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The Green Function for s0^r-6») u = iu in the
n=l

Exterior Domain and Its Application to the
Eigenfunction Expansion

By

Hiroshi UESAKA*

1. Introduction

Recently exterior boundary value problems for — J — A have been

studied by many authors. Ikebe PO and Mizohata [JTL [6] have const-

ructed and investigated the Green function for — A — A for exterior prob-

lems in the 3-dimensional Euclidean space R3. Ikebe f3] has applied his

Green function to obtain the eigenfunction expansion associated with — A

and the Schrodinger operator — A + q in the exterior domain, and also

Shizuta p)] has obtained the same result for — J5 employing Mizohata's

Green function.

Let Q be an open unbounded domain C -ft3 exterior to a closed bound-

ed surface 6>J2 of class C2, and a) an open bounded domain interior to d&.

By Q($) we shall denote the class of functions each of which belongs to

and vanishes identically outside a big ball. Let us define

(1.1) L.u(*)=
n=i

»=1

Ilb2
n(x)u(Xn=l
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where

i) bn(x), for n = 1,2, 3, is real-valued bounded and, belongs to

ii) £ is a complex constant with Im /cX).

We consider the following exterior Dirichlet problem for LK\

(EDP) Let f(x) be integrable over Q and Holder continuous in Q =

Find a function u(x) which satisfies the following conditions:

i) u(x) is continuous in Q and twice continuously differentiable in

£,
ii) u (x) satisfies the equation

(1.2) LKu(x)=f(x) in a,

iii) u(x) satisfies the boundary condition uld^ = 0.

In the following section first we shall construct the Green function

for LK by use of Ikebe and Mizohata's Green function for — A — fc2 and

show the existence of the solution of the above-mentioned (EDP). Next

we shall employ our Green function to obtain the generalized eigenfunc-

tions of LK and to expand an arbitrary function of L2(£) in terms of the

generalized eigenfunctions.

The author would like to express his hearty thanks to Professor T.

Ikebe for many valuable advices.

26 The Uniqueness of the Solution of (EDP)

In this section we shall impose an additional condition at infinity on

the solution u(x) of (EDP) called the radiation condition, i.e.

(2.1) u(*) = 0(l/r), f-ifcu(x) = o(l/r) (r= |*|->oo).

Then we get the uniqueness theorem of (EDP).

Lemma I. Let f(x) = 0 in (EDP), then any solution which satisfies

the radiation condition (2.1) vanishes identically in Q.
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Proof. We shall verify this lemma by the same method as Werner

has employed in [10] (Satz 1, Corollar 1 zu Satz 1 and Corollar 2 zu

Satz 1). Any solution u(x) of (EDP) posseses the normal derivative on

d&, because the first derivatives of u(x) are continuous in $ (see [6]).

Therefore we can apply Green's formula to u(x) in @R-=B(R)r\@ where

B(R) denotes the ball of radius R about the origin which contains d@.

We choose R so large that each bn(%} vanishes in B(R)C, the comple-

ment of B(R) in R3. Thus we have

(2.2)
n=lJQR

- n
OXn

zdx

— \
j

— \
J

\—1 7 / \ I 1C1

i 2j 0»cos(r, #«)f wao
«=i

as I dv n=i

. du

bn cos(v, x^\ udS

— bnu \u\2dx

dr

Here S(R) is the surface of B(R\ v and r denote the outer normal unit

vectors to 9,0 and S(R), respectively, and cos (y, xn) and cos(r3 xn) are

the direction cosines.

Let K = a+i@, where a and $ are real. We consider the following

three cases.

i) The case a^Q and /?>0. By the radiation condition (2.1), we

have

(2.3) -udS=(ai-0) \u\2dS+o(l).
J5(r) Or

From (2.2) and (2.3)

(2.4) - .
ox

bnu \u\2dx
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Taking the imaginary part of (2.4), we have

x=-( \u\
Mr)

Thus we get

\u\2dx = Q.
Q

Consequently we have u(x) = Q for all x G Q.

ii) The case a^O and # = 0. In B(K)C LK becomes — A— a3, so

that M(#) = O for all x € B(R)C by Rellich's uniqueness theorem (see C8]).

