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Unrecti�able ��sets have

vanishing analytic capacity

Guy David

R�esum�e� On compl�ete la d�emonstration d�une conjecture de Vitush�
kin� si E est une partie compacte du plan complexe de mesure de Haus�
dor� unidimensionelle nulle� alors E est de capacit�e analytique nulle
	toute fonction analytique born�ee sur le compl�ementaire de E est con�
stante
 si et seulement si E est totalement non recti�able 	l�intersection
de E avec toute courbe de longueur �nie est de mesure de Hausdor�
nulle
� Comme dans un papier pr�ec�edent avec P� Mattila� la d�emons�
tration repose sur un crit�ere de recti�abilit�e utilisant la courbure de
Menger� et une extension d�une construction de M� Christ� L��el�ement
nouveau principal est une g�en�eralisation du th�eor�eme T 	b
 sur certains
espaces qui ne sont pas n�ecessairement de type homog�ene�

Abstract� We complete the proof of a conjecture of Vitushkin that says
that if E is a compact set in the complex plane with �nite �dimensional
Hausdor� measure� then E has vanishing analytic capacity 	i�e�� all
bounded analytic functions on the complement of E are constant
 if
and only if E is purely unrecti�able 	i�e�� the intersection of E with
any curve of �nite length has zero �dimensional Hausdor� measure
�
As in a previous paper with P� Mattila� the proof relies on a recti�ability
criterion using Menger curvature� and an extension of a construction of
M� Christ� The main new part is a generalization of the T 	b
�Theorem
to some spaces that are not necessarily of homogeneous type�

���
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�� Introduction�

The main goal of this paper is to complete the proof of Vitushkin�s
conjecture on �sets of vanishing analytic capacity�

Let E be a compact set in the complex plane� We say the E has
vanishing analytic capacity if all bounded analytic functions on C nE are
constant� Ahlfors 	�Ah�
 proved that E has vanishing analytic capacity
if and only if it is removable for bounded analytic functions� i�e�� if for
all choices of an open set � � E and a bounded analytic function f on
�nE� f has an analytic extension to ��

It was conjectured by Vitushkin 	�Vi�
 that if E is a compact set
such that � � H�	E
 � ��� then E has vanishing analytic capacity
if and only if E is totally unrecti�able 	or irregular in the terminology
of Besicovitch
� which means that H�	E � G
 � � for all recti�able
curves G� Here H� denotes one�dimensional Hausdor� measure� Ac�
tually� Vitushkin�s conjecture also said something about the case when
H�	K
 � ��� but this part turned out to be false 	�Ma�
�

The �rst half of this conjecture was obtained as a consequence
of A� P� Calder�on�s result on the boundedness of the Cauchy integral
operator on L�	�
 when � is a C��curve 	or even a Lipschitz graph
with small constant
 in the plane 	�Ca�
� Indeed� if E is a compact
subset of a recti�able curve and H�	E
 � �� there is a C��curve � such
that H�	E � F 
 � �� and one can use Calder�on�s theorem and a nice
duality argument of Uy 	�Uy�
 or Havin and Havinson 	�HH�
 to �nd
non constant bounded analytic functions on C n	E�F 
� Thus E cannot
be removable for bounded analytic functions if H�	E�G
 � � for some
recti�able curve G� See for instance �Ch� for a recent treatment of this
result�

Our main result is as follows�

Theorem ���� Let E � C be a compact set such that H�	E
 � ��
and E is totally unrecti�able� Then E has vanishing analytic capacity�

Progress in the direction of Theorem � has been quite slow for
some time� because one was not able to relate nicely information on
the Cauchy kernel 	typically� the existence of a bounded function on E
whose Cauchy integral is bounded on C nE
 to the geometry of E� Then
M� Melnikov introduced �Menger curvature� in connection to analytic
capacity 	�Me�
� This was rapidly followed by a result on the Cauchy
operator 	�MV�
 and the proof of Theorem � in the special case when
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E is Ahlfors�regular 	�MMV�
� This last means that there is a constant
C � � such that

	��
 C�� r � H�	E � B	x� r

 � C r �

for all x � E and � � r � diamE�
H� Pajot 	�Pa�
 observed that Ahlfors�regularity can be replaced

with the weaker condition that

	��


��
�

lim inf
r��

	r��H�	E � B	x� r


 � � �

lim sup
r��

	r��H�	E � B	x� r


 � �� � for all x � E �

	This last is a su�cient condition for E to be contained in a countable
union of Ahlfors�regular sets�
 The method for these papers uses the
miraculous positivity properties of Menger curvature� but also relies on
standard Calder�on�Zygmund techniques such as the T 	
�theorem� For
these it is very useful to know that E is Ahlfors�regular� or at least that
the restriction of H� to E is doubling� i�e�� that H�	E � B	x� � r

 �
CH�	E � B	x� r

 for all x � E and � � r � diamE 	�Li�
�

It turns out that the general Calder�on�Zygmund techniques used
by �Ch�� and �MMV� do not fail in the general case when � � H�	E
 �
��� but merely become much more painful to apply� This was 	par�
tially
 observed in �DM�� where the analogue of Theorem � for Lips�
chitz harmonic functions 	instead of bounded analytic
 is proved� The
present paper will rely on the construction of �DM��

Before we start a short description of the argument� let us ob�
serve that it is very easy to show that E is removable for bounded
analytic functions if H�	E
 � � 	apply Cauchy�s formula on curves of
arbitrarily small lengths that surround E
� Also� compact sets of di�
mension d �  are not removable� one can construct bounded analytic
functions by taking Cauchy integrals of positive measures � such that
�	B	x� r

 � C rd

�

for some d� � 	� d
� such measures can be obtained
from Frostman�s lemma� Thus the only unclear situation left is when
E has dimension  and H�	E
 � ��� See for instance �Ga�� �Ch��
�Ma��� or �Vi� for general information about analytic capacity�

Let us now describe our strategy for proving Theorem �� More
details will be given in the course of the paper� but the reader may want
to use this description to avoid getting lost in unimportant complica�
tions�

Let E � C be compact� and assume that H�	E
 � �� and E
does not have vanishing analytic capacity� we want to prove that E has
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a non trivial recti�able piece� By easy manipulations� we can �nd a
bounded analytic function h on C nE such that h	�
 � � and h�	�
 �
limz�� z h	z
 �� a � �� It is not hard to show that

	��
 h	z
 �

Z
E

f	y
 d�	y


z � y
� for z � C nE �

where � denotes the restriction of H� to E 	i�e�� �	A
 � H�	A � E

for all Borel sets A
 and f is some bounded measurable function on
E� This is Theorem ��� in �Ma��� To prove it one surrounds E by
a sequence of 	�nitely connected
 curves �n and one applies Cauchy�s
formula to them� eventually f d� comes out as a weak limit of measures
h	y
 dy on curves �n�

The �rst stage of our argument consists in replacing f d� with a
new �nite measure g d� with the following properties�

	��
 � � �	B	x� r

 � C r � for all x � C and r � � �

g is bounded acccretive� i�e��

jg	x
j � C � Re g	x
 � C�� for all x � C �	��


Z
g d� �

Z
f d� � a � � �	��


there is a Borel set F � E such that

	� 
 C��� � � � � on F and �	F 
 �
a

�
�

	the �rst half means that C���	A
 � �	A
 � �	A
 for all Borel subsets
A of F 
� and

	��

the Cauchy integral of g d� lies

in an appropriate space BMO	d�
 �

The measure g d� will be imported directly from �DM�� where it was
constructed for very similar reasons 	see in particular Theorem ��� in
�DM�
� the properties 	��
�	� 
 are the same as 	���
�	�� 
 in �DM��
and 	��
 will have to be made more precise and proved� starting from
the corresponding L��estimate 	���
 in �DM�� The construction of g d�
is very similar in spirit to a construction of M� Christ 	�Ch��
� who used
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it to show that if E is a regular set with positive analytic capacity� then
there is another Ahlfors�regular set G such that H�	E�G
 � � and for
which the Cauchy integral de�nes a bounded operator on L�	G
� At
that time� �MMV� did not exist� and so M� Christ could not conclude
that G is uniformly recti�able� The proof of boundedness of the Cauchy
operator on L�	G
 was directly deduced from the analogues of 	��
 and
	��
 by the T 	b
�theorem 	on G
�

The construction of g d� in �Ch�� and �DM� relies on the existence
on E of an analogue of the decomposition of Rn into dyadic cubes� The
general scheme is to replace f d� by measures that live on small circles
on 	maximal
 �cubes� Q � E where Re

R
f d� is a little too small� The

construction is less pleasant in �DM� than in �Ch��� because one has to
�nd slightly di�erent ways to deal with the �small boundary property�
of the constructed �dyadic cubes� when � is not doubling� Nonetheless
the spirit is the same�

In �DM� we could not continue as in �Ch��� because we did not
have an appropriate T 	b
�theorem� This is the reason why we restricted
to Lipschitz harmonic capacity� If H�	E
 � �� and E has positive
Lipschitz harmonic capacity� then we can get f d� 	and then g d�
 as
above� but with f real�valued 	and hence g	x
 � C��
 in addition�
Then we do not need Stage � below� and we can use the argument of
Stage � below to �nd that F is recti�able 	and hence that E is not
totally unrecti�able
�

In the present situation� g is not necessarily positive and we can�
not apply directly the positivity argument with Menger curvature from
�MMV� 	see below
� as in �DM�� So we�ll prove a T 	b
�theorem on
!E � supp 	�
 and apply it to the truncated operators T� given by

	��
 T�f	x
 �

Z
jx�yj��

f	y
 d�	y


x� y
�

to get uniform bounds on the norm of T� on L�	 !E� d�
� Once again�
the proof of the T 	b
�theorem of Section � will follow rather classical
outlines� we shall use the dyadic cubes from �DM�� construct a version of
the Haar system adapted to those cubes and the accretive function b �
g� remove a �paraproduct� that takes care of Tb and T tb� and prove that
the matrix of the remaining operator in the modi�ed Haar system has
su�cient decay away from the diagonal to allow a use of Schur�s lemma�
This is the same program as in the proof of the 	standard
 T 	b
�theorem
by Coifman�Semmes 	�CJS�
 or Auscher�Tchamitchian 	�AT�
� See also
�Da� or �My� for a presentation of this scheme and �DJS� for the original
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T 	b
 paper� Here again� the fact that � is not necessarily doubling will
create trouble� but altogether nothing dramatic� See sections ��� for
the details�

We shall also need to spend some time checking that our T 	b
�
theorem applies to the space 	 !E� d�
 and the function b � g 	see sections
���
� In particular we�ll have to build cubes adapted to d�� and then
check the appropriate version of 	��
�

At the end of this 	call it Stage �
� we know that the truncated
Cauchy operators T� are bounded on L�	d�
� with bounds that do not
depend on �� In particular�

	�
 kT�k
�
L��d�� � C �

where C does not depend on � � �� A brutal expansion of 	�
 gives
that

	��


Z
x� �E

�Z
jx�yj��

d�	y


x� y

��Z
jx�zj��

d�	z


x� z

�
d�	x
 � C �

	There is no problem of convergence here and in the lines that follows�
because � is a �nite measure�
 The domain of integration in 	��
 is
U	�
 	 V 	�
� where

	��
 U	�
 �
�
	x� y� z
 � !E� � � � jx� yj� jx� zj� jy � zj

�
and

	��
 V 	�
 �
�
	x� y� z
 � !E� � jx�yj � �� jx�zj � � and jy�zj � �

�
�

A fairly brutal computation gives that

	��


ZZZ
V ���

d�	x
 d�	y
 d�	z


jx� yj jx� zj
� C �

see �MV� 	�
�� and note that the 	very short
 proof only uses 	��
� Thus

	��

���
ZZZ

U���

d�	x
 d�	y
 d�	z


	x� y
 	x� z


��� � C �

Now we want to use the following nice formula �Me�� for each triple
	z�� z�� z�
 of distinct points of C �

	��

X
��G�



	z���� � z����
 	z���� � z����

� c�	z�� z�� z�
 �
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where we sum over the group G� of permutations of f� �� �g and
c	z�� z�� z�
 denotes the Menger curvature of the triple 	z�� z�� z�
� i�e��
the inverse of the radius of the circle that goes through z�� z�� z�� 	When
the three points are on a line� set c	z�� z�� z�
 � ��
 This is �Me� 	�
�
p�  ���� Because the integral in 	��
 is invariant under permutations
of x� y� z� we can use 	��
 to get that

	� 


ZZZ
U���

c�	x� y� z
 d�	x
 d�	y
 d�	z
 � C �

still with a constant C that does not depend on �� Hence 	by positivity
�

	��
 c�	�
 ��

ZZZ
�E�

c�	x� y� z
 d�	x
 d�	y
 d�	z
 � C �

We shall call c	�
 the Melnikov curvature of the measure ��
At this point we can use a theorem of David and L�eger 	�L�e�
�

which says that if � is a �nite measure on C such that 	��
 holds�
c�	�
 � ��� and if !E� the support of �� has �nite H��measure� then
� is recti�able� This means that !E is contained in a countable union
of recti�able curves� plus possibly a set of ��measure zero� The set
!E � F � where F is as in 	� 
� is also recti�able� and hence meets some
recti�able curve on a set of H��measure greater than �� This third stage
completes the 	sketch of
 proof of Theorem ��

Theorem � leaves open the characterization of vanishing analytic
capacity for compact subsets of the plane such that H�	E
 � �� but
dimension 	E
 � � The obvious generalization of Vitushkin�s conjec�
ture where one would demand that

	���
 H�		�	E

 � � � for almost every 
 � R �

where 	� denotes the orthogonal projection onto the line of direction ei��
does not work� P� Mattila 	�Ma�
 showed that 	���
 is not preserved
when we replace E with its image under conformal mappings� while
vanishing analytic capacity is� P� Jones and T� Murai 	�JM�
 later
found examples of compact sets E � C with positive analytic capacity
and such that 	���
 holds� It is not known yet whether there are
compact sets of vanishing analytic capacity for which 	���
 does not
hold� M� Melnikov likes to conjecture that compact sets E have positive
analytic capacity if and only if there is a 	nonzero
 positive measure �
supported on E and such that �	B	x� r

 � C r for all x � E and r � ��
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and c�	�
 � ��� Note that the �if� part of this conjecture is proved
in �Me��

�� Construction of a Haar system�

In this section we are given a Borel subset E of some RN and a
�nite Borel measure � on E� We are also given a sequence of partitions
of E into Borel subsets Q� Q � "k� k � �� with the following properties�

��
 for each integer k � �� E is the disjoint union of the sets Q�
Q � "k�

���
 if � � k � �� Q � "k� and R � "�� then either Q � R � � or
else R � Q�

���
 �	Q
 � � for all Q � "k and all k � ��

���
 diamQ � C�A
�k for all k � � and Q � "k�

���
 for each k � � and each Q � "k� the number of R � "k��

such that R � Q is � C��

Here C� and A �  are two constants that do not depend on k
or Q� and diamQ is the diameter of Q� The sets Q� Q �

S
k"k� will

be called cubes� or dyadic cubes 	even though they should probably be
called A�adic�
 In the later sections� more will be required from these
cubes� but the properties ��
����
 will be enough for the moment�

For each cube Q� we shall denote by k	Q
 the integer k such that
Q � "k� and by d	Q
 � A�k�Q� its o�cial approximate size� We
should mention now that diamQ may be much smaller than d	Q
� and
also that a given subset of E could be equal to Q for a few di�erent
cubes Q coming from di�erent generations k	Q
� When we talk about
a cube Q� we shall always mean both the set Q itself and the knowledge
of the generation k	Q
�

If Q is a cube of generation k	Q
 � � then there is a unique cube
#Q � "k�Q��� which contains Q� and which we�ll call the parent of Q�
The children of Q are the cubes R � "k�Q��� that are contained in Q�
We shall denote by F 	Q
 the set of children of Q� Note that in some
instances F 	Q
 will be reduced to only one child� the set Q itself� At
any rate� ���
 says that F 	Q
 never has more than C� elements�

In this section we want to construct a Riesz basis of L�	E� d�

which is adapted to the above decomposition of E into cubes� and a
given accretive function b� This Riesz basis will be analogous to the
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Haar basis� which corresponds to the case of E � ��� � � R� equipped
with the Lebesgue measure� the usual dyadic intervals� and b 
 � The
construction given below is very similar to one initially used for �CJS� or
�AT�� but we shall need to repeat the argument to convince the reader
that nothing more than ��
����
 is needed� For personal convenience
reasons� we shall stay pretty close to the argument given in �Da��

Our function b is Borel�measurable� complex�valued� and bounded
and accretive� This means that

	���
 jb	x
j � C and Re b	x
 � C�� � for all x � E �

In fact� we shall only use the paraaccretivity condition that b is bounded
and

	���

���
Z
Q

b d�
��� � C���	Q
 � for all cubes Q �

but this will not matter for our only application�
We start our construction with the de�nition of a few projection

operators� For x � E and k � �� denote by Qk	x
 the cube of "k that
contains x� Then set� for each f � L�	E� d�
�

	�� 
 Ekf	x
 � �	Qk	x


��

Z
Qk�x�

f d� �

This is the standard orthogonal projection on the set of functions that
are constant on each cube Q � "k� Also set

	���
 Dk � Ek�� � Ek � k � � �

and then de�ne the corresponding twisted operators Fk and Zk by

	���
 Fkf	x
 �
�Z

Qk�x�

b d�
��� Z

Qk�x�

f b d�

and

	��
 Zk � Fk�� � Fk �

We need a few easy facts concerning these operators� First�

	���


Z
Q

	Fkf
 b d� �

Z
Q

f b d� � for all Q � "k �
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which is clear from 	���
� Next�

	���
 FjFk � Fj�k �

with j�k � minfj� kg� When j � k� we observe that Fkf is constant on
all cubes Q � "k� and hence also on cubes of "j � Then FjFkf � Fkf�
When j � k� 	���
 says that

Z
Q

	Fkf
 b d� �

Z
Q

f b d� �

for all Q � "k� and hence all cubes Q � "j � Then FjFkf � Fjf� by
de�nition of Fj � This proves 	���
� Next

	���
 ZjZk � �j�k Zj �

because

ZjZk � 	Fj���Fj
 	Fk���Fk
 � Fj��Fk���FjFk���Fj��Fk�FjFk �

A brutal computation using 	���
 gives the result�
Let us also check that

	���


Z
	Zk u
 	Z� v
 b d� � � � for u� v � L�	d�
 and k �� � �

We can assume that k � �� Since Z� v is constant on each cube of "k�
it is enough to show that

	���


Z
Q

	Zk u
 b d� � � � for all Q � "k �

This last holds becauseZ
Q

	Fk u
 b d� �

Z
Q

	Fk�� u
 b d� �

Z
Q

f b d�

by 	���
�
Next we check that E� and the Dk� k � �� provide an orthonormal

decomposition of L�	d�
� First observe that if E denotes the set of
	�nite
 linear combinations of characteristic functions of cubes� then

	���
 E is dense in L�	d�
 �
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This is an easy consequence of 	���
� or more precisely of the fact that
we can decompose E into disjoint unions of cubes of arbitrarily small
diameters� because continuous functions are dense in L�	d�
� Then

	�� 
 f � lim
k��

Ekf 	with convergence in L�	d�

 �

for all f � L�	d�
� because this is obviously true when f � E � and the
operators Ek are uniformly bounded� Also� the decomposition

	���
 Ekf � E�f �
k��X
�	�

D� f

is orthogonal� The orthogonality of the D��s among themselves comes
for instance from 	���
 with b 
 � and they are orthogonal to E� by
	���
 with b 
 � Because of this and 	�� 
�

	����
 kfk�� � kE�fk
�
� �

X
���

kD�fk
�
� �

for all f � L�	d�
�
We want to prove similar estimates for F� and the Z��s� but �rst

we need a few facts about Carleson measures�

De�nition ����� A Carleson measure on E  N is a measure � �
f�kgk�� on E  N such that

	����
 �	Q fk � N � k � k	Q
g
 ��
X

k�k�Q�

�k	Q
 � C �	Q
 �

for all cubes Q� and with a constant C that does not depend on Q�

Recall that k	Q
 denotes the generation of Q� The de�nition is
very analogous to the de�nition of discrete Carleson measures on the
upper half space� one should not be disturbed by the fact that the role
of t � � is played by A�k� k � N � in our situation� Here is Carleson�s
theorem in our context�

Lemma ����� Let � � f�kgk�� be a Carleson measure on EN � Also
let f � L�	d�
 and a sequence ffkgk�N of functions be given� If

	����
 jfk	x
j � �	Qk	x


��

Z
Qk�x�

jf j d� �
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for all k � � and x � E� then

	����


Z
	jfkj

�
k d� ��
X
k

Z
jfkj

� d�k � C kfk�� �

To prove this� we �rst need estimates on the maximal function

	����
 f�	x
 � sup
k
�	Qk	x



��

Z
Qk�x�

jf j d� �

We start with the usual weak�L� estimate� Let f � L�	d�
 and  � �
be given� and set O	
 � fx � E � f�	x
 � g� Also denote by M	

the collection of maximal cubes Q with the property that

	����


Z
Q

jf j d� � �	Q
 �

	These are the cubes such that 	����
 holds and either Q � "� or else
none of the ancestors of Q satis�es 	����
�
 By de�nitions� the cubes Q
are disjoint 	because they are maximal
 and cover exactly O	
� Then

	��� 
 �	O	

 �
X

Q�M�

�	Q
 � ��
X

Q�M�

Z
Q

jf j d� � �� kfk� �

Thus the maximal operator f �� f� maps L�	d�
 boundedly into
weak�L�	d�
� Since it is also clearly bounded on L�	d�
� real interpo�
lation gives that

	����
 kf�k� � C kfk� � for f � L�	d�
 �

Now let f and ffkg be as in the lemma� and set

	����
 U	
 � f	x� k
 � E  N � jfk	x
j � g �

for each  � �� If 	x� k
 � U	
� then

�	Qk	x


��

Z
Qk�x�

jf j d� � jfk	x
j � 

by 	����
� and hence Qk	x
 is contained in one of the cubes of M	�
Thus

	���
 U	
 �
	

Q�M�

Q fk � k	Q
g
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and then

	����


�	U	

 �
X

Q�M�

�	Q fk � k	Q
g


� C
X

Q�M�

�	Q
 � C �	O	

 �

where O	
 is as above� and by 	����
 and the �rst part of 	��� 
�
Thus the function of repartition of ffkgk�� for the measure � is

dominated by the function of repartition of f� for �� the desired esti�
mate 	����
 follows from this and the maximal theorem 	����
� This
proves Lemma �����

Lemma ����� For every f � L�	d�
�

	����
 f � F�f �
X
k��

Zkf �

where the series converges in L�	d�
� and

	����
 C��kfk�� � kF�fk
�
� �

X
k��

Z
jZkf j

� d� � C kfk�� �

Of course the constant C is not allowed to depend on f � it depends
only on the accretivity constant in 	���
�

The formula 	����
 obviously holds when f � E 	and then the sum
is �nite
� because Fkf � f as soon as f is constant on all the cubes
of "k� The general case follows by density of E � plus the fact that the
operators Fk are uniformly bounded on L�� by their de�nition 	���

and the accretivity condition 	���
� 	Look at the e�ect of Fk on each
cube Q � "k separately�


Now we want to prove the second inequality in 	����
� Write

	����


Zkf � Fk��f � Fkf

� 	Ek�� b

��Ek��	bf
� 	Ek b


��Ek	bf


� 		Ek�� b

�� � 	Ek b


��
Ek��	bf


� 	Ek b

�� 	Ek��	bf
�Ek	bf

 �
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and then use the fact that 	Ek�� b

