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High Frequency limit of the Helmholtz
Equations

Jean-David Benamou, François Castella,

Theodoros Katsaounis and Benoit Perthame

Abstract

We derive the high frequency limit of the Helmholtz equations
in terms of quadratic observables. We prove that it can be written
as a stationary Liouville equation with source terms. Our method is
based on the Wigner Transform, which is a classical tool for evolution
dispersive equations. We extend its use to the stationary case after
an appropriate scaling of the Helmholtz equation. Several specific
difficulties arise here; first, the identification of the source term (which
does not share the quadratic aspect) in the limit, then, the lack of L2

bounds which can be handled with homogeneous Morrey-Campanato
estimates, and finally the problem of uniqueness which, at several
stage of the proof, is related to outgoing conditions at infinity.

1. Introduction

This paper is concerned with the analysis of the high frequency limit of the
Helmholtz equation in a three dimensional inhomogeneous medium; some
formulas and the scaling depend on the dimension although the method
works in any dimensions. The index of refraction n(x) is smooth, positive
and normalized with

(1.1) n(0) = 1.

The Helmholtz equation is then written, after appropriate scaling

(1.2) −i
αε

ε
uε + ∆uε +

(n(x)

ε

)2

uε = −Sε(x) := − 1

ε3
S(

x

ε
), x ∈ R

3.
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Here, the parameter ε ∈ (0, 1) is related to the wave length λ = 2πε and we
are interested in the limit ε → 0. The source term S is a given function. We
assume that,

(1.3) αε > 0 , αε → α ≥ 0 ,

and thus there is a unique L2 solution to (1.2). Although our basic estimates
and method allow αε to vanish, this avoids to write outgoing conditions at
infinity, which we cannot do with the weak assumptions on n we will use
here (especially n needs not be constant at infinity).

We would like to explain how in the limit ε → 0, the energy (or more
generally quadratic observables) can be globally described by the geometrical
optics, written under the form of the Liouville equation

(1.4) αf + ξ · ∇xf(x, ξ) +
1

2
∇xn

2 · ∇ξf(x, ξ) =
1

(4π)2
δ(x)|Ŝ(ξ)|2δ(|ξ| = 1) ,

completed with the radiation condition, when α = 0,

(1.5) f(x, ξ) → 0, as |x| → ∞ with x · ξ ≤ 0 .

Our convention is that the total mass of the measure δ(|ξ| = 1) is 4π and Ŝ
denotes the Fourier Transform of S. Of course, the existence of a solution f ,
and thus the derivation of the high frequency limit, requires some assump-
tions on the function n(x): namely the dispersion of the trajectories of the
following differential system (geometrical optics or ray tracing)

(1.6)
Ẋ(t) = ζ(t), X(0) = x ,

ζ̇(t) = 1
2
∇n2

(
X(t)

)
, ζ(0) = ξ.

Indeed, the particular solution f is given by the representation formula

(1.7) f(x, ξ) =
1

(4π)2

∫ +∞

0

δ
(
X(s)

)
|Ŝ(ζ(s))|2 δ

(
|ζ(s)| = 1

)
e−αsds .

In the sequel we will give a derivation which relies on the Wigner mea-
sures introduced by P. Gérard [9], P.-L. Lions and T. Paul [13], L. Tartar
[18]. One of the new points here is the treatment of the inhomogeneous
term S which does not follow the general method. It can be handled mainly
thanks to the particular scaling we have introduced in (1.2) which concen-
trates the source at the origin, and allows to recover locally the solution
with an explicit form. The counterpart is the singular source in the right-
hand side of (1.4). Several technical difficulties also specifically arise for
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the Helmholtz equation. Uniform (in ε) L2 bounds are not available. We
replace them by some weighted L2 estimates, called Morrey-Campanato es-
timates, derived in B. Perthame and L. Vega [16], (see also S. Agmon and L.
Hörmander [1] for n= constant, C. Kenig, G. Ponce and L. Vega [12] for the
case of Schroedinger equation, P.L. Lions and B. Perthame [14] or I. Gasser,
P. Markowich and B. Perthame [8] for the relations between these estimates
and moments lemmas in kinetic theory) which are space homogeneous and
thus appropriate for the high frequency limit. Another technical difficulty
comes from the interpretation of radiation conditions at infinity, which in
turn leads to the condition (1.5).

We would like also to point out that the understanding of high frequencies
in PDEs is a very active field, see for instance P. Gérard, P.A. Markowich,
N.J. Mauser, F. Poupaud [10] for periodic media for instance, G. Papani-
colaou and L. Ryzhik [15], and the references therein, for a survey of the
theory and an introduction to the questions related to random media, F.
Castella, B. Perthame, and O. Runborg [6] for generalisations of the present
results to more general source terms, F. Castella and P. Degond [5], [4] for
a deterministic way to generate scattering operators in the high frequency
limit, as well as L. Erdös and H.T. Yau [7] for a stochastic approach to the
latter problem, and at the numerical level, see J.D. Benamou [3] and the
references therein.

Finally, we would like to mention that the classical method for deriving
the high frequency limit of dispersive equations is through Eikonal equation
(cf J.B. Keller and R. Lewis [11]). Clearly this approach is not enough
to obtain the full result we prove here. Not only this method is limited by
caustics, but also the source term can only be written using Fourier variables.

The outline of the paper is the following: we first present in §2 a formal
derivation of the high frequency limit of Helmholtz equations and explain
the argument which allows to obtain the source term in (1.4). The precise
assumptions, apriori bounds and statements are given in §3, the proof of the
main theorem, and of the condition at infinity, is given in §4.