Thus we have u(x) = Q for all x G Q by use of the unique continuation

theorem for the solution of an elliptic partial differential equation of sec-

ond order (see Q6]).

iii) The case a = Q and /9^>0. For a=0 = Q, from (2.1)

(2.5) u(x)

For a=Q and /5>03 we get iyc= — /5<0, and the representation

I
(2.6) - -y 9vj, | A; — y\

can easily be shown for u(x) in B(R)°, applying Green's formula to u(%)
f,-0\x-y\

and ~ - p. From (2.6)
\x — y\

(2.7) ^)=0(l/r), ^-=0(l/r).

In both cases from (2.5) and from (2.7), we get

(2.8)
S(r) Or

Combining (2.2) and (2.8), and then taking the real part, we have
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sr f d u 2
^ 2_i \ J^ — °nU ax-\-O\L).

Hence we have for n = I, 2, 33

i^- — bnu=^0 for all x£G.
dxn

Therefore from (2.1),

1*00 = 0 for all xeB(R)c.

Thus by the unique continuation theorem we have 1*00 = 0 for all x€&.

Now the proof of our lemma is complete.

From Lemma 1 immediately follows the

Theorem 1, If a solution of (EDP) which satisfies the radiation

condition (2.1) exists, the solution is unique.

3. The Integral Equation Connected with (EDP)

In this section we shall show the existence of solutions of the inte-

gral equation connected with (EDP) and the resolvent kernel of the integral

equation.

Let G(#5 j, ye), for x and y G J 2 3 £ € C + where C+= {K\lmK>Q},

and denotes closure., be the Green function of — A — K2 obtained by

Ikebe and Mizohata. The properties of G(#, j, K) are as follows.

Theorem 2. i) Let K£C+. Then

(3.1)

for 7i = l, 2, 35 where C depends only on K.

ii) Let /c6C+ . Then

(3.2) "^~ - rV U 9G(*' ^^

)<C

x-y\'

for 7i = l, 2, 3,

\x-y\'
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where in the case Im /c > 0 the constant C depends only on /c and in the

case lmK = Q C depends only on K where (#, y) lies in a compact set of

X Qy.

iii) G(-3 y, K) satisfies the radiation condition.

iv) G(°5 y, /c) satisfies the null boundary condition, i.e. G(-5 y, /Olas

v) Le£ A;6C+a 77zg?2 ^' ^ exists and is continuous in x€.

?, y£J2 «^ /cGC + , where vx denotes the outer normal to d$ at x.

vi) Let x^y and /c£C+. Then G(x, y, /c) « continuous in &x x
v /^+

; A, O •

viii) We put u(x)=\ G(x, y, fc)f(y)dy.

(a) Let ImA;>0. If f(y) is Holder continuous in J2, and is bound-

ed or integrable over S. Then u(x) satisfies

( — d — K2)u(x) = f(x) in £, ulda = Q,

where A is taken in the sense of usual differentiation.

(b) Let ImK = Q. If f( y) is Holder continuous in J2 and vanishes

identically outside a big ball, then in the sense of usual differentiation u(x)

satisfies

(-4-ic2)u(x)=f(x) in J2, w,9J2 = 0.

(c) Let Im/c>0. If f(y)£L2(&\ then u(x) is bounded and con-

tinuous in J2 and u(x)€. ZT2(J?)j and satisfies

Here J^C^) denotes the class of L2(&) -functions with distribution deriva-

tives in Z,2(J2) up to the second order inclusive, and A is taken in the

distribution sense.

The above theorem is proved in Ikebe Q3], and Mizohata £5] and

3 or can easily be shown from their results.
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We define the following operator:

(3.3) J-/(*)=i
n

where bn(x} are the coefficients of LK. We put

(3.4) K(x, y ,AO = Z-C(*, y, K),

where Z operates on the variable x. Since &»(#)£ Co(#) for 7& = 1, 2, 3,

-£(#, y, /c) vanishes identically for # E (i?)c with sufficiently large R and

from (3.2) we have

(3.5) \K(x,y,K)\< 2,
I # J I

where the constant C satisfies the same condition as C in (3.2). We put

(3.6) u(*)= flG(*, j, K)f(y)dy.

