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Krlpke Models and Intermediate Logics

By
Hiroakira ONO

In [10], Kripke gave a definition of the semantics of the intuition-
istic logic. Fitting [2] showed that Kripke's models are equivalent to
algebraic models (i.e., pseudo-Boolean models) in a certain sense. As
a corollary of this result, we can show that any partially ordered set

is regarded as a (characteristic) model of a intermediate logic ̂  We
shall study the relations between intermediate logics and partially ordered

sets as models of them, in this paper.

We call a partially ordered set, a Kripke model.2^ At present we
don't know whether any intermediate logic 'has a Kripke model. But

Kripke models have some interesting properties and are useful when we
study the models of intermediate logics. In §2, we shall study general
properties of Kripke models. In §3, we shall define the height of a
Kripke model and show the close connection between the height and the
slice, which is introduced in [7]. In §4, we shall give a model of LP»

which is the least element in n-ih slice Sn (see [7]).

§1. Preliminaries

We use the terminologies of [2] on algebraic models, except the

use of 1 and 0 instead of V and /\, respectively. But on Kripke

models, we give another definition, following Schiitte [13] .3)

Definition 1.1. If M is a non-empty partially ordered set, then

Received September 8, 1970.
1) These models are studied in e.g., Segerberg [14] and Gabbay-de Jongh [3]. We deal

with only prepositional logics in this paper.
2) This terminology is different from that in [2].
3) In this paper, the word algebraic models is used to denote pseudo-Boolean algebras.
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we say M is a Kripke model^ Let M be a Kripke model which is
partially ordered by a relation <. Suppose that W is a mapping

from all the pairs of formulas and elements in M to {t, /} . W is

called an M-valuation, if W satisfies the following conditions. For
any u, v in M,

1) if W(p,u)=t and u<v then W(p,v)=t, where p is any
propositional variable,

2) W(Af\B9 u)=t iff W(A, u) =t and W(B, u)=t9

3) W(A\JB, u)=t iff W(A, H) =t or W(B, ii)=t,

4) W(AnB, u)=t iff for any r in M such that u<r W(A, r)

=/ or W(B,r)=t,
5) W( ~~\A, u)=t iff for any r in M suck that u<r W(A, r) =/.

Let W be any M-valuation. We say a formula A Is valid in

(M,WO, if W(A,ii)=t for any u in M. If for any M-valuation W,
A is valid in (M, IF), we say A is valid in M.

Following theorem is due to Fitting [2].

Theorem 1.2. 1) For any Kripke model M and any M-valu-

ation W, there is a pseudo-Boolean algebra P and an assignment f

of P such that for any formula A, A is valid in (M, PJO iff f(A)

= 1.B)

2) Conversely, suppose that a pseudo-Boolean algebra P and its

assignment f are given. Then there is a Kripke model M and an

M-valuation W such that for any formula A, A is valid in (M,

Proof. We sketch Fitting's proof.

1) Suppose that M and W are given. If a subset N of M

satisfies the following condition

if u^N and u<v then v^N,

4) Kripke's original definition says that M is a non-empty set with a transitive, re-
flexive relation, but for our purposes we have only to deal with partially ordered
sets, since for any set M with a transitive, reflexive relation there is a partially
ordered set N such that for any formula A, A is valid in M iff A is valid in N

5) In [2], the word homomorphism is used, instead of assignment.
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we say N is closed. Let P be the class of all closed subsets of M.
Then we can prove that P is pseudo-Boolean algebra with respect to
set intersection and set union. As for zero element we take the empty

set. Define an assignment / of P by /(/>)= (u'i W(P> u)=t} for any
prepositional variable p. Then it is clear that our theorem holds for

this / and P.

2) Suppose P and / are given. Let M be the class of all prime
filters of P. Clearly, M can be partially ordered by set inclusion c;.
Define an M- valuation W by

W(p,u)=t iff

Now, it is easy to verify that our theorem holds for this M and W.

As a corollary of Theorem 1.2, we can obtain that

Corollary 1.3. 1) For any Kripke model M, there is a pseudo-
Boolean algebra P such that for any formula A, A is valid in M

iff A is valid in P.