2. High frequency limit of Helmholtz equation

In this Section, we give a formal derivation of the Liouville equation (1.4)
from the Hemholtz equation (1.2). In fact, using the Wigner transform
(subsection 2.1), we give another formulation of the Helmholtz equation.
The limit itself follows after some treatment of the righthand side (subsection
2.2). The outgoing condition is treated in the last subsection. To simplify
the calculations we take αε to be constant since it does not change the
formalism.
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2.1. Wigner transform

The Wigner Transform f(x, ξ) ∈ R of the function u(x) ∈ C is defined as
follows. Doubling the variables, we denote

v(x, y) = u(x +
ε

2
y)ū(x − ε

2
y),(2.1)

f(x, ξ) = Fy→ξv(x, y),(2.2)

where the Fourier Transform is defined by

(2.3) û(ξ) = Fu(ξ) =
1

(2π)3

∫
R3

e−iy·ξu(y)dy.

and its inverse is then

(2.4) F−1w(x) =

∫
R3

eix·ξw(ξ)dξ.

In order to compute the equation satisfied by the Wigner Transform fε(x, ξ)
of the solution uε to the Helmholtz equation (1.2), we notice that

∇y∇xvε =
ε

2

[
∆uε(x +

ε

2
y)ūε(x − ε

2
y) − uε(x +

ε

2
y)∆ūε(x − ε

2
y)

]
and thus we have

(2.5) αεvε + i∇y · ∇xvε(x, y) +
i

2ε

[
n2(x +

ε

2
y) − n2(x − ε

2
y)

]
vε(x, y)

= σε(x, y)

(2.6) := −i
ε

2

[
Sε(x +

ε

2
y)ūε(x − ε

2
y) − S̄ε(x − ε

2
y)uε(x +

ε

2
y)

]
.

Therefore, after a Fourier Transform of (2.5), we obtain the following trans-
port equation on the Wigner Transform of uε

(2.7) αεfε + ξ · ∇xfε(x, ξ) + Zε(x, ξ) 	ξ fε(x, ξ) = Qε(x, ξ),

and the quantities Zε, Qε arising in this equation are given by

Qε(x, ξ) = Fy→ξσε(x, y),(2.8)

Zε(x, ξ) =
i

2ε
Fy→ξ

[
n2(x +

ε

2
y) − n2(x − ε

2
y)

]
(2.9)

and formally we have,

(2.10) Zε(x, ξ) −−→
ε→ 0

1

2
∇xn

2(x) · ∇ξδ(ξ).

In the next subsection we discuss the most interesting term, namely, Qε.
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2.2. The righthand side Qε

The source term Qε(x, ξ) is the Fourier Transform of the source term σε(x, y)
in (2.6). In order to study it, we define the complex valued function

(2.11) wε(y) = εuε(εy).

It satisfies the rescaled Helmholtz equation

(2.12) −iεαεwε + ∆wε + n2(εy)wε = −S(y).

Therefore wε converges (strongly as proved in §3) towards a solution w of

(2.13) ∆w + n2(0)w = −S(y).

From the sign of the absorbtion term, we can expect (and we prove it the
next subsection for radially increasing n, and we conjecture it in general)
that w is the outgoing solution given by

(2.14) wout(y) = −S(·) 	
e−i|y|

|y| , wout = −[∆ + n2(0) − i0]−1S,

since n(0) = 1. However, the general solution to (2.13) is better given in the
Fourier space by

(2.15) ŵ(ξ) = ŵout + q(ξ)δ(|ξ| = 1),

for some L2 function q on the sphere. Of course this relies on a priori
bounds which are explained in §3. In order to study the limit of σε(x, y) in
the distribution sense by using the convergence result (2.14), let us use two
test functions ϕ(x), ψ(y) ∈ S(R3). We have∫

σε(x, y) ϕ(x) ψ(y) dxdy =

=
−i

2ε3

∫ [
S(

x

ε
+

y

2
)wε(

x

ε
− y

2
) − S(

x

ε
− y

2
)wε(

x

ε
+

y

2
)
]
ϕ(x)ψ(y)dxdy

=
−i

2

∫ [
S(z)wε(z − y)ϕ(εz − εy

2
) − S(z)wε(z + y)ϕ(εz +

εy

2
)
]
ψ(y)dzdy

−→ −i

2
ϕ(0)

∫ [
S(z)w(z − y) − S(z)w(z + y)

]
ψ(y)dzdy.

In other words, we have formally obtained that (in S ′(R3)),

(2.16) σε(x, y) −−→
ε→ 0

σ(x, y) =
−i

2
δ(x)

∫ [
S(z)w(z − y)−S(z)w(z + y)

]
dz,
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which, after a Fourier Transform gives (always in S ′(R3)),

(2.17) Qε(x, ξ) −−→
ε→ 0

Q(x, ξ) = δ(x)Im
[
Ŝ(ξ)ŵ(ξ)

]
.

The explicit form of ŵout (see the Appendix), gives the form of the righthand
side Q(x, ξ) in the limiting Liouville Equation (1.4). If our conjecture on
the formula (2.14) fails, we obtain the righthand side

(2.18) Q(x, ξ) =
1

(4π)2
δ(x) δ(|ξ| = 1)

(
|Ŝ(ξ)|2 + Ŝ(ξ)q(ξ)

)
.