��	Ek b


�� is bounded because of
	���
 to get that

	����
 jZkf j
� � C jDk bj

� jEk��	bf
j
� � C jDk	bf
j

� �

We can easily take care of the second piece� because

	��� 

X
k��

Z
jDk	bf
j

� d� �
X
k

kDk bfk
�
� � kbfk�� � C kfk�� �

by 	����
� For the �rst piece� we want to use Lemma ���� with the
sequence ffkg given by fk � Ek	bf
� k � � Obviously

jEk	bf
	x
j � �	Qk	x


��

Z
Qk�x�

jbf j d� �

for all x � E� and so 	����
 holds 	modulo an inessential constant
�
We also want to take �k � jDk�� bj� d� for k � � and we have to

check that this is a Carleson measure� Thus we take a cube Q and try
to estimate X

k�k�Q�

Z
Q

jDk�� bj
� d� �

When k � k	Q
� Dk�� b � Dk��	b�Q
 on Q by de�nitions� and so

	����


X
k�k�Q�

Z
Q

jDk�� bj
� d� �

X
k

Z
jDk��	b�Q
j

� d�

� kb�Qk
�
�

� C �	Q


by 	����
 and the fact that b is bounded� The last term
R
Q
jDk�Q� bj

� d�

is at most C �	Q
 because kDk�Q� bk� � � kbk�� and so f�kgk�� de�nes
a Carleson measure� By Lemma �����

	����

X
k��

Z
jDk�� bj

� jEk	bf
j
� d� � C kfk�� �

We are left with a last term� k � �� For this one�

	���


Z
jD� bj

� jE�	bf
j
� d� � C kE�	bf
k

�
� � C kfk�� �
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by a brutal estimate� From 	����
� 	��� 
� 	����
 and 	���
 we deduce
that

	����

X
k��

Z
jZkf j

� d� � C kfk�� �

Since we also have that

kF�fk
�
� �

X
Q�
�

����
Z
Q

b d�
����Z

Q

f b d�
������	Q


� C
X
Q�
�

Z
Q

jf bj� d�

� C kfk�� �

by Cauchy�Schwarz� we get the second half of 	����
�

The �rst half of 	����
 will now follow by duality� We write

f � F�f �
X
k

Zk f

and

b�� f � F�	b
�� f
 �

X
k

Zk	b
�� f


as in 	����
� and then

	����
 kfk�� �

Z
f 	b�� f
 b d� �

which we expand as suggested above� Note that for k �� ��

Z
	Zkf
 	Z�	b

�� f

 b d� � �

by 	���
� and also that

Z
	F�f
Zk	b

�� f
 b d� �

Z
F�	b

�� f
Zk	f
 b d� � � �
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for all k because F�	f
 and F�	b
�� f
 are constant on cubes of "� and

by 	���
� Thus

kfk�� �
���
Z
	F�f
 	F�	b

�� f

 b d�
����X

k

���
Z
	Zkf
 	Zk	b

�� f

 b d�
���

� C kF�fk� kF�	b
�� f
k� � C

X
k

kZkfk� kZk	b
�� f
k�

� C
�
kF�fk

�
� �

X
k

kZkfk
�
�

��
�

�
�
kF�	b

�� f
k�� �
X
k

kZk	b
�� f
k��

��
�	����


� C
�
kF�fk

�
� �

X
k

kZkfk
�
�

��
�
kb�� fk�

by Cauchy�Schwarz 	twice
 and the second half of 	����
 	applied to
b�� f
� Of course kb�� fk� � C kfk�� so we may divide both sides of
	����
 by kfk� 	if f �� �
 and get the �rst half of 	����
�

This completes the proof of Lemma �����

For each cube Q� denote byW�	Q
 the vector space of all functions
f that are supported on Q and constant on each of the children of Q�
Also let W 	Q
 be the set of functions f �W�	Q
 such that

	����


Z
Q

f b d� � � �

Let r denote the number of children of Q� thus  � r � C� by 	���
�
The dimension of W�	Q
 is obviously r� Since the condition 	����
 is
not degenerate on W�	Q
 	because �Q does not satisfy 	����

� W 	Q

is an 	r � 
�dimensional space�

We want to �nd an appropriate basis of W 	Q
� If r � � i�e�� if
Q has only one child� then W 	Q
 � f�g and there is nothing to do�
Otherwise we set D � D	Q
 � f� �� � � � � r � g and look for a basis
fh�Qg��D of W 	Q
 such that

	����


Z
Q

h�Q h
��

Q b d� � ����� �
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for �� �� � D� and where ����� �  if � � �� and � otherwise� It will be
convenient for us to add the function

	����
 h�Q �
� Z

Q

b d�
���
�

�Q �

where the choice of square root is irrelevant� to get a basis of W�	Q
�
With this choice of h�Q� we�ll even have 	����
 for all �� �� � D� �

f�� � � � � � r � g� because
R
Q
h�Q b d� � � if h�Q � W 	Q
� by 	����
�

Denote by ���R �	R

��
� the constant value of h�Q on the child R �

F 	Q
 of Q� Thus we want to look for h�Q under the form

	��� 
 h�Q �
X

R�F �Q�

���R �	R
��
� �R �

We have already decided that

���R �
�Z

Q

b d�
���
�

�	R
�
� �

Set bR � �	R
��
R
R
b d� for all R � F 	Q
� Note that these numbers are

bounded and bounded away from � by 	���
� With all these notations�
our constraints 	����
 are equivalent to

	����

X

R�F �Q�

���R ����R bR � ����� � for �� �� � D� �

Lemma ���	� We can �nd complex numbers ���R�  � � � r �  and

R � F 	Q
� such that 	����
 holds and j���Rj � C for some constant C
that depends only on the accretivity constant in 	���
 and C� in 	���
�

To prove the lemma� some additional notation will be useful� De�
�ne a bilinear form h� � �ib on C

r 	indexed by the set F 	Q
 of children
of Q
 by

hv� wib �
X
R

vR wR bR �

where v � 	vR
 and w � 	wR
�
Now suppose we already chose coe�cients ���R� � � � � k � �

for some k � f� � � � r � g� in such a way that the equations in 	����

hold for � � �� �� � k � � 	We already did this with k � �
 Call v��
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� � � � k� � the vector of C r with coordinates ���R� R � F 	Q
� With
our new notations�

	���
 hv�� v��ib � ����� � for � � �� �� � k �  �

We want to de�ne a new vector vk� Set

	����
 V � fv � C
r � hv� v�i � � for � � � � k � g �

Because k � r � � V is at least one�dimensional and in particular is
not empty� Select a �rst vector z �� � in V � Because the numbers bR
are all �� �� we can �nd w � C r such that hz� wib �� �� Since the jbRj
are bounded from below� we can even choose z and w with bounded
coe�cients� and with hz� wib � �

We want to modify w to get a vector in V � Set

	����
 v � w �
X

�	k��

hw� v�ib v� �

Then

	����
 hv� v��ib � hw� v��ib �
X
�

hw� v�ib hv�� v��ib � � �

for all �� � k � � because of 	���
� Hence v � V � as desired� Also�

	����
 hz� vib � hz� wib �
X

�	k��

hw� v�ib hz� v�ib � hz� wib �  �

because z � V �
Choose among z� v� and z � v the vector x for which jhx� xibj is

largest� Note that if jhz� zibj and jhv� vibj are less than ��� then

jhz � v� z � vibj � jhz� zib � hv� vib � � hz� wibj �  �

by 	����
� so that jhx� xibj � �� in all cases� We take

vk � 	hx� xib

��
� x �

It is easy to see that vk has coe�cients �k�R� R � F 	Q
� that can
be bounded in terms of the j���R� j� � � k �  and R� � F 	Q
� and
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the accretivity constant for b� With this choice of vk� we now have the
identities in 	����
 for �� �� � k� The lemma follows by induction�

Let us choose the coe�cients ���R as in Lemma ����� This de�nes
functions h�Q� � � D � D	Q
� that lie in W 	Q
 and satisfy 	����
� Set

	����
 hf� gib �

Z
f g b d� � for f� g � L�	d�
 �

With this notation� 	����
 is the same as

	����
 hh�Q� h
��

Qib � ����� � for �� �� � D	Q
 �

Lemma ���
� The functions h�Q� � � D	Q
� form a basis of W 	Q
�
and

	����
 f �
X

��D�Q�

hf� h�Qib h
�
Q � for all f �W 	Q
 �

In addition�

	����
 C��kfk�� �
X

��D�Q�

jhf� h�Qibj
� � C kfk�� �

for all f �W 	Q
� with a constant C that depends only on the constants

in 	���
 and 	���
�

Indeed� if f �W 	Q
 can be written as f �
P

��D c� h
�
Q� then

hf� h�Qib �
X
��

c�� hh
��

Q� h
�
Qib � c� �

by 	����
� Applying this with f � � gives the independence of the
functions h�Q� we then deduce that they form a basis of W 	Q
 because
we know that dimension 	W 	Q

 � r � � Thus all f � W 	Q
 can be
written as f �

P
��D c� h

�
Q� and the computation above shows that the

c� are as in 	����
�
From the formula 	��� 
 and the fact that the coe�cients ���R are

bounded� we deduce at one that

	���
 jh�Qj � C
X

R�F �Q�

�	R
��
� �R �
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In particular�

	����
 kh�Qk� � C �

If f �W 	Q
� then 	����
 implies that

kfk� �
X
��D

jhf� h�Qibj kh
�
Qk� � C

�X
��D

jhf� h�Qibj
�
��
�

�

by the equivalence of the �� and ���norms in C r�� � and the fact that
r � C�� Similarly�

X
��D

jhf� h�Qibj
� � C� kfk

�
� �

by Schwarz and 	����
� This completes our proof of Lemma ��� �

Proposition ����� Every function f � L�	d�
 can be written as

	����
 f � F�f �
X
k��

X
Q�
k

X
��D�Q�

hf� h�Qib h
�
Q �

where

	����
 hf� h�Qib �

Z
Q

f h�Q b d�

is as in 	����
� and the convergence of the series in k occurs in L�	d�
�
Moreover�

	����
 C��kfk�� � kF�fk
�
� �

X
k��

X
Q�
k

X
��D�Q�

jhf� h�Qibj
� � C kfk�� �

Finally� the decomposition in 	����
 is unique� if there is a decomposi�

tion

	����
 f � f� �
X
k

X
Q�
k

X
��D�Q�

c�Q h
�
Q �

where f� is constant on each cube of "� and the series 	in k
 converges
in L�	d�
� then f� � F�f and c�Q � hf� h�Qib for all Q �

S
k"k and

� � D	Q
�
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Recall from 	���
 that F� is a harmless projection onto the sub�
space of functions that are constant on each cube of "��

We start with the proof of the existence of the decomposition and
the estimate 	����
� We already have a decomposition of f as f �
F�f �

P
k Zkf � with a control on the norms� that comes from Lemma

����� Because of this� it will be enough to show that for all k � ��

	��� 
 Zkf �
X
Q�
k

X
��D�Q�

hf� h�Qib h
�
Q

and

	����
 kZkfk
�
� �

X
Q�
k

X
��D�Q�

jhf� h�Qibj
� �

Obviously� Zkf �
P

Q�
k
ZQ
k f � where Z

Q
k f � �Q Zkf � and

kZkfk
�
� �

X
Q�
k

kZQ
k fk

�
� �

Thus it is enough to show that

	����
 ZQ
k f �

X
��D�Q�

hf� h�Qib h
�
Q

and

	���
 kZQ
k fk

�
� �

X
��D�Q�

jhf� h�Qibj
� �

for each cube Q � "k� and with constants in 	���
 that do not depend
on f � k� or Q� In view of Lemma ��� � it is enough to show that
ZQ
k f �W 	Q
 and that

	����
 hZQ
k f� h

�
Qib � hf� h�Qib �

for all � � D	Q
�

It is clear that ZQ
k f � �Q 	Fk��f � Fkf
 is supported on Q and

constant on each child of Q� 	See the de�nitions 	���
 and 	��
�
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Also�
R
Q
	ZQ

k f
 b d� � � by 	���
� and hence ZQ
k f � W 	Q
� 	See near

	����
 for the de�nition ofW 	Q
�
 Finally� let � � D	Q
 be given� Then

	����


hZQ
k f� h

�
Qib �

Z
Q

	ZQ
k f
h

�
Q b d�

�

Z
Q

	Fk��f � Fkf
h
�
Q b d�

�

Z
Q

	Fk��f
h
�
Q b d� �

by de�nitions 	and in particular 	��

� the fact that Fkf is constant
on Q� and because

	����


Z
Q

h�Q b d� � � � for all Q and � � D	Q


	because h�Q �W 	Q

� Next h�Q is constant on each cube of "k��� and
so 	���
 	applied with k � 
 tells us that

Z
Q

	Fk��f
h
�
Q b d� �

Z
Q

f h�Q b d� � hf� h�Qib �

This completes the proof of 	����
�	����
� and we are left with the
uniqueness result to prove� To this e�ect� let us �rst check that

	����
 hh�Q� h
��

Q�ib � ��Q�����Q�����

	that is�  if Q � Q� and � � �� and � otherwise
 for all choices of Q�
Q� �

S
k"k� � � D	Q
� and �� � D	Q�
�

We already know this when Q � Q�� When Q and Q� both lie in
a same "k but Q �� Q�� then 	����
 holds because h�Q and h�

�

Q have
disjoint supports� Finally assume that Q � "k and Q� � "�� and that
� � k� Then h�

�

Q� is constant on Q and hh�Q� h
��

Qib � � by 	����
� Thus
	����
 holds in all cases�

Now let f � L�	d�
� and suppose that f has a decomposition 	����

as in the proposition� For each choice of Q� �

S
k"k and �� � D	Q�
�

hf�� h�
�

Q�ib � � by 	����
 and because f� is constant on Q�� Then 	����

tells us that

	����

D
f� �

�X
k	�

X
Q�
k

X
��D�Q�

c�Q h
�
Q� h

��

Q�

E
b
� c�

�

Q� �
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for � large enough� Thus c�
�

Q� � hf� h�
�

Q�ib by taking limits� A comparison
of 	����
 with 	����
 now gives that f� � F�f because we know that
the series are the same�

This completes our proof of Proposition �����

�� A T 	b
�theorem�

Let E be a compact subset of the plane� and let � be a �nite
positive Borel measure� with support 	�
 � E� We shall assume that

	��
 �	B	x� r

 � C� r � for all x � E and r � �

and some constant C� � �� We want to state 	and later prove
 a T	b
�
theorem on the space 	E� d�
 for one�dimensional singular integral oper�
ators� unfortunately� our statement will already require the existence of
a collection of �dyadic cubes on E� with properties somewhat stronger
than those of Section �� We shall assume that E is equipped with col�
lections "k� k � �� of Borel subsets 	which we�ll call cubes
 with the
following properties�

First we ask for the same combinatorial properties as in 	��
 and
	���
�

for each k � �� E is the disjoint union

of the cubes Q� Q � "k�
	���


if k � �� Q � "k and R � "��

then either Q � R � � or else R � Q�
	���


We also require that for each integer k � � and each Q � "k� there be
a ball B	Q
 � B	x	Q
� r	Q

 centered on E and such that

	���
 A�k � r	Q
 � C�A
�k

and

	���
 E � B	Q
 � Q � E � 	��B	Q

 �

where ��B	Q
 � B	x	Q
� �� r	Q

� Here A and C� are positive con�
stant� and we shall assume 	mostly for security reasons
 that A �
��C�� It will be convenient for us to demand also that

	���
 "� has only one element �



��� G� David

because it will make some of the algebra easier� This is also easy to
arrange� because E is bounded and we could always add a �rst genera�
tion of cubes with only one element� or group all the cubes of "� into
a single one� 	This would make the constants C� and A slightly worse�
though�


We shall also need �small boundary� properties for our cubes� Set

	���

Nt	Q
 � fx � Q � dist 	x�EnQ
 � tA�k�Q�g

	 fx � EnQ � dist 	x�Q
 � tA�k�Q�g �

for all Q � " �
S
k"k and � � t � � and where k	Q
 denotes� as in

Section �� the integer such that Q � "k�Q�� We require the existence
of an exponent � � ����� � and positive numbers �	Q
� Q � "� with
the following properties� First�

	�� 
 �	Nt	Q

 � C� t
� �	Q
 � for all Q � " and � � t �  �

Also�

	���
 �	�B	Q

 � C� �	Q
 � C�
�A

�k�Q� �

and

	���

X
R�
k

R
��B�Q�

�	R
 � C� �	Q
 �

for all k � k	Q
� These are coherence relations that will be useful when
we try to apply Shur�s lemma 	much later
� A reasonable choice would
be �	Q
 � �	��B	Q

� say� but this will not su�ce for our application
to Theorem � because we shall be working at the same time with some
other measure�

Our condition 	�� 
 will be even more useful for cubes Q such that

	��
 �	Q
 � C� �	Q
 �

Let us call these cubes good cubes� Denote by G the set of good cubes�
We also assume that the only cube of "� is a good cube 	which would
be fairly easy to arrage anyway
� and add a last requirement on the
numbers �	Q
 that will allow a better control on the bad cubes� We
demand that

	���
 �	Q
 � A����	 #Q
 �
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whenever Q is a bad cube and #Q is its parent 	i�e�� the cube of "k�Q���

that contains it
�
The reader may be worried by this long list of requirements� In�

deed this will make it rather unpleasant to check all the hypotheses of
Theorem ���� below� but nonetheless it is always possible to construct
cubes with the properties above when E � supp� and � satis�es 	��
�
Such a construction is done in �DM�� and we shall encounter it when
we try to apply Theorem ���� to analytic capacity�

We shall also assume that we are given a Borel function b on E�
and that b is bounded accretive� i�e�� satis�es 	���
�

Now we want to describe the singular integral operators that we
want to study� Denote by E the vector space of 	�nite
 complex linear
combinations of characteristic functions of cubes Q � "� Also let b E be
the set of products bf � f � E � It will be easier to de�ne our operators
as operators from b E to its dual� or equivalently as bilinear operators
from b E  b E �� C � We shall denote by hTbf� b gi� f� g � E � the
e�ect of T 	bf
 on b g 	or equivalently the image of 	bf� b g
 under the
bilinear operator
� In particular� we drop the parentheses around bf
intentionnally� to simplify notations�

We shall assume that T is associated to a �standard kernel�� as
follows� By standard kernel� we mean a continuous function K	x� y
 on
f	x� y
 � C

� � x �� yg such that

	���
 jK	x� y
j � C�jx� yj�� � for x �� y

and

	���
 jK	x� y
�K	x� z
j� jK	y� x
�K	z� x
j � C�
jz � yj

jx� yj�
�

whenever jz � yj � jx� yj���
The Cauchy kernel K	x� y
 � 	x � y
�� is obviously a very good

example of standard kernel�
The relation between T and K is that

	���
 hTf� gi �

ZZ
K	x� y
 f	x
 g	y
 d�	x
 d�	y
 �

whenever f� g � b E have disjoint supports�
By disjoint supports we mean that we can write f and g as f �P

Q Q b�Q and g �
P

R �R b�R� with all the cubes Q disjoint from
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the cubes R� The reader should not worry about the convergence of
the integral in 	���
� We shall see later that

	���


Z
Q

Z
R

d�	x
 d�	y


jx� yj
� �� �

for all cubes Q�R such that Q � R � �� This will come as a fairly
easy consequence of 	��
 and 	�� 
� but we prefer not to check it now
and try to state our main theorem soon� See 	 ��
 and the relevant
de�nition 	���
 for a proof�

We shall also demand that T satisfy the following analogue of the
�weak boundedness property�� there is a constant C� � � such that

	���
 jhTb�Q� b�Qij � C� �	Q
 � for all Q � " �

Our last conditions will be that Tb � BMO and T tb � BMO� Since E
is in general far from being a space of homogeneous type� there is some
ambiguity as to which de�nition of BMO we should take� The following
version of �dyadic�BMO� based on L��oscillation will be best suited to
our needs�

De�nition ���
� We denote by BMO the set of functions � � L�	d�

such that

	���


Z
Q

j�	x
�mQ�j
� d�	x
 � C��	Q
 �

for all cubes Q � " and some C � ��

Here

mQ� �


�	Q


Z
Q

� d� �

We shall denote by k�kBMO the smallest constant C � � such that
	���
 holds for all Q � "� As usual� BMO is a Banach space of
functions de�ned modulo an additive constant� the mean value of �
on the unique cube of "�� or equivalently the value of the constant
function E��� where E� is as in Section �� We are now ready to state
our T 	b
�theorem�

Theorem ���	� Let E � C be a compact set and � a �nite positive

Borel measure such that E � supp� and 	��
 holds� Let b be a bounded
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accretive function on E� as in 	���
� Let 	"k
k�� be collections of

�dyadic cubes�� with the properties 	���
�	���
� Finally let T � b E 
b E �� C be an operator that satis�es 	���
�	���
 and 	���
� and
suppose that there are functions � and !� in BMO such that

	���
 hTb� b gi �

Z
� b g d�

and

	����
 hTb g� bi �

Z
!� b g d� �

for all g � E� Then T extends to a bounded operator on L�	d�
�

A few comments on this statement will be useful�
The conditions 	���
 and 	����
 are just a dual way to say that

Tb � � and T tb � !�� where T t denotes the transposed operator� Recall
that E is dense in L�	d�
� as in 	���
� Since C�� � jbj � C by 	���
�
b E also is dense in L�	d�
 and the hTb� b gi� g � E � determine Tb�

Remark ����� Because b E is dense in L�	d�
� it is easy to see that T
extends to a bounded operator on L�	d�
 	or� if we see T as a bilinear
operator� that T extends to a bounded bilinear operator from L�	d�

L�	d�
 to C 
 if and only if there is a constant C � � such that

	����
 jhTbf� b gij � C kfk� kgk� � for all f� g � E �

Remark ����� Although this was not said explicitely in the statement�
our proof will give a bound on the norm of T 	or equivalently on the best
constant C in 	����

 that depends only C�� C�� C�� C�� A� k�kBMO

and k!�kBMO�
Here we work with a compact set E� and this has the small ad�

vantage that we did not need to de�ne Tb and T tb as �distributions
modulo additive constants�� Our hypothesis 	���
� applied to the only
cube of "�� gives a control on the integrals of Tb and T tb against b
	i�e�� the constant piece F�	Tb
 � F�	T

tb
� with the notations of Sec�
tion �
� Thus it is not surprising that we only need to control k�kBMO

and k!�kBMO once we have 	���
�
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Remark ����� As far as the main goal of this paper is concerned� the
reader should not pay too much attention to the 	slightly complicated

general de�nition of singular integral operators given here� Theorem
���� will be applied to operators T� that can be de�ned brutally by
integration against the very integrable kernels



x� y
�
� jx� yj

�

�
�

where � is a smooth cut�o� function that vanishes in a neighborhood of
�� Also see the beginning of the discussion about principal value oper�
ators associated to antisymmetric standard kernels in the next section�

Remark ����� In our statement we have assumed that E � supp �
because this was natural and simple� However� Theorem ���� is still
true if we only assume instead that E is a bounded Borel set contained
in the support of � and such that �	C �E
 � �� This will not make any
di�erence in the proof below� and it may make the hypotheses a little
bit easier to check� because we could be given partitions of E 	rather
than supp�
 into dyadic cubes� This is not a very serious issue anyway�
because it is fairly easy to see that such a partition can be extended
to a partition of supp� with the same properties� See the argument a
little below 	����
 in �DM��

