Integral Closure of Monomial Ideals on Regular Sequences

Karlheinz Kiyek and Jürgen Stückrad

Abstract

It is well known that the integral closure of a monomial ideal in a polynomial ring in a finite number of indeterminates over a field is a monomial ideal, again. Let \(R \) be a noetherian ring, and let \((x_1, \ldots, x_d)\) be a regular sequence in \(R \) which is contained in the Jacobson radical of \(R \). An ideal \(\mathfrak{a} \) of \(R \) is called a monomial ideal with respect to \((x_1, \ldots, x_d)\) if it can be generated by monomials \(x_1^{i_1} \cdots x_d^{i_d} \). If \(x_1 R + \cdots + x_d R \) is a radical ideal of \(R \), then we show that the integral closure of a monomial ideal of \(R \) is monomial, again. This result holds, in particular, for a regular local ring if \((x_1, \ldots, x_d)\) is a regular system of parameters of \(R \).

1. Introduction

Let \(A \) be a polynomial ring over a field in a finite number of indeterminates. It is well known that the integral closure \(\overline{\mathfrak{a}} \) of a monomial ideal \(\mathfrak{a} \) of \(A \) is a monomial ideal, again: \(\overline{\mathfrak{a}} \) is generated by all monomials \(m \) with \(m' \in \mathfrak{a}^l \) for some \(l \in \mathbb{N} \) [cf. [12], section 6.6, Example 6.6.1]. While studying a particular class of ideals in two-dimensional regular local rings [cf. the example at the end of this paper], the following question arose naturally: Let \(R \) be a noetherian ring, and let \((x_1, \ldots, x_d)\) be a regular sequence in \(R \) such that \(q := x_1 R + \cdots + x_d R \) is contained in the Jacobson radical of \(R \). Let \(\mathfrak{a} \) be an ideal of \(R \) that is generated by monomials in \(x_1, \ldots, x_d \); such ideals shall be called monomial ideals. Is the integral closure \(\overline{\mathfrak{a}} \) of \(\mathfrak{a} \) a monomial ideal, again?

In this paper the question is answered in the positive under the assumption that \(R/q \) is a reduced ring.

2000 Mathematics Subject Classification: Primary 13B22; Secondary 13B25.

Keywords: Regular sequences, monomial ideals, integral closure of monomial ideals.
In section 2 we collect some useful results on monomial ideals; in particular, we show that the usual ideal-theoretic operations, applied to monomial ideals, lead again to monomial ideals. It is also shown that for a monomial ideal \(\mathfrak{a} \) the ideal \(\text{gr}(\mathfrak{a}) \) in the associated graded ring \(\text{gr}_q(R) \) which is a polynomial ring over \(R/q \) is a monomial ideal.

In section 3 we introduce the notion of a monomial representation of an element of \(R \) and we show that, if \(R \) is complete, every element of \(R \) admits a monomial representation. In section 4 we associate with a monomial ideal \(\mathfrak{a} \) the ideal \(\overline{\mathfrak{a}} \) which is generated by all monomials \(m \) in \(R \) with \(m^l \in \mathfrak{a}^l \) for some \(l \in \mathbb{N} \). In section 5 we study monomial ideals in a polynomial ring over a reduced ring, and we show that for a monomial ideal \(\mathfrak{a} \) we have \(\overline{\mathfrak{a}} = \overline{\mathfrak{a}} \) where \(\overline{\mathfrak{a}} \) denotes the integral closure of \(\mathfrak{a} \). Let \(\mathfrak{a} \) be a monomial ideal in \(R \). Using the results of section 5 we show in section 6 that \(\overline{\mathfrak{a}} = \overline{\mathfrak{a}} \) if \(R \) is complete and \(q \) is a prime ideal. As a last step we show that this equality holds also if \(R \) is not necessarily complete, and if \(R/q \) is a reduced ring.

2. Monomial Ideals

2.1. Basic Definitions

Notation 1 Let \(R \) be a ring. A sequence \(x := (x_1, \ldots, x_d) \) in \(R \) is called a weak regular sequence in \(R \) if

(a) \(x_i \) is regular for \(R/(x_1, \ldots, x_{i-1}) \) [i.e., the image of \(x_i \) in \(R/(x_1, \ldots, x_{i-1}) \) is a non-zero divisor] for every \(i \in \{1, \ldots, d\} \),

and it is called a regular sequence in \(R \) if, in addition,

(b) \(R \neq xR \).

In the sequel, we consider regular sequences \(x \) in \(R \) with the following additional property:

(c) every permutation \((x_{\pi(1)}, \ldots, x_{\pi(d)}) \) of \(x \) is a regular sequence in \(R \).

Then every subsequence of \(x \) satisfies (a)-(c).

If \(R \) is noetherian, and if a regular sequence \(x \) in \(R \) is contained in the Jacobson radical [i.e., in the intersection of all maximal ideals] of \(R \), then (a) implies (c) [cf. [2], Ch. X, § 9, no. 7, Th. 1 and Cor. 1], and for the ideal \(q \) generated by \(x_1, \ldots, x_d \) we have \(\bigcap q^p = (0) \) [cf. [3], Ch. III, § 3, no. 3, Prop. 6].

If \(\varphi: R \to S \) is a flat homomorphism of rings, and if \(\varphi(x)S \neq S \), then the sequence \(\varphi(x) \) in \(S \) satisfies (a)-(c) [cf. [4], Ch. I, Prop. 1.1.1].
(1) For every d-tuple $i := (i_1, \ldots, i_d) \in \mathbb{N}_0^d$ we define $\deg(i) := i_1 + \cdots + i_d$, the degree of i, and we write

$$x^i := x_1^{i_1} \cdots x_d^{i_d}.$$

Since x is a regular sequence, we have, for $i, j \in \mathbb{N}_0^d$, $x^i = x^j$ iff $i = j$.

(2) An element $m \in R$ is called a monomial with respect to x if there exists $i \in \mathbb{N}_0^d$ with $m = x^i$; i is determined uniquely by m. We call $\deg(m) := \deg(i)$ the degree of m.

(3) Let $x^i = x_1^{i_1} \cdots x_d^{i_d}$ be a monomial with respect to x. The set

$$\text{Supp}(x^i) := \{j \mid j \in \{1, \ldots, d\}, i_j \neq 0\}$$

is called the support of x^i.

(4) Let $M(x)$ be the set of all monomials of R with respect to x. Clearly $M(x)$ is a commutative monoid with cancellation law, and $\deg : M(x) \rightarrow \mathbb{N}_0$ is a surjective homomorphism of monoids.

(5) An ideal a of R is called monomial with respect to x if it is generated by elements in $M(x)$. In particular, the zero ideal and R itself are monomial ideals.

Remark 1 Let $i = (i_1, \ldots, i_d), j = (j_1, \ldots, j_d) \in \mathbb{N}_0^d$.

(1) If $x^i \in x^j R$, then we have $i_1 \geq j_1, \ldots, i_d \geq j_d$ and $x^i = x^j x^{i-j}$. In this case we say that x^j divides x^i, and we write $x^j \mid x^i$.

(2) We define

$$k_\tau := \min \{i_\tau, j_\tau\}, \quad l_\tau := \max \{i_\tau, j_\tau\} \quad \text{for} \quad \tau \in \{1, \ldots, d\}$$

and

$$k := (k_1, \ldots, k_d), \quad l := (l_1, \ldots, l_d);$$

then

$$\gcd(x^i, x^j) := x^k, \quad \text{lcm}(x^i, x^j) := x^l$$

is the greatest common divisor resp. the least common multiple of x^i and x^j. In particular, for monomials m, n we have $mR : nR = (\text{lcm}(m, n)/n)R = (m/\gcd(m, n))R$.

Notation 2 For the rest of this paper let \(R \) be a noetherian ring, and let \(x = (x_1, \ldots, x_d) \) be a fixed sequence in \(R \) which satisfies (a)-(c) above; all monomials of \(R \) are monomials with respect to \(x \), and all monomial ideals of \(R \) are monomial ideals with respect to \(x \). The set of all monomials of \(R \) shall be denoted by \(M \).

Definition 1 Let \(U \) be a subset of \(\{1, \ldots, d\} \); we define
\[
q_U := \sum_{i \in U} x_i R, \quad \mathcal{P}_U := \text{Ass}(R/q_U).
\]
If \(U = \{1, \ldots, d\} \), then we write
\[
q := q_U = \sum_{i=1}^{d} x_i R, \quad \mathcal{P} := \text{Ass}(R/q).
\]

Remark 2 (1) Note that \(\text{Ass}(R) = \mathcal{P}_\emptyset \).

(2) Let \(U \subset \{1, \ldots, d\}, \ i \in \{1, \ldots, d\} \setminus U \). Then \(x_i \) is regular for \(R/q_U \), hence, in particular, \(x_i / \in p \) for every \(p \in \mathcal{P}_U \).

Lemma 1 Let \(a \) be a monomial ideal of \(R \), and let \(\{m_1, \ldots, m_r\} \) be a system of generators of \(a \) consisting of monomials. Then we have
\[
\text{Ass}(R/a) \subset \bigcup_{U \subset \text{Supp}(m_1) \cup \cdots \cup \text{Supp}(m_r)} \mathcal{P}_U.
\]

Proof: There is nothing to prove if \(a = (0) \). We consider the case that \(a \neq (0) \). We define \(V := \text{Supp}(m_1) \cup \cdots \cup \text{Supp}(m_r) \). We prove the assertion by induction on \(s := \text{deg}(m_1) + \cdots + \text{deg}(m_r) - r \). If \(s = 0 \), then we have \(a = q_V \); in this case the assertion holds. Let \(s > 0 \), and assume that the assertion holds for all monomial ideals of \(R \) which admit a system of monomial generators \(m'_1, \ldots, m'_r \) with \(\text{deg}(m'_1) + \cdots + \text{deg}(m'_r) - r' < s \). Now let \(a \) be a monomial ideal of \(R \) having a system of monomial generators \(m_1, \ldots, m_r \) with \(\text{deg}(m_1) + \cdots + \text{deg}(m_r) - r = s \). Then there exists \(j \in \{1, \ldots, r\} \) with \(\text{deg}(m_j) \geq 2 \); by relabelling, we may assume that \(j = 1 \).