2) For any pseudo- Boolean algebra P, there is a Kripke model

M such that for any formula A, A is valid in P if A is valid in M.

We don't know whether the converse of Corollary 1. 3. 2 holds and
whether any intermediate logic has a Kripke model But we shall show
in Corollary 1. 5 that if P is finite then the converse holds. This
implies that any finite intermediate logic has a Kripke model.

We write PM (or MP) for the pseudo-Boolean algebra (or Kripke
model) constructing from a Kripke model M (or a pseudo-Boolean algebra

P) by the method of Fitting. We know that A is valid in MP iff A
is valid in PMp by Corollary 1. 3. 1. Now, we define a mapping / from

P to PMp by the condition that

f(a) = {F\ a^F and Feff^)},

where 3"(P) denote the set of all prime filters of P. It is clear that
/ is an isomorphism from P into PMp.

Lemma 1. 4* If P is finite, then f is a mapping onto PMp.

Proof. Let U be any element in PMp . We say that an element F
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in U is minimal, when if G is a subset of F then G = F for any G
in U, Since P is finite, U is also finite. Hence for any G in U there
is a minimal element F such that F is a subset of G. Let FI, --,Fk

be all the minimal elements in U. Define Us (1<J<K) by

U,= {G; F, is a subset of G and Ge£T(P)}.
k

It is clear that U=UUiy since U is in PMp. Let F{= {au; 1< /<«*}.
'-i

Then we write (F£)* for R^-y. It is easy to see that GeZTi iff (F,)*

e=G. So, /(CF,)*) = K. "Hence /(U (#)*) = U/( (#)*) = U «= tf1=1 i=i 1=1
since /(0LJft) =/(«) U/(ft) for any a,b<^P. Thus we have Lemma 1. 4.

So, we obtain

Corollary 1. 5. // P is finite, then the converse of Corollary

1. 2. 3

In §3, we shall prove that if a pseudo-Boolean algebra F is in <5«

(n<joi), PMp is also in <5«.

§2. Properties of Kripke Models

We shall henceforth write a model for a Kripke model and a logic

for an intermediate logic. We write Z,(M) for the logic characterized
by a model M, e.g., the set of formulas which are valid in M. We
write <M for the relation which orders a model M. Following the
notation in [7], we write ZiCZ2 if a logic Zi is included by a logic
JL2, as a set of formulas.

Definition 2. 1. Z,g£ M be a model. A subset N of M is called

a submodel of M if N is closed with respect to <M, i.e., for any a,
b in M, if a^N and a<Mb then b^N. <# is a restriction of <M

to N.

We can prove easily that

Lemma 2. 2. Let N be a submodel of M. If two M-valuation

W and W satisfy the following condition

6) See Dummett-Lemmon [1] Lemma 2.
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W(p,a) = W'(p,a) for any a^N and any propositional
variable p,

then W(A, a) = W\A,d) for any a^N and any formula A.

Corollary 2.3. // N is a submodel of M, then Z,(M) cZ,(JV).

Proof. Let W be any N- valuation. Define a mapping W* by

W* (p, a) = I W(p, a) if
( f otherwise.

It is easy to verify that W* is really an M-valuation. Suppose that

A^L(N'), Then there is a^N such that W(A,a)=f for some N-

valuaticn W. By Lemma 2.2, W*(A,a)=f. Hence

Definition 2.4, Suppose that Mi is a submodel for any i

The set {A/i; i^I] is called a covering of M, if M=\JMi.
ZEE/

Theorem 20 50 // {Mi; i^I} is a covering of M, then I(M) Z) c

pZ,(Mi), M;A^r^ fli(Mi) denotes the intersection of i(Mi)'5 ^5

By Corollary 2. 3? for any i GE/ Z(M) cZ(M;.). So, i(M) c

Suppose that ^4$Z(M). Then there is (2eM and an M-
z'eE/

valuation IF such that W(A, a) =f. By the definition of covering,

a^Mi for some i^L Define an Mi- valuation V by restricting the

domain of the second argument of W to Mi. Then it is easy to see

that V(A,a) = W(A,a)=f. Thus 4<£Z,(Mi) for some ie/.

Now, we define two operations on models, following the operations

defined in [6].