As G(A;3 j. A:) is the Green function of — J — /c2, if f(y) satisfies suitable

conditions, then we obtain

(X, y, ic)f(y)dy.

Here we shall consider the following integral equation

(3.7) gW=fW-K(x, y, K)f(y)dy,

To the integral kernel K(x, j, A;) which is defined by (3.4), we may ap-

ply the theory of Fredholm (see [[4]), so that we may solve equation (3.7)

for /ceC+ .

Lemma 2. // g(x}^CQ(^^ then equation (3.7) has a unique solu-

tion.

Proof. As K(x,y, A;) and g(x) vanish identically in B(R)C for suf-

ficiently large R, the integration domain is essentially a bounded domain
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B(K). Therefore we can use the theory of Fredholm for continuous

functions defined on B(R). Let us introduce the homogeneous equation

for (3.7)

(3.8) h(X)

If we show that the solution of (3.8) vanishes identically, then we can

assert the lemma according to the Fredholm theory. Now we assume that

the solution of (3.8) exists. Then since K(x, y, fc) = Q for x^B(R)c, the

solution h(x) also vanishes identically in B(K)°. We put

v(x) = G(x, y, /c)h(y)dy=
JQ JB(R)

By theorem 2 we get (—d — K2)v = h, #ia,G — 0 and v(x) satisfies the radi-

ation condition, and we have

Consequently by lemma 1 we get v(x) = Q everywhere in S. Hence we

get

y , K y y = x , y ,

Therefore h(x) = 0 everywhere in J2. Thus the proof of the lemma is

complete.

Let R(x, y, /c) be the resolvent kernel of the integral equation (3.7).

Then according to lemma 2 R(x, y, K) exists for an arbitrary £ € E C ~ t ~ 5 and

can be expressed as

(3.9) R(x, y, z) = K(x, y, K) + K^\x, y, K) + M(x, y,

where K(l\x, y, /c) is the iterated kernel of K(x, y, /c), and M(x> y, K)

and N(/c) are analytic functions of K G C+.

The properties of R(x, j, ft) are summarized as follows.
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Lemma 3. i) R(x, y, ic) is a continuous function of (x, y, /c) in

QyxC^ unless x = y and an analytic function of ic in C+.

ii)

where the constant C satisfies the same condition as C in (3.2).

iii) R(x, y, ic) satisfies the following resolvent equation'.

K(x9 y, ic) = R(x, y, ic)-K(x, z, K)R(z, y,

(3.10)

K(x, y, ic) = R(x, y, K)-

iv) B(«, y, /c) vanishes identically outside a big ball which contains

QQ.

v) Let K£C+. Then \\R(x> •, it)\\L\a)<C> where C depends not on

x but only on /c.

Proof, i) and ii) are proved from theorem 2, (3.5) and (3.9). iii) is

the fundamental properties of the resolvent kernel of the Fredholm inte-

gral equation, iv) is easily shown from the above equation (3.10). From

(3.1) and (3.4) we have

where C depends not on x but only on /c. So in consideration of the

boundedness of B(R) we have

where C\ and C2 depend only on /c. Hence from Fubini's theorem and

(3.10) we have v) as follows:

\ dy\
JS JB(R')
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\R(x,z,K)\dz( \K(z, y,K)
) j a

Now the proof of our lemma is complete.

48 The Green Function for Lk and Existence of Solutions

for (EDP)

In this section we shall define the Green function for LK for (EDP)

by use of G(x, y, K) and R(x, y, A;), and construct solutions of (EDP).

In what follows we shall state estimates for some integral kernels as

lemma 4 of which a proof is found in Chapter II of £4].

Lemma 4, Let D be an open bounded domain CR3 and D its

closure.

i) We put /(#) =

Here K(x, y) is continuously differentiate on (x, j )6Dx D unless x = y.