2.3. The radially increasing case

In this subsection we give an example where the unique limit (2.14) can
be derived. It follows similar calculations by [17] for generalized radiation
conditions at infinity. We need, additionally to the strong assumptions in
section 3, the following hypothesis on n only,

(2.19) n(x) = n(|x|), n′(|x|) ≥ 0.

Indeed, with these assumptions we can derive the outgoing radiation condi-
tion as follows.

We have the following three identities which are classical. Here ϕ, φ are

functions to be chosen later, we denote
∂

∂r
=

y

|y| · ∇ and nε(·) = n(ε·).

− αεIm

∫
|y|≥r

ϕ
∂

∂r
w̄ε wε +

∫
|y|≥r

ϕ
|∇τwε|2

|y| + Re

∫
|y|≥r

∇ϕ · ∇wε
∂

∂r
w̄ε

(2.20)

− 1

4

∫
|y|≥r

|wε|2∆div(ϕ
y

|y|) +
1

2

∫
|y|≥r

|wε|2ϕ ∂

∂r
n2

ε

+
1

2

∫
|y|=r

ϕ[| ∂

∂r
wε|2 − |∇τwε|2] +

1

2
Re

∫
|y|=r

div(ϕ
y

|y|)w̄ε
∂

∂r
wε

+
1

2

∫
|y|=r

|wε|2[n2
εϕ − ∂

∂r
(div(ϕ

y

|y|))

=Re

∫
|y|≥r

S[ϕ
∂

∂r
w̄ε +

1

2
div(ϕ

y

|y|)wε].

αε

∫
|y|≥r

φ|wε|2 + Im

∫
|y|=r

φw̄ε
∂

∂r
wε + Im

∫
|y|≥r

w̄ε∇φ · ∇wε(2.21)

=Im

∫
|y|≥r

Sφw̄ε.
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and finally

∫
|y|≥r

ϕ[|∇wε|2 − n2
ε|wε|2] + Re

∫
|y|=r

ϕw̄ε
∂

∂r
wε(2.22)

− 1

2

∫
|y|≥r

|wε|2∆ϕ − 1

2

∫
|y|=r

|wε|2 ∂

∂r
ϕ

=Re

∫
|y|≥r

Sw̄εϕ.

We choose ϕ = nε, φ = n2
ε and we add up (2.20), (2.21) and (2.22), with

ϕ = 1, multiplied by
αε

2
. This rises the identity

∫
|y|≥r

nε
|∇τwε|2

|y| +
1

2

∫
|y|=r

nε

∣∣∣∣ ∂

∂r
wε + inεwε +

αε

2nε

wε

∣∣∣∣
2

(2.23)

+

∫
|y|≥r

n′
ε|

∂

∂r
wε + inεwε|2 +

αε

2

∫
|y|≥r

|∇wε + inε
y

|y|wε|2

=
(αε)2

8 nε

∫
|y|=r

|wε|2 +
1

2

∫
|y|=r

nε|∇τwε|2 +
1

4

∫
|y|≥r

|wε|2∆div(nε
y

|y|)

+
1

2

∫
|y|=r

[div(nε
y

|y|)w̄ε
∂

∂r
wε + |wε|2 ∂

∂r
div(nε

y

|y|)]

+ Re

∫
|y|≥r

S∗[
αε

2
wε + nε

∂

∂r
wε +

1

2
div(nε

y

|y|)wε + inεwε].

Then, we integrate this equality for r > 1 against r−1. Keeping the only
sphere term in the left handside, we obtain

(2.24)

∫ ∞

1

1

r

∫
|y|=r

nε

∣∣∣∣ ∂

∂r
wε + inεwε +

αε

2nε

wε

∣∣∣∣
2

≤ C

Indeed, under the assumptions on n and S above and in section 3, the terms
in the right handside are all controled either directly by the a priori estimates
on wε (see [16]) or because they are multiplied by a factor which decays like
1/|y| at infinity.

When passing to the limit in the inequality (2.24), we recover a classical
form of the radiation condition which selects the outgoing solution.
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2.4. The condition at infinity

To conclude this Section, we indicate how to recover the outgoing condition
at infinity in the limiting equation (1.4). Let us recall that for n constant
at infinity, the Sommerfeld condition at infinity is written (roughly, see Bo
Zhang [19] for more details)

x

|x| · ∇xuε − i

ε
n2(x)uε → 0, as |x| → ∞.

It can also be interpreted, after doubling the variables, in terms of vε(x, y),
as

x

|x| · ∇yvε − i n2(x)vε + O(ε) → 0, as |x| → ∞,

which after Fourier Transform yields( x

|x| · ξ − n2(x)
)
f + O(ε) → 0, as |x| → ∞.

In the limit ε → 0, we recover the condition at infinity in (1.4). Notice
however that, in §3, we do not obtain the condition in such a way but in
a weak sense to be precised. Notice also that the radiation condition for f
can also be formally obtained from the fact that f is the limit of fε, where
fε satisfies a transport equation of the type −αεfε + ξ · ∇xfε + · · · = · · · ,
where αε > 0.

3. Precise results

In this Section, we state precisely our results on the high frequency limit.
We begin with stating the assumptions and results (subsection 1). Then, we
prove a first result (a priori bound on fε). The proof of the main Theorem
which identifies the limit f is given in the next section.

3.1. Assumptions

We begin by stating our assumptions on the index n. They all allow a very
low regularity for n. For instance they do not allow to use the Cauchy-
Lipschitz theorem for uniqueness of trajectories to the ray system (1.6).
They are mainly (but not only) concerned with the critical decay of n2(x)
to a constant at infinity.