Remark ����� Our condition 	���
 is clearly necessary for T to have
a bounded extension to L�	d�
� and we wish to claim without proof 	es�
sentially� because we shall not need this fact
 that our main conditions
Tb � BMO and T tb � BMO are necessary as well� The veri�cation
should amount to checking that

	����


Z
Q

jT 		� �Q
b
	x
� T 		� �Q
 b
	x	Q

j� d�	x
 � C �	Q
 �

for all Q � "� and this would follow from

	����


Z
Q

�Z
EnQ

��� 

x� y
�



x	Q
� y

��� d�	y
�� d�	x
 � C �	Q
 �

We shall prove similar 	only a little more complicated
 estimates later�
see in particular the proof of 	����
 to reduce to

Z
Q

� Z
�QnQ

d�	y


jx� yj

��
d�	x
 �
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and then the proof of 	����
� where we can de�ne h	x
 as in 	����

and 	����
 but with r	x
 � �� because � satis�es 	��
�

Remark ���	� Our statement of Theorem ���� is clearly not optimal�
We can replace our accretivity condition 	���
 with the slightly weaker
requirement that b be bounded and satisfy 	���
� Our choice of � �
��� in 	�� 
 is not optimal� probably a weaker de�nition of standard
kernels would work as well and E should not need to be bounded� Our
hypothesis that E and K live in the plane 	as opposed to some Rn
 is
not needed 	see Remark ���
� quite possibly E and K do not need to
be one�dimensional either� However the modi�cations needed to take
care of all these details could be quite painful 	if they exist
� and our
proof is already complicated enough without them� Since we only have
one clear application in mind so far� it is probably wiser not to think
too much about extensions now�

A more unpleasant aspect of Theorem ���� is that we have to
use cubes with the properties 	���
�	���
� This will even create some
trouble in the present paper� because the cubes that are given to us will
come from a di�erent measure and will not be directly adapted to the
measure on which we want to apply Theorem �����

It seems that F� Nazarov� S� Treil� and A� Volberg were able to
prove a T 	b
�theorem for measures that satisfy 	��
 without using our
machinery with dyadic cubes �NTV�� It would be interesting to see
whether their proof can be adapted to give Theorem ��

In the next section we want to say a few words about the �principal
value operator� associated to a given antisymmetric standard kernel�
After this we�ll discuss shortly how to verify that Tb and T tb lie in
BMO with the help of the Haar system of Section ��

� Antisymmetric standard kernels�

Let K be a standard kernel� and suppose that

	��
 K	x� y
 � �K	y� x
 � when x �� y �

We want to de�ne a singular integral operator T � b E  b E �� C such
that 	���
 and 	���
 hold�

We start with the easy case when

	���


Z
Enfxg

jK	x� y
j d�	y
 � C �
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for all x � E and some C � �� Then we can set

	���
 Tf	x
 �

Z
K	x� y
 f	y
 d�	y
 �

for all f � b E and x � E� Tf is a bounded function and

	���


hTf� gi �

Z
Tf	x
 g	x
 d�	x


�

ZZ
K	x� y
 f	y
 g	x
 d�	y
 d�	x
 �

with a nicely convergent integral� for all g � b E � By Fubini and anti�
symmetry�

	���
 hTb�Q� b�Qi � � � for all Q � "

in this case� If f� g � E � then for k large enough we can write

	���
 f �
X
Q�
k

Q �Q and g �
X
R�
k

�R �R �

Then 	���
 and 	���
 imply that

	���


hTbf� b gi

�
X

Q�R�
k

X
Q�	R

Q �R

Z
R

Z
Q

K	x� y
 b	y
 b	x
 d�	y
 d�	x
 �

when 	���
 holds�
When we no longer assume 	���
� the simplest is probably to get T

as a limit of operators T�� as follows� Select a nice C� cut�o� function
� such that �	t
 � � for � � t �  and �	t
 �  for t � �� and then set

K�	x� y
 � �
� jx� yj

�

�
K	x� y
 �

for all 	small
 � � �� The kernels K� are still uniformly standard and
antisymmetric� and they satisfy 	���
� so we can de�ne singular integral
operators T� as in the discussion above�
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Lemma �
� For every antisymmetric standard kernel K we can de�ne

a singular integral operator T � b E  b E �� C by

	���
 hTbf� b gi � lim
���

hT�bf� b gi � for all f� g � E �

Moreover T satis�es 	���
 and 	���
� and 	���
 holds whenever f� g are
as in 	���
�

We shall refer to T as the principal value operator associated to
	the antisymmetric standard kernel
 K� Note that we shall only use
	���
� and not 	���
�

Our proof of Lemma �� will rely on 	���
� which will only be
proved later 	see 	 ��
 and the de�nition 	���

 but is fairly simple�

Because of 	���
� the integrals in 	���
 converge� and we could
have taken 	���
 as our de�nition of T� It is slightly easier to proceed as
we do because we won�t have to check that di�erent expressions for f
and g in 	���
 give the same result in 	���
� Let us return to the lemma�
The existence of a limit in 	���
 follows from the dominated convergence
theorem� applied to the kernels K� 	that converge pointwise to K
 in
the formula 	���
 	which is satis�ed by all the T��s as soon as 	���

holds
� We also get the formula 	���
 for T at the same time� From
	���
 and the linearity of each T� we get that T is linear� The formula
	���
 for T follows directly from 	���
 and the fact that each T� satis�es
it� Finally 	���
 is an easy consequence of 	���
 	and the existence
of decompositions as in 	���

� or can be obtained directly from its
analogue for the T��s and the dominated convergence theorem�

This completes our discussion of the principal value operator as�
sociated to antisymmetric standard kernels� Note that they satisfy the
weak boundedness property 	���
 automatically� because they satisfy
the stronger 	���
�

�� Tb � BMO and the Haar system�

In this section we want to see how to use the modi�ed Haar system
of Section � to check our conditions that Tb � BMO and T tb � BMO�

First observe that our cubes Q� Q � "� satisfy the conditions 	��
�
	���
 required for the construction of Section �� 	��
 and 	���
 are the
same as 	���
 and 	���
� 	���
 follows from 	���
 and the fact that B	Q

is centered on supp �� 	���
 is a consequence of 	���
 and 	���
 	although
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with a slightly larger constant
� and �nally 	���
 	again with a larger
constant
 follows from the fact that for each r�

	��

the number of cubes of "k that meet a

ball of radius r is always �  � CA�k r� �

This last is an easy consequence of 	���
� 	���
� and the fact that the
balls B	Q
 are centered on E� because this implies that jx	Q
�x	Q�
j �
A�k when Q�Q� � "k� with Q �� Q��

So we can apply the construction of Section � to our cubes Q � "
and our function b� We do this and get a modi�ed Haar system fh�QgQ���
It will be simpler to call

	���
 H � f	Q� �
 � Q � " and � � D	Q
g

the set of indices that show up�
For each function � � L�	d�
� set

	���
 ��Q � h�� h�Qib �

Z
� h�Q b d� �

for all 	Q� �
 � H� These coe�cients do not determine � entirely� but
only modulo the piece F�� 	see 	����
 and 	����

� Here� because "�

has only one cube� F�� is simply the constant

	���
 F�� �
�Z

E

b d�
��� Z

E

� b d� �

	See the de�nition 	���
�
 Nonetheless� the coe�cients ��Q are enough
to determine whether � � BMO�

Lemma ���� Let � � L�	d�
 be given� and de�ne the ��Q� 	Q� �
 � H�

by 	���
� Then � � BMO if and only if the ��Q satisfy the following

quadratic Carleson measure condition� there is a constant C � � such

that

	���

X
Q
R

X
��D�Q�

j��Qj
� � C��	R
 � for all R � " �

Moreover the best constant in 	���
 is equivalent to k�kBMO�
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To prove the lemma� let � � L�	d�
 and R � " be given� Set

mR� �


�	R


Z
R

� d� �

as in De�nition �� � and then apply Proposition ���� to f � 	� �
mR�
�R� For all cubes Q � R and all � � D	Q
�

	���
 hf� h�Qib �

Z
Q

f h�Q b d� � ��Q

	the extra term
R
Q
mR � h

�
Q b d� disappears because of 	����

� Then

	�� 

X
Q
R

X
��D�Q�

j��Qj
� � C kfk�� � C

Z
R

j� �mR�j
� d� �

by the second half of 	����
�
Denote by  the constant value on R of F�� �

P
Q��h�� h

�
Qib h

�
Q�

where the sum is restricted to the pairs 	Q� �
 such that Q contains R
and is of a generation k	Q
 � k	R
� It would be easy to check that 
is the value of Fk�R�� on R� but we don�t need this fact� Because of
	����
�

	���
 	� � 
�R �
X
Q
R

X
��D�Q�

h�� h�Qib h
�
Q �

Apply the uniqueness result in Proposition ����� and then 	����
� to the
function 	� � 
�R� This gives

	���


Z
R

j� � j� d� � C
X
Q
R

X
��D�Q�

j��Qj
�

	recall 	���

� Finally observe that

	��


Z
R

j� �mR�j
� d� �

Z
R

j� � j� d� �

This would be true for any constant � it follows from the pythagorean
theorem� or the fact that mR� is the orthogonal projection of � on the
vector space of constant functions in L�	R� d�
�
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When we compare 	�� 
� 	��
� and 	���
� we �nd that the quanti�
ties in 	�� 
 are equivalent� Lemma ��� follows by taking the supremum
over all cubes R�

Lemma ����� Let T � b E  b E �� C be a bilinear operator� Set

	���
 ��Q � hTb� b h�Qi

and

	���
 !��Q � hTb h�Q� bi �

for all 	Q� �
 � H� Then there are functions � and !� � BMO such that

	���
 and 	����
 hold if and only if the sequences f��Qg and f
!��Qg both

satisfy the Carleson condition 	���
�

Indeed if � � BMO is such that 	���
 holds� then 	���
 with
g � h�Q says that the numbers ��Q in 	���
 are the same as the ones in
	���
� Lemma ��� then gives the desired control on the ��Q� Conversely�
suppose that the ��Q in 	���
 satisfy 	���
� For each integer k � �� set

	���
 �k �
X
Q�
k

X
��D�Q�

��Q h
�
Q �

Note that

	���






nX
k	m

�k




�
�
� C

nX
k	m

X
Q�
k

X
��D�Q�

j��Qj
� �

by Proposition ����� Since the right�hand side of 	���
 tends to � when
m and n tend to � 	because

P
H j�

�
Qj

� � ��� by 	���
 applied to the

only cube of "�
� the series
P�

k	� �k converges in L�	d�
� Denote its
limit by ��� By the uniqueness part of Proposition �����

	���
 h��� h�Qib � ��Q � for all 	Q� �
 � H �

and �� � BMO by 	���
 and Lemma ����
Denote by W the subspace of E spanned by the h�Q� 	Q� �
 � H�

By 	���
 and 	���
�

	�� 
 hTb� b gi � h��� gib � for all g �W �
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From Proposition ���� and the description of F� in 	���
 we see that W
is a subspace of codimension  in E and the one�dimensional space of
constant functions is a complementary space for W in E � Thus� even
though 	�� 
 does not imply that �� satis�es 	���
� this will be easy
to �x� Set

	���
 � � �� �
�Z

E

b d�
���

	hTb� bi � h��� bi


	note that
R
E
b d� �� � by accretivity�
 Obviously� adding a constant to

�� does not modify h��� gib for g � W � because of 	����
� Therefore
	�� 
 yields

	����
 hTb� b gi � h�� gib �

Z
� b g d� �

for all g �W � Since we also have that

	���


Z
� b d� � h�� bi � h��� bi� 	hTb� bi � h��� bi
 � hTb� bi �

by 	���
� we see that 	����
 holds for all g � E � i�e�� 	���
 holds� Note
that � lies in BMO because �� does� This proves the converse�

The story for the transposed operator� i�e�� with 	����
 and the
numbers !��Q is the same� This completes our proof of Lemma ����

The proof of Theorem ���� will 	continue to
 keep us busy for the
next few sections� The argument will follow roughly the same lines as
in the Coifman�Semmes or Auscher�Tchamitchian proofs of T 	b
� See
�CJS�� �AT�� �Da� or �My��

�� Paraproducts�

In this section we want to construct bounded operators P such that
Pb and P tb are prescribed functions in BMO� We shall call them para�
products because they look like other operators that actually looked like
Bony paraproducts�

In the standard situation for the regular T 	
�theorem� say� these
operators are bounded singular integral operators� and we can use them
to substract them from the operator T of Theorem ����� this allows one
to reduce to the situation where T and T t are equal to � 	instead of
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just lying in BMO�
 Here this approach will not work brutally� because
our paraproducts will have a fairly bad kernel� We shall have to use
them in the following slightly more subtle way� The boundedness of
these operators� which will not be so trivial because it will use Carleson�s
theorem� will be used to show that their matrices in the modi�ed Haar
system of Section � de�ne bounded operators on ��	H
� These bounded
matrices will then be substracted from the matrices of operators T
from Theorem ����� and we shall be able to prove that the resulting
di�erences of matrices are small enough to be handled by just looking
at the size of their coe�cients�

In this section we construct the paraproducts� prove their bound�
edness� and compute their matrices� For the results of this section� none
of the small boundary conditions on our cubes will be used� the weaker
structure of Section � is still enough�

For each sequence f��Qg�Q����H of complex numbers that satis�es
the Carleson condition 	���
 we de�ne an operator P on E by

	��
 Pf �
X

�Q����H

��Q hf� h
�
Qib 
Q �

where

	���
 
Q �
� Z

Q

b d�
���

�Q �

The sum in 	��
 has only �nitely many terms� because only �nitely
many coe�cients hf� h�Qib can be di�erent from � when f � E � Thus
	��
 makes sense� and even Pf � E �

We shall also be interested in the operator !P that we get from P
by �b�transposition�� as follows� !P is the linear operator from E to the
dual of b E de�ned by

	���
 h !Pg� bfi � hPf� b gi �

or equivalently

	���
 h !Pg� fib � hPf� gib � for all f� g � E �

Lemma ���� The operator !P is also given by

	���
 !Pg �
X

�Q����H

��Q

� Z
Q

b d�
����Z

Q

g b d�
�
h�Q �
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for all g � E and where the series in 	���
 converges in L�	d�
�

Let g � E be given� and set

	���
 c�Q � ��Q

�Z
Q

b d�
����Z

Q

g b d�
�
�

By the paraaccretivity conditions 	���
�

���
Z
Q

b d�
����� � C �	Q
��

and� since g is obviously bounded� jc�Qj � C j��Qj for all Q and �� The
constant C may depend wildly on g� but we don�t care� In particular�P

Q�� jc
�
Qj

� � �� by 	���
� and the same argument as in Lemma ���

	see around 	���

 shows that the series in 	���
 converges in L�	d�
�
Call h � L�	d�
 the limit� we want to check that h can be taken as !Pg�
i�e�� that

	�� 
 hh� fib � hPf� gib � for all f � E �

When f is a constant� hh� fib � � because h is a limit in L� of �nite
linear combinations of functions h�Q and hh�Q� fib � � by 	����
� Since
Pf � � because all the hf� h�Qib are equal to �� we get 	�� 
 for constant
functions� Since all functions in E are linear combinations of some
constant and functions h�Q 	by Proposition ���� and 	���

� it is enough
to prove 	�� 
 when f � h�Q� But

hPh�Q� gib � ��Q h
Q� gib � ��Q

�Z
Q

b d�
����Z

Q

g b d�
�
� hh� h�Qib �

by 	��
� 	����
� 	���
� the de�nition of h as the right�hand side of 	���
�
and 	����
 again� This proves Lemma ����

Proposition ���� The operators P and !P both extend to bounded

operators on L�	d�
� with norms less than C � times the constant C in

the Carleson condition 	���
�

First observe that P extends to a bounded operator on L�	d�
 if
and only if there is a constant C � � such that

	���
 jhPf� b gij � C kfk� kgk� � for all f� g � E �
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This follows easily from the density of E in L�	d�
 and the fact that
C�� � jbj � C by 	���
� This condition is also equivalent to the exis�
tence of an extension of !P to a bounded operator on L�	d�
� because of
	���
� Thus it will be enough to prove the boundedness of 	an extension
of
 !P to L�	d�
�

From Lemma ���� the uniqueness result in Proposition ����� and
	����
 we deduce that for every g � E �

	��
 k !Pgk�� � C
X

�Q����H

jc�Qj
� �

where c�Q is as in 	���
� We want to use Lemma ���� 	Carleson�s theo�
rem
 to estimate the right�hand side of 	��
� Set

	���
 fk �
X
Q�
k

�	Q
��
�Z

Q

jgj d�
�
�Q �

for all k � �� Obviously the sequence ffkg satis�es 	����
 with f
replaced with g� Also de�ne measures �k on E by

	���
 d�k �
X
Q�
k

� X
��D�Q�

j��Qj
�
�
�	Q
�� �Q d� �

Let us check that f�kgk�� de�nes a Carleson measure on E  N � as in
De�nition ���� For each cube R �

S
k"k�

	���

X

k�k�R�

�k	R
 �
X
Q
R

� X
��D�Q�

j��Qj
�
�
� C �	R
 �

by 	���
� In other words� 	����
 holds and � � f�kg is a Carleson
measure� Lemma ���� now tells us that

X
k

Z
jfkj

� d�k � C kgk�� �

But

X
k

Z
jfkj

� d�k �
X
k

X
Q�
k

� X
��D�Q�

j��Qj
�
�
�	Q
��

� Z
Q

jgj d�
��

� C��
X

�Q����H

jc�Qj
� �	���
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by de�nitions 	���
 and 	���
� the accretivity condition 	���
� and
	���
� Because of 	��
� this gives that k !Pgk�� � C kgk��� proves the
boundedness of !P � and completes our proof of Proposition ����

Next we want to talk about matrices�

De�nition ����� Let T � E  b E �� C be a bilinear operator� The

matrix of T 	relative to the system fh�Qg
 is the matrix M with coe��

cients

	���
 M	Q� ��R� ��
 � hTh�Q� b h
��

Ri � 	Q� �
 � H and 	R� ��
 � H �

The slight asymmetry of this de�nition cannot be a serious problem
because C�� � jbj � C by 	���
� our de�nition is just more convenient
for our paraproducts P and !P � Note in particular that if !T denotes the
b�transpose of T as in 	���
� i�e�� if !T � E  b E �� C is de�ned by

	�� 
 h !Tg� b fi � hTf� b gi � for f� g � E �

then the matrix of !T is just the transpose of M�
We do not claim that M determines T� and indeed it does not say

anything about hT� bfi or hTf� bi when f � E � but it will still be useful
to determine when T has a bounded extension to L�	d�
�

Lemma ����� Let T � E  b E �� C be a bilinear operator and M
denote its matrix relative to the system fh�Qg� Then T admits an ex�

tension to a bounded operator on L�	d�
 if and only if

T  � L�	d�
 �	����


!T  � L�	d�
 �	���


and

	����
 M de�nes a bounded operator on ��	H
 �

Let us explain these conditions� 	����
 means that there is a func�
tion h � L�	d�
 such that

	����
 hT � bfi � hh� bfi �

Z
h bf d� � for all f � E �
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Similarly� 	���
 means that there is an !h � L�	d�
 such that

	����
 h !T � bfi � hTf� bi �

Z
!h bf d� � for all f � E �

As for 	����
� let W � denote the set of �nitely supported sequences
x � fx�Qg�Q����H and de�ne a bilinear operator S from W � W � to C
by

	����
 hSx� yi �
X

�Q����H

X
�R�����H

M	Q� ��R� ��
x�Q y
��

R �

for all x� y � W �� Then 	����
 means that there is a constant C � �
such that

	����
 jhSx� yij � C kxk kyk � for x� y �W � �

where

kxk �
� X
�Q����H

jx�Qj
�
��
�

and similarly for y�
The obvious mapping from W � to W � span fh�Q � 	Q� �
 � Hg

de�ned by �	x
 �
P

x�Q h
�
Q is a bijection and

C�� kxk � k�	x
k� � C kxk �

by Proposition ����� From 	���
 and 	����
 we deduce that

	����
 hSx� yi � hT�	x
� b �	y
i � for all x� y �W � �

Hence 	����
 holds if and only if there is a constant C � � such that

	��� 
 jhTf� b gij � C kfk� kgk� � for all f� g �W �

Because of this� 	����
 is clearly necessary if we want T to have a
bounded extension� 	����
 and 	���
 are necessary too� because  �
L�	d�
 and T has a bounded extension if and only if !T does� The
converse is not much harder� Suppose that 	����
� 	���
� and 	����

hold� By Proposition ����� every f � E has a decomposition f �
F�f � 	f � where F�f is a constant because "� has only one cube�
	f �W� and

kF�fk� � k	fk� � C kfk� �
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Then� for f� g � E �

jhTf� b gij � jhT 	F�f
� b gij� jhT 		f
� b gij

� C jF�f j kTk� kgk� � jhT 		f
� b F� gij� jhT 		f
� b 	 gij

� C kF�fk� kgk� � C jF� gj k !Tk� k	fk� � C k	fk� k	 gk�

� C kF�fk� kgk� � C kF� gk� kfk� � C kfk� kgk�

	����


� C kfk� kgk� �

by 	����
� 	���
� and 	��� 
� Thus T has a bounded extension to L��
as desired�

This completes the proof of Lemma ����

Finally we want to compute the matrix of P �

Lemma ���	� Denote by P � 		P 	Q� ��R� ��


 the matrix of the

paraproduct P de�ned by 	��
 	using the sequence f��Qg�
 Then

	���
 P 	Q� ��R� ��
 � � � when Q �R � � or R � Q �

and

	����

P 	Q� ��R� ��
 is ��Q times the constant value

of h�
�

R on Q when Q � R� Q �� R �

Recall from 	���
 and 	��
 that

	����
 P 	Q� ��R� ��
 � hPh�Q� b h
��

Ri � ��Q h
Q� b h
��

Ri �

by 	����
� This is obviously � when Q � R � �� and also when R � Q
because 
Q is constant on Q� and by 	����
� Thus we are left with the

case when Q � R� Q �� R� In this case h�
�

R is constant on Q and

h
Q� bi �

Z

Q b d� �  �

by 	���
� The lemma follows�
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�� Reduction to the study of a matrix N �

In this section we take an operator T that satis�es the hypotheses
of Theorem ����� compute its matrix� substract from it the matrices of
appropriate paraproducts� and show that the remaining matrix de�nes
a bounded operator if some other matrix N de�nes a bounded operator
on ��� The matrix N will be a matrix with nonnegative coe�cients�
that no longer depends on the operator T but only on the size of certain
integrals on E� The boundedness of 	the operator de�ned by
 N will
be proved in later sections� with the help of Schur�s lemma�

We shall not use the small boundary properties of our cubes in this
section either� except for the fact that

	��
 �	fx � Q � dist 	x�EnQ
g
 � � � for all Q � " �

which follows from 	�� 
�
Let T be an operator that satis�es the hypotheses of Theorem �����

Denote by T � 		T 	Q� ��R� ��


 the matrix of TMb in the modi�ed
Haar system fh�Qg� and where Mb denotes the operator of pointwise
multiplication by b� Since T is de�ned on b E  b E � TMb is de�ned on
E  b E � as required in De�nition ���� and

	���
 T 	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � for 	Q� �
� 	R� ��
 � H �

