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On the Finite Model Property
for Kripke Models

By

Hiroakira ONO

This work is a sequel to Q4]. The familiarity with the results and

terminology of T4] is presupposed.

It is a well-known fact that the intuitionistic prepositional logic

(abbreviated as LJ) has not a finite characteristic model. But, Jaskowski

proved that there is a monotonic descending sequence of finite models

which converges to LJ. Using the notation in Q4], we can restate this

result as follows; there are finite (pseudo-Boolean) models Pi(i € /) such

that LJ^Cr\ieIPi.

Now, let's consider the following problem. Let L be any intermediate

logic. Are there finite pseudo-Boolean models Pi(i €E /) such that ZOCAie/

Pi? If this problem is solved affirmatively for a logic Z,, we say L has

the finite model property, following Harrop's terminology Ql]. In Ql], it

is proved that if a logic L is finitely axiomatizable and has the finite

model property then L is decidable. It is an interesting problem whether

all intermediate logics are decidable. But we don't know even whether

all intermediate logics have the finite model property. In this paper,

we show that this problem can be reduced to the following problem pre-

sented in \j£}: Has any intermediate logic a characteristic Kripke model ?

We extend the result to that for logics between Johansson's minimal

logic and the classical prepositional logic, and show that the logics whobe

decidability are not known in £5] are decidable. Now, we state our

main theorem.
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Theorem 1. If M is a Kripke model then L(M) has the finite model

property.

Proof. Suppose that A is a formula such that A ^ Z/(M). We con-

struct a finite Kripke model N such that 1) A^L(N) and 2) £(M)C

L(N). We remark that the finite Kripke model constructed by the method

of Lemmon £3] or Segerberg [_5~] satisfies 1) but not 2) in general.

But the finite Kripke model constructed by our method always satisfies

both 1) and 2).

By the assumption, there is an M- valuation W such that W(A, a)—f

for some a € M. Let K be the set of all subformulas of A. For such W

and K, define a binary relation = on M by

x = y if and only if W(B, x) = W(B, y) for any BeK.

It is easy to verify that = is an equivalence relation on M and that the

quotient set M/= of M (with respect to =) is finite. Now we define

essential chains as follows.

Definition 2. A sequence a(=<ai,..., aw>) of elements of M is

said to be a chain (of M), if ai<ai+i for any i such that l<i<n. In

such a case, we say a is of length n and write lh(a) = n. We write (a)i

for a{. That is, a= <(a)i5---,(c^)// l (a)>. A chain a is said to be essential

(with respect to =) if a satisfies the following three conditions ;

1) (a)i^(a)i+i for any i<lh(a\

2) for any i<lh(a) and for any x such that (a)i<^x<^((z)i+i, either

x = (a)i or x = (a)i+iy

3) for any x such that (a)ihw<^x, a; = (a)/ACa).

Let C be the set of all essential chains. For x€M, let C(x}={a\ aeC

and (a)i = x}. C(x} is nonempty for any x^M. If lh(a)>l, we write a+

for the chain <(a)2,--"> (<%)ih(a)>- We define that 1) k(x) = max{lh(a);

aeC(x)} for x€M and 2) **(«) = A((a)i) for aeC. Obviously, k(x)>l

for

Lemma 3. 1) Let aeC. If i<j<slh(a) then (a)i^(

2) There is an integer n such that lh(a) < n for any
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3) &*(a+)</c*(aO, and k((a)d<J<*(a) if l<lh(a).

Proof. 1) Let (a)^(a);- for i<j<^lh(cx). Since a is a chain,

(a)i<(a)i+l<^(a)j. Then for any BeK, i) if W(E, (a){) = t then

W(B, (a),-+i)= t, and ii) if fT(B, (a)f-+i) = t then W(B, (a),-) =

BFC8, (a)/)=*. Thus (a)f-== (<*),-+1. This contradicts Definition 2.

2) Take the cardinality of M/= for n, and use 1).

3) Trivial.