First of all, we cannot use the L2 bounds which are not uniform in ε,
both for the study of uε, and wε (see §2.3). Uniform bounds in ε can rather
be obtained through Morrey-Campanato estimates. These are weighted L2
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norms which are space homogeneous (and thus uniform in ε), and have been
used by [1], [2] and, for evolution dispersive equations, by several authors (see
[12] and the references therein). For Helmholtz equations with a variable n
they have been derived in [16], with a new direct method. The assumptions
needed are the following

0 < nmin ≤ n(x) ≤ nmax,(3.1)

4
∑
j∈Z

sup
C(j)

(x · ∇n2)−
n2(x)

:= β < 1,(3.2)

where C(j) is the annulus {2j ≤ |x| ≤ 2j+1}. This assumption implies that
the bicharacteristics (1.6) disperse at infinity in x for long times.

Secondly, we need to recover the outgoing condition at infinity for f in
the limit ε → 0 from the radiation condition for fε. This requires a second
set of assumptions

(1 + |x|)N0 |∇n2(x)| ∈ L∞(R3) for some N0 > 5 ,(3.3)

∇xn
2 is continuous.(3.4)

Note that the norm on |∇n2(x)| involved in (3.3) is much stronger than the
one used in (3.2). We mention in this respect that, although (3.3) may be
too stringent, assumption (3.2) is close to a sharp condition when dealing
with uniform estimates in the Helmholtz equation, and we refer to [16].

We now come to the assumptions on the source term S in (1.2). With
the assumptions (3.1) and (3.2), the following bound holds for the solution
to the scaled Helmholtz equation (1.2),

(3.5) ||uε||M :=
[
sup
R>0

1

R

∫
|x|≤R

|uε|2dx
]1/2

≤ C(β)N(S)

N(S) :=
∑
j∈Z

[
2j+1

∫
C(j)

|S|2dx
]1/2

.

This estimate is proved in [16] for ε = 1 but it also holds for all ε ≤ 1 thanks
to its appropriate space homogeneity and the scaling in (1.2). Also notice
that due to the oscillations in the solution, we have

ε||∇uε||M ≤ C(β)N(S).

Let us notice for later purposes that the function space,

B = {u s.t.
1

R

∫
|x|≤R

|u(x)|2dx ≤ C, ∀R > 0}
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is a dual space (see [1] for instance). Its norm is in fact the dual of the
norm N used in (3.5). This leads to making the following assumption on
the source term S in (1.2),

(3.6) N(S) < ∞ .

In fact, in order to prove rigorously the limit of the righthand side Qε, we
need a stronger norm on S, namely (see 3.8 below for the definition of γ > 0),

(3.7)

∫
x∈R3

(1 + |x|2)N1 |S|2(x) dx < ∞ , for some N1 >
1

2
+

3γ

γ + 1
.

Finally, and for sake of completeness, we now write down the techni-
cal assumption we need on the regularizing parameter αε in the Helmholtz
equation (1.2). In the §4.5, we use

(3.8) αε ≥ εγ , for some γ > 0.

We are now ready to state our results. The first step in the derivation
of the equation on f , is to obtain bounds which allow to extract convergent
subsequences from the family fε.

Theorem 3.1.1 Under the assumptions (3.1)-(3.2), for all sources S satis-
fying N(S) < ∞, and for any λ > 0, the family of Wigner transforms fε of
uε is bounded in the Banach space X�

λ below and, extracting a subsequence,
converges weak-	 to a nonnegative, locally bounded measure f such that

(3.9) sup
R>0

1

R

∫
|x|≤R

∫
ξ∈R3

f(x, ξ) dx dξ ≤ C(β) N(S)2.

The Banach space X�
λ is defined as the dual space of the set Xλ of functions

ϕ̂(x, ξ) such that ϕ(x, y) := Fξ→y

(
ϕ̂(x, ξ)

)
satisfies,

(3.10)

∫
R3

sup
x∈R3

(1 + |x| + |y|)1+λ |ϕ(x, y)| dy < ∞ .

In fact it is possible to prove a sharp bound on f

sup
R>0

1

R

∫
|x|≤R

∫
R3

f(x, ξ) dx dξ ≤ C(β) N(S)2.

Indeed, for n = 1 and |Ŝ|2 = 1 on the sphere, the measure f is known (see
Ap. 1) and

∫
R3 f(x, ξ) dξ = C/|x|2.

We can now deduce the transport equation for f .
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Theorem 3.1.2 Under the assumptions of Theorem 3.1.1, and (3.3), (3.4),
(3.7), the measure f satisfies the transport equation (1.4), with a righthand
side (2.18) if (2.14) does not hold. For α = 0, it can be completed with
outgoing condition (1.5) at infinity, in the sense that for all functions R
such that R(x, ξ) ∈ D(R6\{ξ = 0}), and

g(x, ξ) =

∫ +∞

0

R(x − ξ t, ξ) dt ,

we have∫
R6

∇n2(x)

2
· ∇ξ g(x, ξ) f(x, ξ) dx dξ +

1

(4π)2

∫
S2

|Ŝ(ξ)|2g(0, ξ) dξ

=

∫
R6

R(x, ξ) f(x, ξ) dx dξ .(3.11)

This last equation (3.11) is a duality formulation of (1.4), formally integrat-
ing it by parts with the solution of the ingoing solution to

(−αg) + ξ · ∇xg = R, g(x, ξ) = 0 for x · ξ ≥ 0 and |x| → ∞.