We already know from 	���
 and 	����
 that 	TMb
�� and 	 !TMb
�
!� lie in BMO� hence in L�	d�
� 	Compare 	���
 and 	����
 with 	����

and 	����
 for TMb�
 Hence Lemma ��� says that it will be enough to
prove that T de�nes a bounded operator on ��	H
�

Next de�ne sequences f��Qg and f!��Qg by 	���
 and 	���
� Then

Lemma ��� says that f��Qg and f!��Qg satisfy the Carleson condition
	���
�

Denote by P the paraproduct constructed in Section � with the
sequence f��Qg and by P � the analogous operator de�ned with the se�

quence f!��Qg� These two operators have bounded extensions to L�	d�
�
by Proposition ���� Denote by P the matrix of P � By Lemma ����
P de�nes a bounded operator on ��	H
� and so does its transpose !P�
Similarly� the matrix P� of P � de�nes a bounded operator on ��	H
�

Set M � T � !P � P� and denote by M	Q� ��R� ��
 its generic
element� The discussion above shows that

	���

Theorem ���� will follow if we can prove that

M de�nes a bounded operator on ��	H
 �
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Let us compute the coe�cients of M� We use 	���
� Lemma ����� and
then 	���
 and 	���
 to get that

	���
 M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri �

when Q � R � � or Q � R�

M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � P �	Q� ��R� ��


� hTb h�Q� b h
��

Ri � !��Q 	value of h�
�

R on Q
	���


� hTb h�Q� b h
��

Ri � hTb h
�
Q� bi 	value of h�

�

R on Q
 �

when Q � R� Q �� R� and

M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � P 	R� ��� Q� �


� hTb h�Q� b h
��

Ri � ��
�

R 	value of h�Q on R
	���


� hTb h�Q� b h
��

Ri � hTb� b h
��

Ri 	value of h�Q on R
 �

when R � Q� R �� Q�
The next stage of our computation is to express the coe�cients of

M in terms of the kernel K	x� y
 and then estimate them in terms of
some integrals on E� The following notation will be useful� Set

	���
 d	Q
 � A�k�Q� �

for all Q � "� where k	Q
 denotes the generation of Q� and also

	�� 
 �Q � fx � E � dist 	x�Q
 � d	Q
g �

For each Borel subset V of E such that Q � V � �� set

	���
 I	Q� V 
 �

Z
V

Z
Q

d�	x
 d�	y


jx� yj
�

and

	���
 J	Q� V 
 �

Z
V

d	Q
 d�	x


jx� x	Q
j�
�

where x	Q
 denotes the center of the ball B	Q
� as in 	���
� These are
the quantities that will be used to control the coe�cients of M� We
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still denote by F 	Q
� Q � "� the set of children of Q� i�e�� the set of
cubes Q� � "k�Q��� such that Q� � Q� We shall try to be systematic
about calling Q� or R� generic children of Q or R�

Lemma ����� If Q � R � �� then for all choices of � � D	Q
 and

�� � D	R
�

	���
 jM	Q� ��R� ��
j � C A�	Q�R
 � C A�	Q�R
 �

where

	���


A�	Q�R


�
X

Q��F �Q�

X
R��F �R�

�	Q�
��
� �	R�
��
� I	Q�� R� � �Q


and

	���
 A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q
 �

To prove the lemma� let us �rst observe that Tb h�Q	x
 is well�
de�ned when dist 	x�Q
 � � and that it is given by

	���
 Tb h�Q	x
 �

Z
Q

K	x� y
 b	y
h�Q	y
 d�	y
 �

Recall from 	��� 
 and Lemma ���� that

	���
 h�Q �
X

Q��F �Q�

���Q� �	Q
�
��
� �Q� �

where the coe�cients ���Q� are uniformly bounded� From this descrip�
tion and the �rst standard estimate 	���
 we get that

	���
 jTb h�Q	x
j � C
X

Q��F �Q�

�	Q�
��
�
Z
Q�

d�	y


jx� yj
�

when dist 	x�Q
 � �� Notice incidentally that dist 	x�Q
 � � for ��
almost all x � R� by 	��
 	or 	�� 

�

This estimate is best when x � �QnQ� but when x �� �Q we can
use the second standard estimate 	���
 and the fact that

R
Q
b h�Q d� � �
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	by 	����

 to get a better one� Let x	Q
 denote the center of B	Q
�
as usual� 	Actually� for the computation that follows� any point of Q
would work equally well�
 If x � En�Q�

	�� 


jTb h�Q	x
j �
���
Z
Q

K	x� y
 b	y
h�Q	y
 d�	y

���

�
���
Z
Q

	K	x� y
�K	x� x	Q


 b	y
h�Q	y
 d�	y

���

� C

Z
Q

jy � x	Q
j

jx� x	Q
j�
j b	y
h�Q	y
j d�	y


� C
d	Q


jx� x	Q
j�

X
Q��F �Q�

�	Q�
�
�

� C �	Q
�
�
d	Q


jx� x	Q
j�
�

by 	���
� 	���
� 	���
 and 	���
� We may now use 	���
� 	���
� 	���

and the discussion above to get that

	���


jM	Q� ��R� ��
j � jhTb h�Q� b h
��

Rij

� C
X

R��F �R�

�	R�
��
�
Z
R�
jTb h�Q	x
j d�	x
 �

On each R���Q we use 	���
 to estimate jTb h�Q	x
j� when we integrate
the estimate and sum over R�� we get less than CA�	Q�R
� Similarly�
we use 	�� 
 for x � R�n�Q� integrate over R�n�Q and sum over R��
and we get a contribution � CA�	Q�R
� This proves Lemma ���

Note that our estimate is more performant when d	Q
 � d	R
� in
the other situations� we would use a symmetric argument� We won�t
need to do this� because as we shall see soon we won�t have to bound
coe�cients of M for which d	Q
 � d	R
�

Lemma ���	� We have that

	���
 jM	Q� ��Q� ��
j � C � CA�	Q
 �

for all Q � " and �� �� � D	Q
� where

	����
 A�	Q
 �
X

Q���F �Q�

X
Q���F �Q�
Q�� �	Q

�
�

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�
 �
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To prove the lemma we start again from 	���
 and use 	���
 to get that

	����


M	Q� ��Q� ��
 � hTb h�Q� b h
��

Qi

�
X
Q��

X
Q���F �Q�

���Q�� ����Q�� �	Q
�
�

��
� �	Q��


��
�

� hTb�Q�� ��Q�� i �

The terms for which Q�� � Q�� are less or equal than CC�� by our weak
boundedness assumption 	���
� and so we are left with terms for which
Q�� �� Q��� For each such term we use 	���
 and 	���
 to get that

	����

jhTb�Q�� � b�Q��ij �

���
Z
Q��

Z
Q��

K	x� y
 b	y
 b	x
 d�	y
 d�	x

���

� CI	Q��� Q
�
�
 �

Lemma ���� follows because the coe�cients �Q�� are uniformly bound�
ed�

Now we want to estimate the coe�cients of M for which Q � R�
Q �� R� In such situations� we shall systematically denote by R	Q
 the
child of R that contains Q�

Lemma ����� For each choice of cubes Q � R� Q �� R and � � D	Q
�
�� � D	R
�

	����
 jM	Q� ��R� ��
j � C 	B�� � B�� �B�� � B��
 �

where

B�� �
X

Q��F �Q�

X
R��F �R�
R� �	R�Q�

�	Q�
��
� �	R�
��
�

� I	Q�� R� � �Q
 �

	����


B�� �
X

R��F �R�
R� �	R�Q�

�	Q
�
� �	R�
��
� J	Q�R�n�Q
 �	��� 


B�� �
X

Q��F �Q�

�	Q�
��
� �	R	Q

��
� I	Q�� �QnR	Q

 �	����
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and

	����
 B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q


 �

To prove the lemma� let Q� ��R� �� be given� and denote by � the
constant value of h�

�

R on Q� Thus j�j � C �	R	Q

��
� by 	���
� This
time we apply 	���


	���
 M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � � hTb h�Q� bi � B� �B� �

where

	����
 B� � hTb h�Q� b h
��

R �RnR�Q�i

and

	����
 B� � �hTb h�Q��E�R�Q� bi �

Note that the part hTb h�Q� ��R�Q� bi cancelled out� this will allow us
to use the kernel K	x� y
 again to estimate B� and B�� Thus

	����
 jB�j � C
X

R��F �R�
R� �	R�Q�

�	R�
��
�
Z
R�
jTb h�Q	x
j d�	x
 �

by 	���
 and 	���
 for R� and now we can estimate jTb h�Q	x
j with
	���
 and 	�� 
� As before� we use 	���
 on each R� � �Q� After we
integrate on R� � �Q and sum over R�� we get a contribution less or
equal than CB��� On the rest of R� we use 	�� 
� and we get a total
contribution less or equal than CB�� after integrating on R�n�Q and
summing over R��

The estimates for B� are similar� Recall that j�j � C �	R	Q

��
�

and hence

	����
 jB�j � C �	R	Q

��
�
Z
EnR�Q�

jTb h�Q	x
j d�	x
 �

On �QnR	Q
 we use 	���
 and get a contribution less or equal than
CB��� On En	�Q 	 R	Q

 we use 	�� 
 and get less or equal than
CB��� This proves Lemma �����
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We are now ready to reduce the proof of Theorem ���� to the
�veri�cation� that a certain matrix N de�nes a bounded operator on
��	"
� De�ne a matrix N � 		N	Q�R


Q�R�
 as follows� Set

	����
 N	Q�R
 � A�	Q�R
 � A�	Q�R
 �

where A�	Q�R
 and A�	Q�R
 are as in 	���
 and 	���
� when

Q �R � � and either d	Q
 � d	R
 or else

d	Q
 � d	R
 and diamQ � diamR �
	����


N	Q�Q
 � A�	Q
 � for Q � " �	��� 


and

	����
 N	Q�R
 � B�� � B�� � B�� �B�� �

when Q � R� Q �� R� where A�	Q
 is as in 	����
 and the Bij are as
in Lemma ����� Finally set N	Q�R
 � � in the other cases� i�e�� when
Q �R � � but 	����
 does not hold and when R � Q� R �� Q�

Lemma ��	� To prove Theorem ���� it is enough to show that N
de�nes a bounded operator on ��	"
�

Set N� � N �N t�Id� where N t is the transpose of N and Id the
identity matrix� Obviously N� de�nes a bounded operator on ��	"

if N does� Let us suppose that this is the case� since N� is a matrix
with nonnegative entries and all the sets D	Q
� Q � "� have at most
C elements� we shall get that M de�nes a bounded operator on ��	H

if we can prove that

	���
 jM	Q� ��R� ��
j � N�	Q�R
 �

for all Q� ��R� ��� and where N�	Q�R
 denotes the generic element of
N��

Denote by D� the set of 	ordered
 pairs 	Q�R
 such that Q � R
or 	����
 holds� When 	Q�R
 � D�� 	���
 follows from Lemma ���
����� or ����� Otherwise� we shall use the transpose !T of T� which is
de�ned by h !Tb f� b gi � hTb g� b fi for all f� g � E � Notice that !T also
satis�es the hypotheses of Theorem ����� only with K	x� y
 replaced
with K	y� x
 and the functions �� !� exchanged� We can de�ne a matrix
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!M with !T as we did for T itself� and it is clear from 	���
�	���
 that !M
is the transpose of M� If 	Q�R
 �� D�� then 	R�Q
 � D� and

jM	Q� ��R� ��
j � j !M	R� ��� Q� �
j � N�	R�Q
 � N�	Q�R
 �

by Lemma ��� ���� or ���� 	applied to !T �
 Thus 	���
 holds in all
cases� and M de�nes a bounded operator if N does� Lemma ����
follows� by 	���
�

We completed the task assigned to this section� we can forget
singular integral operators and concentrate on the matrix N �


� Estimates on I	Q� V 
�

We shall need to estimate the various coe�cients of our new matrix
N � In this section we prove a few estimates on integrals like I	Q� V 

that will be useful later� The small boundary properties 	�� 
�	���

will be needed here�

We start with a simple estimate that uses the density property
	��
 only� First observe that

	 �


Z
jx�yj�d

d�	y


jx� yj�
�
X
���

Z
��d	jx�yj�����d

d�	y


jx� yj�

� C
X
���

	�� d
	�� d
��

� C d�� �

for all x � E and d � ��
Next let Q � " and V � EnQ be given� For each x � Q we use

Cauchy�Schwarz to show that

	 ��


Z
V

d�	y


jx� yj
� �	V 
�
�

�Z
V

d�	y


jx� yj�

��
�
� C �	V 
�
� d	x
��
� �

where we set d	x
 � dist 	x�EnQ
� Note that d	x
 � � almost every�
where on Q� by 	���
�	�� 
� We may now integrate 	 ��
 on Q to get
that

	 ��
 I	Q� V 
 �

Z
Q

Z
V

d�	y
 d�	x


jx� yj
� C �	V 
�
�

Z
Q

d	x
��
� d�	x
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	see 	���
 for the de�nition of I	Q� V 

�

Lemma 
�� We have that

	 ��


Z
Q

d	x
��
� d�	x
 � C d	Q
��
� �	Q
 �

Here d	Q
 � A�k�Q�� as in 	���
� To prove the lemma we decom�
pose Q into a �rst region B� where d	x
 � d	Q
 and annuli B�� � � �
where ���d	Q
 � d	x
 � �����d	Q
� Then

Z
B�

d	x
��
� d�	x
 � d	Q
��
� �	Q
 � C d	Q
��
� �	Q
 �

by 	���
� and

	 ��


Z
B�

d	x
��
� d�	x
 � ��
� d	Q
��
� �	B�


� C ��
� d	Q
��
� ���� �	Q
 �

for � � � by 	�� 
� Lemma  �� follows by summing a convergent power
series�

From 	 ��
 and Lemma  �� we deduce that

	 ��
 I	Q� V 
 � C�	V 
�
� �	Q
 d	Q
��
� �

for all cubes Q and all sets V � EnQ�
We want to re�ne this estimate when Q is not a good cube 	as in

	��

� because getting estimates in terms of �	Q
 rather than �	Q

will be very useful to get rid of some of the negative powers in formulae
like 	���
� 	����
� 	����
 or 	����
� Recall that � is not doubling or
anything like that� and we don�t have much in terms of lower bounds
for ��

Lemma 
�
� We have that

	 ��
 I	Q� V 
 � C�	V 
�
� �	Q
�
� �	Q
�
� d	Q
��
� �

for all Q � " and V � EnQ�
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To prove this we shall use a decomposition of Q� into maximal
good subcubes� For each Q � "� denote by S	Q
 the set of maximal
good cubes contained in Q� Obviously the cubes S� S � S	Q
� are
disjoint and contained in Q� but it is also true that they almost cover
Q� i�e�� that

	 ��
 �
�
Qn

	
S�S�Q�

S
�
� � �

This is essentially �DM� Lemma ��� �� but the proof is quite simple and
so we give it here� For each integer � � �� let Z� denote the set of cubes
R � "k�Q��� such that R � Q but R is not contained in any S � S	Q
�
Such cubes are obviously bad� as well as all their ancestors until Q and
hence they satisfy

	 �
 �	R
 � C� �	R
 � C�A
���� �	Q
 �

by 	���
 and repeated uses of 	���
� Because of 	��
 and 	���
� 	���
�
Z� has at most CA�� elements� and so

	 ��
 �
� 	
R�Z�

R
�
� CA�� �	Q
 �

where the value of C does not matter because we only need to know
that �	

S
R�Z�

R
 tends to � when � �� ��� The desired estimate
	 ��
 follows because �

Qn
	
S�Q�

S
�
�
� 	
R�Z�

R
�
�

for all � � ��
To prove Lemma  � we use 	 ��
 to almost�decompose Q into its

maximal good subcubes S� S � S	Q
 and write

	 ��


I	Q� V 
 �

Z
Q

Z
V

d�	x
 d�	y


jx� yj

�
X

S�S�Q�

I	S� V 


� C�	V 
�
�
X

S�S�Q�

�	S
 d	S
��
�

� C�	V 
�
�
X

S�S�Q�

�	S
 d	S
��
� �



��� G� David

by 	 ��
 and 	��
 for the good cubes S�

Lemma 
��� For all Q � "�

	 ��

X

S�S�Q�

�	S

�d	Q


d	S


��
� C �	Q
 �

Of course we don�t need the power � here� but the proof will be just
as easy� Denote by S�	Q
� � � �� the set of cubes S � S	Q
 such that
k	S
 � k	Q
 � �� Because of 	��
� S�	Q
 has at most CA�� elements�
Let us check that

	 ��
 �	S
 � C�A
�������� �	Q
 �

for all S � S�	Q
� When � � � or � �	S
 � �	Q
 � C��	Q
 by 	���
�
When � � � �	S
 � �	 #S
 � C� �	 #S
 � C�A

�������� �	Q
 by 	���
 and
repeated uses of 	���
� and where #S denotes the parent of S� Here we
use the fact that all the ancestors of S between #S and Q are bad� by
de�nition of S	Q
�

From 	 ��
 and the fact that S�	Q
 has at most CA�� elements
we deduce that the contribution of S�	Q
 to the left�hand side of 	 ��

is at most CA��A����A���	Q
 � CA����	Q
� Lemma  �� follows by
summing over � � ��

Most of the time� Lemma  �� will be used in combination with
Cauchy�Schwarz� as follows

X
S�S�Q�

�	S

�d	Q


d	S


��
�
� X
S�S�Q�

�	S

��
�� X

S�S�Q�

�	S

�d	Q


d	S


����
�

� C�	Q
�
� �	Q
�
� �	 ��


because Q is 	essentially
 the disjoint union of the cubes S � S	Q
� A
trivial consequence of 	 ��
 is

	 � 


X
S�S�Q�

�	S
 d	S
��
� � d	Q
��
�
X
S

�	S

�d	Q


d	S


��
�

� C d	Q
��
� �	Q
�
� �	Q
�
� �

Lemma  � follows from this and 	 ��
�
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We shall need a last estimate on I	Q� V 
� to be used when we have
a larger power of �	Q
 to recuperate

	 ��
 I	Q� �QnQ
 � C�	Q

� �	Q


d	Q


��
�
�

To prove this we write

	 ���


I	Q� �QnQ
 �
X

S�S�Q�

I	S� �QnQ


�
X

S�S�Q�

I	S� �SnS
 �
X

S�S�Q�

I	S� �Qn�S


� I� � I� �

For each S � S	Q
�

	 ��
 I	S� �SnS
 � C�	�S
�
� �	S
 d	S
��
� � C�	S
�
� d	S
��
� �

by 	 ��
� 	���
 and 	��
 for the good cube S� Hence

	 ���


I� � C
X

S�S�Q�

�	S
�
� d	S
��
�

� C�	Q
�
�
X
S

�	S
 d	S
��
�

� C�	Q
 �	Q
�
� d	Q
��
� �

by 	 � 
� This takes care of I��
As for I�� let us check that

	 ���


Z
�Qn�S

d�	y


jx� yj
� C

�	Q


d	Q

�

for all S � S	Q
 and x � S�
Denote by T�� � � � � k	S
 � k	Q
� the cube of "k�Q��� that

contains S� This is a decreasing sequence of cubes� with T� � Q and�
Tk�S��k�Q� � S� and �Qn�S is the union of the sets �T�n�T���� � �
� � k	S
� k	Q
� � For these values of ��

	 ���
 �	�T�
 � C� �	T�
 � C�A
���� �	Q
 �
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by 	���
 and repeated uses of 	���
� Then

	 ���


Z
�Qn�S

d�	y


jx� yj
�

k�S��k�Q���X
�	�

Z
�T�n�T���

d�	y


jx� yj

�
X
�

�	�T�
 d	T���

��

� C �	Q
 d	Q
�� �

by de�nition 	�� 
 of �T���� the fact that x � S � T���� and then
	 ���
� This proves 	 ���
� Now

	 ���


I� �
X

S�S�Q�

Z
S

Z
�Qn�S

d�	y
 d�	x


jx� yj

� C
X
S

�	S
 �	Q
 d	Q
��

� C�	Q
 �	Q
 d	Q
��

� C�	Q

� �	Q


d	Q


��
�
�

by the de�nitions 	 ���
 and 	���
� 	 ���
� and 	���
 	to get that �	Q
 �
C d	Q

� The desired estimate 	 ��
 follows from 	 ���
� 	 ���
 and
	 ���
�

�� Bounds on N �

In the original version of this paper� the matrix N was bounded
with the help of Schur�s lemma� This was quite tempting� but it turns
out that it actually complicated the estimates� The current section was
revisited in October ���� after the author noticed that in the similar
extension of T 	b
 by Nazarov� Treil� and Volberg� the corresponding
estimates were much simpler� Here is the simple trick that makes the
di�erence� I am sure the reader will be glad that the authors of �NTV�
kindly communicated it to me�

Lemma ���� Let N � 		N	Q�R


Q�R�
 be a matrix with complex

coe�cients� Assume that for each Q � " there are at most C� indices
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R � " such that N	Q�R
 �� �� and also that

	���

X
Q�


jN	Q�R
j� � C�
� � for each R � " �

Then N de�nes a bounded operator on ��	"
� with norm jjjN jjj �
C� C��

This is easy to prove� First observe that if N is as in the lemma�
then it is the sum of at most C� matrices that satisfy the hypotheses
of the lemma with C� �  and the same constant C�� Thus we may
assume that C� � � For each R � "� denote by vR � ��	"
 the
vector with coordinates N	Q�R
� Q � "� By 	���
� kvRk� � C�

� � while
our �rst hypothesis with C� �  says that the vectors vR� R � "� are
orthogonal to each other� Hence if x � 	xR
R�
 is any vector in ��	"
�

	���
 kNxk� �



X

R

xR vR




� �X
R

jxRj
� kvRk

� � C�
� kxk

� �

as needed� The lemma follows�

To estimate the matrix N from Section �� we want to decompose
it into a sum of matrices N k� with k � k	Q
 � k	R
 and prove geo�
metrically decreasing bounds on the norms jjjN kjjj� For each integer
k � �� denote by N k the matrix with coe�cients Nk	Q�R
 � N	Q�R

when k	Q
 � k	R
 � k and Nk	Q�R
 � � otherwise� Note that
N �

P
k��N

k� because N	Q�R
 � � when k	Q
 � k	R
� See around

	����
�	����
 for the de�nition of N �
At this point� and for almost all the rest of this section� we �x an

integer k � � and we study N k by cutting it into smaller pieces� As we
shall see� Lemma �� will be quite handy for most of them�

Case A� Terms with Q � R� Of course this only shows up when k �
�� Denote by N� the part of N that lives on the diagonal� i�e�� set
N�	Q�R
 � � when Q �� R and N�	Q�R
 � N	Q�R
 � A�	Q
 for
Q � "� 	See 	��� 
�


Recall from 	����
 that

	���
 A�	Q
 �
X
Q��

X
Q��

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�
 �
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where we sum over pairs of distinct children of Q� By 	 ��
 and 	���
�

	���

I	Q��� Q

�
�
 � C�	Q��


�
� �	Q��

�
� �	Q��


�
� d	Q��

��
�

� C�	Q��

�
� �	Q��


�
� �

and so A�	Q
 is a sum of boundedly many bounded terms� Thus N�

de�nes a bounded operator on ��	"
� with norm jjjN�jjj � C�

Case B� Terms coming from A�	Q�R
� Set N�	Q�R
 � A�	Q�R
 when
k	Q
 � k	R
 � k and 	����
 holds� and N�	Q�R
 � � otherwise� We
should perhaps have written Nk