Let \(i \in \text{Supp}(m_1) \); let us label the monomials \(m_1, \ldots, m_r \) in such a way that \(i \in \text{Supp}(m_j) \) for \(j \in \{1, \ldots, t\} \) and \(i \notin \text{Supp}(m_j) \) for \(j \in \{t+1, \ldots, r\} \); here we have \(t \in \{1, \ldots, r\} \). For \(j \in \{1, \ldots, t\} \) we have \(m_j = x_i m'_j \) where \(m'_1, \ldots, m'_t \) are monomials. We put
\[
a_1 := m'_1 R + \cdots + m'_t R, \quad a_2 = m_{t+1} R + \cdots + m_r R, \quad b := a_1 + a_2,
\]
\[
V_1 := \bigcup_{j=1}^{t} \text{Supp}(m'_j), \quad V_2 := \bigcup_{j=t+1}^{r} \text{Supp}(m_j). \]
If $a_2 = (0)$, then we have $a : x_i = b$. This is also true if $a_2 \neq (0)$. In fact, by our induction assumption we get $\text{Ass}(R/a_2) \subset \bigcup_{U \in V_2} \mathcal{P}_U$. Using $i \notin V_2$, we see that $V_2 \subset \{1, \ldots, d\} \setminus \{i\}$. From Remark 2 we get the following: If $U \subset V_2$, then $x_i \notin p$ for every prime ideal $p \in \mathcal{P}_U$, hence $x_i \notin p$ for every $p \in \text{Ass}(R/a_2)$, hence x_i is regular for R/a_2. This implies that $a : x_i = a_1 + a_2 = b$ since $a = x_i a_1 + a_2$.

Therefore the sequence

$$0 \longrightarrow \frac{R}{b} \xrightarrow{x_i} \frac{R}{a} \longrightarrow \frac{R}{(a + x_i R)} \longrightarrow 0$$

is exact; note that

$$\text{Ass}(R/a) \subset \text{Ass}(R/b) \cup \text{Ass}(R/(a + x_i R)). \quad (\ast)$$

We have $a + x_i R = x_i R + m_{i+1} R + \cdots + m_r R$. Applying our induction assumption to b and to $a + x_i R$ we obtain

$$\text{Ass}(R/b) \subset \bigcup_{U \subset V_1 \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U,$$

$$\text{Ass}(R/(a + x_i R)) \subset \bigcup_{U \subset \{i\} \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U.$$

Therefore we get, using (\ast), that $\text{Ass}(R/a) \subset \bigcup_{U \subset V} \mathcal{P}_U$. \hfill \blacksquare

Corollary 1 If $i \notin \bigcup_{j=1}^t \text{Supp}(m_j)$, then we have $a : x_i = a$.

Proof: The element x_i is not contained in any of the prime ideals in $\text{Ass}(R/a)$ [cf. Lemma 1]. \hfill \blacksquare

2.2. Operations on Monomial Ideals

Lemma 2 Let $a = m_1 R + \cdots + m_r R$ with $m_1, \ldots, m_r \in M$ be a monomial ideal in R. For every $m \in M$ the ideal $a : m$ is monomial, again. More precisely, we have

$$a : m = \sum_{j=1}^r \frac{\text{lcm}(m_j, m)}{m} R.$$

Proof: We may assume that $a \neq (0)$. We prove the assertion by induction on $\text{deg}(m)$. The case $\text{deg}(m) = 0$, i.e., $m = 1$, is clear. Let $\text{deg}(m) > 0$; then there exists $i \in \{1, \ldots, d\}$ with $x_i \mid m$, and we write $m = x_i m'$ with $m' \in M$. As in the proof of Lemma 1 we label the monomials m_1, \ldots, m_r in such a way that $x_i \mid m_j$ for $j \in \{1, \ldots, t\}$, $x_i \nmid m_j$ for $j \in \{t + 1, \ldots, r\}$
with \(t \in \{0, \ldots, r\} \), and we write, for \(j \in \{1, \ldots, t\} \), \(m_j = x_i m_j' \) with monomials \(m_1', \ldots, m_j' \). Then we have, as above,

\[
a : m = (a : x_i) : m' = \left(\sum_{j=1}^{t} m_j' R + \sum_{j=t+1}^{r} m_j R \right) : m' = \sum_{j=1}^{t} \frac{lcm(m_j', m')}{m'} R + \sum_{j=t+1}^{r} \frac{lcm(m_j, m')}{m'} R = \sum_{j=1}^{r} \frac{lcm(m_j, m)}{m} R.
\]

\[\Box\]

Corollary 2 Let \(a = m_1 R + \cdots + m_r R \) with \(m_1, \ldots, m_r \in M \) be a monomial ideal in \(R \). Let \(m \in M \); then we have

\[
a \cap mR = \sum_{j=1}^{r} \text{lcm}(m_j, m) R.
\]

Proof: We have \(a \cap mR = (a : m)m \).

Lemma 3 Let \(a = m_1 R + \cdots + m_r R \), \(b = n_1 R + \cdots + n_s R \) with \(m_1, \ldots, m_r, n_1, \ldots, n_s \in M \) be monomial ideals in \(R \). Then \(a \cap b \) is a monomial ideal; more precisely, we have

\[
a \cap b = \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R.
\]

\((*)\)

Proof: It is clear that the right-hand side of \((*)\) is contained in the left-hand side. We prove that the left-hand side of \((*)\) is contained in the right hand side by induction on \(s \). For \(s = 1 \) the assertion is clear, and for \(s = 1 \) the assertion follows from Cor. 2. Now we assume that \(s \geq 2 \), and we define \(b' = n_1 R + \cdots + n_{s-1} R \). Let \(z \in a \cap b \). We write \(z = a_1 m_1 + \cdots + a_r m_r = b_1 n_1 + \cdots + b_s n_s \) with \(a_1, \ldots, b_s \in R \). Since \(b_s n_s = a_1 m_1 + \cdots + a_r m_r - (b_1 n_1 + \cdots + b_{s-1} n_{s-1}) \), we have \(b_s n_s \in (a + b') \cap n_s R \), hence we can write [cf. Cor. 2]

\[
b_s n_s = \sum_{i=1}^{r} c_i \text{lcm}(m_i, n_s) + \sum_{j=1}^{s-1} d_j \text{lcm}(n_j, n_s) \quad \text{with} \quad c_1, \ldots, d_{s-1} \in R.
\]

We define

\[
w := \sum_{j=1}^{s-1} (b_j n_j + d_j \text{lcm}(n_j, n_s)).
\]
Then we have \(w \in b' \), and since \(w = z - \left(c_1 \text{lcm}(m_1, n_s) + \cdots + c_r \text{lcm}(m_r, n_s) \right) \in a \), we have

\[
 w \in a \cap b' = \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R
\]

by our induction assumption. Then we get

\[
 z = w + \sum_{i=1}^{r} c_i \text{lcm}(m_i, n_s) \in \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R,
\]

and therefore the left-hand side of \((*)\) lies in the right hand side. \(\blacksquare\)

Collecting our results, we have

Proposition 1 Let \(a, b \) be monomial ideals in \(R \). Then \(a \cap b, a \cdot b, a : b \) are monomial ideals, again. More precisely, if \(a = m_1 R + \cdots + m_r R \) and \(b = n_1 R + \cdots + n_s R \) with monomials \(m_1, \ldots, n_s \in M \), then we have

\[
 a \cap b = \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R, \tag{2.1}
\]

\[
 a : b = \bigcap_{j=1}^{s} \sum_{i=1}^{r} \frac{\text{lcm}(m_i, n_j)}{n_j} R. \tag{2.2}
\]

If \(c \) is another monomial ideal, then we have

\[
 (a + b) \cap c = (a \cap c) + (b \cap c). \tag{2.3}
\]

Proof: (2.3) follows from (2.1), and (2.2) is a consequence of Lemma 2 since

\[
 a : b = \bigcap_{j=1}^{s} (a : n_j). \tag*{\blacksquare}
\]

Corollary 3 Let \(a = m_1 R + \cdots + m_r R \) with \(m_1, \ldots, m_r \in M \) be a monomial ideal in \(R \), and let \(m \in M \). Then we have \(m \in a \) iff \(m_i \mid m \) for some \(i \in \{1, \ldots, r\} \).

Proof: We have \(m \in a \) iff

\[
 1 \in a : m = (\text{lcm}(m_1, m)/m) R + \cdots + (\text{lcm}(m_r, m)/m) R,
\]

hence iff \(\text{lcm}(m_i, m)/m = 1 \) for some \(i \in \{1, \ldots, r\} \), and this is the case iff \(m_i \mid m \) for some \(i \in \{1, \ldots, r\} \). \(\blacksquare\)
Corollary 4 Let \(\mathfrak{a} \) be a monomial ideal in \(R \), and let \(m_1, \ldots, m_r, n_1, \ldots, n_s \) be monomials with
\[
\mathfrak{a} = \sum_{i=1}^{r} m_i R = \sum_{j=1}^{s} n_j R.
\]

(1) We assume that \(m_i \nmid m_k \) for all \(i, k \in \{1, \ldots, r\} \) with \(i \neq k \). Then we have \(\{m_1, \ldots, m_r\} \subset \{n_1, \ldots, n_s\} \).
(2) We assume, furthermore, that \(n_j \nmid n_l \) for all \(j, l \in \{1, \ldots, s\} \) with \(j \neq l \). Then we have \(r = s \) and \(\{m_1, \ldots, m_r\} = \{n_1, \ldots, n_s\} \).

Proof: (1) Note that \(\#\{m_1, \ldots, m_r\} = r \). Let \(i \in \{1, \ldots, r\} \). Then, by Cor. 3, there exist \(j \in \{1, \ldots, s\} \) and \(k \in \{1, \ldots, r\} \) with \(m_i \mid n_j \) and \(n_j \mid m_k \), hence we have \(m_i \mid m_k \). Therefore we have \(i = k \) and \(m_i = n_j \in \{n_1, \ldots, n_s\} \). This implies that \(\{m_1, \ldots, m_r\} \subset \{n_1, \ldots, n_s\} \).
(2) This follows immediately from (1).