Definition 2.60 Let M and N be models such that M[~\N is

empty. The model M \ N is a set M(JN with a relation <M^N de-

fined below. For any a,b^M\JN,

iff cither 1) a<Mb and a.b^M or 2) a<Nb and

or 3) a^M and b^N.

7) See Hosoi [8].
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If both M and N are isomorphic (as a partially ordered set) to
some model L, we write L f L for M f AT.

Definition 2.7. irf M* #£ 0 model for any fe/,
MifW/ « ew/tfy f/ f^y. The model (M/)f-e/ is # s^ DM,

IE/

relation < defined below,

For any 0,6eU-Mi,
is/

is *e/ swcA £/z<2tf a.b^Mi and

We sometimes write (M)Me3- for (Afi).-e/, if 2* is the ordered

set {Mr, i^I}. If each M^ is isomorphic to some L and the cardinal
of / is rf then we write La for (Mi)f-6/. We remark that PM^N=PM'\ PN

and ^ A'ratf product of PM% 0"^/)=-P<j*i)l.e/.

Corollary 2. 8. Z((Mf),6/)
IS/

Proof. Because {M£; ee/} is a covering of (M0,-e/. (See [14].)

Define a model S^ for !<»<«, which is totally linear ordered set
with n elements. It is easy to see that Ps'n = Sn where Sn is a pseudo-

Boolean model defined by Godel [2]. So, henceforth we write SH also

for the Kripke model Si.

Lemma 2. 9, Let M be a model. If la^Mvb^M a<Mb holds,

then M is of the form Si f N. (For the sake of brevity, we say M

is of the form Si f N even if M=Si).

Proof. Let a be an element in M such that for any b^M a<Mb
holds. Let N be a submodel which is equal to M— {a} . Then it is
clear that M is isomorphic to Si f N.

Mckay [11] proved that for any pseudo-Boolean algebra P, there
are pseudo-Boolean algebras Pf (z'el) such that PDCf lS i f Pim We

IS/

give another proof of this result for Kripke models. *}

Theorem 2. 10. For any model M there exist models N{

such that £(M) ID c n£(Si f
is/

8) This notion is defined also in [9]. Henceforth, we sometimes abbreviate <[jf as <I,
when a fixed model M is considered.

*> Henceforth, a pseudo-Boolean model P denotes the set of formulas valid in P as
well as a pseudo-Boolean algebra, whenever no confusions seem to occur.
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Proof. For any a^M, we write Ma for the submodel {ft; a<Mb}.
Clearly, {Ma; a^M} is a covering of M. Hence by Theorem 2.5,
L{M)^>cn£(M f l). Moreover, each Ma is of the form Si f Na by

aeM

Lemma 2. 9.

It should be remarked that in contrast with the above theorem,
the following statement is false. For any model M, there exists a
model N such that L (M) ID c L (Si t -Af).

The following theorem is useful, when we compare one logic with
another logic. Let / be a surjective mapping from M to N such that
1) for any a,b^M if a<Mb then /(0)<ar/(ft), and 2) for a^M and
any c^N if f(a)<Nc then there is fteM such that /(ft)=c and
a<Mb. Then we say / is an embedding of M into N. If there is
an embedding of M into N, we say M is embeddable in N.

Theorem 2. 11. // M is embeddable in N then Z,(M)

Proof. Suppose A^L(N). Then there is an N- valuation IF and
an element b^N such that W(A,b)=f. Define an M- valuation F by

V(p, a) = W(p, /(«)) for any prepositional variable p and
any a^M,

where / is an embedding of M into N. We can show that V is really
an M- valuation, and that V(B,a) = W(B,f(a)*) for any formula B.
Let c be an element in M such that /(c) = 6. Now, F(A c) =
=/. So,

Corollary 2. 12. 1) // ML is embeddable in M2 and M2 is em-
beddable in M"3, then Mi is embeddable in M3.

2) Z,g£ g be a surjective mapping from a set J to a set L
Suppose that Mj is embeddable in N{ for any j^J and any ze/
such that g(j}=i. Then (M/)ye/ is embeddable in (^-)z-e/.