� 	Q�R
 instead of N�	Q�R
� but k is
�xed and we�ll try to keep the notation simple� Note that N�	Q�R
 � �
unless �Q meets R� this is clear from the de�nitions 	���
 and 	���
�
Thus for each Q there are at most C cubes R � "k�Q��k such that
N�	Q�R
 �� �� We can apply Lemma �� to the matrix N� with coe��
cients N�	Q�R
 and get that

	���
 jjjN�jjj
� � C sup

R�

$	R
 �

where

	���
 $	R
 �
X

Q�
�R�

N�	Q�R

�

and "	R
 is the set of cubes Q � "k�R��k such that Q � R � � but
�Q � R �� ��

Fix R � "� plug 	���
 into 	���
 and then apply 	 ��
 to get that

$	R
 � C
X

R��F �R�

X
Q�
�R�

X
Q��F �Q�

�	Q�
�� �	R�
�� I	Q�� R� � �Q
�

� C
X
R�

X
Q

X
Q�

�	R�
�� �	R� � �Q
 �	Q�
 d	Q�
�� �

	�� 


Let us �x R� and try to bound the corresponding sum� Let us warm
up with the easy case when k � �� say� Then we simply say that
�	Q�
 d	Q�
�� � C by 	���
� that the R� � �Q� Q � "k�R��k� have
bounded overlap 	by 	���
� 	���

 and are contained in R� and then
that $	R
 � C after summing over boundedly many children R� of R�

For larger k we wish to argue that since Q � R � � by 	����
�
the sets R� � �Q only cover a small proportion of R�� This can be
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implemented directly if R� is a good cube� but in general we need
to bring in the decomposition of R� into maximal good subcubes S�
S � S	R�
� as in 	 ��
� For each R� � F 	R
 set S� � fS � S	R�
 �
k	S
 � k	R
 � k��g� R�� �

S
S�S�

S and R�� � R�nR��� We write

	���
 $	R
 � C
X

R��F �R�

	��	R
�
 � ��	R

�

�	R�
�� �

where

	���
 ��	R
�
 �

X
Q�
�R�

X
Q��F �Q�

�	R�� � �Q
 �	Q�
 d	Q�
�� �

For ��	R
�
 we say that �	Q�
 � C d	Q�
 by 	���
� so that

	��


��	R
�
 �

X
S�S�

X
Q�
�R�

X
Q��F �Q�

�	S � �Q
 �	Q�
 d	Q�
��

� C
X
S�S�

X
Q�
�R�

�	S � �Q
 � C
X
S�S�

�	AS
 �

where AS is the union of the sets S � �Q� Q � "	R
� We used the
fact that the �Q� Q � "k�R��k� have bounded overlap� Next all the

points of AS lie within A�k�R��k � A�k d	R
 of some point of EnS�
because the cubes Q do not meet R 	and even less S
� 	See 	�� 
 for
the de�nition of �Q�
 Hence AS is contained in the set Nt	S
 of 	���
�
with t � A�k d	R
 d	S
�� � C A�k
� 	because d	R
 � Ak
�d	S
 by
de�nition of S�
� So

	���


��	R
�
 � C

X
S�S�

A�k�
��	S


� CA�k�
�
X
S�S�

�	S


� CA�k�
� �	R�
 �

because the cubes S are good 	as in 	��

� disjoint� and contained in
R�� This will be enough to take care of S��

For ��	R
�
 we only say that �	R�� � �Q
 � �	R�
� but we use a

better estimate for �	Q�
� Let Q � "	R
 be such that �Q meets R���
and let z be any point of �Q � R��� Then let H be the smallest cube
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that contains z such that k	H
 � k	R
�k��� Since H is not contained
in any cube of S�� it is a bad cube and so are all its ancestors contained
in R�� Then

	���


�	H
 � A����k�H��k�R��� �	R�


� CA��k �	R�


� CA��k d	R
 �

by repeated applications of 	���
� because k	H
 � k	R
�k���� and
by 	���
�

Since �Q meets H and Q is of a strictly later generation than
H� Q is contained in �B	H
 and 	���
 says that �	Q�
 � C�	H
 �
CA��k d	R
 for all Q� � F 	Q
�

Thus all the terms in the sum that de�nes ��	R
�
 	in 	���

 are

at most

C�	R�
A��k d	R
 d	Q
�� � C�	R�
A��k �

Since by easy geometric considerations 	like 	��

 there are at most
CA�k cubes Q in "	R
� we get that

	���
 ��	R
�
 � C�	R�
A��k �

From this and the similar estimate 	���
 we deduce that
P

	R
 �
CA��k
� 	see 	���

� and then that jjjN�jjj � CA��k
� 	by 	���

�

Case C� Terms from B��� Set N�	Q�R
 � B��� where B�� is as in
	����
� when Q � R� Q �� R� and k	Q
 � k	R
 � k� Otherwise set
N�	Q�R
 � �� These coe�cients are like the N�	Q�R
 � A�	Q�R
 that
we just treated 	compare 	����
 with 	���

� except that now we sum
over pairs Q�� R� such that Q� � F 	Q
 and R� � F 	R
 is not the cube
of F 	R
 that contains Q� The same estimates as before can be carried
out� because whenever we used the fact that Q does not meet R in
subsection B� we only needed to know that Q does not meet R�� So the
matrix N� with coe�cients N�	Q�R
 has a norm jjjN�jjj � CA��k
��
and the proof is the same as for N��

Case D� Terms from B��� Now set N�	Q�R
 � B��� where B�� is as
in 	����
� when Q � R� Q �� R� and k	Q
 � k	R
 � k� Otherwise set
N�	Q�R
 � �� These coe�cients are a little like the previous ones� but
with a �	R�
��
� replaced with �	R	Q

��
�� where R	Q
 is the child
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of R that contains Q� To accommodate this change� it will be better to
use 	 ��
 rather than 	 ��
� Recall from 	����
 that

	���
 B�� �
X

Q��F �Q�

�	Q�
��
� �	R	Q

��
� I	Q�� �QnR	Q

 �

and note that

	���

I	Q�� �QnR	Q

 � I	Q�� �QnQ�


� I	Q�� �Qn�Q�
 � I	Q�� �Q�nQ�
 �

by de�nition of I	 � 
 	see 	���

�
The last term is at most

C�	Q�
 �	Q�
�
� d	Q�
��
� � C�	Q�
 �	Q
�
� d	Q
��
�

by 	 ��
 and 	���
�
The �rst term is

I	Q�� �Qn�Q�
 � �	Q�
�	�Q
 dist 	Q�� �QnQ�
��

� C�	Q�
�	�Q
 d	Q
��

� C�	Q�
 �	Q
 d	Q
��

� C�	Q�
 �	Q
�
� d	Q
��
� �

by 	���
 and 	���
� Thus

	���
 N�	Q�R

� � C

X
Q��F �Q�

�	Q�
�	R	Q

�� �	Q
 d	Q
�� �

Note that for each Q � " there is at most one cube R � " such that
N�	Q�R
 �� � 	namely� the ancestor of order k of Q
� Thus we can
apply Lemma �� to the matrix N� with coe�cients N�	Q�R
� and

	�� 
 jjjN�jjj � sup
R�


$	R
 �

with

$	R
 �
X
Q

N�	Q�R

�

� C
X

R��F �R�

X
Q�
�R��

X
Q��F �Q�

�	Q�
�	R�
�� �	Q
 d	Q
�� �

	���
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and where

"	R�
 � fQ � "k�R��k � Q � R� and �Q meets EnR�g �

	The last condition is needed if we want I	Q�� �QnR	Q

 �� � in 	���
�

We shall now proceed as in Case B� As before� the case when k � �

is easy� because we can just use 	���
 to get that

$	R
 �
X
R�

X
Q

X
Q�

�	Q�
�	R�
�� � C

	because the cubes Q� are disjoint and contained in R�
� So we may
assume k � ��

Set

S� �
n
S � S	R�
 � k	S
 � k	R
 �

k

�

o

and subdivide "	R�
 into "� and "�� where

"� � fQ � "	R�
 � Q � S for some S � S�g

and "� � "	R�
n"�� For cubes of "� we use 	���
 to get that

	����


��	R
�
 ��

X
Q�
�

X
Q��F �Q�

�	Q�
 �	Q
 d	Q
��

� C
X
Q�
�

�	Q


� C
X
S�S�

X
Q�
�

Q
S

�	Q
 �

Now for S � S� and Q � "�� Q � S� we have that �Q meets EnR�

by de�nition of "	R�
 and so Q � Nt	S
� with t � A�k�Q��k�S���� say�
By de�nition of S�� t � CA�k
� and so 	�� 
 yields

	���

X
Q
S

Q�
�

�	Q
 � �	Nt	S

 � CA�k�
� �	S
 � CA�k�
� �	S
 �

because S is a good cube� Altogether� 	����
 becomes

	����
 ��	R
�
 � C

X
S�S�

A�k�
� �	S
 � CA�k�
� �	R�
 �
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because the maximal cubes S� S � S�� are disjoint and contained in
R��

Next we want to estimate

	����
 ��	R
�
 �

X
Q�
�

X
Q��F �Q�

�	Q�
 �	Q
 d	Q
�� �

This time we shall just say that �	Q�
 � �	R�
� but we�ll use a better
estimate on �	Q
� By de�nition of "�� the smallest ancestor H of Q
such that k	H
 � k	R
� k�� is a bad cube� and so are all its ancestors
in R�� By repeated uses of 	���
�

	����


�	H
 � A����k�H��k�R��� �	R�


� CA��k �	R�


� CA��k d	R


	by 	���

� Also� 	���
 says that �	Q
 � C��	H
� Altogether�

	����
 �	Q
 d	Q
�� � C �	H
 d	Q
�� � CA��k �

By 	��
� there are at most CA�k cubes Q in "	R�
 and so ��	R
�
 �

CA��k�	R�
� Finally

	����
 $	R
 � C
X

R��F �R�

�	R�
�� 	��	R
�
 � ��	R

�

 � CA�k�
� �

by 	���
� 	����
� 	����
� 	����
 and this� and so jjjN�jjj � CA�k�
� by
	�� 
�

Case E� The far part from A�	Q�R
� Now we study the piece ofN k that
comes from terms A�	Q�R
 for which dist 	Q�R
 � d	R
� For each R �
" denote by A	R
 the set of cubes Q � "k�R��k for which 	����
 holds

and dist 	Q�R
 � d	R
 � A�k�R�� De�ne N� by N�	Q�R
 � A�	Q�R

when Q � A	R
 and N�	Q�R
 � � otherwise� When Q � A	R
�

	����


A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q


� �	Q
�
�
X

R��F �R�

�	R�
��
�
Z
R�

d	Q
 d�	x


jx� x	Q
j�

� C�	Q
�
�
X
R�

�	R�
�
� d	Q
 dist 	Q�R�
��

� C�	Q
�
� �	R
�
� d	Q
 dist 	Q�R
�� �
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by 	���
 and 	���
�

Subdivide each A	R
 further into the

	��� 
 A�	R
 � fQ � A	R
 � �� d	R
 � dist 	Q�R
 � ���� d	R
g �

� � �� We want to control the norms of the corresponding pieces N���

of N�� and this is the only place in this revised Section � where it will
be more pleasant to use Schur�s lemma�

Lemma ���� 	Schur
� Let N � 		N	Q�R


Q�
�R�
 be a matrix with

complex coe�cients� and assume that there are positive numbers �	Q
�
Q � "� such that

	����

X
Q�


�	Q


�	R

jN	Q�R
j � C � for all R � "

and

	���

X
R�


�	R


�	Q

jN	Q�R
j � C � for all Q � " �

Then N de�nes a bounded operator on L�	"
� with norm jjjN jjj � C�

For the very easy proof� see for instance �Da� p� ��� or �My� p� �����
We want to apply this to N���� with �	Q
 � �	Q
�
�� Let us �rst check
sums over Q� For R � "�

	����


X
Q

�	Q


�	R

jN���	Q�R
j � C

X
Q�A��R�

�	Q
 d	Q
 dist 	Q�R
��

� CA�k d	R
 	�� d	R

��
X

Q�A��R�

�	Q
 �

by 	����
 and de�nitions� Since all the cubes Q � A�	R
 lie within
C �� d	R
 of R� their total mass is at most C �� d	R
 by 	��
� and so

	����

X
Q

�	Q


�	R

jN���	Q�R
j � CA�k ��� �
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Next we �x Q and sum over R� Of course we need only consider those
R for which Q � A�	R
� and all these cubes R lie at distance less or
equal than C �� d	R
 � C ��Ak d	Q
 from Q� Thus

	����


X
R

�	R


�	Q

N���	Q�R
 � C

X
R

�	R
 d	Q
 dist 	Q�R
��

� C d	Q
 	Ak �� d	Q

��
X
R

�	R


� C d	Q
 	Ak �� d	Q

��

� C A�k ��� �

Altogether� Schur�s lemma yields

	����
 jjjN�jjj �
X
�

jjjN���jjj � CA�k �

Case F� The local part of A�	Q�R
 and B��� Set N�	Q�R
 � A�	Q�R

when k	Q
 � k	R
 � k� 	����
 holds� and dist 	Q�R
 � d	R
� set
N�	Q�R
 � B�� when k	Q
 � k	R
 � k� Q � R and Q �� R� �nally set
N�	Q�R
 � � otherwise� Note that

	����
 N�	Q�R
 � �	Q
�
�
X

R��F �R�
QR�	�

�	R�
��
� J	Q�R�n�Q
 �

when N�	Q�R
 �� �� by 	���
 or 	��� 
� Also� dist 	Q�R
 � d	R
 when
N�	Q�R
 �� �� so for each Q � " there are at most C cubes R � "
such that N�	Q�R
 �� �� Lemma �� tells us that

	����
 jjjN�jjj
� � C sup

R�

$	R
 �

where N� is the matrix with coe�cients N�	Q�R
 and

$	R
 �
X
Q

N�	Q�R

� �

For each R � " and R� � F 	R
� set

	��� 
 A	R�
 � fQ � "k�R��k � dist 	Q�R
 � d	R
 but Q�R� � �g �
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Then

	����
 $	R
 � C
X

R��F �R�

�	R�
�� �	R�
 �

with

	����
 �	R�
 �
X

Q�A�R��

�	Q
 J	Q�R�n�Q
� �

Fix R and R� � F 	R
� For each Q � A	R�
 set

	���
 �	Q
 � d	Q
 � dist 	Q�R�


and� for notational convenience�

	����
 JQ � J	Q�R�n�Q
 �

Our basic estimate for JQ is

	����


JQ �

Z
R�n�Q

d	Q
 d�	x


jx� x	Q
j�

� d	Q


Z
jx�x�Q�j��Q�
�

d�	x


jx� x	Q
j�

� C
d	Q


�	Q

�

which follows from 	���
� the fact that

dist 	x	Q
� R�
 � dist 	x	Q
� EnQ
 � d	Q


	by 	���
 and 	���

� and 	 �
�
Let us �rst say rapidly how we would estimate �	R�
 if R� were a

good cube� We would �rst sum over the cubes Q such that �	Q
 � � for
a given �� the interesting case being when d	Q
 � � � d	R�
� By 	����
�
the contribution ofQ to the sum would be at most C�	Q
 	d	Q
��	Q

��
Also� the total mass of the cubes Q would be about

� �

d	R�


��
�	R�
 � C

� �

d	R


��
�	R�
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	if R� is good
 because each cube Q lies at distance less than C� from
R� but does not meet R�� Summing over Q would give less than

C
� �

d	R


���A�k d	R

�

��
�	R�
 �

We would then sum over � and get that

�	R�
 � CA�k� �	R�


	the largest terms are when � � A�k d	R

�
In general� R� is not a good cube and we�ll have to localize to

maximal good subcubes of R� and distinguish two cases as usual� For
each Q � A	R�
� choose a point z	Q
 such that

	����
 z	Q
 � R� and dist 	z	Q
� Q
 � �	Q
 �

Denote by A�	R�
 the set of cubes Q � A	R�
 such that

	����

z	Q
 is contained in a maximal good

cube SQ � S	R�
 and Q � �SQ �

Also set A�	R�
 � A	R�
nA�	R�
 and

	����
 ��	R
�
 �

X
Q�A��R��

�	Q
 J�Q �

Let us �rst estimate ��	R
�
� A trivial estimate for JQ is

	����


JQ �

Z
R�n�Q

d	Q
 d�	x


jx� x	Q
j�

� �	R�
 d	Q
 dist 	R�� x	Q

��

� �	R�
 d	Q
�� �

We want to use the following weighted average of 	����
 and 	����


	��� 
 J�Q � C
�d	Q


�	Q


����
���	R�

d	Q


��
�
� C

d	Q


�	Q


��	R�

d	Q


��
�
�
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For each S � S	R�
 and � � �� denote by B�	S
 the set of cubes
Q � A�	R�
 such that �� d	Q
 � �	Q
 � ���� d	Q
 and S � SQ�
Obviously every Q � A�	R�
 lies in some B�	S
 and so

	����
 ��	R
�
 �

X
S�S�R��

X
���

X
Q�B��S�

�	Q
 J�Q �

If Q � B�	S
� then Q does not meet S 	by de�nition 	��� 
 of A	R�


but

dist 	Q�S
 � dist 	Q� z	Q

 � �	Q
 � ���� d	Q
 �

by de�nitions 	see in particular 	����
 and 	����

� Thus Q � Nt	S
�
with

t � C ���� d	Q
 d	S
�� � C ����A�k d	R
 d	S
�� �

Note that � cannot be too large� if B�	S
 contains some Q� then
�� d	Q
 � �	Q
 � C d	S
 because Q � �S 	by 	����

� In particu�
lar� the value of t above is never more than some constant C� Set
t� � min ft� g� Then all cubes Q � B�	S
 still lie in Nt�	S
 	because
Q � �S for Q � B�	S

� We may now apply 	�� 
 and get that

	����


X
Q�B��S�

�	Q
 � �	Nt�	S



� C 	��A�k d	R
 d	S
��
� �	S


� C 	��A�k d	R
 d	S
��
� �	S
 �

because S is a good cube� Next

X
Q�B��S�

�	Q
 J�Q

� C 	��A�k d	R
 d	S
��
��	S
 ���
� �	R�


A�k d	R


��
�
�	���


by 	����
� 	��� 
� and the de�nition of B�	S
� We may now sum over
� � �� noticing that the largest term is for � � �� and get less than

CA�k�
�
�d	R

d	S


����	R�

d	R


��
�
�	S
 �

Thus 	����
 becomes

	����
 ��	R
�
 � CA�k�
�

��	R�

d	R


��
� X
S�S�R��

�d	R

d	S


��
�	S
 �
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By H%older�

X
S�S�R��

�d	R

d	S


��
�	S
 �

�X
S

�	S

����
��X

S

�d	R

d	S


��
�	S


��
�

� C�	R�
���
� �	R�
�
�	����


� C�	R�
���
� d	R
�
� �

because the cubes S� S � S	R�
� are disjoint and contained in R�� and
by Lemma  �� and 	���
� Hence

	����
 ��	R
�
 � CA�k�
� �	R�
 �

which will be enough for our purposes� Let us now turn to ��	R
�
�

First we want to check that

	����
 JQ � CA�k � for all Q � A�	R�
 �

We start with the easy case when Q is not contained in �R�� If d	Q
 �
d	R�
� then

dist 	x	Q
� R�
 � dist 	x	Q
� EnQ
 � d	Q
 � d	R�
 �

by de�nition 	��� 
 of A	R�
� 	���
 and 	���
� Otherwise� diamQ �
d	R�
�� and� since some point of Q lies at distance � d	R�
 from R��
dist 	x	Q
� R�
 � d	R�
��� In both cases

JQ � �	R�
 d	Q
 dist 	x	Q
� R�
��

� �� 	R�
 d	Q
 d	R�
��

� CA�k � 	R�
 d	R
��

� CA�k �

by 	����
� 	���
 and 	���
�
We still need to check 	����
 when Q � �R�� Let H� � R� �

H� � � � � � H� be the decreasing sequence of all cubes H � R� that
contain z	Q
 	the point of R� that was chosen in 	����

 and such that
Q � �H� Since Q � �R�� there is at least one such cube� and then
d	H�
 � C�	Q
 by minimality of H� 	and 	���

� Note also that all
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the cubes Hj � � � j � �� are bad because Q � A�	R�
 and 	����
 does
not hold� Thus 	���
 and 	���
 yield

	����
 �	�Hj
 � C�	Hj
 � CA���j �	R�
 � CA���j d	R�
 �

Decompose R�n�Q into the sets Zj � 	R�n�Q
 � 	�Hjn�Hj��
� � �
j � �� � and Z� � 	R�n�Q
 � �H�� When � � j � �� � and x � Zj �

	����


jx� x	Q
j � dist 	x�Q


� dist 	x� �H�


� dist 	En�Hj��� �H�


�


�
d	Hj��
 �

Thus� for � � j � �� ��

	��� 
 J	Q�Zj
 � ��	Zj
 d	Q
 d	Hj��

�� � CA�j A�k �

by 	���
 and 	����
�
When j � ��  or j � �� we want to use the simple estimate

	����
 jx� x	Q
j �
�	Q


�
� for x � R� �

which comes from the fact that jx� x	Q
j � dist 	Q�R�
 trivially and
jx � x	Q
j � dist 	x	Q
� EnQ
 � d	Q
 by 	��� 
� 	���
 and 	���
� 	See
also the de�nition 	���
�
 Thus� for j � ��  and j � ��

	����
 J	Q�Zj
 � ��	Zj
 d	Q
 �	Q
�� � CA����A�k d	R
� �	Q
�� �

Recall that d	H�
 � C�	Q
� so that

A���� �
�d	H�


d	R�


���
� C

��	Q


d	R


���
�

Since we also have that �	Q
 � C d	R�
 because Q � �R�� 	����

implies that

J	Q�Zj
 � CA�k
��	Q


d	R


�
� CA�k �
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when j � ��  or j � �� Altogether

	���
 JQ � J	Q�R�n�Q
 �
�X

j	�

J	Q�Zj
 � CA�k �

which completes our proof of 	����
�

A second estimate for JQ is

	����
 JQ � �	R�
 d	Q
 dist 	x	Q
� R�
�� � ��	R�
 d	Q
 �	Q
�� �

which follows directly from the de�nitions 	����
 and 	���
� and 	����
�
Plug these two estimates into 	����
 to get

	����
 ��	R
�
 � CA�k

X
Q�A��R��

�	Q
�	R�
 d	Q
 �	Q
�� �

When we sum over the set of cubes Q such that �	Q
 � A�k
� d	R
�
we get less than

CA�k
�X

Q

�	Q

�
�	R�
A�k d	R
Ak d	R
��

� CA�k �	R�

�X

Q

�	Q

�
d	R
��

� CA�k �	R�
 �

by 	��
 or 	���
�
We are left with the cubes Q such that �	Q
 � A�k
� d	R
� These

cubes are contained in Nt	R
�
� with t � minf� CA�k
�g because they

are �	Q
�close to R� but do not meet it 	by 	��� 

� By 	�� 
 and 	���
�
their total mass is at most

CA�k�
� �	R�
 � CA�k�
� d	R
 �

and so the corresponding piece of ��	R
�
 is at most

CA�k A�k�
� d	R
�	R�
 	A�k d	R

�� � CA�k�
� �	R�
 �

Altogether� ��	R
�
 � CA�k�
� �	R�
� Now

	����
 �	R�
 � ��	R
�
 � ��	R

�
 � CA�k�
� �	R�
 �
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by 	����
� 	����
� 	����
 and this last estimate� We may now compare
with 	����
 and 	����
 to get that jjjN�jjj � CA�k�
�� as desired�

Case G� The terms B��� Finally de�ne N� by taking N�	Q�R
 � B��

when Q � R� Q �� R� and k	Q
 � k	R
 � k� and N�	Q�R
 � �
otherwise� This is the last piece of the matrix N k that we have to
study� recall that N was de�ned around 	����
�	����
� and that co�
e�cients A�	Q�R
 and A�	Q�R
 were dealt with in subsections B� E
and F respectively� while A�	Q�R
 was treated in Subsection A� B�� in
Subsection C � B�� in F and B�� in D�

Recall from 	����
 that

	����
 B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q


 �

where R	Q
 is the child of R that contains Q� As usual we can apply
Lemma ��� and

	����
 jjjN�jjj
� � sup

R�

$	R
 �

with

	����
 $	R
 �
X

R��F �R�

X
Q�A�R��

�	Q
�	R�
�� J�Q �

where this time we set

	��� 
 A	R�
 � fQ � "k�R��k � Q � R�g

and

	����
 JQ � J	Q�En	�Q	R�

 �

Set �	Q
 � d	Q
 � dist 	Q�EnR�
 for Q � A	R�
� Note that

	����
 jx� x	Q
j �
�	Q


�
� for x � En	�Q 	 R�
 �

because jx� x	Q
j � d	Q
 on En�Q and jx� x	Q
j � dist 	Q�EnR�

on EnR�� Then

	���
 JQ � d	Q


Z
En��Q�R��

d�	x


jx� x	Q
j�
� C d	Q
 �	Q
�� �
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by 	 �
�
When k � �� say� we can simply say that JQ � C by 	���


and $	R
 � C by summing brutally� When k � �� we expect to win
something from 	���
 when �	Q
� d	Q
� and otherwise to use the fact
that Q stays close to the �boundary of R�� to say that

P
�	Q
 is small�

As usual we need to distinguish cases because R� is not necessarily good�
Fix R� � F 	R
 and �rst consider

	����

A� �

n
Q � A	R�
 � there is a maximal good cube

S � S	R�
 such that k	S
 � k	R
 �
k

�
and Q � S

o
�

For each S � S	R�
 and � � �� set

	����
 A�
� 	S
 � fQ � A� � Q � S and �� d	Q
 � �	Q
 � ���� d	Q
g �

All these cubes lie at distance less than ���� d	Q
 from EnR�� and so
they lie in Nt	S
� with t � C �� d	Q
 d	S
��� If we get a t � � simply
remember that Q � A�

� 	S
 is always contained in S� otherwise apply
	�� 
 and the fact that S is a good cube to get that

	����

X

Q�A�
�
�S�

�	Q
 J�Q � C 	��A�k d	R
 d	S
��
� �	S
 ���� �

where the ���� comes from 	���
� When we sum this over � � �� the
largest term is when � � � and we get at most

CA�k� d	R
� d	S
�� �	S
 � CA�k�
� �	S
 �

because only the maximal good cubes S with k	S
 � k	R
 � k�� can
give non empty sets A�

� 	S
� by 	����
� Since every cube Q � A� lies in
some A�

� 	S
�

	����


X
Q�A�

�	Q
�	R�
�� J�Q � CA�k�
� �	R�
��
X

S�S�R��

�	S


� CA�k�
� �

Next we want to estimate the contribution ofA� � A	R�
nA� to
P

	R

	in 	����

� Let Q � A� be given� and let H� � R� � H� � � � � � H� be
the collection of all subcubes of R� that contain Q and are of generation
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less or equal than k	R
 � k��� By the de�nition 	����
 of A�� all these
cubes are bad� and so

	����
 �	�Hj
 � C�	Hj
 � CA���j �	R�
 � CA���j d	R
 �

by 	���
� 	���
� and 	���
 again� Now

	����
 JQ � J	Q�En	�Q	 R�

 �
���X
j	�

J	Q�Zj
 �

where Z� � En�R�� Zj � �Hj��n�Hj for  � j � �� and Z��� �
�H�n�Q� This comes directly from the de�nitions 	����
 and 	���
�
On Zj � � � j � ��

jx� x	Q
j � dist 	En�Hj� Q
 � d	Hj
 � A�j d	R�
 �

because Q � Hj � Thus� for  � j � ��

	��� 
 J	Q�Zj
 � d	Q
A�j d	R�
�� �	Zj
 � CA�jA�k �

by 	����
� For j � �� we simply have that

	����


J	Q�Z�
 � d	Q


Z
En�R�

d�	x


jx� x	Q
j�

� C d	Q
 d	R�
��

� CA�k �

because dist 	x	Q
� En�R�
 � dist 	Q�En�R�
 � d	R�
 	since Q � R�
�
and by 	 �
� Finally� jx� x	Q
j � d	Q
 on Z��� and so

	�� �
 J	Q�Z���
 � d	Q
�� �	�H�
 � CAk A���� � CA�k �

because H� is the smallest cube H containing Q and for which k	H
 �
k	R
�k��� Summing over � now gives that JQ � CA�k for all Q � A��
and then

	�� 

X

Q�A�

�	Q
�	R�
�� J�Q � CA��k �

because all these cubes are disjoint and contained in R�� Finally� when
we add up the estimates in 	����
 and 	�� 
 and then sum over R� �
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F 	R
� we get that $	R
 � CA�k�
� and jjjN�jjj � CA�k�
� 	see 	����

and 	����

�

At this point we may collect all the estimates from the various
subsections� We get that

jjjN kjjj �
X
j

jjjNjjjj � CA�k�
�

and �nally

jjjN jjj �
X
k

jjjN kjjj � C �

This completes the proof of Theorem �����

Remark 
���� We have only used the fact that the ambient dimension
is � a few times� when we used 	 �
 to estimate the number of cubes
Q � "k�R��k in a ball of radius Cd	R
� This estimate was always

beaten by a A���k that came from 	���
� If we had been working
in a larger ambient dimension� we would only have needed to replace
� with a larger constant in 	���
� which is possible� Thus Theorem
���� works also for one�dimensional sets E � Rn� with almost the same
proof� The proof most probably also works for di�erent dimensions of
E 	and corresponding homogeneities of kernel estimates
 but we did
not check this carefully� The authors of �NTV� did for their version�

�	� A short description of �DM��

We want to use Theorem ���� to prove our theorem about analytic
capacity� So we give ourselves a compact set E � C such that H�	E
 �
�� and E has positive analytic capacity� and we want to show that E
is not totally unrecti�able� As we discussed in the introduction� we can
�nd a bounded measurable function f on E such that

R
f d� � a � �

and the Cauchy integral of f d� is bounded on C nE� Here � denotes
the restriction of H� to E�

Next we want to replace f d� with a new measure g d�� where g
has the advantage of being accretive 	i�e�� satis�es 	���

� We shall use
the measure � and the function g constructed in �DM� for purposes sim�
ilar to those of this paper� These satisfy 	��
�	� 
� and also a weaker
analogue of 	��
� namely� the fact that the maximal Cauchy integral of
g d� lies in L�	d�
� To complete the argument outlined in the introduc�
tion� we shall have to put ourselves in position to apply Theorem ����
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to the measure �� and in particular construct an acceptable collection
of dyadic cubes on the support of �� These cubes will be constructed
as modi�cations of the dyadic cubes on E given by �DM�� see the next
section� Once this is done and we are in positition to apply Theorem
���� we shall have also to check that truncated Cauchy integrals of g d�
lie in the relevant BMO�space 	instead of just L�
 uniformly� This will
only be possible after we give a reasonable description of the construc�
tion of g and �� which is the aim of this section� It will be convenient
to use references like 	���
 rather than the longer ��DM� 	��
���

We start with our compact set E � C � d� � dH�
jE � and a bounded

function f such that kfk� �  and
R
f d� � a � �� The construction of

� and g will only use these informations� it will happen that in addition
the Cauchy integral of f d� is bounded on C nE� and then g d� will also
have nice properties with respect to the Cauchy kernel� but we don�t
need to think about this now�

The �rst thing we do is construct a collection " �
S
k��"k of

dyadic cubes with the properties listed below� Note that � is a �nite
measure� but does not necessarily satisfy 	��
� this will not be a prob�
lem� The constants C�� C�� A� below are absolute constants� see the
discussion below� Let us describe the properties of "� First

For each k � �� E is the disjoint union

of the Borel sets Q� Q � "k �
	��


if k � �� Q � "k and R � "� �

then Q � R � � or else R � Q�
	���


and for each k � � and each cube Q � "k� there is a ball B	Q
 �
B	x	Q
� r	Q

� centered on E� and such that

A�k � r	Q
 � C�A
�k �	���


E � B	Q
 � Q � E � � B	Q
 �	���


and

	���
 the balls �B	Q
� Q � "k� are disjoint �

These are the properties 	����
�	����
 in Theorem ����� It is also easy
to arrange that

	���
 "� has only one element �
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This was assumed in �DM� also 	see just after 	���
� the construction
gives this automatically if we normalize things by taking diamE � �
Next there is the story about small boundaries� Set

	���

Nt	Q
 � fx � EnQ � dist 	x�Q
 � tA�k�Q�g

	 fx � Q � dist 	x�EnQ
 � tA�k�Q�g �

for Q � " and � � t � � and where k	Q
 denotes� as always� the
generation of Q� Then

	�� 
 �	Nt	Q

 � C� t
� �	��B	Q

 �

for all Q � " and � � t � � and where we can take the constant � � 
as close to  as we want� Here we shall take � � ���� Furthermore we
can decompose " into the set of good cubes Q such that

	���
 �	��B	Q

 � C� �	Q
 �

and the set of bad cubes that do not satisfy 	���
 but for which

	���
 r	Q
 � A�k�Q�

and� more importantly�

	��
 �	��B	Q

 � A��� �	��B	 #Q

 �

where #Q denotes the parent of Q� Note that the only cube of "� is good
by de�nitions� and so #Q is de�ned for all bad cubes�

These are not exactly the condition 	����
�	����
 stated in The�
orem ����� First� there is the di�erence that we replaced ��B	Q
 in
	����
 with ��B	Q
� This does not cause any harm� it just makes
some of the constants larger� The second di�erence is in the phrasing
of the conditions� 	�� 
�	��
 are are slightly di�erent from 	����
�
	����
� even with �� instead of ��� but they are fairly easy to deduce
from 	����
�	����
 by choosing C� and A large enough� In fact� this is
what was done in �DM�� in sections � and �� Theorem ���� was stated
for all choices of C� 	which is called C� there
 and A� provided that
C� �  and A � ����C�� but then it was decided to take A � C C���

�

for some absolute constant C 	the one that shows up in 	����

 and
then C� so large that 	����
 and 	����
 actually imply 	�� 
 and
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	��
� See 	���
 for the choice of A� 	�����
 and 	�����
 for a dis�
cretized version of 	�� 
 where t � A�� � 	C C���

� 
�� and we get
� 	Nt	Q

 � C����� �	��B	Q

 � C �t�
���	��B	Q

� and 	�����
 for
	��
� The two other relations 	���
 and 	���
 are the same as
	����
 and 	����
�

This completes our discussion of the construction of cubes in �DM��
Note that we get our implicit property thatA� C� from earlier sections
automatically here 	i�e�� without having to skip generations arti�cially
�

Once our collection of cubes is chosen� we run a stopping time
construction� somewhat like in �Ch��� We select collections I� and LI
of cubes Q � "� with the following main properties�

the cubes of I� 	 L I are disjoint 	this is 	���

 and �	���


all the cubes Q � " such that Q � O	M
 or

Re

Z
Q

f d� � a� �	Q
 are contained in some

cube of I� 	 L I �

	���


where O	M
 � fx � E � there is an r � � such that �	B	x� r

 � Mrg�
and M and a� are two positive constants 	that may depend wildly on
E
� This is Remark ����� see also 	����
 and 	����
 for the de�nition
of O	M
� Set

	���

"� � fQ � " � Q � I� 	 L I or Q is not

contained in any cube of I� 	 L Ig �

These are the cubes which we shall really be working with� A fairly
easy consequence of 	���
 	see 	����

 is that

	���
 �	��B	Q

 � CA�k�Q� � for all Q � "� �

Denote by PL I the set of parents of cubes of L I� This makes sense
because the only cube of "� happens not to be in L I 	or I� either
� by
construction� Set I � I� 	 PL I� One puts a suitable order on I� this
order is chosen so that cubes of earlier generations come �rst and� in
case of equality� cubes of I� �"k come before cubes of PL I �"k� Call
Qn� n � � the nth cube of I for this order� We construct a sequence of
measures Fn� n � �� as follows�

All measures Fn are of the type

	���
 Fn � �nf d��
X

�	m	n

�m d�m
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	see 	����

� where f�ng is a decreasing sequence of nonnegative func�
tions on E� with � � �n � � the �m�s are bounded complex numbers�
and d�m is a �nite sum of multiples of restrictions of Hausdor� measure
on circles�

We start with F� � f d�� �� 
 � and no measure ��� and construct
the Fn by induction� To go from Fn�� to Fn� we distinguish between
two cases� When Qn � I�� we simply replace Qn with a circle� as follows�
Take �n � �n�� �EnQn 	i�e�� kill the part of �n�� f d� that lives on Qn

and choose Cn � C	Qn
� where

	���
 C	Q
 denotes the circle with center x	Q
 and radius
r	Q


��
�

and x	Q
� r	Q
 are as in 	���
�	���
� In �DM� we chose a slightly
larger radius for C	Q
 	see 	����

� but this new choice does not make
any di�erence in �DM�� and will help us a little bit here� Finally choose

d�n � ��n
�	Qn


H�	Cn

dH�

jCn
�

where ��n denotes the value of �n�� onQn� which happens to be constant
by construction� Take �n � �	Qn


��
R
Qn

f d�� so as to get
R
Fn �R

Fn���
When Qn � PL I� the construction is slightly more complicated�

We want to remove the children of Qn that lie in LI and replace them
with circles� but we shall also modify the values of �n��f on the rest
of Q� Denote by An the set of children of Q that lie in LI and by A�n
the set of other children of Q 	i�e�� those that do not lie in L I
� Set
Hn �

S
Q�An

Q� Gn �
S
Q�A�n

Q� and then

	�� 
 �n	x
 �

���
��

�n��	x
 � when x � EnQn �

� � when x � Hn �

	� 
n
 �n��	x
 � when x � Gn �

where the number � � 
n �  is correctly chosen 	see 	���� 
 and
	�����

� Also set

	���
 Cn �
X
Q�An

C	Q


and

	����
 d�n �
X
Q�An

��n
�	Q


H�	C	Q


dH�

jC�Q� �
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where ��n still denotes the constant value of �n�� on Qn� This is slightly
di�erent from the choice given in �DM�� where Cn was taken to be only
one of the C	Q
� Q � An� chosen at random� and on which we put
the total mass of Hn� This modi�cation will make our life a little more
pleasant later 	when we compare the mass repartitions of � and �
� but
it does not alter the argument in �DM�� The main point� of course� is
that we still have the same mass

	���
 k�nk � ��n �	Hn
 �

To complete the de�nition of Fn when Qn � PL I� one also chooses a
complex number �n and sets

	����
 Fn � Fn�� � �Hn �n�� f d�� 
n �Gn �n�� f d�� �n d�n �

We don�t need to be too precise here about the way the constants �n
and 
n were chosen� The main constraint was that

	����


Z
Fn �

Z
Fn�� �

our choices were such that

	����
 � � 
n � C
�	Hn


�	Qn


and

	����
 j�nj � C

	see 	�����
 and 	���� 

�
It is a good idea to set An � fQng� A

�
n � � 	say� but it does

not matter
 when Qn � I�� With these conventions� we still have the
properties 	�� 
�	����
 when Qn � I� 	see 	����
�	�����

�

We may also have to use later the fact that

	����
 the sets Hn� n � � are disjoint �

which comes from 	���
 and the fact that each Hn is the 	disjoint

union of the cubes of An� Alternatively� see 	�����
 for this statement�

Since f�ng is a decreasing sequence of nonnegative functions� it has
a limit ��� Set

	����
 E� � fx � E � ��	x
 � �g �
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By construction� E� does not meet any cube of I� 	 L I� Then

	��� 
 dist 	C	Q
� E�
 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

��

��
d	Q
 �

for Q � I� 	 L I� by 	���
� 	���
� and 	���
�
Similarly� if Q and Q� � " are such that Q � Q� � �� 	���
 says

that jx	Q
� x	Q�
j � maxfr	Q
� r	Q�
g� and hence

	����
 dist 	C	Q
� C	Q�

 �
� 

��
max fr	Q
� r	Q�
g �

This is the case in particular when Q�Q� � I� 	 L I and Q �� Q��
The measure that we want to study is

	����
 d� � �� d��
X
n

d�n �

which is obviously �nite because � is� and by 	���
 and 	����
� The
function g is given by

	���


�
g	x
 � f	x
 � on E� �

g	x
 � �n � on Cn �

which does not cause any confusion because all these sets are disjoint
by 	��� 
� 	����
� and 	����
�

The function g turns out to be bounded 	by 	����

 and accre�
tive 	which means that it satis�es 	���

 by construction� This comes
from the whole design of the stopping time argument 	and in particu�
lar 	���

 and the choice of the coe�cients �n� but we don�t need to
know precisely how it is proved to understand the rest of the present
paper� See 	����
 and its proof before Lemma ����� for details�

Our next task is to de�ne a collection of cubes !" on the support
of �� and then prove a T 	b
�theorem for � and these cubes� This is the
aim of the two next sections�

��� Dyadic cubes for � and ���

The following measure �� will be slightly easier to handle than ��
Set

	�
 d�� � �E� d��
X
n

d��n �
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where

	��
 d��n � 	��n

�� d�n �

X
Q�An

�	Q


H�	C	Q


dH�

jC�Q� �

Obviously � � ��� and �� is still a �nite measure because � is �nite�
and by 	���
 and 	����
� Set

	��
 !E � E� 	
� 	
n��

Cn
�
� E� 	

� 	
Q�I��LI

C	Q

�
�

This is not quite the support of ��� because supp �� is closed� but on
the other hand

	��
 ��	C n !E
 � � �

which will be enough for our purposes�
In this section we want to construct families !"k of partitions of

!E and check that they satisfy the conditions 	��
�	���
 required for
Theorem ����� with respect to the measure ��� Let us start with the
construction of cubes�

For each cube Q � "� 	see 	���
 for the de�nition
� set

	��
 R	Q
 � 	Q �E�
 	
� 	
S�I��LI
S
Q

C	S

�
�

Our �rst collection of cubes for �� is !"� � fR	Q
 � Q � "�g� which we
naturally split into the !"�

k � fR	Q
 � Q � "��"kg� k � �� We need to

complete !"� with cubes that come from decomposing the circles C	Q
�
Q � I� 	 L I�

For each cube Q � I�	LI we construct a collection !"	Q
 of subsets
of C	Q
 as follows� We start at generation k	Q
 � � we cut C	Q
 into
	disjoint
 arcs of circle of equal length ��� with �A�k�Q��� � �� �
��A�k�Q���� say� and call !"k�Q���	Q
 the collection of these arcs of

circle� Then we subdivide further each arc R � !"k�Q���	Q
 into smaller

arcs of circle of equal length �� � ��A�k�Q���� ��A�k�Q����� and call
!"k�Q���	Q
 the resulting collection of arcs of C	Q
� We continue like

this� and eventually construct a collection !"k	Q
 of 	disjoint
 subarcs
of C	Q
 for all k � k	Q
� and with the usual properties of dyadic cubes�
Finally set !"	Q
 �

S
k�k�Q�

!"k	Q
�
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Our collection of cubes for �� 	and �
 is

	��
 !" � !"� 	
� 	
Q�I��LI

!"	Q

�
�

which we can decompose into the

	��
 !"k � !"�
k 	

� 	
Q�I��LI
k�Q��k

!"k	Q

�
�

First we want to check that !" has the combinatorial properties 	���

and 	���
� We start with the �rst one�

	� 

for each k � �� !E is the disjoint

union of the cubes R� R � !"k �

Fix k � �� Because E� does not meet the cubes of I� 	 L I 	see
after 	����

� it does not meet the cubes of "n"� either 	by de�nition
	���

� and then 	��
 says that E� is the disjoint union of the
E� �R	Q
� Q � "�

k� So we are left with the circles C	S
� S � I� 	 LI�
If S � I� 	 LI and k	S
 � k� then there is exactly one cube Q � "�

k

that contains S� and C	S
 is contained in R	Q
 by 	��
� Moreover
C	S
 does not meet any other R	Q�
� Q� � "�

k� and it does not meet
any of the circles C	Q��
� Q�� � I� 	 LI and k	Q��
 � k 	and even less
the corresponding cubes of !"k	Q

��

� Thus the cubes of !"k partition
C	S
� If k	S
 � k� then C	S
 does not meet any of the R	Q
� Q � "�

k�
because all the circles contained in those circles come from cubes Q�

with k	Q�
 � k � k	S
� It does not meet the !"k	S
�
� S� �� S� either�

and it is nicely covered by the cubes of !"k	S
� This completes our proof
of 	� 
�

Next we check 	���
� Let R� � !"k and R� � !"k�� be given� and
suppose that R� � R� �� �� If R� � R� � E� �� �� then R� � R	Q�

and R� � R	Q�
 for cubes Q� � "k and Q� � "k��� and 	��
 says
that Q� � Q� � R� � R� � E� �� �� Then Q� � Q� and R� � R�� If
R� � R� � E� � �� then R� � R� � C	S
 ��  for some S � I� 	 LI� If
k � k	S
� then R�� R� � !"	S
 and R� � R� by construction of !"	S
�
If k � k	S
� then R� � R	S
 and R� � !"	S
� whence R� � R�� Finally�
if k � k	S
� then R� � R	Q�
 and R� � R	Q�
 for cubes Q�� Q� � "�

that both contain S� In this case also Q� � Q� and R� � R�� This
proves 	���
 when � � k� � the general case follows because of 	� 
�
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Next we want to consider properties of our cubes that involve the
measures � and ��� We start with the upper bound for density 	��


	��
 ��	B	x� r

 � C r � for all x � C and r � � �

This is proved in �DM�� beginning of Section ���� unfortunately the
statement 	����
 only mentions � and not ��� but the proof applies to
��� 	The only di�erence between � and �� comes from the size of the
functions �n� and the only information used in the proof of 	����
 in
this respect is that � � �n � �


We also want to relate the measures of our cubes for �� ��� and ��
and to this e�ect we de�ne numbers �Q� Q � "�� by

	��
 �Q �
Y

n���Qn�PLI

and Q
Gn

	� 
n
 �

Recall from 	���
 and 	���
 that if Q � "�� Q is never strictly
contained in a cube of I� 	 L I� Let n� denote the largest integer for
which k	Qn�
 � k	Q
� By construction� the function �n� is constant on
Q� and in fact the only times �n has possibly been modi�ed on Q for
n � n� where when Qn � PL I and Q � Qn 	and hence Q � Gn
�
Because of this� the constant value of �n� on Q is precisely �Q 	see
	�� 

�

If furthermore Q � I� and m is the integer such that Q � Qm�
then �m�� � �n� on Q because the cubes Q�� n� � � � m� do not meet
Q� 	All these cubes lie in I�� by de�nition of our order�
 Thus

	�
 �Qm � ��m � when Qm � I� �

where ��m still denotes the constant value of �m�� on Qm�
If Q � L I and m �  is such that Q � Am 	i�e�� the parent of Q

is Qm
� then �m is equal to �n� on Q� because none of the cubes Q��
m � � � n� meet Qm� Thus