Remark 3 The result of Cor. 4 implies the following: Every monomial ideal of \(R \) admits a uniquely determined minimal set of monomial generators where “minimal” can be understood as “minimal with respect to number” or as “irredundant”. We denote this number by \(\nu(\mathfrak{a}) \). But we can even say more:

Corollary 5 Let \(\mathfrak{a} \) be a monomial ideal in \(R \), let \(r := \nu(\mathfrak{a}) \), and let \(\{m_1, \ldots, m_r\} \subset M \) be a minimal set of monomial generators of \(\mathfrak{a} \). Then we have
\[
\mu_{R_p}(\mathfrak{a}R_p) = r \quad \text{for all } p \in V((x_1, \ldots, x_r)).
\]
Moreover, every set of generators which generates \(\mathfrak{a} \) contains at least \(r \) elements.

(In a local ring \(A \) we denote by \(\mu_A(M) \) the minimal number of generators of a finitely generated \(A \)-module \(M \).)

Proof: The second statement follows from the first one, and the first statement is obtained from Cor. 4 by replacing \(R \) by \(R_p \).

2.3. The Associated Graded Ring

Remark 4 The associated graded ring
\[
\text{gr}(R) := \text{gr}_q(R) = \bigoplus_{p \geq 0} q^p/q^{p+1} = R/q[\overline{x}_1, \ldots, \overline{x}_d]
\]
is a polynomial ring over \(R/q \) in \(\overline{x}_1 := x_1 \mod q^2, \ldots, \overline{x}_d := x_d \mod q^2 \) [cf. [2], Ch. X, § 9, no. 7, Th. 1]. Notice that the sequence \((\overline{x}_1, \ldots, \overline{x}_d) \) is a sequence in \(\text{gr}(R) \) which satisfies (a)-(c) above.
(1) Let $\overline{M} = \{ \bar{x}^i : \bar{x}^i = \bar{x}_1^i \cdots \bar{x}_d^i | i \in \mathbb{N}_0^d \}$ be the set of monomials of the polynomial ring $R/\mathfrak{q}[\bar{x}_1, \ldots, \bar{x}_d]$; the map $\bar{x}^i \mapsto \bar{x}^i : M \to \overline{M}$ is an isomorphism of monoids. An ideal \mathfrak{A} of $\text{gr}(R)$ is called a monomial ideal if it can be generated by elements in \overline{M}; such an ideal is a homogeneous ideal of the graded ring $\text{gr}(R)$. Every non-zero element $z \in \text{gr}(R)$ has a unique representation $z = \bar{e}_1 \bar{m}_1 + \cdots + \bar{e}_r \bar{m}_r$ with pairwise distinct monomials $\bar{m}_1, \ldots, \bar{m}_r \in \overline{M}$ and non-zero elements $\bar{e}_1, \ldots, \bar{e}_r \in R/\mathfrak{q}$; we call this the monomial representation of z.

(2) For every $z \in R$ with $z \notin \bigcap \mathfrak{q}^p$ we define the order $\text{ord}(z)$ to be the largest integer p with $z \in \mathfrak{q}^p$. Let $p := \text{ord}(z)$; then we define the initial form of z as $\text{In}(z) := z \mod \mathfrak{q}^{p+1} \in \text{gr}(R)_p$, note that $\text{In}(z)$ is a homogeneous non-zero polynomial of degree p. In particular, for a monomial $m \in M$ $\text{ord}(m)$ is defined, and we have $\text{ord}(m) = \deg(m)$ and $\text{In}(m) = \bar{m}$.

(3) For every ideal \mathfrak{a} of R we define

$$\text{gr}(\mathfrak{a}) := \bigoplus_{p \geq 0} (\mathfrak{a} \cap \mathfrak{q}^p + \mathfrak{q}^{p+1})/\mathfrak{q}^{p+1} \subset \text{gr}(R);$$

$\text{gr}(\mathfrak{a})$ is a homogeneous ideal in $\text{gr}(R)$. If \mathfrak{b} is another ideal in R, then we have $\text{gr}(\mathfrak{a})\text{gr}(\mathfrak{b}) \subset \text{gr}(\mathfrak{ab})$.

(4) Let $\mathfrak{a} = m_1 R + \cdots + m_r R$ with $m_1, \ldots, m_r \in M$ be a monomial ideal in R. Then we have $\text{gr}(\mathfrak{a}) = \bar{m}_1 \text{gr}(R) + \cdots + \bar{m}_r \text{gr}(R)$, hence, in particular, $\text{gr}(\mathfrak{a})$ is a monomial ideal in $\text{gr}(R)$ [note that, for $p \in \mathbb{N}_0$, $\mathfrak{a} \cap \mathfrak{q}^p$ is generated by the elements $m_{ij} := \text{lcm}(m_i, n_j)$ where $n_j \in M$ is of degree p by Lemma 3, and that $m_{ij} \in \mathfrak{q}^{p+1}$ if $\deg(m_{ij}) > p$]. In particular, for monomial ideals $\mathfrak{a}, \mathfrak{b}$ in R we have $\text{gr}(\mathfrak{ab}) = \text{gr}(\mathfrak{a})\text{gr}(\mathfrak{b})$ and $\text{gr}(\mathfrak{a}^i) = (\text{gr}(\mathfrak{a}))^i$ for every $i \in \mathbb{N}$.

Remark 5 Now we assume that \mathfrak{q} is a prime ideal of R which is contained in the Jacobson radical of R and we equip R with the \mathfrak{q}-adic topology. Then $\bigcap \mathfrak{q}^p = (0)$ [cf. [3], Ch. III, § 3, no. 3, Prop. 6], $\text{gr}(R)$ is a domain, hence R is a domain, also, and the order function is a valuation of the quotient field of R [cf. [13], vol. II, Ch. VIII, § 1, Th. 1]. Moreover, all the ideals \mathfrak{q}_U for every $U \subset \{1, \ldots, d\}$ are prime ideals as is easily seen by considering the sequence $(x_i \mod \mathfrak{q}_U)_{i \in \{1, \ldots, d\}\setminus U}$ in R/\mathfrak{q}_U. Therefore all the associated ideals of a monomial ideal \mathfrak{a} of R are of the form \mathfrak{q}_U for some $U \subset \{1, \ldots, d\}$ [cf. Lemma 1], and therefore, by considering a primary representation of \mathfrak{a}, we get: if $em \in \mathfrak{a}$ with $e \in R \setminus \mathfrak{q}$ and $m \in M$, then we have $m \in \mathfrak{a}$.

Let \hat{R} be the \mathfrak{q}-adic completion of R. Then \bar{x} is a sequence in \hat{R} which satisfies (a)-(c), $\hat{\mathfrak{q}} = \mathfrak{q} \hat{R}$ is a prime ideal in \hat{R}, and \hat{R} is a faithfully flat R-module [cf. [3], Ch. III, § 3, no. 3, Prop. 6].
3. Monomial Representations

Assumption 1 In this section we assume that q is a prime ideal of R which is contained in the Jacobson radical of R.

Notation 3 Let $w \in R$ be different from 0. Then $\mathrm{In}(w) \in \mathrm{gr}(R)$ is a homogeneous polynomial of degree $\mathrm{ord}(w)$; therefore there exist uniquely determined and pairwise distinct monomials $m_1, \ldots, m_r \in M$ having degree $\mathrm{ord}(w)$ and elements $e_1, \ldots, e_r \in R \setminus q$ such that $\mathrm{In}(w) = \mathrm{In}(e_1m_1 + \cdots + e_rm_r)$; we define the set of terms of w by
\[T_m(w) := \{m_1, \ldots, m_r\}. \]
For $w = 0$ we put $\mathrm{In}(w) = 0$ and $T_m(w) = \emptyset$.

Definition 2 We say that $w \in R$, $w \neq 0$, admits a monomial representation (with respect to x), if there exist monomials $m_1, \ldots, m_r \in M$ and elements $e_1, \ldots, e_r \in R \setminus q$ such that
\[w = e_1m_1 + \cdots + e_rm_r \quad \text{and} \quad \nu(m_1R + \cdots + m_rR) = r. \quad (*) \]
In (*) we have $m_i \nmid m_j$ for all $i, j \in \{1, \ldots, r\}$ with $i \neq j$; in particular, the monomials m_1, \ldots, m_r are pairwise distinct. For every nonempty subset $U \subset \{1, \ldots, r\}$ clearly $\sum_{i \in U} e_i m_i =: z$ is a monomial representation of z.

Lemma 4 Let $w \in R \setminus \{0\}$. If w admits a monomial representation $w = e_1m_1 + \cdots + e_rm_r$, then we have
\[\mathrm{In}(w) = \sum_{\deg(m_i) = \mathrm{ord}(w)}^{r} \mathrm{In}(e_i)\mathrm{In}(m_i), \]
\[\mathrm{ord}(w) = \min\{\deg(m_i) \mid i \in \{1, \ldots, r\}\}, \]
\[T_m(w) = \{m_i \mid i \in \{1, \ldots, r\}, \deg(m_i) = \mathrm{ord}(w)\}. \]

Proof: Let $s := \min\{\deg(m_i) \mid i \in \{1, \ldots, r\}\}$. Then
\[\mathrm{In}\left(\sum_{\deg(m_i) = s}^{r} e_im_i \right) = \sum_{\deg(m_i) = s}^{r} \mathrm{In}(e_i)\mathrm{In}(m_i), \]
and since $\mathrm{In}(e_i) \neq 0$ for $i \in \{1, \ldots, r\}$, we obtain
\[\mathrm{ord}\left(\sum_{\deg(m_i) = s}^{r} e_im_i \right) = s, \]
hence ord(w) = s. Clearly we have
\[\text{In}\left(\sum_{i=1}^{r} e_i m_i\right) = \text{In}\left(\sum_{i=1}^{r} e_i m_i\text{ }_{\text{deg}(m_i)=s}\right) = \text{In}(w). \]

\[\blacksquare\]

Proposition 2 Let \(R \) be complete with respect to the \(q \)-adic topology. Every \(w \in R, w \neq 0 \), admits a monomial representation.

