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Abstract Potential Operators on Hilbert Space
(Dedicated to Professor Yasuo Akizuki on his 70th birthday)

By

Kosaku YOSIDA*

Let X be a (real or complex) Hilbert space. A linear operator

V with its domain D(V) and range R(V} both strongly dense in X is

called an abstract potential operator (see K. Yosida \J2T\9 p. 412) if the

inverse V~l exists in such a way that

(1) A=-V~l

is the infinitesimal generator of a one-parameter semi-group of class (C0)

of linear contraction operators on X into X. The purpose of the present

note is to prove the following existence theorem. (Hereafter, we shall

denote by Sa the strong closure of a subset S of X)

Theorem. Let U be a linear operator satisfying three conditions'.

(2)

(3)

(4) U is accretive, that is, Re(Uf,f)^>0 for every feD(U).

Then there exists at least one abstract potential operator V which is a

closed linear accretive extension of £/; V might coincide with U.

Proof. The proof is given in two steps. The first is to construct a

maximal accretive extension V of U by virtue of R. S. Phillips' theory of
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Cayley transform (cf. B. Sz.-Nagy and C. Foias Ql], p. 167). The second

is to prove that this V is an abstract potential operator by making use

of the abelian ergodic theorem for pseudo-resolvents (see K. Yosida pf],

p. 215).

THE FIRST STEP. For every A>0 and f£.D(V\ we have, by (4),

(5)

Hence the inverse (/IC/'+I)"1 exists and moreover, the Cayley transform

C defined through

(6) C*(Uf+f) = (Uf-f)

is a contraction operator mapping R(U+I} onto R(U—I). Let us define

a bounded linear extension C of C:

(7) through continuity on R(U+I)a, and through putting C*g=Q on

the orthogonal complement of R(U+I).

This everywhere defined contraction operator C cannot admit eigenvalue

one. Assume the contrary and let C'fQ = fQ with ||/0|| = 1. Then its

adjoint operator C*, which is also a contraction, must satisfy C*°fQ = fo

because

Thus we obtain, by (6) and (7),

(/o, (Z7-/)/) = (/0, &(ff+/)

hence (/0,/) = 0 and so /0 = 0 by (2).

Therefore the inverse (/— C)"1 exists and so we can define a linear

operator V through

(8) F.(/
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V is an extension of U. In fact, we have, by (6), (I— C) = /— (Z7— /)

(U+I)-1 = 2(U+I)-\ that is, t/'=(/+C)(/-C)-1, proving that F is

an extension of U. Here the existence of (I— C)"1 is assured by that

of (/— C)"1. We can prove that V is accretive. For, by putting /

= (I—C')~lg and observing (8) and the contraction property of C, we

obatin

Re(Vg, g-) = Re((I + C)f, (/-C)/)=]|/||2-||C./|!2^0.

We can also prove, by (8) and the boundedness of the operator C,

that V is a closed linear operator. Moreover, by (8), we have (1+ F)

= /+(/+<?)(/— <?)-1 = 2(7— C)-1, and so we obtain the existence theorem

(9) R(V+I) = D(I-£) = X (and also R(W+I) = X whenever

Hence the accretive extension V is maximal as regards its range

for

THE SECOND STEP. We will show that V is an abstract potential

operator following after the proof of Theorem 2 on p. 414-415 in

K. Yosida [2].

V being accretive, we have, as in (5), pF/+/j|;>||/lF/|| for every

and A>0. Hence, by (9), we can define a bounded linear operator

(10) A

satisfying

(U)

It is easy to see that A is a pseudo-resolvent \ i.e.,

(12) /x-

Therefore, by (11), we can apply the abelian ergodic theorem to the

effect that

(13) R(JpY={x€X\ s-\imUxx = x} for all
xt -
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(14) R(I- /*/„)« = {x e X; s-lim A A x = 0} for all ju > 0.
uo

By R(Vy = R(U}a = X, we have R(J[l}
a = X by (10) and so, by (11) and

(12), the null space of /x, consists of zero vector only, independently of

>i>0. Hence J\ is the resolvent of a linear operator, i.e.,

(15) /x = Cl I- A)~l, where A = HI-Jxl is independent of /l>0.

We have thus D(A)a ' = R(J '^a ' = X and so, by (11), the operator A is

the infinitesimal generator of a contraction semi -group of class (C0). We

can also prove that R(A)a = X. For, we have, by (10) and (15),

that is,

(16) -AVf=f whenever feD(V\

proving that R(A)a = D(V)a = D(U)a = X. Thus, by (14) and AJP=

= (juJt*—I\ we obtain 5-lim/l/x/=0 for all f €.X. This implies that
x < i o

the inverse A~l exists. In fact, the condition AfQ = Q is equivalent to

A(AI—A)~lfQ=f0 and hence /0= 5-lim A A/o^O.

Thus —A~l is an abstract potential operator. On the other hand,

(16) shows that the inverse V~l exists. Hence, by (/I I—A) = J\1 =

= (A V+I)V~l = k I+V~l, we obtain — A=V~l, completing the proof of

our Theorem.

Remark. We shall verify (2), (3) and (4) for Newtonian and

logarithmic potentials

(17) R

Kn(r) = r2-n for 71^3, and £2(7-) = log r~
l.

The proof of D(U)a = R(U)a = X=L2(Rn) can be obtained by making

use of the fact that, for 0<Si<S2,
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is continuous in y satisfying

M*,81§ «2(y)=i i f ly— ^l^

if iy-

if <Ji<|j-*|<£2.

Here vx>s is the unit measure uniformly distributed over the hyper-
surface of the sphere of centre x and radius d in Rn.

The Gauss-Frostmann energy inequality

holds good whenever f^L2(R") is of compact support satisfying

\ f(y)dy=Q. It is easy to prove that such /'s constitute a strongly

dense subset of L\R"\

ANOTHER TREATMENT OF THE SECOND STEP (Added on 20 April,

1972). As in the above proof of the non-existence of the eigenvalue 1 for

the operator C, we can show that C°fQ= —f0 implies C**fv=—fo and

hence (/03 C//") = 03 proving by (3) the non-existence of the eigenvalue —1

for C. Thus V=(I+C}(I— C)~l given by (8) admits the inverse V~l =

= (I—C)(I+C)~l. Hence we can prove that V is an abstract potential

operator without appealing to the abelian ergodic theorem.

Remark (added during the proof). On reading the pre-print. Prof.

K. Sato gave interesting comments and extensions. See his paper to appear.
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