	��
 �Q � ��m � when Q � Am �

	We just proved this when Qm � PL I� but 	�
 says that this is
also true when Qm � I��




Unrectifiable �
sets have vanishing analytic capacity �	�

Lemma ������ For all Q � "��

	��
 �	R	Q

 � �Q �
�	R	Q

 � �Q �	Q
 � C �	R	Q

 �

We start with the �rst inequality� Let us even prove that for all
Q � "��

	��
 d� � �Q d�
� � on R	Q
 �

Recall that �Q is the constant value on Q of �n� � where n� denotes the
largest integer such that k	Qn�
 � k	Q
� Obviously �� � �n� � �Q
on Q� and hence ��d� � �Q �E� d� on E� � Q � E� � R	Q
� Thus
d� � �Q d�

� on E� �R	Q
 	see the de�nitions 	����
 and 	�
 of �
and ��
� Now let C	S
 be one of the circles that compose R	Q
� as in
	��
� Let n denote the integer such that S � An� Then d� � d�n �
��n d�

�
n � ��n d�

� on C	S
� by 	��
� Since ��n � �S by 	��
� S � Q
by 	��
� and �Q is obviously a nondecreasing function of Q� we get
that ��n � �Q and d� � �Q d�

� on C	S
� This proves 	��
�
The second inequality in 	��
 is fairly straightforward

	��


��	R	Q

 � �	Q �E�
 �
X

S�I��LI
S
Q

��	C	S



� �	Q �E�
 �
X

S�I��LI
S
Q

�	S


� �	Q
 �

by 	��
� 	��
� 	���
� and the fact that E� does not meet the cubes
of I� 	 L I�

To prove the last inequality� we want to use the fact that the inte�
gral of g d� on Q is not too small� Let us �rst check that

	��
 Re

Z
Q

f d� � a� �	Q
 � for all Q � "�nL I �

where a� � a� is some positive constant 	the same one as in �DM��

When Q � "�n	I� 	 L I
� this follows directly from 	���
� the de�ni�
tion 	���
 of "�� and the fact that a� � a�� When Q � I�� Q is not
contained strictly in any cube of HD 	MI 	see the de�nition of I� in
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�DM�� just above 	���

� because it is a maximal cube of HD 	MI�
Also� Q is not contained in any cube of L I 	by 	���
� or the de�ni�
tion of I�
� Since LI is 	by de�nition
 the set of maximal cubes with
the properties that

	� 
 Q is not strictly contained in any cube of HD 	MI

and that 	��
 does not hold 	see 	��� 
 and 	����

� and since we
know already that Q satis�es 	� 
� we get that it satis�es 	��
� as
promised�

Let Q � "�nLI be given� and again denote by n� the largest
integer such that k	Qn�
 � k	Q
� Observe that Q does not meet any
of the Cn� n � n�� otherwise Q would meet a cube of An� thus would
be contained in this cube 	because k	Qn
 � k	Q

� and even would be
strictly contained in it 	because k	Qn
 � k	Q
 if Qn � I� and because
Q �� L I if Qn � PL I
� a contradiction with the de�nition of "�� Then

	��


Z
Q

Fn� �

Z
Q

�n�f d� � �Q

Z
Q

f d� �

by 	���
 and the discussion after 	��
�
Next we claim that

	���


Z
R�Q�

g d� �

Z
Q

Fn� �

i�e�� the further modi�cations of Fn� n � n�� do not change the integral
of Fn on 	what becomes of
 Q� This will follow from the fact that

	��


Z
Q

�n f d��
X

�	m	n

Qm
Q

�m k�mk �

Z
Q

Fn� �

for all n � n� by taking limits and comparing with 	��
� 	The union
of the Cm� Qm � Q� is the same as the union of the C	S
� S � I� 	 L I
and S � Q� because Q �� L I�
 The relation 	��
 is easily proved by
induction� It holds for n� because no Qm� m � n�� can be contained
in Q 	they are all of strictly earlier generations
� If 	��
 holds for
n� � n � n�� and if Qn does not meet Q� then 	��
 also holds for n
because the left�hand side is not modi�ed� Otherwise� Qn � Q 	because
k	Qn
 � k	Q

� and all the modi�cations of the integral of Fn�� a�ect
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the left�hand side of 	��
� Since the sum of these modi�cations is
zero by 	����
 	or by construction
� 	��
 for n follows from 	��

for n� �

From 	��
� 	��
 and 	���
 we deduce that

	���


a� �Q �	Q
 � �QRe

Z
Q

f d�

� �Q

���
Z
Q

f d�
���

�
���
Z
Q

Fn�

���

�
���
Z
R�Q�

g d�
���

� C �	R	Q

 �

because g is bounded 	by 	���
 and 	����

� This proves the last
inequality in 	��
 when Q � "�nL I�

When Q � L I� R	Q
 � C	Q
 and �	R	Q

 � �	C	Q

 � ��n �	Q
�
where n is such that Q � An and ��n is as in 	����
� Thus 	��
 says
that �	R	Q

 � �Q �	Q
� and 	��
 holds in this case as well� Lemma
�� follows�

Note that 	��
 implies that �	R
 � � for all R � !"�� because
�	Q
 � � for all Q � "� 	Recall that Q is centered on E � supp��

Thus �	R
 � � for all R � !"� and so !E � supp � � supp ��� 	We
shall see soon that diamR � CA�k for R � !"k�
 As was observed in
Remark ����� this and 	��
 are just as good� in view of Theorem �����
as knowning that !E � supp � or !E � supp ���

We want to continue checking that ��� !E� and !" satisfy the hy�
potheses for Theorem ����� We already know that 	��
�	���
 hold� and
the next veri�cation in our list is the story about the balls B	Q
�

Thus we want to de�ne a center x	R
 and a radius r	R
 for every
R � !"� We start with the case when R � !"� and R � R	Q
 for some
Q � "�� First�

	���
 dist 	x	Q
� R
 �
r	Q


��
�

Indeed� if x	Q
 does not lie in E�� there are only two possibilities� The
�rst one is that x	Q
 � Q� for some Q� � I� 	 L I which is contained
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in Q� If Q� � Q� then 	���
 holds because R � C	Q
� If Q� is strictly
contained in Q 	i�e�� of a strictly later generation
� then

dist 	x	Q
� R
 � dist 	x	Q
� C	Q�

 � �� r	Q�
 �
r	Q


��
�

The second possibility is that �n	x	Q

 tends to � without ever being
equal to �� Indeed� � � 
n �  for all n� and hence 	�� 
 says that the
only places where �n becomes � are the Hn�s� i�e�� the cubes of I�	L I�
In this second case x	Q
 lies in in�nitely many cubes Qn � PL I� and
dist 	x	Q
� R
 � �� Thus 	���
 holds in all cases�

Let us also check that

	���

every point of R � R	Q
 lies at distance

less or equal than
r	Q


��
from Q�

Of course there is nothing to check for points of Q � E�� thus we are
left with points of the circles C	S
� S � I�	L I and S � Q 	see 	��

�
These points are within r	S
��� of some center x	S
 � Q� by de�nition
of C	S
� 	���
 follows because r	S
 � r	Q
 when S � Q�

Let us choose a center x	R
 � R at distance at most r	Q
���
from x	Q
 and take r	R
 � r	Q
� Then 	���
 is the same as 	���
� and

	���
 R � !E � B	x	R
� �� r	R

 �

by 	���
 and 	���
� Let us also verify that

	���
 !E � B
�
x	R
�

� r	R


��

�
� R �

Let x � !E � B	x	R
� � r	R
���
 be given� If x � E�� then x � Q by
	���
� and hence x � R� Otherwise x � C	S
 for some S � I� 	 L I�
If S � Q we are happy because then C	S
 � R by 	��
� So let us
assume this is not the case� Then S � Q � �� because Q cannot be
strictly contained in S 	since Q � "�
� We know that

dist 	x�Q
 � jx� x	Q
j �
��

��
r	Q
 �

but on the other hand 	��� 
 says that

dist 	x�Q
 � dist 	C	S
� Q
 � dist 	C	S
� EnS
 �
��

��
r	S
 �
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and so r	S
 � r	Q
� Then

dist 	x� S
 �
r	S


��
�
r	Q


��
�

and there are points of S at distance less than jx�x	Q
j� r	Q
��� �
r	Q
 from x	Q
� This is impossible because of 	���
� and 	���
 fol�
lows� 	Note that the argument did not need to be as tight as it looks�
because in the dangerous case where r	S
 � r	Q
� we could use 	���

to get a somewhat more brutal contradiction�


Our estimates 	���
 and 	���
 are not quite the same as 	���
�
because of the factor � ���� but they are just as good for the proof of
Theorem ����� We could also have decided to take r	R
 � � r	Q
����
then we would have obtained 	���
� but only

� 

��
A�k � r	Q
 � C�A

�k

instead of 	���
� This di�erence is even more obviously harmless 	just
dilate E�


We still need to de�ne x	R
 and r	R
 when R � !"n !"�� i�e�� when
R � !"k	Q
 for some Q � I� 	 L I and some k � k	Q
� In this case
R is a small arc of the circle C	Q
� with length � � ��A�k� ��A�k��
We choose for x	R
 the center of this arc and take r	Q
 � A�k� Then
	���
 and 	���
 	and even the analogue of 	���

 hold for R because
k � k	Q
 and

	���
 dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 � for all Q � I� 	 L I �

by 	��� 
 and 	����
�
This completes our discussion of 	���
 and 	���
� Since 	���
 is the

same as 	���
� we are left with the story about small boundaries� We
�rst need to de�ne numbers �	R
� R � !"�

When R � !"	Q
 for some Q � I�	LI� simply take �	R
 � ��	R
�
When R � !"�� set �	R
 � �	��B	Q

� where Q � "� is such that
R � R	Q
� Let us �rst check the auxiliary conditions 	���
�	���
� and
then we shall return to 	�� 
�

When R � !"	Q
� 	���
 and the fact that k	R
 � k	Q
 imply
that !E � �B	R
 � C	Q
 � �B	R
� The property 	���
 for R and the
measure �� follows from the fact that �� is a bounded constant times
Hausdor� measure on C	Q
 	by 	��
 and 	���

� 	���
 for R follows
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because in addition �	S
 � ��	S
 for all the cubes S � !"	Q
� All cubes
of !"	Q
 are good for �� 	i�e�� satisfy 	��
 for ��
� and hence we don�t
need to check 	���
 for them�

Now consider R � !"�� and let Q � "� be such that R � R	Q
� Re�
call that we chose r	R
 � r	Q
 and x	R
 at distance less or equal than
r	Q
��� from x	Q
� 	See above 	���

� Thus �B	R
 � ��B	Q
�

Let A denote the set of cubes S � I� 	 L I such that C	S
 meets
�B	R
� Then

��	�B	R

 � ��	E� � �B	R

 �
X
S�A

��	C	S



� �	E� � �B	R

 �
X
S�A

�	S
	�� 


� �	R
 �
X
S�A

�	S
 �

by 	��
� 	��
� the facts that �� � � on E� and �B	R
 � ��B	Q
�
and the de�nition of �	R
� If S � A and S is not contained in Q� then
S �Q � � because Q cannot be strictly contained in S� since Q � "��
Then 	��� 
 says that

r	S
 �
��

��
dist 	C	S
� EnS
 �

��

��
dist 	C	S
� x	Q

 � �� r	Q
 �

Then 	���
 says that S � ��B	Q
� Hence

X
S�A

�	S
 � �	��B	Q

 � �	R


and 	���
 follows from 	�� 
 and 	���
�
Now �x k � k	R
 � k	Q
� and denote by Bk the set of cubes

T � "�
k such that R	T 
 � �B	R
� If T � Bk� T � ��B	Q
� by crude

estimates on diam	T 	 R	T 

 and the fact that k � k	Q
� Then

	���


X
T�Bk

�	R	T 

 �
X
T

�	��B	T 



� C�
�	

T

	��B	T 


�

� C �	R
 �

because the ��B	T 
� T � "k� have bounded overlap and are contained
in ��B	Q
� This takes care of the cubes of !"� in the sum in 	���
� Now
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let Dk be the set of cubes T � !"kn !"
� that are contained in �B	R
�

All these cubes lie in sets !"	S
 for cubes S � I� 	 LI such that C	S

meets �B	R
� Hence

	���

X
T�Dk

�	T 
 �
X
T

��	T 
���
� 	
S�A

C	S

�
�
X
S�A

�	S
��	R
 �

because the cubes T � Dk are disjoint� and by the discussion above�
This completes the veri�cation of 	���
 for R � !"��

Finally 	��
�	���
 follows easily from its counterpart 	���
�
	��
 if C� � C�� and also the only cube of !"� is good for �� and
	��
 because the only cube of "� is good for 	���
 or 	����
�

We still need to check 	�� 
 for cubes of !"� For cubes R � !"	Q
�
Q � I� 	 L I� this follows from the fact that Nt	R
 � C	Q
� by 	���
�
and the simple structure of the cubes of !"	Q
�

Now let R � !"� be given� and let Q � "� be such that R � R	Q
�
Also set k � k	R
 � k	Q
 and

	��

Nt � fx � R � dist 	x� !EnR
 � t A�kg

	 fx � !EnR � dist 	x�R
 � t A�kg �

for � � t � � This is the set that we need to control for 	�� 
� Still
denote by Nt	Q
 the set in 	���
� we want to use 	�� 
 to control the
sets Nt� Note that because of 	���
� it is enough to prove that

	���
 ��	Nt
 � C t� �	Q
 � C t� �	��B	Q

 �

for � � t � ���� say�
So let � � t � ���� y � R � Nt� and z � NtnR be given� with

jy � zj � � t A�k� Note that for each y � R � Nt there is a z like this�
and for each z � NtnR there is an y like this� Let us distinguish a few
cases�

If y and z both lie in E�� then y � Q and z � EnQ� and so y and
z both lie in N�t	Q
�

Next consider the case when z � E� 	and hence z � EnQ
 and
y � RnE�� Then 	��
 says that y � C	S
 for some S � I� 	 L I such
that S � Q� and

	���
 � t A�k � jy � zj � dist 	C	S
� EnQ
 �
��

��
r	S
 �
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by 	��� 
� The center x	S
 of S lies in S � Q� while z � EnQ� since

jx	S
� yj� jy � zj �
r	S


��
� � t A�k � � t A�k �

we get that z and x	S
 lie in N�t	Q
� Using 	���
 again and 	���
�
we deduce from this that the whole cube S lies in N���t	Q
�

Our next case is when y � R�E� � Q�E� and z � 	 !EnR
nE��
Then 	��
 says that z � C	S
 for some S � I� 	 LI� and 	��
 even
adds that S is not contained in Q� Moreover S � Q � �� because Q
cannot be strictly contained in S 	since Q � "�
� This time

	���
 � t A�k� jy�zj�dist 	C	S
� Q
�dist 	C	S
� EnS
�
��

��
r	S
 �

by 	��� 
� and

jx	S
� yj � jx	S
� zj� jz � yj �
r	S


��
� � t A�k � � t A�k �

Since y � Q and x	S
 � S � EnQ� we get that y � N�t	Q
� x	S
 �
N�t	Q
� and 	by 	���
 and 	���

 the whole S lies in N���t	Q
�

Our last case is when y and z lie in !EnE�� Then y � C	S
 for some
S � I� 	 LI such that S � Q� and z lies in C	T 
 for some T � I� 	 LI
such that T �Q � �� Then

	���
 � t A�k � jy� zj � dist 	C	S
� C	T 

 �
� 

��
max fr	S
� r	T 
g �

by 	����
� Since x	S
 � S � Q and x	T 
 � T � EnQ� and

jx	S
� x	T 
j � jy � zj�
r	S


��
�
r	T 


��
� � t A�k �

we get that x	S
� x	T 
 � N�t	Q
� and then that S and T are contained
in N���t	Q
 	by 	���
 again�


We may now summarize our discussion�

	���
 Nt � 	E� �N�t	Q

 	
� 	
S�Z

C	S

�
�

where Z denotes the set of cubes S � I� 	 L I that are contained
N���t	Q
� Now

	���


X
S�Z

��	C	S

 �
X
S�Z

�	S


� ��C� t
� �	��B	Q



� ��C�t
� �	R
 �
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by 	��
� 	���
� 	�� 
� and the de�nition of �	R
� Since ��	E� �
N�t	Q

 � �C� t

� �	R
 by 	�� 
 again� 	���
 follows from 	���

and 	���
�

This completes our veri�cation of the hypotheses of Theorem ����
for the set !E� the measure ��� and the cubes of !"� In the next section
we use this information to show that Theorem ���� also holds on !E� ��
and with the cubes of !"� even though the hypotheses 	�� 
�	���
 are
not necessarily satis�ed in this case�

��� Theorem ���	 holds for ��

In general we do not expect that � 	equipped with the cubes of
!"
 will satisfy the conditions 	�� 
�	���
 about small boundaries� A
typical bad thing that may happen is the following� For some good
cubes R � R	Q
� Q � "�� the factor �Q in 	��
 could be very small�
much smaller than the corresponding factors for other cubes that touch
R�When this happens� we shall not have a good control on the measure
for � of the sets Nt	R
 in terms of �	R
� and so we may have to declare
that R is bad for � without having any compensation available in terms
of 	���
� Nonetheless we want to prove that Theorem ���� holds for
!E� �� and the cubes of !"�

By this we mean that if T � b E  b E �� C is an operator that
satis�es 	���
�	���
 and 	���
 	with � and " replaced with � and
!"
� and if there are functions �� !� � BMO	d�
 that satisfy 	���
 and
	����
 	for �
� then T extends to a bounded operator on L�	d�
� The
de�nition of BMO	d�
 is the same as for d�� we do not use small
boundaries there�

To prove our claim� we shall simply follow the proof of Theorem
���� and show that it applies�

All the arguments in sections ��� can be applied without modi��
cation� the small boundary properties are never used there� except to
get qualitative information like 	���
 or 	��
� These properties are
also true for � because they hold for ��� Thus we can get as far as
Lemma ����� which says that it is enough to prove that the matrix N
	associated to the measure �
 de�nes a bounded operator on ��	 !"
�

We already know from Section  that the corresponding matrix
N� for �� de�nes a bounded operator� and so it will be enough to show
that

	��
 N	Q�R
 � CN�	Q�R
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	with obvious notations
� To make the comparison easier� it will be
useful to de�ne positive numbers �R for all R � !"� When R � !"� and
R � R	Q
 for some Q � "�� we take �R � �Q� When R � !"	Q
 for
some Q � I� 	 L I� we set �R � �Q� We claim that

	���
 d� � �R d�
� � on R

and

	���
 �	R
 � C�� �R �
�	R
 � for all R � !" �

When R � !"� and R � R	Q
� this follows from 	��
 and 	��
�
When R � !"	Q
 for some Q � I� 	 L I� this is obvious because � �
�Q �

� on C	Q
� by 	��
 and 	��
�
We are now ready to prove 	��
� We shall just take the di�er�

ent types of coe�cients N	Q�R
 from 	����
�	����
 one after the other
and compare them with the corresponding ones for ��� We start with
A�	Q�R
 in 	���
� Recall that A�	Q�R
 is a sum of terms

	�	Q�
 �	R�

��
� I	Q�� R� � �Q
 �

where Q� � F 	Q
 	the set of children of Q
 and R� � F 	R
� Note that
for each choice of Q� and R��

	���
 	�	Q�
 �	R�

��
� � C 	�Q� �R� �
�	Q�
 ��	R�

��
� �

by 	���
� and

	���

I	Q�� R� � �Q
 �

Z
Q�

Z
R��Q

d�	x
 d�	y


jx� yj

� �Q� �R� I
�	Q�� R� � �Q
 �

by 	���
� Here we set

	���
 I�	Q� V 
 �

Z
Q

Z
V

d��	x
 d��	y


jx� yj
�

for Q � !" and V � !EnQ� the obvious analogue of I	Q� V 
 for ���
From 	���
 and 	���
 we deduce that A�	Q�R
 � CA�

� 	Q�R

	with obvious notations
�
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Next let A�	Q�R
 be as in 	���
�

	���


A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q


� C ��	Q
�
�
X
R�

�
��
�
R� ��	R�
��
� J	Q�R�n�Q


� C ��	Q
�
�
X
R�

�
�
�
R� �

�	R�
��
� J�	Q�R�n�Q


� CA�
� 	Q�R
 �

by 	���
� 	���
� 	���
 again� and where J� and A�
� 	Q�R
 are the ob�

vious analogous of J and A�	Q�R
 for �
�� 	See 	���
 for the de�nition

of J�

The story for A�	Q
 in 	����
 is similar� A�	Q
 is a sum of terms

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�


� C 	�Q�� �Q�� �
�	Q��
 �

�	Q��


��
� �Q�� �Q�� I

�	Q��� Q
�
�
	�� 


and hence A�	Q
 � CA�
� 	Q
� Next 	����
 says that B�� is a sum of

terms

	�	Q�
 �	R�

��
� I	Q�� R� � �Q



� C 	�Q� �R� �
�	Q�
 ��	R�

��
� �Q� �R� I

�	Q�� R� � �Q


	���


	still by 	���
 and 	���

� and hence B�� � C B�
��� Similarly B�� in

	��� 
 is composed of terms

�	Q
�
� �	R�
��
� J	Q�R�n�Q


� C ��	Q
�
� 	�R� �
�	R�

��
� �R�J

�	Q�R�n�Q
	���


and is thus � C B�
��� Our next term is B�� in 	����
� and it is a sum of

terms

	�	Q�
 �	R	Q


��
� I	Q�� �QnR	Q



� C 	�Q� �R�Q� �
�	Q�
 ��	R	Q


��
� �Q� I

�	Q�� �QnR	Q

 �

	��
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which are also dominated by the corresponding terms for �� because
�Q� � �R�Q� 	since Q

� � Q � R	Q
 by de�nitions
� Finally�

	���


B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q




� �
�
�
Q �

��
�
R�Q�B

�
��

� B�
�� �

for the same reason�
This completes our veri�cation of 	��
� Theorem ���� for � and

the cubes of !" follows�

��� The Cauchy operator is bounded on L�	d�
�

It will be easier for us to deal with the truncated operators T��
� � �� de�ned by

	��
 T�f	x
 �

Z
jx�yj��

f	y
 d�	y


x� y
� for f � L�	d�
 �

Because � is a �nite measure� there is no problem in de�ning T�� or
even in proving that it is a bounded operator on L�	d�
� Of course we
want to prove that T� is bounded on L�	d�
 with bounds that do no
depend on �� and this will require more work�

We cannot apply Theorem ���� 	for �
 directly to T�� because it
does not have a standard kernel� but this will be very easy to �x� Denote
by X the nice cut�o� function such that X 	t
 � � for � � t � ���
X 	t
 � � t�  for �� � t � � and X 	t
 �  for t � � Then set

	���
 !T�f	x
 �

Z
X
� jx� yj

�

� f	y
 d�	y

x� y

�

for f � L�	d�
� We can replace T� with !T� because

	���
 k jT� � !T�j kL��d�� � C �

where k j � j k denotes the operator norm� and with a constant C that
does not depend on �� This follows easily from 	the continuous version
of
 Shur�s lemma� since