Proof: (1) Let \(w \in R, w \neq 0 \). Let \(\text{Tm}(w) = \{m_1, \ldots, m_r\} \). There exist elements \(e_1, \ldots, e_r \in R \setminus q \) such that
\[\text{In}(w) = \text{In}(e_1 m_1 + \cdots + e_r m_r); \]

let us put \(\iota(w) := e_1 m_1 + \cdots + e_r m_r \). Then we have \(\text{ord}(w) = \text{ord}(\iota(w)) \) and \(\text{ord}(w - \iota(w)) > \text{ord}(w) \). If \(w = 0 \), then we put \(\iota(w) = 0 \).

(2) Let \(w \in R, w \neq 0 \). We define a sequence \((w_p)_{p \in \mathbb{N}_0} \) in \(R \): Let \(w_0 := w \); if \(p \in \mathbb{N}_0 \), and if \(w_p \) is defined, then we define \(w_{p+1} := w_p - \iota(w_p) \).

Note the following: If \(w_p = 0 \) for one \(p \in \mathbb{N}_0 \), then \(w_q = 0 \) for every \(q \in \mathbb{N}_0 \) with \(q \geq p \), and if \(w_p \neq 0 \) for one \(p \in \mathbb{N}_0 \), then the elements \(w_0, \ldots, w_{p-1} \) are different from 0, and we have
\[\text{ord}(w) = \text{ord}(w_0) < \text{ord}(w_1) < \cdots < \text{ord}(w_p); \]
in particular, we have \(\text{ord}(w_p) \geq p \).

For every \(p \in \mathbb{N}_0 \) let \(a_p \) be that monomial ideal of \(R \) which is generated by the monomials in \(\text{Tm}(w_0), \ldots, \text{Tm}(w_p) \). Then \((a_p)_{p \in \mathbb{N}_0} \) is an increasing sequence of ideals in \(R \), and therefore it becomes stationary, i.e., there exists \(q \in \mathbb{N}_0 \) with \(a_q = a_{q+1} = \cdots = a \). We can write \(a = m_1 R + \cdots + m_r R \) where \(m_1, \ldots, m_r \in M \) and \(r := \nu(a) \).

(3) We have
\[w = w_{p+1} + \sum_{j=0}^{p} \iota(w_j) \text{ for every } p \in \mathbb{N}_0; \]

note that \(w_{p+1} = 0 \) or \(\text{ord}(w_{p+1}) \geq p + 1 \), hence \(w_{p+1} \in q^{p+1} \).

Let \(j \in \mathbb{N}_0 \) with \(w_j \neq 0 \). Then we can write \(\iota(w_j) \) as a sum
\[\iota(w_j) = \sum_{i=1}^{r} a_{ji} m_i \]
where the elements \(a_{ji} \in R \) for \(i \in \{1, \ldots, r\} \) satisfy the following condition: If \(\text{ord}(w_{ji}) < \text{deg}(m_i) \), then \(a_{ji} = 0 \), and if \(\text{ord}(w_{ji}) \geq \text{deg}(m_i) \) and \(a_{ji} \neq 0 \), then \(a_{ji} \) is a linear combination of monomials of degree \(\text{ord}(w_{ji}) - \text{deg}(m_i) \) with coefficients which lie in \(R \setminus q \) [note that the monomials in \(T_m(w_{ji}) \) lie in \(a \)]. For \(p \in \mathbb{N}_0 \) we have

\[
\sum_{j=0}^{p} t(w_j) = \sum_{i=1}^{r} e_{pi} m_i
\]

with

\[
e_{pi} := \sum_{j=0}^{p} a_{ji} \quad \text{for every } i \in \{1, \ldots, r\}.
\]

Let \(i \in \{1, \ldots, r\} \). There exists a unique \(j_i \in \{0, \ldots, q\} \) with \(\text{ord}(w_{j_i}) = \text{deg}(m_i) \) [cf. (2) and note that \(\{m_1, \ldots, m_r\} \) is a minimal system of generators of \(a \)].

We consider any integer \(p \geq q \). Then we have \(a_{ji} = 0 \) for \(j \in \{0, \ldots, j_i - 1\} \), \(a_{j_i} \in R \setminus q \), and \(a_{ji} \in q^{j-\text{deg}(m_i)} \) for \(j \in \{j_i + 1, \ldots, p\} \). In particular, \(e_{pi} \in R \setminus q \). Furthermore, we have

\[
e_{p+1,i} - e_{pi} = a_{p+1,i} \in q^{p+1-\text{deg}(m_i)};
\]

therefore, the sequence \((e_{pi})_{p \geq 0} \) is a Cauchy sequence in \(R \setminus q \). Since \(q \) is an open ideal in the \(q \)-adic topology, we have

\[
e_i := \lim_{p \to \infty} e_{pi} \in R \setminus q.
\]

From

\[
\sum_{i=1}^{r} e_i m_i = \sum_{i=1}^{r} \left(\lim_{p \to \infty} e_{pi} \right) m_i = \lim_{p \to \infty} \left(\sum_{i=1}^{r} e_{pi} m_i \right)
\]

\[
= \lim_{p \to \infty} \left(\sum_{j=0}^{p} t(w_j) \right) = \lim_{p \to \infty} (w - w_{p+1})
\]

and \(w_{p+1} \in q^{p+1} \) for every \(p \in \mathbb{N}_0 \) we obtain

\[
w = \sum_{i=1}^{r} e_i m_i.
\]
Proposition 3 Let $a \neq (0)$ be an ideal in R. The following statements are equivalent:

1. a is a monomial ideal.
2. For every $w \in a$, $w \neq 0$, we have $Tm(w) \subseteq a$.

Now we assume, in addition, that R is complete in the q-adic topology. Then the following statements are equivalent with (1) and (2):

3. Every $w \in a$, $w \neq 0$, admits a monomial representation $w = e_1m_1 + \cdots + e_rm_r$ with $m_1, \ldots, m_r \in a$.
4. Let $w \in a$, $w \neq 0$, and let $w = e_1m_1 + \cdots + e_rm_r$ be a monomial representation of w, then $m_1, \ldots, m_r \in a$.

Proof: (1) \Rightarrow (2): Let $w \in a$, $w \neq 0$, and let $Tm(w) = \{m_1, \ldots, m_r\}$; let $s := \text{ord}(w)$, hence we have $\deg(m_1) = \cdots = \deg(m_r) = s$ [cf. Lemma 4].

There exist elements $e_1, \ldots, e_r \in R \setminus q$ with $\text{ord}(w - (e_1m_1 + \cdots + e_rm_r)) > s$. Let $i \in \{1, \ldots, r\}$, and define

$$b_i := a + m_1R + \cdots + m_{i-1}R + m_{i+1}R + \cdots + m_R + q^{s+1};$$

b_i is a monomial ideal of R. Note that $e_im_i \in b_i$, and therefore we have $m_i \in b_i$ [cf. Remark 5]. For no monomial $m \in q^{s+1}$ we have $m | m_i$ [since $\deg(m_i) = s < \deg(m)$], and we have $m_j \nmid m_i$ for $j \in \{1, \ldots, r\}$, $j \neq i$.

Therefore, by Cor. 3, there exists a monomial $m \in a$ with $m | m_i$, hence we have $m_i \in a$, and therefore we have shown that $Tm(w) \subseteq a$.

(2) \Rightarrow (1): Suppose that a is not a monomial ideal. This means, in particular, that $a \neq R$. Let a' be the monomial ideal which is generated by all the monomials which lie in a; then we have $a' \nsubseteq a$. By assumption we have $Tm(w) \subset a'$ for every $w \in a$, $w \neq 0$. The prime ideals in $\text{Ass}(R/a')$ are of the form q_U for $U \subset \{1, \ldots, d\}$, hence are contained in q [cf. Remark 5].

By Krull’s intersection theorem [cf. [13], Vol. I, Ch. 4, § 7, Th. 12] we have $\bigcap_{n \geq 0}(a' + q^n) = a'$. Therefore there exists $n \in \mathbb{N}_0$ with $a \subset a' + q^n$, $a \not\subset a' + q^{n+1}$. We choose $w \in a$, $w \notin a' + q^{n+1}$; we can write $w = w_1 + z$ with $w_1 \in a'$, $z \in q^n$ and $z \notin q^{n+1}$. This implies that $z = w - w_1 \in a$, $z \neq 0$, and, by assumption, we have $Tm(z) \subset a$, hence $Tm(z) \subset a'$. Let $Tm(z) = \{m_1, \ldots, m_r\}$. Then there exist elements $e_1, \ldots, e_r \in R \setminus q$ such that, putting $z_1 := e_1m_1 + \cdots + e_rm_r$, we have $z_1 \in a'$ and $z \neq z_1 \in q^{n+1}$. This implies that $w = w_1 + z = w_1 + z_1 + (z - z_1) \in a' + q^{n+1}$, in contradiction with the choice of w.

Now we assume that R is complete; then every $w \in R$, $w \neq 0$, admits a monomial representation [cf. Prop. 2].
Let $w \in a, w \neq 0$, and let $w = e_1m_1 + \cdots + e_rm_r$ be a monomial representation of w. We show by induction on r that $\{m_1, \ldots, m_r\} \subset a$. Let $r = 1$, hence $T_m(w) = \{m_1\} \subset a$. Now let $r > 1$. It is clear that $T_m(w) \subset \{m_1, \ldots, m_r\}$. We label the elements m_1, \ldots, m_r in such a way that $T_m(w) = \{m_1, \ldots, m_q\}$ with $q \leq r$. We put $w_1 := e_1m_1 + \cdots + e_qm_q$. Now we have $w_1 \in a$ by assumption. If $q = r$, then the elements m_1, \ldots, m_q lie in a. If $q < r$, then we have $w - w_1 = e_{q+1}m_{q+1} + \cdots + e_rm_r$, and since $w - w_1 \in a$, we get by our induction assumption that $m_{q+1}, \ldots, m_r \in a$.

$(4) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are trivial.

\section{Integral Elements}

\textbf{Remark 6} Let S be a ring, and let a be an ideal in S. The integral closure of the Rees ring

$$R(a, S) = \bigoplus_{p \geq 0} a^pT^p \subset S[T]$$

in the polynomial ring $S[T]$ is the graded ring $\bigoplus_{p \geq 0} \overline{a^p}T^p$ where, for every $p \in \mathbb{N}$, $\overline{a^p}$ is the integral closure of a^p in S [cf. \cite{10}, Ch. II, § 5]. In particular, an element $z \in S$ is integral over a iff $zT \in S[T]$ is integral over $\bigoplus_{p \geq 0} a^pT^p$.