3) Suppose that Mi and Ni are embeddable in M2 and N2, re-
spectively. Then MI f Ni is embeddable in M2\ N2*

9) We can prove this theorem by using Theorem 4.6 in [9]. In [9], an embedding
is called a strongly isotone mapping.
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§3. of Models

In this section, we shall define the height /z(M) of a given model

M9 and prove that £(M) is in the n-ih slice <Sa iff A(Af)=», for
We say 0 mo^/ M is in Sn if L(M~)^Sn (or equivalently,

Lemma 30 1. Suppose that Mi^Sni for i^L Then

where n = sup{n{; i^I}, (n and n{ may be «.)

Intuitively, the height of a model M is the maximal m such that

0i<C02<- • -<0m and each #, is in M, where #<3 means a<b and ^=^6.
To make the definition precise, we need some preparations. Suppose
that a model M is given. For any a.b^M such that a<b, we say a
sequence oj=<fli, • • • , #„> (w^l) of elements in M" is a cte>2 /row « to

b if 1) 0i = 0 and aw = & and 2) ^-<0/+i for l<z<w. In such a case
we define l(ci)=m. For any a.b^M such that 0<6, define a mapping

rf by
rf(0, i)=sup{/(o!) ; ^ is a chain from 0 to 6}.

We note that if a<b then rf(0, ft);>2. For the sake of brevity, let

)=0 if

Befinition 3» 2. Tfe height h is a mapping from the class of

all models to {1,2, • • - , < » } , M;/WC/& fs defined by

We remark that ^(M)>1, since rf(0, 0)=1.

Lemma 3. 30 Let M be a model If h(M)=n, then
where

Proof. We prove our lemma by induction on w.
1) Case »=1.
If there exist a,b^M such that a<b, then

So, for any a.b^M if 0<6 then <2 — &, Therefore M=(Si)a where a

is the cardinal of M. So Z,(M):DcZ,(Si). This means Afe&.
2) Case ^>10

For each a^M, define a submodel Mfl of M by Ma={6; a<J}} .
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By the proof of Theorem 2.10, {Ma\ a^M} Is a covering of M and
each Ma is of the form Si f Na, We first prove that

(3. 1) h(Ma)<h(M') for any a^M and there is b^M such that

Since Ma is a subset of M, rf(ft, c)<A(M) for any byc^Ma. So,
/*(MC)</KM). We can find Z/, c'eM such that &'<</ and d(6',O
= A(M), since A(Af) is finite. So h(Mb^>d(bf , O =A(Af). Thus,

Next, we can show that

(3.2) for any aeM, if A(M.)=£1 then

Now, by (3.1) and (3.2), if A(Af a)=£l then h(Na}=na<n-l and
there is 6 such that h(Nb')=n—l. By the hypothesis of induction,
#.££„.. Since P^/^fP^SitP*. and P^e^., PMflecS,,fl+1 by

Theorem 6. 2 in [7] . That is,

(3.3) if /KAf«)>l then Af.e £„._,!, where ^a + l<^ and

if A(AQ = 1 then

By (3.1), max{«fl + l; a^.M}=n, Thus by (3.3), Lemma 3.1 and
Theorem 2.10,

Lemma 30 40 // there is a chain a in M such that /(«)=»+!,
then Pn is not valid in M (?C>1), where Pn is defined inductively by

Proof. Let ot be <#i, •• •,#„+!>. We define an M"-valuation W by

for any b^M,

if 08_,+i<ft (!<*<»)
I/ otherwise.

For the sake of brevity, let P(j = pQ. Now, we prove by induction on &
that W(Pi, an-i+^ =f for 0<i<n.

1) z = 0. W^CPo, ^»+i) = W(p0, fl«+i) =/ by the assumption.
2) i>>0. By the hypothesis of induction, W(P^i, $H_,-+2) =/.
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Since ^_f+i<^_z-+2, W(phan-i^=t. So W(pi~^Pi^an^+^=f. Since
JF(A,*)=*for a^l+1<b, W((pi^Pi^^pi,an-i^=t But JF(A, ^_,-+1)
=f. Hence W^(P/, #»_,-i-i) =/. If we take n for /, then we have W(pa, &i)

=f. This means that Pn is not valid in M.