3.2. Bounds on the Wigner Transform

In this subsection we prove the Theorem 3.1.1. It follows the spirit of the
proof of the corresponding bounds in [13]. We first observe that the bound
(3.5) on uε readily gives,

(3.12) ‖〈x〉− 1
2
−0uε(x)‖L2(R3) ≤ C ‖uε‖M ≤ C N(S) ,

where

(3.13) 〈x〉 := (1 + |x|2)1/2 ,

and 1 + 0 denotes any number close to 1 and larger than 1. Using (3.12)
gives therefore,∣∣∣ ∫

R6

vε(x, y) ϕ(x, y) dx dy
∣∣∣ ≤

≤
∫

R6

|u|(x + ε
2
y)

〈x + ε
2
y〉 1

2
+0

|ū|(x − ε
2
y)

〈x − ε
2
y〉 1

2
+0

〈x +
ε

2
y〉 1

2
+0 〈x − ε

2
y〉 1

2
+0 |ϕ|(x, y) dx dy

≤ C N(S)2

∫
R3

sup
x∈R3

〈|x| + |y|〉1+0 |ϕ(x, y)| dy .
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Hence we have∣∣∣ ∫
R3

fε(x, ξ) ϕ̂(x, ξ) dx dξ
∣∣∣ ≤ ∫

R6

|vε|(x, y) |ϕ|(x, y) dx dy

≤ C N(S)2

∫
R3

sup
x∈R3

〈|x| + |y|〉1+0 |ϕ(x, y)| dy .(3.14)

We deduce from this bound that the family fε is bounded in the Banach
space X�

λ (λ > 0). From this, we deduce that we may extract from fε a
subsequence which converges weak-	 to a non-negative measure f (see [18],
[13] for the non-negativity). Moreover we still deduce from (3.14) that∣∣∣ ∫

R6

f(x, ξ) ϕ̂(x, ξ) dx dξ
∣∣∣≤ C N(S)2

∫
R3

sup
x∈R3

〈|x| + |y|〉1+0 |ϕ(x, y)| dy .

We also deduce the bound (3.9) using for instance the family (here χ denotes
the indicator function)

ϕ(x, y) =
1

µ3/2
e−|y|2/µ 1

R
χ(|x| ≤ R)

and letting µ tend to zero. This concludes the proof of the a priori bounds
on f , and of Theorem 3.1.1.

4. Proof of Theorem 3.1.2

Now, we wish to prove Theorem 3.1.2. For this we need to prove two results.
Firstly, we need to prove that the weak-	 limit f of fε (obtained in §3) is a
distributional solution to (1.4). Secondly, we need to identify the radiation
condition for f , i.e. prove (3.11). As the first point is an easy consequence
of the proof we give for the radiation condition, we will simply skip it and
concentrate on the proof of (3.11). We divide its proof into five steps; we
first introduce preliminary estimates, then we give a duality form of the
main term 〈Zε 	ξ fε, gε〉, which we estimate in a separate subsection, and
finally prove its convergence. The fifth and last step is devoted to proving
the convergence of the term 〈Qε, gε〉 .

4.1. Preliminary observations

Let us recall some bounds.

Lemma 4.1.1 Consider the solutions wε to (2.12). The families wε and
∇wε are bounded in B. Therefore wε converges in the weak-	 topology of B,
and strongly in L2

loc, to a solution to (2.13).
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Proof. The bounds in B are again mere applications of the bound in [16],

(4.1) ‖∇wε‖M , ‖wε‖M ≤ C N(S).

From (4.1) it readily follows that, up to extracting subsequences, wε weakly
converges in B towards some solution w to (2.13). Thanks to assumption
(3.7), we identify w as given by formula (2.14). �

Next, we consider a test function R as in Theorem 3.1.2 (i.e. R belongs
to C∞

c (R6) and its support does not meet {ξ = 0}), and introduce g the
ingoing solution to the transport equation

(4.2) ξ · ∇xg(x, ξ) = R(x, ξ),

(see Theorem 3.1.2). Also, we introduce gε, the solution to

(4.3) −αεgε + ξ · ∇xgε = R(x, ξ),

which is given, using the notation ω = ξ/|ξ|, by

(4.4) gε = −
∫ +∞

s=0

exp(−αε|ξ|−1s)
1

|ξ|R(x − ωs, ξ) ds.

In the sequel, we need the following bound on the test function gε solution
to (4.3).

Lemma 4.1.2 For all M ≥ 0, the following bound holds,

(4.5) |ĝε(x, y)| ≤ C
〈x〉M ∧ α−M

ε

〈y〉M ,

where . ∧ . denotes the infimum of two numbers, 〈x〉 = (1 + |x|2)1/2 and C
denotes a constant depending on R and M .

Proof. Since the source term R is compactly supported, say in a ball of
fixed radius r0, we first observe that the variable s over which the integration
carries in (4.4) does not range in the full interval [0, +∞[, but in some interval
centered at |x|, say [|x| − r0, |x| + r0]. In particular, s ∼ |x| for large values
of |x|.

Now we take a multi-index a of length |a| ≤ M . We write,

yaĝε(x, y) = yaFξ→y(g(x, ξ))

= Fξ→y

( ∫ +∞

s=0

[i∂ξ]
a [exp(−αε|ξ|−1s)

1

|ξ| R(x − ωs, ξ)]
)
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= Fξ→y

(∫ +∞

s=0

∑
b,c,d,e

C(a, b, c, d, e) exp(−αε|ξ|−1s) [i∂ξ]
b[−αε|ξ|−1s]

×[i∂ξ]
c[−sω] × (

[i∂x]
d[i∂ξ]

e 1

|ξ|R
)
(x − ωs, ξ)

)
.