\textbf{Notation 4} Let a, b be monomial ideals in R.

1. We define

$$\tilde{a} := (\{m \in M \mid \text{there exists } l \in \mathbb{N} \text{ with } m^l \in a^l\});$$

\tilde{a} is a monomial ideal of R. Since the monomials which generate \tilde{a} are integral over a, \tilde{a} is an ideal which is integral over a, and therefore \tilde{a} is contained in the integral closure \overline{a} of a in R, and we have

$$a \subset \tilde{a} \subset \overline{a}.$$

It is clear that $\tilde{a} \subset a \subset \tilde{b}$, and if $a \subset b$, then we have $\tilde{a} \subset \tilde{b}$.

2. We show that

$$\tilde{\tilde{a}} = \tilde{a}.$$

In fact, let $\tilde{a} = m_1R + \cdots + m_R R$. For every $i \in \{1, \ldots, r\}$ there exists $l_i \in \mathbb{N}$ with $m_i^l \in a^l$. Let m be a monomial in a. Then there exists $l \in \mathbb{N}$ with $m^l \in a^l$. This implies that there exist $(i_1, \ldots, i_r) \in \mathbb{N}^r_0$ with $i_1 + \cdots + i_r = l$ and such that $m_{i_1}^l \cdot \cdots \cdot m_{i_r}^l$ divides m^l [cf. Cor. 3]. Since $(m_{i_1}^l \cdot \cdots \cdot m_{i_r}^l)^{l_{i_1} \cdot \cdots \cdot l_{i_r}}$ lies in $a^{l_{i_1} \cdot \cdots \cdot l_{i_r}}$, we see that $m^{l_{i_1} \cdot \cdots \cdot l_{i_r}}$ lies in $a^{l_{i_1} \cdot \cdots \cdot l_{i_r}}$, also, and this means that $m \in \tilde{a}$.

(3) By (1) we get \(\tilde{a}^p \tilde{a}^q \subset \tilde{a}^{p+q} \) for all \(p, q \in \mathbb{N}_0 \). Therefore
\[
\tilde{R}(a, R) := \bigoplus_{p \geq 0} \tilde{a}^p T^p \subset R[T]
\]
is a graded \(R \)-algebra and a graded \(R \)-subalgebra of \(R[T] \), and it contains the Rees ring \(\tilde{R}(a, R) := \bigoplus_{p \geq 0} a^p T^p \) of \(a \) as a graded \(R \)-subalgebra.

(4) Since \(\tilde{a}^p \subset \tilde{a}^p \) for every \(p \in \mathbb{N} \), the integral closure of \(\tilde{R}(a, R) \) in \(R[T] \) is the ring \(\bigoplus_{p \geq 0} \tilde{a}^p T^p \) [cf. Remark 6].

(5) Just as in [8], Prop. 4.6, one may prove, using (4): For \(z \in R \) we have \(z \in \tilde{a} \) iff there exist \(p \in \mathbb{N} \) and elements \(a_i \in \tilde{a}^i, i \in \{1, \ldots, p\} \), such that
\[
z^p + a_1 z^{p-1} + \cdots + a_p = 0.
\]

Assumption 2 For the rest of this section we again assume that \(q \) is a prime ideal of \(R \) which is contained in the Jacobson radical of \(R \). The \(q \)-adic completion of \(R \) shall be denoted by \(\hat{R} \).

Proposition 4 Let \(a \) be a monomial ideal of \(R \), and let \(m = x_1^{j_1} \cdots x_d^{j_d} \in M \). The following statements are equivalent:

1. \(m \) is integral over \(a \).
2. \(m \) is integral over \(a\hat{R} \).
3. There exists \(l \in \mathbb{N} \) with \(ml \in a^l \).
4. \((j_1, \ldots, j_d)\) lies in the convex hull of \(\Gamma + \mathbb{R}_{\geq 0}^d \) where \(\Gamma \subset \mathbb{N}_0^d \) is the set of exponents of monomials appearing in \(a \).

In particular, every monomial in \(\tilde{a} \) lies in \(\tilde{a} \).

Proof: (1) \(\Rightarrow \) (2) and (3) \(\Rightarrow \) (1) hold trivially.

(2) \(\Rightarrow \) (3): Let \(T^p + a_1 T^{p-1} + \cdots + a_p \in \hat{R}[T] \) with \(a_i \in (a\hat{R})^i = a^i \hat{R} \) for \(i \in \{1, \ldots, p\} \) be an equation of integral dependence for \(m \) over \(a\hat{R} \). Let \(i \in \{1, \ldots, p\} \). Since \(a^i \) is a monomial ideal of \(\hat{R} \), the ideal \(a^i \hat{R} \) is a monomial ideal of \(\hat{R} \), and, by Prop. 2, there exist elements \(e_{i1}, \ldots, e_{ir_i} \in \hat{R} \setminus q\hat{R} \) and monomials \(m_{i1}, \ldots, m_{ir_i} \in M \) with
\[
a_i = \sum_{j=1}^{r_i} e_{ij} m_{ij},
\]

From Prop. 3 we obtain \(m_{ij} \in a^i \hat{R} \cap R = a^i \) for \(i \in \{1, \ldots, p\}, j \in \{1, \ldots, r_i\} \) [note that \(\hat{R} \) is a faithfully flat extension of \(R \)]. Therefore the monomial \(m^p \)
lies in the \check{R}-ideal which is generated by the set $\{m_{ij} m^{p-i} \mid i \in \{1, \ldots, p\}, j \in \{1, \ldots, r_i\}\}$. Using Cor. 3 we find $i \in \{1, \ldots, p\}$ and $j \in \{1, \ldots, r_i\}$ with $m_{ij} m^{p-i} \mid m^p$, hence $m_{ij} \mid m^l$. Thus, we have shown that $m^l \in m_{ij} R \subset a_i$.

(3) \iff (4) This is an easy consequence of Cor. 3 and Carathéodory’s theorem [for Carathéodory’s theorem cf. [11], Th. 17.1].

Corollary 6 Let a be a monomial ideal of R.

1. We have $\check{a} \check{R} = \check{\check{a}} \check{R}$ and $\check{a} \check{R} \subset \check{R}$.

2. We have $\overline{\text{gr}(a)} = \text{gr}(\check{a})$.

Proof: (1) The first assertion is an easy consequence of Prop. 4, and the second assertion is clear.

(2) Let \check{a} be generated by the monomials m_1, \ldots, m_r. Then $\text{gr}(\check{a})$ is generated by the monomials $\overline{m_1}, \ldots, \overline{m_r}$ [cf. (4) in Remark 4]. For every $i \in \{1, \ldots, r\}$ there exists $l_i \in \mathbb{N}$ with $\overline{m_i} \in a_i$, hence $\overline{m_i} \in \text{gr}(a)^{l_i} = \text{gr}(a_i)$, and therefore we have $\overline{m_i} \in \check{\check{a}}$. Conversely, let $m \in M$ be a monomial with $\overline{m} \in \text{gr}(a)$. Then there exists $l \in \mathbb{N}$ with $\overline{m} \in (\text{gr}(a))^{l} = \text{gr}(a^l)$, hence $m^l \in a^l$, and therefore $m \in \check{a}$, hence $\overline{m} \in \text{gr}(\check{a})$.

5. Monomial Ideals in Polynomial Rings

The following result in Prop. 5 should be known, but we could not find a source for it.

Notation 5 Let (Γ, \prec) be a totally ordered commutative monoid with neutral element 0 satisfying the following condition:

Every non-empty subset of Γ has a smallest element.

This condition is satisfied if \prec is a well-ordering; in particular, a monomial ordering on \mathbb{N}_0^d satisfies this condition.

Let $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$ be a Γ-graded ring. For $z \in R$ let $z_{\gamma} \in R_{\gamma}$ be the homogeneous component of z of degree γ, and if $z \neq 0$, then define

$$\text{Supp}(z):= \{\gamma \in \Gamma \mid z_{\gamma} \neq 0\}, \quad \text{deg}(z):= \max_{\prec}\{\gamma \mid \gamma \in \text{Supp}(z)\}, \quad z^*:= z_{\text{deg}(z)}.$$

Let $z, w \in R \setminus \{0\}$; then we have $\text{deg}(zw) \leq \text{deg}(z) + \text{deg}(w)$ if $zw \neq 0$ and $\text{deg}(z + w) \leq \max_{\prec}\{\text{deg}(z), \text{deg}(w)\}$ if $z + w \neq 0$. Notice that, if z is not homogeneous, then we have $\text{deg}(z - z^*) \prec \text{deg}(z)$.
Proposition 5 Let S be a Γ-graded ring, and let R be a Γ-graded subring of S. Then the integral closure \overline{R} of R in S is a Γ-graded subring of S.

Proof: (1) Firstly, we consider the case that every homogeneous element of S which is integral over R already lies in R. Then we have to show that $\overline{R} = R$. Suppose that $R \subsetneq \overline{R}$, and choose $z \in \overline{R} \setminus R$ in such a way that $(\#(\text{Supp}(z))) \leq (\#(\text{Supp}(w)))$ for every $w \in \overline{R} \setminus R$. Now z is not homogeneous by our assumption on R. If $z^* \in \overline{R}$, then we would have $z^* \in R$ since z^* is homogeneous, hence $z - z^* \in \overline{R}$, and therefore $z - z^* \in R$ by the choice of z [note that $(\#(\text{Supp}(z - z^*))) < (\#(\text{Supp}(z)))$. Therefore we have $z^* \notin \overline{R}$. In particular, we have $(z^*)^i \neq 0$ for every $i \in \mathbb{N}$, hence $(z^*)^i = (z^*)^i$ and $\deg(z^i) = i \deg(z)$ for every $i \in \mathbb{N}$.