Corollary 8. 5. If / i(Af)=fl>, £fe^ Afe<Su.

Proof, It can be easily proved that if h (M) = « then for any
there is a chain a. in M such that /(«) = ». Then we have

OT for any w<a) by Lemma 3. 4.

Putting these results together, we obtain

Corollary 3. 6. For any «<o>, h(M^=n iff

Next, we shall prove that if a pseudo-Boolean algebra P is in Sn

, then Afp is also in Sn.

Lemma 3. 7* Let P be a pseudo-Boolean algebra in Sn

Then there is no set of prime filters {F,-; 0</<w} o/ P such that

(3.4) F.iF^i-iFo.

(F^Fj means that F{ is a proper subset of F/)0

Proof, Suppose that a set of prime filters {F{; Q<i<n} satisfies

(3.4). We prove that there is an assignment f of P such that

(3. 5) 1) /(P0) e P- Fo and

2) /(Pd^Ft-i-F* for any * such that I<k<n,

where jR is the formula defined in Lemma 3. 4. We define / by induc-

tion. Define f(po)=a0, where a0 = Q, Then it is clear that /(P0) =
f(po)=Q^P—F0. Suppose that we define /(/O f°r Q<i<k<n such
that f(Pk)=b^Fk-i — Fk. Since Fk+^Fk, we can take an element ak+I

out of Fk—Fk+i. We define bk+1 = ak+1U(ak+i^b') and /(A+i)=**+i-
We first show

(3.6) bk+^Fk-Fk^.

Since FA is a filter, 0*+i<&+i and ak+^Fk, so bk+i^Fk. If bk+i^Fk+-L,
then either ak+i^Fk^ or ^+1D6eF*+i, since F%+1 is prime. But
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contradicts the hypothesis. So, ak^b^Fk+i. Then

kJ 0*+in(0*+i^ft)<ft» and hence b^Fk. But this contradicts
the assumption. Thus bk+i&Fk+i. Next we show that

(3.7) bk+^b = b.

Since ak+l fl (ft*+i => ft) <ft*+i PI (ft*+i =3 ft) <ft, (ft* ui ID ft) < (a* ̂  ID ft) <ft*+1 . So
ft*+i^ft = ft*+in(ft*+i^ft)5ift- Hence bk-t^b = b, since bk^^b>b always
holds. By (3.6) and (3.7), f(Pk^=bk^Fk-Fk+-L. If we take » for

* in (3.5), we have /(Pn) ̂ F.^-Fn. Since leFJZ, /(PK)^1. So PH

is not valid in P. But this contradicts P^Sn.

By Lemma 3.7, if P^cSn then A(AfP)<«. But by Corollary 1.3,

c P. So A (Mp) = ». This means

§4. Applications of Kripke Models

In this section, we shall study about models of the logic LPny

which is defined by adding axiom schema Pn (see Lemma 3. 4) to the

intuitionistic prepositional logic.10) It is proved in [7] that Sn is the

greatest and LP» is the least element in <Sn. We now know that a
model M is in Sn iff h(M}=n and that the Kripke model Sn is a
linearly ordered set with n elements. So, it is natural to ask what
models the least element LPn has.

First we introduce the monotonic descending sequence of models
{Rnm\ M<.a)} and show that this sequence coverges to LPH. Moreover

we show {Rnm] n<o)} converges to the logic Dm-i which is discussed
in Gabby — de Jongh [3]. We give an axiomatization of Rnm. We also

give a model of LQny which is introduced in Hosoi [8].

We need some preparations.

Definition 4. 1. Define a mapping w by the condition that for

any model M such that d(a,V) is finite for a.

w(M^)=sup[the cardinal of (ft;

10) Hereafter, we sometimes write LJ+Ai-\ \-Am for the logic which is obtained
by adding axiom schemata Ai,---,Am to the intuitionistic logic.
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Definition 4. 20 // a, model M satisfies the following conditions,

we call M a m-tree model.
1) There is a least element in M with respect to <.

2) For any a, b, c in M, // b<a and c<a then either b<c or

c<b.
3)

We write ^U,m (m<co, »<o>) for the class of all models M such
that h(M}=n and M Is an w-tree model Remark that if a submodel
M of an w-tree model satisfies the condition 1), then M is also an m-

tree model. Any ^-tree model is also an n-tree model for m<^n.