	���
 j	T� � !T�
f	x
j �

Z
�
��jx�yj��

jf	y
j d�	y


jx� yj
�
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and

	���


sup
x

�Z
�
��jx�yj��

d�	y


jx� yj

�

� sup
y

�Z
�
��jx�yj��

d�	x


jx� yj

�
� C �

by 	��
�
We want to prove that

	���
 kjT�jkL��d�� � C �

with a constant C that does not depend on �� 	���
 tells us that it is
enough to deal with !T� instead� We want to apply Theorem ����� with
!E� �� and the cubes of !"� Section � says that we can do this� We
choose b � g� where g is as in 	���
� Note that g satis�es 	���
� as
was observed shortly after 	���
 	or directly by 	����

� this was the
whole point of the construction in �DM��

The kernel

K	x� y
 � X
� jx� yj

�

� 

x� y

is antisymmetric and standard with uniform estimates� and !T� is the
singular integral operator associated with K	x� y
 as in Lemma �� �
	Most of the construction is not needed� though� because K	x� y
 satis�
�es the integrability condition 	���
�
 In particular� it satis�es the weak
boundedness property 	���
 automatically� by antisymmetry� Hence
	���
 will follow as soon as we verify the last condition in Theorem
����� namely that Tg and T tg lie in BMO with uniform estimates�

Note that we don�t need to be as careful as in the statement of
Theorem ���� and de�ne !Tg and !T tg by duality� Here� due to the fact
that our kernel K is bounded� !Tg and !T tg are well de�ned� and even
bounded� and the only thing we have to check is that they lie in BMO
with uniform bounds� Also� !Tg � � !T tg by de�nitions 	and in particular
antisymmetry
� so we only need to show that k !TgkBMO�d�� � C for
some C that does not depend on ��

Note that

j !T�g	x
� T�g	x
j �

Z
�
��jx�yj��

jg	y
j d�	y


jx� yj
� C �
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by 	���
 and 	��
� Since bounded functions obviously lie in BMO�
the desired estimate 	���
 will follow if we prove that

	���
 kT� gkBMO�d�� � C �

In view of De�nition �� � this means that

	�� 


Z
R�

jT� g	x
�mR�
	T� g
j

� d�	x
 � C �	R�
 �

for all R� � !"� where mR�
	T� g
 denotes the mean value of T� g on R�

	for �
� It is even enough to show that for each R� � !" there is a
constant mR�

such that

	���


Z
R�

jT� g	x
�mR�
j� d�	x
 � C �	R�
 �

because we know that the left�hand side of 	�� 
 is always less than or
equal to the left�hand side of 	���
�

Let us �rst take care of the cubes R� that are contained in circles
C	Q
� Q � I� 	 L I�

Lemma ����	� For each Q � I�	L I there is a constant C�
Q such that

	��
 jT�g	x
� C�
Qj � C � on C	Q
 �

Recall that on C	Q
� g	y
 is a bounded constant �n 	by 	���

and 	����

� and d� � Q dH

�� where Q is of the form

��n
�	Q


H�	C	Q


�

by 	����
� Hence Q � C as well� and

	���
 jT�	�C�Q� g
	x
j � C �

by elementary properties of truncated Cauchy integrals on circles� and
it is enough to study

	���
 a	x
 � T�		��C�Q�
 g
	x
 �

Z
fjx�yj���y� �EnC�Q�g

g	y
 d�	y


x� y
�
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Recall from 	���
 that

dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 �

so that we can assume that � � r	Q
��� say� because otherwise we can
replace � with r	Q
�� without modifying a	x
� Denote by x� the center
of C	Q
� and also set

D � fy � !EnC	Q
 � jy � x�j � �g

	the domain of integration for a	x�

 and

A �
n
y � !E � ��

r	Q


��
� jy � x�j � ��

r	Q


��

o

	which contains the di�erence between D and the domain of integration
for a	x
 when x � C	Q

� Then

	���


ja	x
� a	x�
j �
���a	x
�

Z
D

g	y
 d�	y


x� y

���
�
���
Z
D

� 

x� y
�



x� � y

�
g	y
 d�	y


���

� C

Z
A

d�	y


jx� yj

� C

Z
fjy�x�j�r�Q�
�g

��� x� x�
	x� y
 	x� � y


��� d�	y

� C �

because � � r	Q
��� and by the upper density estimate 	��
� 	The
computation for the last line is the same one as for 	 �
�
 Thus we can
choose C�

Q � a	x�
� and Lemma ��� follows�

Lemma ��� immediately gives 	���
 for all the cubes R� that
are contained in a C	Q
� Thus we are left with the cubes R� � !"�� and
we can even suppose that R� � R	Q�
 for some Q� � "�n	I� 	 L I
�
Because of 	��
�

	���


Z
R�

jT�g	x
�mR�
j� d�	x
 � �Q�

Z
R�

jT�g	x
�mR�
j� d��	x
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and� since �Q�
�	Q�
 � C �	R�
 by Lemma ��� 	���
 will follow if

we can show that

	���


Z
R�

jT�g	x
�mR�
j� d��	x
 � C �	Q�
 �

Let us summarize what we have done so far�

Lemma ������ To prove 	���
 with a constant that does not depend

on �� it is enough to show that for each � � � and each cube Q� �
"�n	I� 	 L I
� we can �nd a complex number m� such that

	�� 


Z
R�Q��

jT�g	x
�m�j
� d��	x
 � C �	Q�
 �

where C does not depend on � or Q��

At this point we �x a cube Q� as in the lemma� and we want to
�nd m� and eventually check 	�� 
� Our notations so far have been
slightly di�erent from those of �DM� Section  �� where what we call T�g
was called T �	g d�
� It will be more convenient for us now to revert to
the notation of �DM�� i�e�� to let the measure show up in the notations�
Recall from 	���
� 	����
� and 	���
 that

	���
 g d� � lim
n��

Fn � f d��
X
n��

	Fn � Fn��
 � f d��
X
n��

�n �

where

	����
 �n � ��Hn �n�� f d�� 
n �Gn �n�� f d�� �n d�n �

by 	����
� Hence

	���
 T �	g d�
 � T �	f d�
 �
X
n��

T �	�n
 �

the proof of 	����
 in �DM� also gives that the series converges absolutely
���almost everywhere� so we should not worry about convergence�

Fortunately we shall not need to estimate most of the terms in
	���
 in the present paper� because this was mostly done in �DM��
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Denote by J the set of integers n �  such that Qn � Q� and de�ne a
function A on !E by

	����
 A	x
 � sup
���

�
jT �	f d�
	x
j�

X
n�J

jT �	�n
	x
j
�
�

for x � E�� and

	����
 A	x
 � sup
��A�k�Q�
�

�
jT �	f d�
	x
j�

X
n�J

jT �	�n
	x
j
�
�

for x � C	Q
� Q � I� 	 L I�

Lemma ����� We have that

	����


Z
R�Q��

A	x
� d��	x
 � C �	Q�
 �

with a constant C that does not depend on � � � or Q��

When x � E�� �DM� 	�����
 and 	����
� give that

	����


A	x
 � C � C
X
n�J

X
Q�An�A�n


	Q
�EnQ	x
 e
�
Q	x


� C
X
n�J

Qn�PLI

X
Q�A�n


	Q
�Q	x
h
�
Q	x
 �

with the notations of �DM�� that we won�t have to make explicit here�
Thus

	����
 A	x
 � C �W J
� 	x
 �W J

� 	x
 �

whereW J
� andW J

� are as in 	���
 and 	����
� but where one sums only
on the cubes Q � R � I� 	 L I 	 BLI that come from indices n � J�
i�e�� cubes that lie in An 	A�n for some n � J� By Remarks ����� and
������ and especially 	��� �
�

Z
R�Q��E�

A	x
� d��	x
 � C ��	R	Q�
 �E�
 � C �
� 	
n�J

Qn

�

� C �	Q�
 �	��� 
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	See 	��� �
 if you want to check that �� is the same here as in �DM��
and recall that �� � � on E�
�

Now suppose that x � C	Q
 for some Q � I� 	 L I� We may use
	�����
 and 	�����
 to get that

	����


A	x
 � C � C
X
n�J

X
Q�An�A�n


	Q
 !eQ	x


� C
X
n�J

Qn�PLI

X
Q�A�n


	Q
 !hQ	x
 �

	See 	����
 and a little below for the de�nition of km� indeed km �
k	Q
 for the cubes Q � Am�
 Then

	����
 A	x
 � C � !W J
� 	x
 � !W J

� 	x
 �

where !W J
� and !W J

� are de�ned like !W� and !W� in 	����
 and 	����
�
but where we only sum over those cubes Q � R that lie in An 	A�n for
some n � J� Now

Z
R�Q��nE�

A	x
� d��	x
 �

Z
R�Q���

S
Q�I��LI

C�Q��

A	x
� d��	x


� C ��	R	Q�

 � C �
� 	
n�J

Qn

�
	���


� C �	Q�
 �

by 	��� �
 and Lemma ��� Lemma ���� follows from this and
	��� 
�

Now we want to take care of the T �	�n
 for which n �� J� We start
with the set J� of integers such that Qn does not meet Q��

Denote by x� the �center of Q��� i�e�� the point x	Q�
 of 	���
�
	���
� For each n � J�� set

	����
 Bn	x
 � jT ��n	x
� T ��n	x�
j �

Lemma ������ We have that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � for x � R	Q�
 �
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where

	����
 Z	x
 �

Z
EnQ�

A�k�Q��

jx� yj jx� � yj
d�	y
 �

To prove the lemma� set

V 	x
 � fy � C � jx� yj � � and jx� � yj � �g �	����


W 	x
 � fy � C nV 	x
 � jx� yj � � or jx� � yj � �g �	����


and then de�ne a function h by

h	y
 �

�����
����

jx� x�j

jx� yj jx� � yj
� when y � V 	x
 �

jx� yj�� � jx� � yj�� � when y �W 	x
 �

� � otherwise �

Obviously

	��� 


Bn	x
 �

Z
h	y
 j�n	y
j

�

Z
Hn

�n�� h d�� 
n

Z
Gn

�n��h d�� j�nj

Z
Cn

h d�n �

by 	����
 and because kfk� � � We want to sum this over n � J��
Notice that the sets Hn are disjoint by 	����
 and contained in EnQ�

by de�nition of J�� The Cn�s are disjoint too� by 	����
� The sets Gn

are not necessarily disjoint� but 	�� 
 says that

	����
 
n �n��	x
 � �n��	x
� �n	x
 � when x � Gn �

so that for a given x � E�

	����

X

n�x�Gn


n �n��	x
 �  �

Thus

X
n�J�

Bn	x
 �

Z
S
n�J�

Hn

h d��

Z
S
n�J�

Gn

h d�� C
X
n�J�

Z
Cn

h d�

� �

Z
EnQ�

h d�� C
X
n�J�

Z
Cn

h d� �	���
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for all x � R	Q�
�
Let us �rst take care of the integrals on W 	x
� Let x � R	Q�


be given� When � � � diam	R	Q�
 	 fx�g
� W 	x
 � B	x�� ��
 and
h	x
 � jx� yj�� � jx� � yj�� � � ��� on W 	x
� and hence

	����


Z
W �x�

h	y
 d�	y
 �

Z
W �x�

h	y
 d�	y
 � C �

be 	���
 	applied to Q� or to a suitable ancestor of Q�
 and 	��
�
When � � � diam	R	Q�
 	 fx�g
� W 	x
 � B	x�� CA

�k�Q��
� and
then

	����
 h	y
 �
CA�k�Q��

jx� yj jx� � yj
� on W 	x
 �

From this and 	���
 we deduce that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � C
X
n�J�

Z
Cn

�	y
 d�	y
 �

where

	����
 �	y
 �
A�k�Q��

jx� yj jx� � yj
�

We still need to control the contribution of the sets Cn� Let n � J� be
given� and let Q � An� Since n � J�� Qn does not meet Q�� and neither
does Q � Qn� Then

dist 	x�� C	Q

 � dist 	Q�� C	Q

 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

by 	��� 
� Hence

	����
 jx� � zj � C jx� � yj � for all z � Q and y � C	Q
 �

Similarly� C	Q
 does not meet R	Q�
� by 	��
 and the fact that the
circles C	Q
� Q � I� 	 LI� are disjoint 	by 	����

� Then for all x �
R	Q
 we have that

dist 	x� C	Q

 � dist 	R	Q
� C	Q

 � dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 �
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by 	���
� and

	����
 jx� zj � C jx� yj � for z � Q and y � C	Q
 �

From 	����
 and 	����
 we deduce that �	y
 � C �	z
 whenever y �
C	Q
 and z � Q� and then

	��� 


X
n�J�

Z
Cn

�	y
 d�	y
 �
X
n�J�

X
Q�An

Z
C�Q�

�	y
 d�	y


� C
X
n�J�

X
Q�An

Z
Q

�	z
 d�	z


� C

Z
EnQ�

�	z
 d�	y


� C Z	x
 �

because �	C	Q

 � �	Q
� the cubes Q are disjoint and do not meet Q��
and by de�nition 	����
 of Z�

Lemma ���� follows from 	����
 and 	��� 
�

Lemma ����� We have

	����


Z
R�Q��

Z	x
� d��	x
 � C �	Q�
 �

We leave the proof of Lemma ���� for later� and continue with the
proof of 	�� 
� Lemmas ���� and ���� will give us enough control
on the T �	�n
� n � J� 	see later
� So we want to switch to the set
J� � N� � 	J 	 J�
 of integers n �  such that Q� is strictly contained
in Qn� Thus Q� � Gn when n � J�� For each n � J�� set

	���

�n � �n � 
n �Q�

�n�� f d�

� ��Hn �n�� f d�� 
n �GnnQ�
�n�� f d�� �n d�n �

	by 	����

� and then set

	����
 Bn	x
 � jT ��n	x
� T ��n	x�
j � for x � R	Q�
 �

We claim that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � for x � R	Q�
 �
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by the same proof as for Lemma ����� The main point is still that the
sets Hn are disjoint and disjoint from R	Q�
� that the integrals against
�nd�n are controlled by the integrals on Hn� and that the integrals on
the sets GnnQ� sum up by 	����
 and still concern EnQ��

The last piece that we need to study is

	����
 � �
X
n�J�


n �n�� �Q�
f d� � 	� �
�Q�

f d� �

where � denotes the constant value of �n� on Q�� where n� is the largest
integer in J�� 	If J� is empty� we don�t need to worry but we can also
take � �  and � � ��
 The last equality in 	����
 comes from 	����
�
For each x � R	Q�
� set

	����
 D	x
 � E �B	x� diam	Q� 	 R	Q�

 � A�k�Q��
 �

By 	�����
 or 	���� 
�

	����
 jT �	�EnD�x� f d�
	x
j � C �

because it is a T ��	f d�
	x
 for some !� � A�k�Q��� next

	����
 jT �	�EnD�x�� f d�
	x
j � C �

by 	����
� and because the di�erence between the left�hand sides of
	����
 and 	����
 is controlled by

Z



d�	y


jx� yj
� C �

where " � 	D	x�
nD	x

 	 	D	x
nD	x�

� This last estimate uses
	���
� Now assume that x � R	Q�
 � E� or x � R	Q�
nE� and
x � C	Q
 for some Q � I� 	 L I such that � � A�k�Q���� Then
jT �	f d�
	x
j � C by 	�����
 or 	���� 
� and hence

	��� 


jT ��	x
j � jT �	f d�
	x
j� jT �	�EnQ�
f d�
	x
j

� C � jT �	�EnD�x�� f d�
	x
j�

Z
D�x��nQ�

d�	y


jx� yj

� C �

Z
D�x��nQ�

d�	y


jx� yj
�
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The following lemma will be useful� we shall prove it later� at the same
time as Lemma �����

Lemma ������ Set

Z�	x
 �

Z
D�x��nQ�

d�	y


jx� yj
� for all x � R	Q�
 �

Then

	����


Z
R�Q��

Z�	x

� d��	x
 � C �	Q�
 �

We are now ready to prove 	�� 
 	modulo the two lemmas
� Take

	���
 m� �
X
n�J�

T ��n	x�
 �
X
n�J�

T ��n	x�
 �

For each x � R	Q�
 � E� � Q� � E� and � � ��

	����


jT� g	x
�m�j � jT �	g d�
	x
�m�j

� A	x
 �
X
n�J�

jT ��n	x
� T ��n	x�
j

�
X
n�J�

jT ��n	x
� T ��n	x�
j� jT ��	x
j

� A	x
 �
X

n�J��J�

Bn	x
 � C � Z�	x


� A	x
 � C � C Z	x
 � Z�	x
 �

by 	���
� 	����
� 	���
 and 	����
 	to get that
P

n�J�
�n �P

n�J�
�n��
� 	����
 and 	����
� 	��� 
� Lemma ����� and 	����
�

When x � R	Q�
nE� and x � C	Q
 for some Q � I� 	 L I� and
we suppose in addition that � � A�k�Q���� we can use 	����
 instead
of 	����
� and the same computations as for 	����
 yield

	����
 jT�g	x
�m�j � A	x
 � C � C Z	x
 � Z�	x
 �

When x � C	Q
 and � � A�k�Q���� set �� � A�k�Q��� and observe that

	����


jT� g	x
� T��g	x
j �
���
Z
f��jx�yj���g

g	y
 d�	y


x� y

���

�
���
Z
fy�C�Q����jx�yj���g

�m d�m	y


x� y

��� � C �
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by 	���
� 	���
� 	����
� 	����
� and elementary properties of trun�
cated Cauchy integrals on circles� and where m denotes the integer
such that Q � Am� Thus 	����
 holds also when � � A�k�Q���� even
though with a slightly larger constant C� Altogether� 	����
 holds for
all x � R	Q�
 	and all � � �
�

Now 	�� 
 follows from Lemmas ����� ����� ����� plus the
fact that ��	R	Q�

 � C �	Q�
� by Lemma ��� Because of Lemma
���� our proof of 	���
 will be complete as soon as we establish the
two lemmas�

First consider the function Z	x
 of Lemma ����� We claim that

	����
 Z	x
 � C � Z�	x
 � for all x � R	Q�
 �

where Z� is as in Lemma ����� Let D	x�
 be as in 	����
 and the
de�nition of Z�� Then

	����


Z
EnD�x��

A�k�Q��

jx� yj jx� � yj
d�	y
 � C �

by the same computation as for 	 �
� because 	jx � yj jx� � yj
�� �
C jx��yj�� on the domain of integration and by 	���
� applied to Q�

and its ancestors�
So we may concentrate on

Z�	x
 �

Z
D�x��nQ�

A�k�Q��

jx� yj jx� � yj
d�	y
 �

But jx� � yj � A�k�Q���� on D	x�
nQ�� by 	���
 and 	���
� and so
Z�	x
 � �Z�	x
� This proves our claim 	����
�

Obviously Lemma ���� will follow from Lemma ���� and 	����
�
because ��	R	Q�

 � �	Q�
 by Lemma ���

We now prove Lemma ����� The argument is quite similar to
estimates for functions h�Q that were done at the beginning of �DM�
Section ���� but we give the argument here because some of the com�
putations in �DM� are much more general than what we need here�

First we want to reduce to an integral on Q� 	rather than R	Q�

�
For each x � Q�� set

	����
 r	x
 � inf fA�k � there is a cube Q � "�
k that contains xg �

The main point of this de�nition is that

	��� 
 �	B	x� r

 � C r � for all r � r	x
 �



Unrectifiable �
sets have vanishing analytic capacity ��	

by 	���
� Also note that

	����
 r	x
 � � � on E� �Q� �

because E� does not meet any cube of I� 	 L I� Next set

	����
 h	x
 � �Q�
	x


Z
D�x��nQ�

d�	y


r	x
 � jx� yj
�

We want to check that

	���


Z
R�Q��

Z�	x

� d��	x
 � C

Z
Q�

h	x
� d�	x
 �

For x � E��R	Q�
� r	x
 � � and Z�	x
 � h	x
� for the corresponding
part of the integral� there is nothing to check because �� � � on E��

Now let Q � I�	L I be given� with Q � Q�� and let us look at the
contribution of C	Q
� For each x � C	Q
�

dist 	x�D	x�
nQ�
 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

by 	��� 
� and hence

	����
 r	z
�jz�yj � A�k�Q��jz�yj � �� r	Q
�jx�yj � C jx�yj �

for all y � D	x�
nQ� and all z � Q� Then Z�	x
 � C h	z
 for all z � Q�
and

	����


Z
C�Q�

Z�	x

� d��	x
 � C

Z
Q

h�	z
 d�	z
 �

because ��	C	Q

 � �	Q
� When we sum this over the 	disjoint
 cubes
Q � I� 	 L I that are contained in Q�� we obtain that

	����


Z
R�Q��nE�

Z�	x

� d��	x
 � C

Z
Q�

h	z
� d�	z


	by 	��

� our claim 	���
 follows from this and the trivial estimate
for E� mentionned above�

Because of 	���
� Lemma ���� will follow as soon as we show
that

	����


Z
Q�

h	x
� d�	x
 � C �	Q�
 �
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To prove this we decompose Q� into its maximal good subcubes R�
R � S	Q�
� The decomposition is the same as in Section  � even though
� is a slightly di�erent measure now 	that does not satisfy 	��

� In
particular� the analogue of 	 ��
 in this context holds� with the same
proof� 	See Lemma ���� �
 For each R � S	Q�
� set

	����
 hR	x
 � �R	x


Z
�RnR

d�	y


r	x
 � jx� yj
�

where �R is as in 	���
�	�� 
 or in 	�����
� This is almost the same
function as in �DM� 	see 	��� 

� with the only minor di�erence that
we may have chosen r	x
 a little larger than the one in �DM�� 	See
in particular 	����
 and 	����
�
 This di�erence does not disturb us�
because our function hR is slightly smaller than the one in �DM�� and
the estimates from �DM� will work even better for it� Now we claim
that

	����
 h	x
 � C � hQ�
	x
 � C � � hR	x
 �

when x � R� R � S	Q�
� The �rst inequality is an easy consequence of
the fact that jx� yj � A�k�Q�� on D	x�
n�Q�� so that

h	x
� hQ�
	x
 �

Z
D�x��n�Q�

jx� yj�� d�	y
 � Ak�Q�� �	D	x�

 � C �

by 	���
� The second inequality comes directly from Lemma ������
The fairly easy proof is quite similar to arguments used earlier in this
paper� because all the cubes Q such that R � Q � Q� and Q �� R
are bad� the contribution to hQ�

	x
 of the annular shells at distance
� A�k�Q����� � � k	R
 � k	Q�
� from x decrease rapidly� the main
contribution comes from � � � and is less than C by 	���
� 	See �DM�
for details�


Next� for each R � S	Q�
 and each x � R�

	��� 
 hR	x
 � C 	 � log 	 � A�k�R� dist 	x� �RnR
��

 �

This is 	�����
� and it follows from a rather brutal computation using
dyadic annular shells and the density estimate 	��� 
� The logarithm
is an estimate of the number of shells that we need to cover the domain
of integration� Finally�

	����


Z
R

hR	x

� d�	x
 � C �	��B	R

 � C �	R
 �
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This follows fairly easily from 	��� 
 and 	�� 
� plus the fact that R
is a good cube� This is also a consequence of Lemma ������ Now

	�� �


Z
Q�

h	x
� d�	x
 �
X

R�S�Q��

Z
R

h	x
� d�	x


� �
X
R

Z
R

	hR	x

� � C
 d�	x


� C
X
R

�	R
 � C �	Q�
 �

by 	 ��
 	or Lemma ���� 
� 	����
� and 	����
�
This completes our proof of 	����
� Lemma ����� Lemma �����

and our main estimate 	���
 follow�

At this point we may return to the description given in Section �
the estimate 	�
 follows readily from 	���
� and we may conclude as
in the introduction�

This complete our proof of Theorem ��
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