If g e L1, and
\x-y\

dK(x, y)
dxn

C
\x-y\ Y for n =

1, 23 3, then

and 9fM = ( dK^ ^ g(y)dy for n = l, 2, 3.
dx JD dx

ii) We put K3(x, y)=\ KI(X, z)K2(z, y)dz.

Here KI(X, y) and K2(x, y) are continuous on (x, y) in DxD unless

x = y, and satisfy

, for m, »=1,2.

Then K^x, y) is continuous on (x, y) in DxD unlessx = y, and
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(4.1) if m+n>3, \K3(x, y)\ <, C\ x- y\ 3— ,

(4.2) if 77X + 7Z-3, \K3(x, y)\^C log|*-y|,

(4.3) if m + n < 3, K^(x, y) is continuous in DxD.

Here we shall define the following function which plays the role of

the Green function for LK as desired:

(4.4) H(x, y, rc) = G(x, y, K)+G(x, z, K)R(z, y, fidz.

From (3.2), ii) of lemma 3 and lemma 4 H(x, y, A:) is well-defined for

(x, y) e fi x a and ic 6 C+. We put

(4.5) U(x, y, A;)=

= \ G(x, z,K)R(z, y,
JB(R)

where R is sufficiently large. Then we get

H(x, y, K) = G(x, y, K)+ U(x, j, /c).

We shall exhibit the properties of H(x, y, K) as follows.

Lemma 5. i) If x=^y, then

where LK operates on the variable x.

ii)

iii) If x=fcy, then H(x, y, /c) is continuous in

iv)

/or 7i = l, 25 33

where C satifies the same condition as C in (3.2).

v) ^ ' -^?—- exists and is continuous in x£d@ and in
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vi) I f ( ' , x, y) satisfies the radiation condition (2.1).

vii) Let £6C+. Then

\\H(; 7, A

where C depends not on y but only on K.

viii) #O, 7, ic) = H(y, x, -R\

moreover

(4.6) \ G(#, *, to)R(z, y, /c)rf<2r=\ G(y, ̂ , — ic)R(z, x, —K,)dz

Proof of i). From i) of lemma 4

lx\ G(x, z, ic)R(z9 y, fc)dz= \ Z*G(#, ^, ic)R(z, j,

And since G(x, j, /c) is the Green function for (EDP) for — A

(-A-is2)xG(x, y, /0 = 0, and (- J-/c2)»\ G(#5 ̂ ? /.)^(z5 y

= R(x, j5/c).

Therefore we get

LKH(x, j, A:) = ( — J-/c2)^G(^, y, K)X

+ (-A-K2)x^G(x, z, K)R(z, j, ic)dz -lxG(x,

— lx\ G(x, z, ic)R(z9 j,

= R(x, j, A;)-^*, j, K)-K(x9 z,

Thus LKH(x, j, /c) = 0 follows from (3.10).
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Proof of ii). The assertion is immediate from the definition of H(x,

y, K).

Proof of iii) and iv). In view of theorem 2 it is enough to consider

U(x9 y, &)• From theorem 2 and lemma 3 G(x, y, it) and R(x, y, £) are

continuous in QxX@yxC+ unless x = y, and

By means of (4.2) we get the desired results in consideration of the bound-

edness of B(R).

Proof of v). Clear from theorem 2 and i) of lemma 4.

Proof of vi). That U( •, j, /c) satisfies the radiation condition is clear

from that G(-, z, K) satisfies the same condition and B(R) is bounded.

Hence jff(«, y, /c) satisfies the radiation condition.

Proof of vii). First we shall show U(x, y, /c) is integrable over Q

on x. By means of Fubini's theorem we have

\ \U(x,y,K)\dx^\dx\ \G(x,z,K)\\R(z,r,K)\dz
JS JS Jfl(fl)

\R(z,y,K)\dz( \G(x,z,K)\dx
R) JQ

where C\ and C2 depend only on K. Thus we have J?(-? j,

Next we shall show jET(A;, y. A;) is square integrable over S on

By means of Schwarz inequality we have

(4.7) \U(*. y, K)\adXdx\G(X, z, ic)\z\R(z, y, K)\dz
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From (3.1) and ii) of lemma 3 we can apply Fubini's theorem to (4.7),

and we have

J J U(x, y, K) |2 dx <; J ] R(z, y, *) | dz § \ R (z, y, *) | dz

where C3 and C4 depend only on K. Thus we have obtained the result

as desired.