An element a^M is said to be maximal if a<b implies a=b for
any b^M.

Definition 4, 3, Z,^^ Afe^,,,. W^ rfg./Z«e a MO^/ M* ^25 follows.

2) Suppose n>l. Let {at\ i<Ls} be all maximal elements in M.

(Since Me'tL,, s is at most co). Now M* is a set M\J{a{i\ i<s
and \<j<n— d(a^ a^} , where aQ is the least element and a

with a relation <M* such that a<M*b iff either 1) a,b^.M and

or 2) a^M, a<Mai and b = a{j or 3) a = aij9 b = alk and j<k.

Clearly if Afe^™ then M

Lemma 4e 40 // M^cVnm for some m, n, then Z(M*)cZ(M).

Proof. Define a mapping / from Af * to M by

/(0)= (a if aeM

10,- if a=aij for some j.

Since/ is an embedding of Af* into Af, I(M*)cL(Af) by Theorem

2.11.

Let M^Vnn,. M is said to be complete if d(a0)a)=n for any
maximal element (2 of Af. It is trivial that Af * is complete. Now,
we define a special complete element in €UHm.

Definition 4. 5. Define a model Rnm (n<a), m<o) recursively as

follows.
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Clearly, Rnm is complete and is in V,,^ for any

Lemma 4.6, Rnm is the least element in ^L/,,,,,.

Proof. By Lemma 4. 4 and the above remark, we have only to

prove that L(Rnm*) cL(M) for any complete element M in cUnm. We

shall show that R,,m is embeddable in M for any complete element M

in T^, by induction on w. For ^ = 1, the identity mapping on M is

an embedding of J?lfB into M, sirce M^cU±m iff M=Si = Rim. Suppose

w>l. By Definition 4. 2, M Is of the form Si f (MrW for some &<m

and each M/ is in V,^,,, since Tkf is complete. By the assumption,

Ra-im is embeddable in M,- for any i. So, (J?B_ini)
 Bl is embeddable in

CMi).<* by Corollary 2.12, 2) and herce !?,„„ is embeddable in M by
Corollary 2.12, 3). Thus L(Raa) cL(M).

Corollary 4. 7. // m>mf and n>nr, then LC-S,M)cL(J?J,/JB/).
Moreover if m>m' , L(Rn^^L(Rnm^> and if n>n',

Proof. Since ^?fJ/,B/ is a submodel of i?sw/, by Corollary 2. 3
,^c:L(RHfll^. By Lemma 4.6 L(5B1B)c £(#.,,). Let J, be the

formula introduced by [3] , i.e.,

Suppose m>m'. Then by [3], A,,lf^l(Rtim,) but

Suppose n>ri. Then Pn,^L(Rn^ but Pn,^L(Rnm\ since h(Rk,^=k

for any &<«. So our proof is completed.

Using the idea of Kripke [10], we have the following lemma.1^

Lemma 4. 3B Let M be a model in <SB, which is of the form

Si f N and w(M}<m<&. Then there is a model Mf in ^LL, such

that

Proof. A chain OL from a to 6 is called proper, where a=<fli,

••- ,<>, if rf(fl,-, fl/+i)=2 for any f such that l<f<&. Let 00 be the

least element of M We define a model M7 by the condition 1) M' '= {a;

11) See also [1] and [5].
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a. is a proper chain from a0} and 2) for any #=<#!, • • • , aky and

]9 = <6i, • • • > bhy, ^<M//3 iff &</z and & = 0,- for any z°<&. Since
w(M)<m, w(M'}<m. It can be easily proved that M' is a m-tree
model and h(M^=n. Hence M'e'U,,.. We now prove that L(M')
cL(M). Define a mapping / from M7 to M, by f(a)=a if a is a

chain from a0 to <z. Then / is an embedding of Mr into M So

Corollary 4,9. jLrf M be a model in <Sn, such that

<<». Then L(Rnm)c:L(My.