Let MQ be any Kripke model and WQ be any M0-valuation. Suppose

cEM 0 and J5 be a formula in which only propositional variables /? i , - - - ,

pm appear. Then the value of W$(B^ c) depends only on the values of

JFoCp»j b\ where l<i<m, and c<6. Keeping this fact in mind, we

define two binary relations ^ (on M) and ~(on C). Intuitively, x^.y

means that the set {x1'; A;<^ ;} has the same structure as the set {y \

y<C j'} with respect to the value of W for K. We first define ^.h on

{#; k(x} = k and x€.M} and ^^* on {a; &*(a) = & c^6? aGC} for any

&<o), by the induction on &. 1) x^1 y if and only if # = y and k(x)

= k(y) = l. For A;>1, ^— A j if and only if x = y, k(x) = k(y) = k, xRy

and yRx, where uRv means that for any a^C(u) there is an h and

0eC(v) such that a+—h$+. 2) a—k@ if and only if lh(a) = lh(fl, ft*(a)

= k*(@) = k and for any i<lh(a\ there is a &,- such that (a),-^*^^),-.

Now, we define ^ and ~ as follows.

x — y if and only if there is a A; such that A;2±^j, and

CK"^j8 if and only if there is a & such that a~^k@.

We show that ±: and ~ are well-defined. WD(k) (or JFZ)*(A)) means

that for any A_^A the relation ^:/z(or ^*) is well-defined. Then it is easy

to see that 1) WD(l} holds, 2) rD(A;) implies WD*(k) and 3) JP7)*(A;)

implies WD(k + l\ by using Lemma 3,3). So, both WD(k) and WD*(k)

hold for any A. Hereafter, we sometimes use the induction of this kind.

Lemma 4. ~ (or ^-) z's an equivalence relation over M (or C, res-

pectively).
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Lemma 5. M/— is finite.

Proof. We write [_x^\ (or <a>) for the element of M/— (or

C/^) which contains A; (or a, respectively). Let Dn
={\lx~^-> k(x) = n}

and En={<a>; k*(a) = n}. F(k) (or F*(A)) means that Dn(or Em

respectively) is finite for any n<ik. Then

1) F(l) holds, since Dl<M/=<o>,

2) F(k} implies F*(k\ since £z< 2 (5i X ••• x J5y)<a> for
=

3) F*(AO implies F(k + l\ since DM^M/= xP(\jEj)<o) for i<A;3y<«
where G denotes the cardinality of a set G and P(G) denotes the power

set of G. Thus, F(k) holds for any A; and hence M/^L is finite, since

= \jDn for some A: by Lemma 3,2).

Next, we define a binary relation <* on M/~ as follows. C^"H<

if and only if there is an a^C(x) such that (a)i^y for some i

Lemma 6. The relation <* is well-defined and is an order relation

on M/~.

Proof. We first show that if x'^x, j'— J and

[V]<*[/I]- Let aGC(^) and (a)f-^y for some i<lh(a). If lh(a) = l

or i = l, then ^ = (a)i^:j. By the assumption, x'^.y. Let /? be any

element in C(xr). Then (£)i~/. Thus C^']<*[/1 Suppose that

lh(a)>l and t>l. Since x'~x and A:(A;)>Z/i(a)>l, there is a @€C(xf)

such that a"— £+. Let 2r = (/94) f-_i. Then ^~(a+),-_i = (a),-2± j — /.

Since (@)i = z, C^'I]^*Cy'Il' Next, we show <* is an order relation on

M/~. It is trivial that <* is reflexive. Suppose that C^D<*CjD and

[yH<* C^H- Let aeC(^) and (a),-— y. Since [(a)/j <*[^J, there is

a / 9 G C such that (/S)i = (a),- and (&)j^x for some y. Define r ^C* as

follows:

(a)*
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Then (r)i = x^(0)j = (r)iu-i. So (r)i^(r); ^- i - By Lemma 3,1), i+j
— 2. Thus i = l and hence x = (a)i^.y. This means <C* is asymmetric.

The transitivity of <J* is proved similarly.

Now, define a Kripke model TV by the set M/~ M;/^ the relation

<*.

Lemma 7. L(M)^L(N).