Here, the sum
∑

b,c,d,e carries over muli-indices of length ≤ M and the co-
efficients C(a, b, c, d, e) simply come from applying the chain rule together
with the derivation of products. Now we use that that s ∼ |x| for large x,
together with the facts that R is compactly supported with a support which
does not meet {ξ = 0}. This readily gives the inequality

|yaĝε(x, y)| ≤ C exp(−αε〈x〉) 〈x〉M

(up to modifying αε by a constant factor) hence the Lemma. �

4.2. Duality form of the equation on fε

As an obvious consequence of (2.7), (4.3), we obtain the duality form of the
equation on fε

(4.6) 〈fε, R〉 = −〈Qε, gε〉 − 〈Zε 	ξ fε, gε〉.

The terms Zε and Qε are defined through (2.9), (2.6). Here, 〈., .〉 denotes the
L2 scalar product product between functions on R

6
x,ξ. The fact that these

duality products are well defined is proved below.
In view of (4.6), proving the radiation condition (3.11) in Theorem 3.1.2

is therefore equivalent to proving that, in the limit ε → 0, the following
holds true,

(4.7) 〈f,R〉 = −〈Q, g〉 − 〈Z 	ξ f, g〉 ,

where f is the weak−∗ limit of fε, g is defined in Theorem 3.1.2, and Q, Z
are given by (2.10), (2.17). This is done in the next subsection.
Before ending this subsection, we write down two useful formulae for Zε and
Qε. Firstly, we have,

〈Zε 	ξ fε, gε〉 =

∫
R6

vε(x, y)i
n2(x + ε

2
y) − n2(x − ε

2
y)

ε
ĝε(x, y)

=

∫ 1

−1

∫
R6

vε(x, y) iy · ∇n2(x +
εθy

2
) ĝε(x, y)dx dy dθ(4.8)

=

∫ 1

−1

∫
R6

Ψε(x, y, θ) dx dy dθ,
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with

(4.9) Ψε(x, y, θ) = uε(x +
ε

2
y)ūε(x − ε

2
y) iy · ∇n2(x +

εθy

2
) ĝε(x, y).

Also,

(4.10) 〈Qε, gε〉 = Re

∫
R6

wε(x + y)S(x)ĝε(ε[x +
y

2
], y) dx dy .

4.3. Bounds

In this section, we prove that the quantities (4.8), (4.10) are well defined,
and we pass to the limit in (4.8), (4.10) in the next subsection. To do so,
we decompose the integral

∫
R6 · · · in (4.8) into the following sets,

(4.11) Aε = {x ∈ R
3 , |ε1−0y| ≤ 1} , Bε = {|x| ≥ |εy| , |ε1−0y| ≥ 1} ,

Cε = {|x| ≤ |εy| , |ε1−0y| ≥ 1} .

On each of these sets, the method is to first take the L1
x norm of the product

uε(· · · )ūε(· · · ) thanks to the bound (3.12) on uε, and then to evaluate the
remaining integral in y. Assumption (3.3) together with Lemma 4.1.2 allow
indeed to obtain the desired integrability in y over each of these sets. Notice
that the bounds below, could be derived as well with the same sets but
defined with |εy| rather than |ε1−0y|; however, we need these sets for the
limit in the next subsection.

We now come to the details.

• On Aε, starting from (4.8), (4.9) and using Lemma 4.1.2, we write,

|Ψε(x, y, θ)| ≤ C
|uε|(x + · · · )
〈x + · · ·〉1/2+0

|ūε|(x − · · · )
〈x − · · ·〉1/2+0

〈x〉1+0〈x〉−N0
〈x〉M
〈y〉M−1

.

Then, we use M = 4 + 0 and N0 > M + 1 and therefore, first performing
the Cauchy-Schwarz inequality in x, then integrating in y, we obtain
(4.12)∫

Aε

|Ψε(x, y, θ)| ≤ C‖uε‖2
M ‖〈x〉N0∇xn

2(x)‖L∞(R3)

∫
|y|≤ε−1+0

〈y〉1−M dy

and thus, ∫
θ

∫
Aε

|Ψε(x, y, θ)| ≤ C‖uε‖2
M ‖〈x〉N0∇xn

2(x)‖L∞(R3) .
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• On Bε we write,

|Ψε(x, y, θ)| ≤ C
|uε|(x + εy/2)

〈x + εy/2〉1/2+0

|ūε|(x − · · · )
〈x − · · ·〉1/2+0

〈x〉1+0 |y| 〈x〉−N0
〈x〉M
〈y〉M .

Again, we choose N0 > M + 1 + 0 and we first perform the Cauchy-Schwarz
inequality in x. This yields∫

Bε

|Ψε(x, y, θ)| ≤(4.13)

≤ C‖uε‖2
M ‖〈x〉N0∇xn

2(x)‖L∞(R3)

∫
|y|≥ε−1+0

1

〈y〉M−1

≤ C‖uε‖2
M ‖〈x〉N0∇xn

2(x)‖L∞(R3) o(1) ,

where o(1) →ε→0 0, upon choosing M = 4 + 0.