Let

$$\mathcal{V} := \{ \mathbf{a} = (a_1, \ldots, a_p) \mid a_1, \ldots, a_p \in R, z^p + a_1 z^{p-1} + \cdots + a_p = 0 \}.$$

Obviously \mathcal{V} is not empty. For every $\mathbf{a} = (a_1, \ldots, a_p) \in \mathcal{V}$ we define

$$\gamma(\mathbf{a}) := \max_{a_i \neq 0} \{ \deg(a_i) - i \deg(z) \mid a_i \neq 0, i \in \{0, 1, \ldots, p\} \} \in \Gamma,$$

$$s(\mathbf{a}) := \min \{ i \in \{0, 1, \ldots, p\} \mid a_i \neq 0, \deg(a_i) - i \deg(z) = \gamma(\mathbf{a}) \} \in \{0, 1, \ldots, p\}$$

[we define $a_0 := 1$]. Then we have $\gamma(\mathbf{a}) \geq 0$ [since $a_0 = 1 \in R_0$]. Suppose that there exists $\mathbf{a} = (a_1, \ldots, a_p) \in \mathcal{V}$ with $\gamma(\mathbf{a}) = 0$. Then we have for every $i \in \{1, \ldots, p\}$ with $a_i z^{p-i} \neq 0$

$$\deg(a_i z^{p-i}) \leq \deg(a_i) + \deg(z^{p-i}) = \deg(a_i) + (p - i) \deg(z)$$

$$\leq p \deg(z) + \gamma(\mathbf{a}) = p \deg(z).$$

In $z^p + a_1 z^{p-1} + \cdots + a_p = 0$ we consider the homogeneous component of degree $p \deg(z) = \deg(z^p)$. Then we get $(z^*)^p + a'_1 (z^*)^{p-1} + \cdots + a'_p = 0$ with

$$a'_i := \begin{cases} a_i^* & \text{if } a_i z^{p-i} \neq 0 \text{ and } \deg(a_i z^{p-i}) = p \deg(z), \\ 0 & \text{else} \end{cases} \text{ for } i \in \{1, \ldots, p\}.$$

But this would imply that $z^* \in \overline{R}$, in contradiction with our observation above.

Therefore we have $\gamma(\mathbf{a}) > 0$ for every $\mathbf{a} \in \mathcal{V}$. This implies that $s(\mathbf{a}) > 0$; moreover, we have $s(\mathbf{a}) \leq p - 1$ since otherwise $a_p^* = 0$.

Let

$$\gamma_0 := \min_{\mathbf{a} \in \mathcal{V}} \{ \gamma(\mathbf{a}) \mid \mathbf{a} \in \mathcal{V} \}, \quad \mathcal{V}_0 := \{ \mathbf{a} \in \mathcal{V} \mid \gamma(\mathbf{a}) = \gamma_0 \}.$$
Then we have $\gamma_0 > 0$. We choose $a = (a_1, \ldots, a_p) \in V_0$ with $s(b) \leq s(a)$ for every $b \in V_0$. We define

$$a'_j := \begin{cases} a_j & \text{if } a_j \neq 0, \deg(a_j) - j \deg(z) = \gamma_0, \\ 0 & \text{else} \end{cases} \quad \text{for } j \in \{1, \ldots, p\}.$$

By the choice of s we have $a'_1 = \cdots = a'_{s-1} = 0$, $a'_s = a_s^* \neq 0$, and

$$a'_s(z^*)^{p-s} + a'_{s+1}(z^*)^{p-s-1} + \cdots + a'_p = 0 \quad (*)$$

[consider in $z^p + a_1 z^{p-1} + \cdots + a_p = 0$ the homogeneous component of degree $\gamma_0 + p \deg(z)$]. We multiply $(*)$ by a'_s^{p-s-1} and obtain

$$(a'_s z^*)^{p-s} + a'_{s+1}(a'_s z^*)^{p-s-1} + \cdots + a'_p a_s^* = 0.$$

Therefore the homogeneous element $a'_s z^*$ is integral over R, hence lies in R. Since $a'_s z - a'_s z^*$ is integral over R, and since either $a'_s z = a'_s z^*$ or $\#(\text{Supp}(a'_s z - a'_s z^*)) < \#(\text{Supp}(a'_s z))$, we have $a'_s z - a'_s z^* \in R$ by the choice of z, hence $a'_s z \in R$. We define

$$\overline{a}_i := \begin{cases} a_i & \text{if } i \neq s, s+1, \\ a_s - a'_s & \text{if } i = s, \\ a_{s+1} + a'_s z & \text{if } i = s+1 \end{cases} \quad \text{for } i \in \{1, \ldots, p\}.$$

Then we have $\overline{a} = (\overline{a}_1, \ldots, \overline{a}_p) \in R^p$, and since $z^p + \overline{a}_1 z^{p-1} + \cdots + \overline{a}_p = 0$, we have $\overline{a} \in V$. We show that we even have $\overline{a} \in V_0$. We have $\overline{a}_s = 0$ or $\deg(a_s - a'_s) - s \deg(z) < \deg(a_s) - s \deg(z) \leq \gamma_0$, and we have $\overline{a}_{s+1} = 0$ or $\deg(a_{s+1} + a'_s z) - (s+1) \deg(z) \leq \gamma_0$, and therefore we have $\gamma(\overline{a}) = \gamma_0$. Obviously we have $s(\overline{a}) \geq s + 1$, in contradiction with the choice of \overline{a}. Therefore we have $\overline{R} = R$.

(2) Now we consider the general case. Let $R' := R[\Sigma]$, where Σ is the set of homogeneous elements of S which are integral over R; then R' is a Γ-graded subring of S. We have $R \subseteq R' \subseteq \overline{R}$, hence $\overline{R} = \overline{R'}$. Since $\overline{R'} = R'$ by (1), we have $\overline{R} = R'$.

Corollary 7 Let R be a Γ-graded ring, and let a be a Γ-homogeneous ideal of R. Then the integral closure of a in R is a Γ-homogeneous ideal of R, again.

Proof: We equip the polynomial ring $R[T]$ in a natural way with a $\Gamma \times \mathbb{N}_0$-grading; then we can consider the Rees ring $\mathcal{R}(a, R)$ as a $\Gamma \times \mathbb{N}_0$-graded...
subring of $R[T]$. The integral closure of $\mathcal{R}(a, R)$ in $R[T]$ is a $\Gamma \times \mathbb{N}_0$-graded subring by Prop. 5, and $w \in R$ is integral over a iff $wT \in R[T]$ lies in

$$\overline{\mathcal{R}(a, R)} = \bigoplus_{p \geq 0} a^p T^p$$

[cf. Remark 6].

Notation 6 For the rest of this section let k be a ring, and let $A = k[x_1, \ldots, x_d]$ be the polynomial ring over k in d variables x_1, \ldots, x_d. Then (x_1, \ldots, x_d) is a regular sequence in A which satisfies (a)-(c) above; let M be the set of monomials $x^i = x_1^{i_1} \cdots x_d^{i_d}$, $i \in \mathbb{N}_0^d$. Every non-zero $z \in A$ has a unique representation $z = c_1m_1 + \cdots + c_rm_r$ with non-zero elements $c_1, \ldots, c_r \in k$ and pairwise distinct monomials $m_1, \ldots, m_r \in M$; we call this the monomial representation of z.

An ideal \mathfrak{a} of A is called a monomial ideal if it is generated by a set of monomials. Let \mathfrak{a} be a monomial ideal in A; then \mathfrak{a} is generated by a finite set of monomials [Dickson’s Lemma, cf. [1], Ch. 4, Cor. 4.48 and Th. 5.2 or [5], Ch. II, § 4, in particular Exercise 7] and a monomial $m \in M$ belongs to \mathfrak{a} iff it is a multiple of a monomial in \mathfrak{a}. Moreover, if $cm \in \mathfrak{a}$ with $c \in k \setminus \{0\}$ and $m \in M$, then $m \in \mathfrak{a}$.

Corollary 8 Let \mathfrak{a} be a monomial ideal in A. Then we have

$$\overline{\mathfrak{a}} = \text{rad}_k(0)A + \mathfrak{a}.$$

Proof: Clearly we have $\text{rad}_k(0) \subset \overline{\mathfrak{a}}$ and $\mathfrak{a} \subset \overline{\mathfrak{a}}$. Let $z \in \overline{\mathfrak{a}}$, $z \neq 0$; since \mathfrak{a} is an \mathbb{N}_0^d-homogeneous ideal of A [cf. Cor. 7], there exist $s \in \mathbb{N}$, non-zero elements $c_1, \ldots, c_s \in k$ and monomials $n_1, \ldots, n_s \in M$ with $z = c_1n_1 + \cdots + c_sn_s$ and such that $c_i n_i$ is integral over \mathfrak{a} for $i \in \{1, \ldots, s\}$. Let $i \in \{1, \ldots, s\}$. There then exist $p \in \mathbb{N}$, elements $d_1, \ldots, d_p \in k$ and monomials $m_1 \in \mathfrak{a}, \ldots, m_p \in \mathfrak{a}$ such that

$$(c_dn_d)^p + d_1m_1(c_dn_d)^{p-1} + \cdots + d_pm_p = 0.$$

If $d_1 = \cdots = d_p = 0$, then we have $c_i^n = 0$, hence $c_i \in \text{rad}_k(0)$. Otherwise, there exists $l \in \{1, \ldots, p\}$ with $n_l^p = m_l n_l^{p-1}$, hence $n_l = m_l \in \mathfrak{a}$, hence $n_l \in \overline{\mathfrak{a}}$. Therefore we have $z \in \text{rad}_k(0)A + \overline{\mathfrak{a}}$.

Corollary 9 The following statements are equivalent:

1. k is a reduced ring.
2. There exists a monomial ideal \mathfrak{a} in A such that $\mathfrak{a} = \overline{\mathfrak{a}}$.
3. For every monomial ideal \mathfrak{a} of A we have $\mathfrak{a} = \overline{\mathfrak{a}}$.
6. The Main Theorem

We keep the notations and assumptions introduced in section 2.

Notation 7 (1) A monomial ordering \(\prec \) of \(\mathbb{N}_0^d \) is said to be degree-compatible if it satisfies the following condition: for any \(i, j \in \mathbb{N}_0^d \) with \(\deg(i) < \deg(j) \) we have \(i \prec j \).

(2) Let \(\prec \) be a degree-compatible ordering on \(\mathbb{N}_0^d \). Then every subset of \(\mathbb{N}_0^d \) which is bounded above is finite.