Proof. Define a mapping / from M to TV by f ( x ) — [_x~~]. We show

that / is an embedding of M into N (see [A]). Let x<^y. Then there

is an a€C(x) such that (oO/^y for some i. Thus /(#)<*/(y). Next,

suppose /(^)<I*(IyIl- By the definition, there is an a E C(#) such that

(a)i2±y for some i. So, .v<(a)/ and /((^)0~CjH- Now our lemma

follows from Theorem 2.11

Lemma 8. A^L(N).

Proof. Define an TV-valuation V by V(p9 [_x~^)=W(p^ x} for any

propositional variable p in K. We remark that the proof in the following

can be carried out irrespective of the value of F(g, £#]) for any proposi-

tional variable q not in K. V is well-defined, since #— y implies x = y.

It can be easily proved that V is really an TV-valuation. We show that

FOB, L^H)— ^(^5 #) f°r any J9G.K", by the induction on the number of
the logical connectives in B. We show this, when B is of the form

OZ>. Let fF(5, *)=*. Suppose that [>]<Tyj and F(C, [j]) = ̂

Then by the proof of Lemma 3 it follows that there is a y1 such that
x<^yr and y'^y. So, W(E^ y') — t. By the hypothesis of the induction,

W(C, y') = t and hence W(D> yf) = t. Thus V (D, [y])=F(A [yj) = «.

So? F(J9, E^j) — ̂  Next, suppose ^(5, #)=/. Then there is a y such

that ^^y, r(C, y)-f and W(D, y)-/. So, [^]<*[yl F(C, [y])^

and F(Z), Ey])=/ by the hypothesis. Thus V(B, [^H)=/. In other
cases, the proof is easy. Now, taking A for B and a for x, we get
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V(A, [_a])=W(A, a)=f. Thus A$L(N).

Using Lemma 5, 7 and 8 it is proved that for each A ^ L(M) there

is a finite Kripke model NA such that A^L(NA) and L(M)CL(NA). So,

L(Af);X A L(NA). Now, the proof of Theorem 1 is completed, by
A<£L(M)

using Corollary 1.3

Corollary 9. Let L be any intermediate logic. Then the following

two conditions are equivalent.

1) L has a (characteristic) Kripke model.

2) L has the finite model property.

Proof. 1) implies 2) by Theorem 1. We show that 2) implies 1).

Since for any finite pseudo-Boolean model P there is a finite Kripke

modelM such that P^CL(M) by Corollary 1.5 [4], L^f\L(Mi} for
ief

some finite Kripke models M{. By Corollary 2.8 [4],

L(M{). Hence L has a Kripke model (M,-)»e=7.

For 7i <o), we write Pw for the pseudo-Boolean algebra P(Rnta^ (see

[AD, which is a model of LPW.

Corollary 10. Let L be any intermediate logic in yn (ft<o)). Then

following condition 3) is equivalent to 1) (or 2)) in Corollary 9.

3) There are finite subalgebras Qi (i E /) 0/ PM such that

Proof. It is obvious that 3) implies 2). We show 1) implies 3).

By Theorem 1 and Theorem 2.10 Q4], if L has a Kripke model, then

there are finite Kripke models M/'s having the least element (as partially

ordered sets) such that L^)Cf\L(Mi'). By the discussion in §4 Q4], we
ze=7

can show that Rnw is embeddable into any finite Kripke model N such

that h(N)<n and N has the least element. Let Qi = PMi. Then Q{ is

a subalgebra of Pn by Theorem 4.6 in de Jongh-Troelstra [2]. So 3)

holds, since QOCL(M^.

Now we extend Corollary 9 to that for logics between Johansson's
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minimal logic LM and the classical logic LK. We write J^ for the set

of all logics between LM and LK. A pair (P, a) is said to be a lattice

model (for S£ ), if P is a relatively pseudo -complemented lattice and a € P

(a gives the interpretation of J\, where y\ is a proposition used for the

definition of the negation of a formula). If P has the zero element (i.e,

the least element) 0, then P is a pseudo-Boolean algebra. So, in such a

case, a lattice model (P, 0) is equivalent to a pseudo-Boolean model P.