Proof of viii). From the already established i) we have

(4.8) H(z, y, -ic)LKH(z, x, K)- H(z, x, /c)L^H(z, y, -£) = 0,

where LK and L_« operate on the variable z. We integrate (4.8) with

respect to z and apply Green's formula by virtue of the already establish-

ed result v). The domain of integration is at first the intersection of Q

and a large ball B(r) containing d@ excluding small balls of radius e

about x and y where x> y£@. Thus we have

> r /r">j 3 ^v j /uy

-*(,, *, *)9g('ff ~;

3 (*

z 2 \ {^(^3 ^3 ̂ ) + ^(^j Jj ~~^)} ̂ » cos(v, Xn)dS,

where S(r\ S(x, e) and S(y, e) are the surface of B(r)r\Q and the balls

about x and y respectively, and —— denotes differentiation with respect

to the outer normal v for 5(r), S(x9 e) and 5(y, e). Then

3 r
lim i 2 \
£-+Q «=lJS(*,e
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and by use of the radiation condition

r flim \
r_+ 0 0J5 ( r )

,x,ic) rr, .dH(z,y,-it)
— '- — *- — H(z, x, ic) - ^ -

dv dv )

and by use of the already established result iv)

n i- If \W7 - IA 9H(z, X, 1C)O^lim-— \ Hz —K - — ̂ — z-
£-»0 47T J5

Hence we have ^T(^;, j, fc) = H(y, x, —K).

Thus the proof of our lemma is complete.

H(x, j, /c) defined in (4.4) is the Green function for LK for (EDP)

in the sense that the function

(4.9) U(x)

furnishes us with the solution of (EDP) with the inhomogeneous term

/(*)•

Theorem 3. i) Let Im/c>0, and f(x) be Holder continuous in Q

and integrable over &. Then u(x) of (4.9) is the unique solution of

(EDP) with the null boundary condition and the radiation condition.

ii)*5 Let Im/u>0 3 and /(#) be bounded and Holder continuous in S.

Then u(x) of (4.9) is a solution of (EDP) with the null boundary con-

dition on d@.

iii) Let Im/c^O, and /(#) be Holder continuous in Q and vanish

outside a ball. Then u(x} of (4.9) is the unique solution of (EDP) with

the null boundary condition.

*) In general u ( x ) is not the unique solution of (EDP), for u ( x ) does not always
satisfy the radiation condition.



408 HIROSHI UESAKA

Proof. It is clear from the definition of u(x) in every case that

u(x) satisfies the null boundary condition. Next we shall show LKu = f.

From theorem 2 we have for Im ft > 0

(4.10) ||C(*, -, *)|U'W=||C(., *, *)|Uiw^C.

The case i). From \R(z, y, K)\ < ^ . 2- and f€L\Q)r\C(Q) we

have

(4.11) \K>, y, «)l I /WI <*rs:

B(z,r)\Z-y\2

where 5(^, r) is a small ball of radius r about <z and Ci, C23 Cs, and £4

depend only on £. The case ii). From R(z, •, K)€.Ll(@) and from that

f is bounded over J2 we have

(4.12) \R(z,y,K)\\f{y)\dy^C6 \R(z, y, K

where C5 and C6 depend only on K. The case iii). From

we have

(4.13)
B(R') \Z

where C? and C8 depend only on ic.