(3) Let \(\prec \) be a monomial ordering on \(\mathbb{N}_0^d \). Let \(i \neq j \) be in \(\mathbb{N}_0^d \). We define \(i \prec_g j \) if \(\deg(i) < \deg(j) \) or if \(\deg(i) = \deg(j) \) and \(i \prec j \). Then \(\prec_g \) is a degree-compatible monomial ordering on \(\mathbb{N}_0^d \).

(4) If \(\prec \) is the lexicographical ordering \(\text{lex} \) on \(\mathbb{N}_0^d \), then \(\prec_g \) is the degree-lexicographical ordering \(\text{deglex} \) on \(\mathbb{N}_0^d \).

(5) Every monomial ordering \(\prec \) on \(\mathbb{N}_0^d \) induces an ordering on \(M \) which will be denoted by \(\prec \), again.

Proposition 6 We assume that \(R/\mathfrak{q} \) is a reduced ring. Let \(a \) be a monomial ideal of \(R \); then \(\text{gr}(\tilde{a}) \) is the integral closure of the monomial ideal \(\text{gr}(a) \) in \(\text{gr}(R) \).

Proof: Since \(\tilde{a} \) is integral over \(a \), obviously \(\text{gr}(\tilde{a}) = \text{gr}(\tilde{a}) \) [cf. Cor. 9(2)] is integral over \(\text{gr}(a) \). Let \(m \in M \) be a monomial, and assume that \(\text{In}(m) = m \) is integral over \(\text{gr}(a) \). Then there exists \(h \in \mathbb{N} \) with \(\text{In}(m)^h \in (\text{gr}(a))^h = \text{gr}(a^h) \) [cf. Cor. 9], hence we see that \(m^h \in a^h \cap q^{h \deg(m)} \subseteq a^h \), hence \(m \in \tilde{a} \), and therefore we obtain that \(\text{In}(m) \in \text{gr}(\tilde{a}) \).

Remark 7 We assume that \(R \) is complete, and that \(\mathfrak{q} \) is a prime ideal which is contained in the Jacobson radical of \(R \). Let \(\prec \) be a degree-compatible monomial ordering on \(M \), and let \(z \in R \setminus \{0\} \); we define

\[
\text{lm}(z) := \min_\prec \{Tm(z)\}.
\]

Let

\[
z = e_1m_1 + \cdots + e_rm_r
\]

be a monomial representation of \(z \), then we have \(\text{lm}(z) \leq m_j \) for every \(j \in \{1, \ldots, r\} \) [cf. Lemma 4 and note that \(\prec \) is a degree-compatible ordering], hence we even have

\[
\text{lm}(z) = \min_\prec \{m_i \mid i \in \{1, \ldots, r\}\}.
\]

For \(z, w \in R \setminus \{0\} \) we obviously have

\[
\text{lm}(zw) = \text{lm}(z)\text{lm}(w).
\]
Proposition 7 We assume that R is complete, and that q is a prime ideal which is contained in the Jacobson radical of R. For every monomial ideal a of R we have $\bar{a} = \tilde{a}$.

Proof: (1) We have $\bar{a} \subseteq \tilde{a}$ for every monomial ideal a of R [cf. (1) in Notation 4]. Suppose that the proposition does not hold. Then the family

$$\mathcal{I} := \{ a | a \text{ monomial ideal of } R, \bar{a} \subseteq \tilde{a} \}$$

is not empty. For every $a \in \mathcal{I}$ we define $r(a) \in \mathbb{N}$ in the following way: If $y \in \bar{a} \setminus \tilde{a}$, and if $y = e_1m_1 + \cdots + e_rm_r$ is a monomial representation of y [cf. Prop. 2], then we have $r \geq r(a)$. We choose $a \in \mathcal{I}$ in such a way that $r(a) \leq r(b)$ for every $b \in \mathcal{I}$. We define $r := r(a)$, and we choose $y \in \bar{a} \setminus \tilde{a}$ such that y admits a monomial representation $y = e_1m_1 + \cdots + e_rm_r$ having r terms. By Prop. 4 we have $r \geq 2$. By (5) in Notation 4 there exist $p \in \mathbb{N}$ and $a_i \in \tilde{a}^i$ for $i \in \{1, \ldots, p\}$ with

$$y^p + a_1y^{p-1} + \cdots + a_p = 0.$$

(2) Let \prec be a degree-compatible monomial ordering on M. Without loss of generality we may assume that in the monomial representation of y we have $m_1 \prec m_2 \prec \cdots \prec m_r$, hence that $\text{lm}(y) = m_1$, and that $\text{deg}(m_1) \leq \text{deg}(m_2) \leq \cdots \leq \text{deg}(m_r)$. We choose $t \in \{1, \ldots, r\}$ with $\text{deg}(m_1) = \text{deg}(m_2) = \cdots = \text{deg}(m_t) < \text{deg}(m_{t+1})$, and we define $y_t := e_1m_1 + \cdots + e_tm_t$; then we have $\text{In}(y) = \text{In}(y_t)$.

(3) Let

$$\mathcal{S} := \{ b = (b_1, \ldots, b_p) | b_i \in \tilde{a}^i \text{ for } i \in \{1, \ldots, p\}, y^p + b_1y^{p-1} + \cdots + b_p = 0 \}.$$

The set \mathcal{S} is not empty [cf. (1)]; we define for $b \in \mathcal{S}$

$$\rho(b) := \min \{ \text{lm}(b_iy^{p-i}) \mid i \in \{1, \ldots, p\}, b_i \neq 0 \} \in M,$$

$$s(b) := \min \{ i \in \{1, \ldots, p\} \mid b_i \neq 0, \text{lm}(b_iy^{p-i}) = \rho(b) \} \in \{1, \ldots, p\}.$$

(4) There exists $b \in \mathcal{S}$ with

$$\rho(b) \geq \text{lm}(y^p).$$

Proof: Let us suppose, on the contrary, that

$$\rho(b) < \text{lm}(y^p) \quad \text{for every } b \in \mathcal{S}.$$
This implies that \(s(b) \leq p - 1\) for every \(b \in S\). The set \(\{\rho(b) \mid b \in S\}\) is bounded above, hence finite; we define
\[
\rho := \max_{\rho} \{\rho(b) \mid b \in S\} \in M.
\]
Furthermore, we define
\[
S' := \{b \in S \mid \rho(b) = \rho\}.
\]
We choose \(b' = (b'_1, \ldots, b'_p) \in S'\) in such a way that \(s(b) \leq s(b')\) for every \(b \in S'\), and we define \(s := s(b')\); note that \(1 \leq s \leq p - 1\).

Let \(i \in \{1, \ldots, p\}\) with \(b'_i \neq 0\). We consider a monomial representation
\[
b'_i = e_{i_1}m_{i_1} + \cdots + e_{i_r}m_{i_r}.
\]
Since \(\tilde{a}\) is a monomial ideal, we have \(m_{i_1}, \ldots, m_{i_r} \in \tilde{a}\) [cf. Prop. 3]. Without loss of generality we may assume that \(m_{i_1} < m_{i_2} < \cdots < m_{i_r}\). We choose \(t_i \in \{1, \ldots, r_i\}\) with \(\deg(m_{i_1}) = \cdots = \deg(m_{i_{t_i}}) < \deg(m_{i_{t_i+1}})\), and we define \(b''_i := e_{i_1}m_{i_1} + \cdots + e_{i_{t_i}}m_{i_{t_i}}\); then we have \(\text{In}(b'_i) = \text{In}(b''_i)\) in \(\text{gr}(R)\).

For \(i \in \{1, \ldots, p\}\) we define
\[
d_i := \begin{cases}
0 & \text{if } b'_i = 0 \text{ or if } b'_i \neq 0 \text{ and } \text{lm}(b'_iy^{p-i}) \succ \rho, \\
\rho & \text{if } b'_i \neq 0 \text{ and } \text{lm}(b'_iy^{p-i}) = \rho.
\end{cases}
\]
Then we have \(d_i \in \tilde{a}\) for every \(i \in \{1, \ldots, p\}\).

We consider the equation
\[
y^p + b'_1y^{p-1} + \cdots + b'_p = 0. \quad \text{(*)}
\]
For \(i \in \{1, \ldots, p\}\) we replace \(b'_i\) by \(d_i\), and we replace \(y\) by \(y_1\); using the inequality \(\rho \ll \text{lm}(y^p)\), we obtain the following equation in \(\text{gr}(R)\)
\[
\text{In}(d_s)\text{In}(y_1^{p-s}) + \text{In}(d_{s+1})\text{In}(y_1^{p-s-1}) + \cdots + \text{In}(d_p) = 0. \quad \text{(**)}
\]
We multiply (** with \(\text{In}(d_s^{p-s-1})\), and we obtain
\[
(\text{In}(d_s)\text{In}(y_1))^{p-s} + \text{In}(d_{s+1})(\text{In}(d_s)\text{In}(y_1))^{p-s-1} + \text{In}(d_{s+2}d_s)(\text{In}(d_s)\text{In}(y_1))^{p-s-2} + \cdots + \text{In}(d_pd_s^{p-s-1}) = 0.
\]
We have
\[
d_{s+l}d_s^{l-1} \in \tilde{a}^{s+l}(\tilde{a})^{l-1} \subset \tilde{a}^{(s+1)l} \quad \text{for } l \in \{1, \ldots, p - s\}.
\]
Therefore we have $\text{In}(d_s d_s^{d_s-1}) \in \text{gr}(\overline{a^{(s+1)l}}) = (\text{gr}(\overline{a^{s+1}})^l)$ [cf. Cor. 6(2) and (4) in Remark 4] for $l \in \{1, \ldots, p-s\}$, hence $\text{In}(d_s y_1)$ is integral over $(\text{gr}(\overline{a}))^{s+1}$ [cf. (5) in Notation 4]. $\text{In}(m_s m_1)$ is integral over $(\text{gr}(\overline{a}))^{s+1}$, also [cf. Cor. 9], and therefore $e_s e_1 m_s m_1$ is an element of $\overline{a^{s+1}}$. We multiply (*) with $(e_s m_1)^p$ and we obtain

$$(e_s m_s y)^p + b'_1 e_s m_s (e_s m_s y)^{p-1} + \cdots + b'_p (e_s m_s)^p = 0.$$

Note that

$$b'_l (e_s m_s)^l \in \overline{a^l (\overline{a^{s+1}})^l} \text{ for } l \in \{1, \ldots, p\},$$

and therefore $e_s m_s y$ is integral over $\overline{a^{s+1}}$ [cf. (5) in Notation 4]. Let $y' := y - e_1 m_1$; then $e_s m_s y'$ is integral over $\overline{a^{s+1}}$, and $e_s m_s y' = \sum_{i=2} e_i e_s m_s m_i$ admits a monomial representation having only $r - 1$ terms.