• On Cε we argue exactly as above and, since εy dominates x now, we obtain∫
Cε

|Ψε(x, y, θ)| ≤

≤ C‖uε‖2
M ‖∇xn

2(x)‖L∞(R3)

∫
|y|≥ε−1+0

〈εy〉1+0 |y| 〈εy〉
M ∧ α−M

ε

〈y〉M ,

and it remains to control (with z = εy)

εM−4

∫
R3

〈z〉1+0 |z| 〈z〉
M ∧ α−M

ε

〈z〉M dz.

We now use, from (3.8), that for some γ > 0, αε ≥ εγ. Accordingly, the
above integral is upper bounded by

εM−4−γ(5+0)

∫
R3

〈z〉1+0 |z| 〈z〉
M ∧ 1

〈z〉M−1
dz,

and it remains to choose M > 5γ + 4. Putting these bounds together gives
again,

(4.14)

∫
θ

∫
Cε

|Ψε(x, y, θ)| ≤ C‖uε‖2
M ‖∇xn

2(x)‖L∞(R3) o(1) ,

where o(1) →ε→0 0.

As a conclusion, the above computations show the following statement:

For any N0 > 5, we have,

(4.15) |〈Zε 	ξ fε, gε〉| ≤ C ‖uε‖2
M ‖〈x〉N0∇xn(x)‖L∞ .
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4.4. Convergence of 〈Zε ∗ fε, gε〉
We decompose 〈Zε ∗ fε, gε〉 into the following form,

〈Zε ∗ fε, gε〉 =

=

∫ 1

θ=−1

∫
R6

uε(x +
εy

2
)ūε(x − εy

2
) iy ·

[
∇n2(x +

εθy

2
) −∇xn

2(x)
]

ĝε(x, y)

+

∫ 1

θ=−1

∫
R6

f̂ε(x, y) iy · ∇xn
2(x)

[
ĝε(x, y) − ĝ(x, y)

]

+

∫ 1

θ=−1

∫
R6

f̂ε(x, y) iy · ∇xn
2(x)ĝ(x, y)

:= Iε + IIε + IIIε .

• The most obvious term is IIIε. Indeed, the test function

y · ∇xn
2(x)ĝ(x, y)

involved in the definition of IIIε clearly belongs to Xλ for any λ > 0 suffi-
ciently close to zero, since∫

R3

sup
x∈R3

〈|x| + |y|〉1+0
∣∣y · ∇xn

2(x)ĝ(x, y)
∣∣ dy

≤ C

∫
R3

sup
x∈R3

〈|x| + |y|〉1+0 〈x〉−N0
〈x〉M
〈y〉M−1

dy

≤ C

∫
R3

sup
x∈R3

〈x〉1+M−N0+0 〈y〉−M+1 + C

∫
R3

sup
x∈R3

〈x〉M−N0 〈y〉2+0−M

≤ C

up to taking M = 4 + 0 in the first term and M = 5 + 0 in the second, and
since N0 > 5. Here we used (3.12), (3.3) and (4.5).

Since fε converges weak-∗ in X∗
λ (for any λ > 0), this establishes the

convergence,

IIIε → 〈f,∇xn
2 · ∇ξg〉 .

• We now come to the proof that Iε vanishes as ε → 0.
For this we again decompose the integral

∫
R6 · · · defining Iε according

to the sets Aε, Bε, Cε introduced in (4.11). We have already proved in the
previous subsection that the sets Bε and Cε give a vanishing contribution to
Iε as ε → 0 (see the terms o(1)).
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It remains therefore to estimate the contribution of the set Aε, namely,

∫ 1

θ=−1

∫
|y|≤ε−1+0

∫
x∈R3

uε(· · · ) ūe(· · · ) iy
[
∇xn

2(x +
εθy

2
) −∇xn

2(x)
]
ĝε(x, y)

≤ C ‖uε‖2
M sup

|y|≤ε−1+0

sup
x∈R3

〈x〉N0 |∇xn
2(x + εy) −∇xn

2(x)| →ε→0 0 ,

thanks to assumptions (3.3) and (3.4).

• We now come to the study of IIε.

Firstly, by reproducing the method of proof of Lemma 4.1.2, we may
write that, for any M ≥ 0,

〈y〉M
∣∣∣ĝε(x, y) − ĝ(x, y)

∣∣∣(4.16)

=
∣∣∣ ∫ +∞

s=0

Fξ→y〈i∂ξ〉M [exp(−αε|ξ|−1s) − 1] [
1

|ξ| R(x − ωs, ξ)] ds

≤ C 〈x〉M | exp(−αε〈x〉) − 1| + C αε 〈x〉M exp(−αε〈x〉) .

As in §4.3, we may therefore estimate, thanks to (4.16),

∣∣IIε

∣∣ =
∣∣∣ ∫

R6

uε(x +
εy

2
)ūε(x − εy

2
) y · ∇xn(x)

[
gε(x, y) − g(x, y)

]
dx dy

∣∣∣
≤ C ‖uε‖2

M

∫
R3

sup
x∈R3

〈|x| + |y|〉1+0 〈x〉−N0
〈x〉M
〈y〉M−1

×

×
[
| exp(−αε〈x〉) − 1| + αε exp(−αε〈x〉)

]
dy .(4.17)

Here we have used assumption (3.3) together with (3.12).

As we did while estimating IIIε, we readily observe that the assumption
N0 > 5 implies that the function

sup
x

〈|x| + |y|〉1+0 〈x〉−N0
〈x〉M
〈y〉M−1

is integrable in the y variable. Therefore, by the dominated convergence
theorem, the estimate (4.17) implies that

IIε −−→
ε→0

0 .
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4.5. Convergence of 〈Qε, gε〉
This step is essentially a reformulation of the method used in the paragraphs
§4.3 and §4.4 above.