From (4.10), (4.11), (4.12), and (4.13) using Fubini's theorem we

have

(4.14) \ f(y)dy( G(x, z,
JQ J B(R)

= \ G(x, z, K)dz( R(z, y, K)f(y)dy.
JB(R) JQ

By the same processes as (4.14) above we have
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(4.15) \ K(x, z, K)dz\ R(z, y, K)f(y)dy
JB(R} J Si

= \ f(y)dy\ K(x> *> tiR(*> r> ^dz-
J Si JB(R}

Here we shall briefly describe that g(z)=\ R(z, y , f c ) f ( y ) d y satisfies
j n

a Holder condition at any point z 6 J2. Let B(R) be such that the sup-

port of !?(•, j, K)CB(R)- First we set

R(z, y, to
jD^r

Then obviously

Next we set

g2(z}=\^BRR(z, y, ic\

By the mean-value theorem we have

1 1(4.16)
\zi-y\2 \z2-y\'

Let h be a small number and -8(2:1, 3A) the small ball of radius 3h cen-

tered at 2:1. Furthermore let z2 be such that \zi — z2\=h. Then

, j, K) — R(z2, y, K ) \ d y

1 1

1

From (4.16) it follows
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Hence gz(z) satisfies a Holder condition at zi, and thus we can show that

g(z)= gi(z) + g?,(z) satisfies a Holder condition at any point z£&.

Since G(x^ y, &) is the Green function for — A — K2 for (EDP), we

have

(4.17) i.a(*)=(- A-K2-lG(x, y, K ) f ( y ) d y

x, y, K)yy + ax, y,

- ( K(x, z, K)dz ( R(z, y, K)f(y)dy
J B(R} JQ

Here we have freely interchanged the integration order, which is

guaranteed by (4.14) and (4.15), and we have used viii) of theorem 2 in

consideration of the Holder continuity of /(•) and \ jR(«, y, /c)/(j)c?j.

By the resolvent equation (3.10) the expression in { } of the last term

of (4.17) vanishes, and thus we have LKu=f.

Finally we shall show the uniqueness of u(x) in the cases i) and iii).

From the fact that J?(-5 j. A:) satisfies the radiation condition and the as-

sumption of /(#) in each case, we obtain that u(x) satisfies the radiation

condition also. Consequently we get the uniqueness of the solution by

theorem 1. Now the proof of our theorem is complete.

The following theorem shows that H(x, j, fc) is the Green kernel of
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the Green operator in the Hilbert space for LK for the exterior problem.

Theorem 4. Let /cGC 1 " , and /(A;) be square integrable over $„

Then

satisfies the boundary condition uldQ = Q and u € ftC^)?*'1 and satisfies the

equation LKu=f, where LK is taken in the distribution sense.

Proof. w- ia^^O and LKu = f in the distribution sense can easily be

shown. By the same procedure as the proof of vii) of lemma 5 we obtain

that \ \G(x, y, tc)\\R(z, y, A;) | dz is square integrable in y over Q. There-

fore we have

u(x)=\ H(X, y, K)f(y)dy=\ G(x, y, K)f(y)dy
J Q J $

= \ G(oc, y, K)f(y)dy+ \ G(x, z,
J Q J 8

Here we put g(z)=\ R(z, j, /c)f(y)dy. Now we have

(4.18) \\g(z)\2dz^\ dz(\ \R(Z,y,K)\dy( | R(z, y, *)| |/(j)| 2dy)
J JQ \J<3 JQ /

^C\ dz\ \R(z,y,K)\\f(y~)\2dy
J Q J Q

Thus from viii) of theorem 2 and (4.18) we get u

See viii) of theorem 2, where HZ(Q) was defined.
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5. The Elgenfunctions and the Eigenfuelion Expansion

Associated with H for (EDP)

We consider the differential operator (1.1) for £ = 0, i.e.

T „(„} — V (j d _/> r^ Vj/lV)J-jQU/\^JiJ / i 1 l> — Ufi\J(i) I LL^JU )m
n=l\ OXn /

Let the operator Z/03 defined on the set of functions satisfying the null

boundary condition on d@ and belonging to CjJCS), be denoted by LQ.

Then we can see that L0 can be extended uniquely to a selfadjoint opera-

tor in the Hilbert space L2(ti}. We denote its unique selfadjoint exten-

sion by H.

Let £GC + . Define the operator

As is seen from theorem 4 this operator is well-defined for / 6

Let

(5.1) D — {u: u^H2(^), u is continuous in Q, z*|9fl = 0}.

Then H(/c) is a bounded linear operator on L2(J2) for any /c6C+
5 and,

moreover, if /c is purely imaginary so that /C2<03 H(/c) is selfadjoint.