We have $e_s m_s y' \in \overline{a^{s+1}}$ [this is clear if $\overline{a^{s+1}} = \overline{a^{s+1}}$, and if $\overline{a^{s+1}} \supset \overline{a^{s+1}}$, then $\overline{a^{s+1}}$ lies in \mathcal{I}, and by the choice of r [cf. (1)] we get $e_s m_s y' \in \overline{a^{s+1}}$ in this case, also]. Since $e_s m_s y'$ and $e_1 e_s m_1 m_s$ lie in $\overline{a^{s+1}}$, the element $e_s m_s y$ lies in $\overline{a^{s+1}}$, also.

We define [note that $s \leq p - 1$]

$$\overline{b}_i := \begin{cases} b'_i & \text{if } i \neq s, s + 1, \\ b'_s - e_s m_s & \text{if } i = s, \\ b'_{s+1} + e_s m_s y & \text{if } i = s + 1. \end{cases}$$

We have $\overline{b}' \in \mathcal{S}$, $e_s m_s \in \overline{a^s}$ and $e_s m_s y \in \overline{a^{s+1}}$, hence we have $\overline{b}_i \in \overline{a^i}$ for $i \in \{1, \ldots, p\}$. Clearly we have

$$y^p + \overline{b}_1 y^{p-1} + \cdots + \overline{b}_p = 0,$$

and therefore $\overline{b} := (\overline{b}_1, \ldots, \overline{b}_p)$ lies in \mathcal{S}, and this implies that $\rho(\overline{b}) \lessdot \rho$ by the choice of ρ. We show that \overline{b} even lies in \mathcal{S}'.

We have $\overline{b}_s = 0$ or $\overline{b}_s = e_s m_s + \cdots + e_{s,r} m_s r_s$ and $\text{In}(\overline{b}_s) = m_s \geq m_s = \text{In}(b'_s) = \rho$. We have $\text{In}(e_s m_s y^{p-s}) = \rho$, and if $b'_{s+1} \neq 0$, then we have $\text{In}(b'_{s+1} y^{p-s-1}) \supset \rho$. Therefore we have $\text{In}(\overline{b}_{s+1} y^{p-s-1}) \supset \rho$, and since $\rho(\overline{b}') = \rho$, we obtain $\rho(\overline{b}) \supset \rho$. This implies that $\rho(\overline{b}) = \rho$, hence we get, in fact, that $\overline{b} \in \mathcal{S}'$.

Now we have $\overline{b}_s = 0$ or $\text{In}(\overline{b}_s) \supset \rho$ and $\overline{b}_i = b'_i$ for $i \in \{1, \ldots, s - 1\}$, and this implies $s(\overline{b}) > s(\overline{b}') = s$, in contradiction with the choice of \overline{b}'.

Integral Closure of Monomial Ideals on Regular Sequences 505
(5) By (4) there exists \(b \in S \) with \(\text{lm}(b_iy^{p_i-i}) \geq \text{lm}(y^p) \) for every \(i \in \{1, \ldots, p\} \) with \(b_i \neq 0 \).

Let \(i \in \{1, \ldots, p\} \) with \(b_i \neq 0 \), and let \(b_i = e_{i1}m_{i1} + \cdots + e_{i,r_i}m_{i,r_i} \in \tilde{a}^i \) be a monomial representation of \(b_i \); without loss of generality we may assume that \(m_{i1} < m_{i2} < \cdots < m_{i,r_i} \), which implies that \(m_{i1} = \text{lm}(b_i) \). We choose \(t_i \in \{1, \ldots, r_i\} \) with \(\deg(m_{i1}) = \cdots = \deg(m_{i,t_i}) < \deg(m_{i,t_i+1}) \), and we define

\[
b'_i := e_{i1}m_{i1} + \cdots + e_{i,t_i}m_{i,t_i};
\]

note that \(\text{In}(b_i) = \text{In}(b'_i) \). We have \(m_{ij} \in \tilde{a}^i \) for \(j \in \{1, \ldots, r_i\} \) [cf. Prop. 3], hence, in particular, \(b'_i \in \tilde{a}^i \).

Now let \(i \in \{1, \ldots, p\} \); we define

\[
c_i := \begin{cases}
0 & \text{if } b_i = 0 \text{ or if } b_i \neq 0 \text{ and } \text{lm}(b_iy^{p_i-i}) \geq \text{lm}(y^p), \\
b'_i & \text{if } b_i \neq 0 \text{ and } \text{lm}(b_iy^{p_i-i}) = \text{lm}(y^p).
\end{cases}
\]

Clearly we have \(c_i \in \tilde{a}^i \). From \(y^p + b_1y^{p_1-1} + \cdots + b_p = 0 \) we obtain the following equation in \(\text{gr}(R) \)

\[
\text{In}(y_1)^p + \text{In}(c_1)\text{In}(y_1)^{p_1-1} + \cdots + \text{In}(c_p) = 0.
\]

Now we have \(\text{In}(c_i) \in \text{gr}(\tilde{a}^i) \) for every \(i \in \{1, \ldots, p\} \). Just as in (4) we see that \(\text{In}(y_1) \) is integral over \(\text{gr}(a) \) and that therefore \(\text{In}(m_1) \) is integral over \(\text{gr}(a) \), hence we have \(m_1 \in \tilde{a} \), hence \(e_1m_1 \in \tilde{a} \). Now \(y' := y - e_1m_1 \) lies in \(\tilde{a} \), and therefore \(y' \) lies in \(\tilde{a} \) by the choice of \(r \). From this we get that \(y = y' + e_1m_1 \) lies in \(\tilde{a} \), in contradiction with the choice of \(y \).

\[\blacksquare\]

Theorem 1 Let \(R \) be a noetherian ring, let \(x = (x_1, \ldots, x_d) \) be a regular sequence in \(R \), and assume that \(q := xR \) is contained in the Jacobson radical of \(R \) and that \(R/q \) is a reduced ring. For every monomial ideal \(a \) of \(R \) we have \(\tilde{a} = \tilde{a}; \) in particular, \(\tilde{a} \) is a monomial ideal, also.

Proof: (1) Firstly, let \(q \) be a prime ideal. Let \(y \in \tilde{a} \). We have \(\tilde{a}R \subset (aR) \) and \(\tilde{a}R = \tilde{a}R \) [cf. Cor. 6], hence \(y \in \tilde{a}R = \tilde{a}R = \tilde{a}R \) [cf. Prop. 7], and since \(\tilde{a}R \cap R = \tilde{a} \) we obtain \(y \in \tilde{a} \). Thus, we have shown that \(\tilde{a} = \tilde{a} \).

(2) Now we consider the case that \(R/q \) is reduced.

(a) Let \(p \in \text{Ass}(R/q) \). Then \(qR_p \) is the maximal ideal of \(R_p \), hence we have \(\tilde{a}R_p = \tilde{a}R_p \) by (1). Obviously we have \(\tilde{a}R_p = \tilde{a}R_p \) and \(\tilde{a}R_p \subset \tilde{a}R_p \). Therefore we have \(\tilde{a}R_p \subset \tilde{a}R_p \).

(b) For every \(p \in \text{Ass}(R/q) \) there exists, by (a), an element \(s_p \in R \setminus p \) with \(\tilde{a} \subset \tilde{a} : s_p \). Let \(b \) be the ideal generated by the elements \(s_p \); then we
have $\overline{a} \subset \overline{a} : b$. Let $p' \in \text{Ass}(R/\overline{a})$. Since \overline{a} is a monomial ideal, there exists $U \subset \{1, \ldots, d\}$ with $p' \in \text{Ass}(R/q_U)$ [cf. Lemma 1]. Repeated application of Lemma 1 in [13], vol. II, Appendix 6, shows that there exists a prime ideal $p \in \text{Ass}(R/q)$ with $p' \subset p$. Therefore b is not contained in any prime ideal in $\text{Ass}(R/\overline{a})$, hence $\overline{a} : b = \overline{a}$, hence $\overline{a} \subset \overline{a}$. The inclusion $\overline{a} \subset \overline{a}$ was noticed in (1) of Notation 4, and therefore we have $\overline{a} = \overline{a}$.

Example 1 Let R be a regular local two-dimensional ring, and let $\{x, y\}$ be a regular system of parameters of R. Let $m > n > 1$ be coprime integers, and write $m = s_1 n + n_1$ with $1 \leq n_1 < n$. Let a be the ideal of R generated by x^m and y^n. Then a is a monomial ideal. It can be shown [cf. [7]] that the integral closure \mathfrak{P} of a has a minimal system of generators $\{x^{m-\sigma_{m,n}(i)}y^i \mid i \in \{0, \ldots, n\}\}$ where $\sigma_{m,n} : \{0, \ldots, n\} \to \{0, \ldots, m\}$ is a strictly increasing function; in particular, one has

$$\sigma_{m,n}(0) = 0, \sigma_{m,n}(1) = s_1, \sigma_{m,n}(n-1) = m-(s_1+1), \sigma_{m,n}(n) = m,$$

and

$$\sigma_{m,n}(i+j) \geq \sigma_{m,n}(i) + \sigma_{m,n}(j) \text{ for } i, j \in \{0, \ldots, n\} \text{ with } i+j \leq n.$$

Moreover, the polar ideal \mathfrak{P}_φ of φ has

$$\{x^{m-\sigma_{m,n}(i+1)}y^i \mid i \in \{0, \ldots, n-1\}\}$$

as minimal set of generators.

References

Recibido: 20 de febrero de 2002
Revisado: 23 de octubre de 2002