We remark that any finite relatively pseudo-complemented lattice is a

pseudo-Boolean algebra. We write L*(P5 a) for the set of all formulas

valid in (P, a). It is well-known that any logic L in 3? has a character-

istic lattice model, i.e., L^)(^L*(P, a) for some lattice model (P, a). We

now define Kripke-type models for J£f, following Segerberg [JT|.

Definition 11. A /?<2/r (M, Q) is a generalized Kripke model (abbre-

viated as GK-model} if and only if M is a partially ordered set and Q is

a closed subset of M, i.e., for any u, v£M, (u£Q and u<iv} implies

v € Q. An (M, Q)-valuation W is defined similarly as an M-valuation ex-

cept in the case that a formula is of the form ~\A. That is, instead of 5)

in Definition 1.1 in Q4T], we use 5')-

5') W{ ~i A^ u) = t if and only if for any r in M such that u <Cr?

W(A, r)=/ or r^Q.

If Q is empty, then a GK-model (M, Q) is nothing else but a Kripke

model M. Let L(M, (?) be the set of all formulas valid in (M, Q). It is

easy to verify that L(M, Q) € & . Following theorem can be proved

similarly as Corollary 1.3 and 1.5 in £4].

Theorem 12. 1) For any GK-model (M, <?), L(M, Q}^CL*(PM, (?).

2) Lg£ (P, a) &<? <mj> lattice model such that P is finite. Then

Let (M, (?) and (TV, Q') be GK-models. A mapping / from M to JV

is said to be an embedding of (M, Q) into (N, Q') if f is an embedding
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of M into N (see CC]) and f~l(Qr)=: Q- Now, we obtain a result analogous

to Theorem 2.11 [4J.

(*) // there is an embedding of (M, (?) into (N, Q') then L(M, Q) C

Now, using (*), we can extend Theorem 1 and Corollary 9. A logic

L in 3? is said to have the finite model property^ if there are lattice

models (P,-, a,-) (i €: /) such that each P,- is finite and L^)(^f\L^(P^ a/).

Theorem 13. Let L be any logic in £? . If L has a characteristic

GK-model then L has the finite model property.

Proof. Let x = r y, if x = y and (x^Q if and only if y€.Q). Replace

== by = ' in any occurrence of = in the proof of Theorem 1. After these

replacements, all lemmas from 2 to 6 hold also. Instead of Lemma 7 and

8, we can show that L(M, Q)CL(N, Qf) and A^L(N, Q'\ by defining

Q'=itt-9 x£Q} and using (*).

Corollary 14. Let L€L&. Then the following two conditions are

equivalent.

1) L has a GK-model.

2) L has the finite model property.

Proof. By Theorem 13, 1) implies 2). Suppose that 2) holds. By

Theorem 12, there are GK-models (Mh Qt) such that L^Cf\L(Mh (?,-).

We can show A L (Mh &•) DCi((Mf-),-6/, \J Qi). Thus 1) holdsf
*e/ fe/

By Theorem 13 and Harrop's theorem []4], we can prove that if a

logic L in ££ is finitely axiomatizable and has a GK-model then L is

decidable. In particular, all logics studied in Q5j satisfy the above prem-

ises. Thus they are decidable.

Note Added in Proof (June 20, 1971): Recently, the author has

known the result by Jankov Q6]. He showed that there exists an inter-

mediate logic not having the finite model property.
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Correction (Added July 21, 1971)

By a personal communication from C. Smorynski, we knew an error

in the above Lemma 7, which caused the main theorem impossible. But

a minute examination of the proof brought us the conclusion that the

theorem holds if we restrict our arguments to the finite slices. The cor-

rected proof runs similarly by changing the definitions of 2± and <C* as

follows.

1) x^. y if x = y and c?(0, x)=d(Q, y), where 0 is the least ele-

ment of M whose existence does not restrict the generality by Theorem

2.10 of £4], and either i) both x and y are maximal or ii) neither x

nor y are maximal and xRy and yRx, where xRy means yu(x<u^)

3 v(u~v and y<i>)).

2) C^H^*CyH ^ f°r anY x'~x there is y such that y'^-y and