The range of H(/c) is D and is independent of K. Using theorem 4, we

can see that H(/c) is equal to the resolvent operator J?(/c2) = (H — fc2)~l of

H. The above-mentioned results are obtained by the same method as

Ikebe's T3] (p. 44, Theorem 3.1). Thus we get the following theorem.

Theorem 5. The symmetric operator LQ is uniquely extended to the

nonnegative definite selfadjoint operator H acting in Z2(J2), and for every

non real I the resolvent R(h) of H is a bounded integral operator

where by V k is meant the square root of /I with nonnegative imaginary

ty and hence the domain of H is D.
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Now let us proceed to the construction of the generalized eigenfunc-

tions of H.

Let /cEC + and k£.R*. Define the function

(5.2) (p(%, k, ic) = (\k\2 — /r)\ H(x, y, f c ) e i k ' y d y ,

where k°y denotes the scalar product of k and y.

Lemma 6. (p(x, k, /c) is the unique (EDP) solution associated with

LK(p = (\k |2 — K2)eik'x and the boundary condition <p\ds = ® such that

(p — elk'x satisfies the radiation condition. Moreover <p(x, k, /c) is continu-

ous in fixi?3xCf and can be extended continuously to QxB?xCv.

Proof, ^ l a^^O is obvious, and it is a direct consequence of ii) of

theorem 3 that y>(x, k3 /c) satisfies LK<p = ( \ k\ 2 — K2)elk'x. Next we shall

show that <p — elk'x satisfies the radiation condition.

G(x,z,K)R(z,y,K-)dz\dy
S3 )

= (\k\2-Kz) H(x, y,/c-)eik-»dy+(\k\2-Kz) F(x, y, K)ell*'dy

-/u2) eik'ydy G(oc, z,
JQ

e -
where F(AJ, y, K) — - — = - r, and H(x^ y, K) is just equal to H(x, y, yc)

introduced by Ikebe |̂ 3J (p. 39, (2.5)) as the compensating part of the

Green function for (EDP) for — J — /c2. Here we estimate /i, J2 and J3.

/i satisfies the radiation condition according to the result of Ikebe

(p. 45, Lemma 3.3).
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I2=(\k\2-K2)\ F(X,y,K)eih->dy=(\k\2-K2)\ F(X, y, K)e""dy
J J2 J R

-K2)( F(Xiy,K)e"->dy,

_JL
Since F(x,y,K) has the conjugate Fourier transform equalto (2;r) 2 (\k\

— ic2)eik'x, we have

As a) = R3 — lQ is a bounded domain, it is easily seen that (\k2\— £2)

\ jF(tf, j, K,)elk°ydy satisfies the radiation condition. Since R(z, • ,£)£
Jw

i1(fi)3 we can interchange the order of integration in J3. Thus we have

/3 = ( | j f c 2-/c2)( G(^ 5 ^A;)
JB(R)

As \ etk'yR(z, y, K)dy is continuous on z and 5(/2) is a bounded domain,
J-Gy

/3 satisfies the radiation condition. Thus we have shown that

+ ( G(oc, z, K) dz{ eik'yR(z, y, K) dy \
JB(R) Ja )

satisfies the radiaton condition. Hence by theorem 1 <p(x, k, ic) — etk'x is

the unique solution of (EDP) with LKu = l'etk'x in S which satisfies the

boundary condition u\da=—etk'x, and the radiation condition. Consequ-

ently by theorem 1 (p(x, k, K) is the unique solution.

Now we shall prove the remainder of this lemma. We put

h(X, k, K) = (\k\2-K2) H(X, y, K)elh-'dy- F(x, y, K)etk'
) Q Jco

where h(x, k, /c) is the same function as defined in [[33 (p. 45, (3.12)).

