≈ (
ln e

t

)−1
is impossible.

Nevertheless, it can be shown that Theorem 4.1 remains true even with-
out the condition ρE < 1, if the space Lϕ,E keeps some “minimal distance”
from the right endpoint of interpolation. This “distance” can be described
in terms of extension indices of the function A(u) = α(e−1/u), defined at the
beginning of Section 4. In the proof of Theorem 4.1 we have used the ∆2-
condition for this function that may be regarded as the inequality ρA < ∞
for the upper extension index. Let us show that the inequality πA > 0 for
the lower extension index allows us to omit the above mentioned restriction
for the space E.

As in the proof of Theorem 4.1, we have that

‖ψ(t)S2f(t)‖L∞ �
∥∥ (

ln
e

t

)−1
∫ 1

t

ϕ(s)f(s)
ds

s

∥∥
L∞

≤ ‖ϕ(s)f(s)‖L∞,

while, for E = L1,

‖ψ(t)S2f(t)‖
�L1

=

∫ 1

0

γ(t)

(∫ 1

t

ϕ(s)f(s)
ds

sα(s)

)
dt

t

=

∫ 1

0

ϕ(s)f(s)

sα(s)

(∫ s

0

γ(t)
dt

t

)
ds .

In order to get the norm of ϕ(s)f(s) in L̃1, we should require that

(5.1)
1

α(s)

∫ s

0

γ(t)
dt

t
� 1.

Taking γ(t) = α(t)
(
ln e

t

)−1
, we obtain the necessary and sufficient condition∫ s

0

α(t)
(
ln
e

t

)−1 dt

t
� α(s) ⇐⇒

∫ u

0

A(v)
dv

v
� A(u)

which is equivalent to the inequality πA > 0.
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The left endpoint of interpolation can be considered similarly, however,
it is connected with another problem, which is absent at the right endpoint.
Recall that we may consider only such spaces Lϕ,E which are intermediate for
the Banach couple Λa,Λp. At the right endpoint it is enough that ϕ(t) � t1/p,
and we may take any increasing function α(t). At the left endpoint we
need an embedding Lϕ,E ⊂ Λa. As shown in [11], this is equivalent to the

condition α̃(t) ∈ Ẽ ′ where E ′ is a Köthe dual (associate) space for E. This
condition is always satisfied if πE > 0, so we need not speak of the embedding
problem in Theorem 4.2. But if we want to get all possible spaces E with
πE = 0, we should require that α̃(t) ∈ L̃1.

Considering the left endpoint of interpolation, we have to prove that
the function ψ(t)S1f(t) belongs to the space E = L∞, which leads to the
condition

(5.2)
1

γ̃(s)

∫ s

0

α̃(t)
dt

t
� 1

If we set α̃(t) = uÃ(u), u =
(
ln e

t

)−1
, we obtain for Ã(u) the same inequality

as previously for A(u) and the condition π
�A > 0 will provide the action

S1 : Lϕ,E → Lψ,E for any E without requiring πE > 0.

All said above means that the decay factor can be stronger than
(
ln e

l

)−1

only if πA = 0 and ρE = 1 at the right endpoint or π
�A = 0 and πE = 0 at

the left one; the corresponding spaces Lϕ,E may be regarded as “superclose”
to the endpoints of interpolation. In order to compute the decay factor
for such spaces, we will use the inequalities (5.1) and (5.2) that remain
be necessary for the boundedness of Calderón operator. This leads to the
following assertions.

Theorem 5.1 If “near” the right endpoint of interpolation

γ(t) � α(t)
(
ln
e

t

)−1

and the inequality (5.1) holds then S : Lϕ,E → Lψ,E for any r.i. space E.
The same is true if “near” the left endpoint of interpolation

γ̃(t) � α̃(t)
(
ln
e

t

)
and the inequality (5.2) holds.

Example. Let us illustrate the last theorem by an example for the right
endpoint of interpolation. Consider α(t) ≈ (

ln ln e
t

)ε
, ε < 0, for small t. In

this case A(u) ≈ (
ln e

u

)ε
, hence πA = 0 and the operator S does not act from

Lϕ,E to Lψ,E with γ(t) ≈ α(t)
(
ln e

t

)−1
if ρE = 1.
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In order to get the best possible γ(t), we use the relation (5.1) with the
equality sign. This gives

γ(t) = tα′(t) ≈
(
ln ln

e

t

)ε−1 (
ln
e

t

)−1

and the decay factor will be

κ(t) = γ(t)/α(t) ≈
(
ln ln

e

t

)−1 (
ln
e

t

)−1

,

i.e., worse than classical
(
ln e

t

)−1
by an additional factor

(
ln ln e

t

)−1
. Al-

though the decay factor seems to be the same for all ε, the equivalence
constant blows up when we take ε → 0. For ε = 0, the equality in (5.1) is
principally impossible; we only may take arbitrary γ(t) such that the ratio
γ(t)/t is integrable at zero.

The space E = L1 is not only possible example of spaces with ρE = 1.
As other examples we may take the Zygmund spaces E = L(logL)k with
arbitrary k > 0.

6. General case

The first conditions on γ and γ̃ in Theorem 5.1 prescribe for the decay factor

κ to be not slighter than
(
ln e

t

)−1
. Thus this theorem cannot be applied to

arbitrary spaces Lϕ,E “close” to the endpoints, although the second condi-
tions, inequalities (5.1) and (5.2), are necessary. Instead of the prescribed
restrictions for κ, we may take inequalities similar to (5.1) and (5.2) which
give the boundedness of the norm of ψ(t)S2f(t) in L∞ for the right endpoint

of interpolation and of the norm of ψ(t)S1f(t) in L̃1 for the left endpoint.