Using Lemma 4.1.1 together with formula (4.10), we easily bound, using
assumption (3.7) and Lemma 4.1.2,

|〈Qε, gε〉| ≤

≤ C

∫
R6

|wε|(x + y)

〈x + y〉 1
2
+0

〈x + y〉 1
2
+0 〈x〉N1|S|(x) 〈x〉−N1

〈ε(x + y
2
)〉M ∧ α−M

ε

〈y〉M

≤ C

∫
R3

sup
x∈R3

〈|x| + |y|〉 1
2
+0 〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M ,

upon using the Cauchy-Schwarz inequality in x.

We now distinguish the cases |x| ≥ |y|, and |x| ≤ |y|. The term stemming
from the case |x| ≥ |y| gives a contribution which is estimated by,

C

∫
R3

〈y〉−M sup
x∈R3

〈x〉 1
2
+0−N1 [ 〈εx〉M ∧ α−M

ε ] dy

≤ C ε−γM ε−(γ+1)( 1
2
+0−N1)

∫
R3

〈y〉−M dy ≤ C ,

upon taking M = 3 + 0, and N1 > 1
2

+ 3γ
γ+1

. Also the contribution of the

term stemming from the case |x| ≤ |y| is easily bounded by

C

∫
R3

〈y〉 1
2
+0 〈εy〉M ∧ α−M

ε

〈y〉M dy −−→
ε→0

0 ,

thanks to the same argument leading to (4.14). This establishes that |〈Qε, gε〉|
is uniformly bounded in ε. More precisely, we may write,

(4.18) |〈Qε, gε〉| ≤ C ‖wε‖M ‖〈x〉N1S(x)‖L2 ,

for any N1 > 3γ
γ+1

+ 1
2
.

Then, in order to compute the limit of 〈Qε, gε〉 in ε, we may write,

〈Qε, gε〉 =

∫
R6

wε(x + y) S(x)
[
ĝε(ε(x +

y

2
), y) − ĝε(0, y)

]
dx dy

+

∫
R6

wε(x + y)S(x)
[
ĝε(0, y) − ĝ(0, y)

]
dx dy

+

∫
R6

wε(x + y) S(x) ĝ(0, y) dx dy

:=Iε + IIε + IIIε .
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Reasoning as in §4.4 above, it is straightforward to deduce from (4.18) to-
gether with assumption (3.7) and Lemma 4.1.2 that

Iε −−→
ε→0

0 , IIε −−→
ε→0

0 .

Also, using the strong convergence of wε as stated in lemma (4.1.1) readily
implies,

IIIε −−→
ε→0

∫
R6

w(x + y) S(x) ĝ(0, y) dx dy.

This ends the proof of convergence of Qε.

From the results above, together with formula (4.6), we readily deduce
(4.7) by taking the limit ε → 0. This proves the radiation condition (3.11)
in Theorem 3.1.2.

Appendix A1. Explicit formula in three dimensions

In order to give an explicit example of the above theory, we consider in three
dimensions, the particular case n = 1, S = δ, αε = 0. Although it does not
enter our assumptions (mainly because S is too singular here) it contains
the main effects for the high frequency limit. We have

uε =
ei|x|/ε

4π|x| . (A1.1)

Also, for ε = 1 we have

Fu1 =
1

(2π)3
[pv

1

1 − |ξ|2 + i
π

2
δ(|ξ| = 1)] .

This is easily seen by a Fourier Transform of the Helmholtz equation (1.2)
as αε vanishes. We can also compute its Wigner Transform. Firstly, we have

vε(x, y) =
1

(4π)2

eiy·x/|x|

|x|2 + O(ε).

The limiting transport equation is therefore

ξ · ∇xf =
1

(4π)2
δ(x)δ(|ξ| = 1),

whose solution, with the outgoing condition at infinity, is given by

f(x, ξ) =
1

(4π)2

δ(ξ + x/|x|)
|x|2 =

1

(4π)2

∫ ∞

0

δ(x + ξs) δ(|ξ| = 1) ds .

In particular, it is a locally (in x) bounded measure, but not a globally
bounded measure, since the mass of {x = x0}×R

3
ξ is equal to (4π)−2|x0|−2.
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Appendix A2. The 1D case

In the one dimensional case the formulas differ somewhat. We write the
Helmholtz equation

∆uε +
(n(x)

ε

)2

uε = −2

ε
Sε(x), x ∈ R, (A2.1)

together with the outgoing condition at infinity. Following the three dimen-
sional case (Section 2), we now obtain the geometrical optics equations

ξ · ∇xf +
1

2
∇xn

2(x) · ∇ξf = δ(x)[δ(ξ + 1) + δ(ξ − 1)]. (A2.2)

Indeed, we compute, in the special case n = 1, Sε = δ,

using
ε = iei|x|/ε. (A2.3)

Its Fourier Transform is, for ε = 1,

Fusing
1 =

1

2π

[
pv

2

1 − |ξ|2 − iπ[δ(ξ + 1) + δ(ξ − 1)]
]
. (A2.4)

Its Wigner Transform is simply

f sing
ε (x, ξ) = −δ(ξ − x/|x|) + O(ε). (A2.5)

Again we check that its limit, as ε vanishes, satisfies the geometrical optics
equation (A2.2), or in other words

δ(ξ − x/|x|) =

∫ +∞

0

δ(x − ξs)[δ(ξ + 1) + δ(ξ − 1)]ds.
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35042 Rennes Cédex
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