Ikebe has proved that
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(5.3) h(x, k, K) = (\k\2-K2~) G(x, y, K)eik-ydy-eik-'!( = Il^l2-e
ik-':\

J Q

and h(x> k, K) is continuous in Q X R* X C+ and can be extended continu-

ously to SxR3xC+. We shall consider J3 = (| k\ 2-K2)( eih'ydy( G(x,
JQ JB(R)

z, ic)R(z9 y, ic)dz. From (4.6), i.e. \ G(x, z, ic)R(z9 7, ic)dz=\ G(z,
J B(R) J B(R)

j, /u)jR(z, x, —ic)dz, we have

I3=(\k\2-K2)\ eik-ydy( G(x, z, K)R(z, y, K)dz
JQ J B(R)

R(z, x, -fc)dz( eik'yG(z, y, K)dy.
) JQJB(R)

From (5.3)

(\k\2-K2)( G(z, y, K)eik'ydy = h(z, k, K
J Q

Thus we have

+ (\k\2-K2){ R(z,x, -ic)h(z, k, K)dz.
JB(R)

Using the above-mentioned properties of h(x, k, K) obtained by Ikebe and

the property of R(x, y, /c), /3 is proved continuous in S X R3 X C+ and

can be extended continuously to Q X R3 X C+. As p(x, k, K) is expressed

as ^(#, 4, A;) = /i + /2 + /3 = /K#5 &, A;)+e'*'* + /35 the continuity on /c of

(p(x, k, /c) was proved. Now the proof of the lemma is complete.

Since <p(x, k, •) is continuous in C+ and can be extended continuously

to C+
3 we put

(5.4) <p(x, A)=lim (p(x, k, ic) = v>(x, k
*-*!*!

So from the above-mentioned lemma the following theorem holds.

Theorem 6. There exists a family of generalized eigenf unctions
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(p(x, &)( ̂  L2(J2)) of H satisfying the following conditions'.

i) (p(oc, k) is continuous in (#, k) £ Q X J?3,

ii) <p(x. &), k^ R* fixed, is twice continuously differentiate in $, and

satisfies the equation

LK<p(x, k) = Q in $3

and the boundary condition

and the function *ft(x, k) = (p(x, k) — eik°x satisfies the radiation condition

Now we can get the expansion of an arbitrary function f G L2(J2) in

terms of the generalized eigenfunctions <p(x, &). The method of proof

employed here is the same as that of Ikebe pQ. Therefore we shall

simply sketch the proof.

Let f € Cj"(fi). We introduce the function

r _

\ cp(x, k, K)f(x)dx.
J 8

Since H(x, j, /c) (ImA;>0) belongs to JL
1(^)A^2(^)j its usual conjugate

Fourier transform exists. And Parseval's equality combined with (5.2)

leads to

dx( H(x,y,K)f(y)dy\ H(x, z, K)
Q J£ J Q

= \ \ f(y)f(*)dydz \ <p(y, k, K)<p(z, k,
J J 3 x Q J jf?3

where /C2 = ju + ie. Next we use the well-known formula
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where E(X) is the resolution of the identity corresponding to the selfadjoint

operator H. Thus we get

where we put

£ JO

Letting a—>Q and /?—»+oo? we have

/q tr\ / r f\ o / f f\ , —
VO '°/ V / 5 / / Z - 2 ( f l ) — \J)j)Ll(Q}-

This formula (5.5) can be extended by continuity to the case

Thus we obtained the generalized Parse val-Plancherel's equality. Here we

shall introduce the following mapping Z

(Z/)(i) = (27r)~ll.i.in \ <p(x, k)f(x)dx = /(£)•
J.G

From (5.5) Z that takes / e L2(ifl) into f(k)€L2(R3) is isometric, and,

moreover, we can show that Z maps L2(@) onto L2(R3) by the same

method as that of Ikebe Q2]. Now it is easy to get the following theo-

rem.

Theorem 7, The spectrum of H coincides with the positive real

line and is absolutely continuous. The mapping Z is unitary from L2(,Q)

to L2(R3) and hence the inverse Z"1 from L2(R3) onto L2(,Q) exists. More-

over, we have the following expansion formulas:

Let f and g€L2(@\ Then

(the generalized Fourier transform),
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z

(the generalized conjugate Fourier transform),

(the generalized Parseval-PlanchereVs equality)^

iii) if /€ D (the domain of H\ we have the following representation

of H
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