Theorem 6.1 Let one3 of the following sets of conditions is fulfilled:

i) ρα <
1

a
− 1

p
,

∫ s

0

γ(t)

t
dt � α(s),

∫ 1

t

ds

sα(s)
� 1

γ(t)

for the right endpoint of interpolation;

ii) ρ
�α <

1

a
− 1

p
,

∫ t

0

α̃(s)

s
ds � γ̃(t),

∫ 1

s

dt

tγ̃(t)
� 1

α̃(s)

for the left endpoint of interpolation. Then S : Lϕ,E → Lψ,E.

3We assume here that the space Lϕ,E is “close” only to one endpoint of interpolation.
However, this is unnecessary, and the theorem can be readily modified to the “double-
close” spaces.
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Proof. For the right endpoint, we have (see the proof of Theorem 4.1)

‖ψ(t)S2f(t)‖L∞ =
∥∥γ(t) ∫ 1

t

ϕ(s)f(s)
ds

sα(s)

∥∥
L∞

≤ sup
t
γ(t)

∫ 1

t

ds

sα(s)
‖ϕ(s)f(s)‖L∞.

Since the inequality (5.1) ensures analogous boundedness in L̃1, the norm of

ψ(t)S2f(t) is bounded in any Ẽ. The boundedness of ‖ψ(t)S1f(t)‖
�E follows

from Lemma 3.1.
Analogously, for the left endpoint we have (see the proof of Theorem 4.2)

‖ψ(t)S1f(t)‖
�L1

=
∥∥ 1

γ̃(t)

∫ t

0

ϕ(s)f(s)α̃(s)
ds

s

∥∥
�L1

=

∫ 1

0

ϕ(s)f(s)α̃(s)

(∫ 1

s

dt

tγ̃(t)

)
ds

s
� ‖ϕ(s)f(s)‖

�L1
.

Using the inequality (5.2) and Lemma 3.2, we get again the boundedness of

‖ψ(t)S1f(t)‖
�E and ‖ψ(t)S2f(t)‖

�E for any Ẽ as required. �

It can be checked that this theorem is applicable even when πα (or π
�α) is

positive, giving the same result as the Corollary from Section 3. It is applica-
ble also to most of the general spaces of Lorentz-Zygmund type, giving the
same results as in Section 5. More interesting is to consider the situations
when functions α (or α̃) grow slower than any power function but faster
than any power of logarithm. We will study the ultrasymmetric spaces Lϕ,E
with parameter ϕ such that

(6.1) α(t) ≈ exp
{
− lnε

e

t

}
, 0 < ε < 1.

For ε ≥ 1, this function has a power growth, but for ε < 1 it has exactly
an intermediate character as desired. Note also that this function satisfies
the Lorentz condition from [8] and plays an important role in the theory of
Orlicz spaces.

As before, we try to take the best possible γ(t) giving equality in the
condition (5.1). We obtain

(6.2) γ(t) = tα′(t) ≈ exp
{
− lnε

e

t

}(
ln
e

t

)ε−1

.

It remains to check that these γ and α satisfy the second condition from
Theorem 6.1, part i). Let us estimate the integral

I =

∫ 1

t

ds

sα(s)
=

∫ 1

t

exp
{

lnε
e

s

} ds

s
.
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The change of variable u = ln e
s

gives

I =

∫ ln e
t

1

eu
ε

du = k

∫ z

1

vk−1evdv, where z =
(
ln
e

t

)ε
, k =

1

ε
.

Integration by parts enables us to separate the principal part of this integral
(for z → ∞) and to get an estimate

I � zk−1ez =
(
ln
e

t

)1−ε
exp

{
lnε

e

t

}
≈ 1

γ(t)

as desired. Thus (6.2) gives a proper value of γ(t) for α(t), defined by (6.1).
The corresponding decay factor

κ(t) =
(
ln
e

t

)ε−1

,

i.e., it is slighter then the classical
(
ln e

t

)−1
.

The considered example leads to an interesting problem: for which func-
tions α(t) the function γ(t) = tα′(t) satisfies also the second condition from
Theorem 6.1? A necessary and sufficient condition for this is given by the
inequality ∫ s

0

dt

t
∫ 1

t
dτ

τα(τ)

� α(s).

This relation can be simplified, defining a function

δ

(
ln

1

t

)
=

∫ 1

t

dτ

τα(τ)
⇐⇒ α(t) =

1

δ′
(
ln 1

t

) ,
that gives a simple condition on the function δ:

(6.3)

∫ ∞

s

dt

δ(t)
� 1

δ′(s)
.

In particular, this condition is fulfilled when the derivative δ′(t) is such that
δ′(∞) = ∞ and the ratio δ′(t)/δ(t) is a decreasing function. Indeed, this
gives

(
δ′(t)
δ(t)

)′
=
δ′′(t)δ(t) − (δ′(t))2

δ2(t)
≤ 0 =⇒ 1

δ(t)
≥ δ′′(t)

(δ′(t))2

and after integration from s to ∞ we come to (6.3).
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The last observation allows us to construct examples of ultrasymmetric
spaces with arbitrarily slight decay factor in weak type interpolation. The
choice γ(t) = tα′(t) gives that

κ(t) =
tα′(t)
α(t)

=⇒ κ(e−u) = − (
lnα(e−u)

)′
= (ln δ′(u))′ ,

i.e.,

δ′(u) = exp
{∫

κ(e−u)du
}
.

For example, in order to get

κ(t) ≈
(
ln ln

e

t

)−1

(for small t),

one could take
α(t) ≈ exp

{
− ln

e

t

/
ln ln

e

t

}
(both equivalences can be obtained if one starts with the function δ(u) =
eu/ ln u ln u).
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