Proof, By Theorem 2. 10, there are models Nt's such that L(M)
ID c n£(Si f JV/). Furthermore we can take such Si f JV/s as submodels

IS/

of M, so w(Si f Nt~)<m. By Lemma 4.6 and Corollary 4.8, L(Rnm)

cL(Si f AQ for any f e/. Hence L(M) z> c ni(Si t Ni) nL(Rnm).
feJ

Theorem4. 10. 1) LP. DC HZ- Oft.) (l<w<o)).
m<To)

2) ZJ^^cn^C-K.-.+i) (0<m<o}), wAgr^ A w a logic defined by
«<0>

adding axiom schema Ak to intuitionistic logic, (See [3]).

Pr00/. 1) By Mckay [12] Theorem 2. 2, LPM has the )w»fe model

property. So there are finite Kripke models M/s such that LPBZ)C

n^(K-)-12) Clearly h(Mi^=ni<n. Let w;(Af,) be iw,-. Since Af, is
je/

finite, mz-<o). By Corollary 4.9, L(l?w)ci£(AQ. So LPn^nL(Rnm).
m<^ca

Clearly, LPnc:^]L(Rnm). 2) can be proved similarly as 1) by using
»2<U

the argument [3] , since each Dk has the finite model property.

Corollary 4.11. 1) LPniD cZ,(7?BCO). 2) L/^c n £CR.).
M,»J<Cw

Proo/. 1) Clearly Z,P,,z> £(#„„)• By Corollary 4.9 and Theorem

4.10, IP. D en £(&.)=>!.(#»). 2) Trivial.
»Z<^(U

In [3], an axiomatization of the logic Dm is given, i.e., DmiDC:LJ

+ Am. Using this fact, we can obtain an axiomatization of RHm.

Theorem 4. 12. L(Rnm) ID cL/+ Pn + Am^ for l<m<.a).

Proof. Since A-i e /)_!, L (Rum) ID L/+ P, + A-* by Theorem 4, 10.

12) See Corollary 1.5.
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Conversely, let P be the Lindenbaum algebra of LJ+ Pn + Am_i . Since
P^<SH, MP is also in S,> by Lemma 3.7. So if A^P then there is
an MP- valuation W such that A is not valid in (MP, W). Using the
same method as in [3], we can prove that there is a model M such

that A<£L(M^ and L(M) iDL(I?Hw) for some »'<» and m'<m.
Hence J.$L(J?WJ by Corollary 4.7. Thus we have l(Rnm)c:lJ+Pn

As a corollary of Theorem 4. 10, ewe an give a model of LQn

, which is obtained by adding axiom schema Q to LPH,

where Q=~]p\/ ~~]~1/>.18) It is proved in Theorem 4.16 in Hosoi [8]

that LQn does not have a finite model if n>3. First we have

Lemma 4. 13. Let Si f M be a finite model, in which Q is valid.

Then M is of the form N \ Si.

Proof. Suppose that both a and b are distinct maximal elements
in Si f M Define Si | M- valuation W by

1 / otherwise.

It is easy to verify that W(Q> #0) =/, where a0 is the least element of

Si t M This contradicts that QeL(Si | Af). So, Si f M has only one
maximal element. Thus, M is of the form N ^ Si.

Theorem 4.14. LQ,^ ^ c fl L (Rnm f SO ID c L (#KW f SO . In other
m<^co

words, there exists a pseudo- Boolean model P of LPn such that

Proof. By Mckay [12], LQH+i has the finite model property. So

we can take finite models M/'s of the form Si f N{ such that LQn+iiD c
ni(M,). By Lemma 4. 13, M, is of the form Ml \ Si. Clearly M-^Sn.
ie/

and w(M!}=nii for some «,-<« and w,-<fl). So, by Lemma 4. 4,
Corollary 4. 6 and Lemma 4. 8 J?^. is embeddable in M-. Hence #,„, f Si

is embeddable in Mf by Corollary 2.12, 3). So L(A/i) ^>L(Rnm. | SO

and hence Z,QM+1ID [~}L(Rnm \ SO- Since J??HU f Si is embeddable in J?MTO f Si,

13) See Definition 4,11 and Lemma 4.12 in [8].
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L(Rnn \ SO =>£(#,„ t Si). Clearly L(R^ \ SO Z)LQ«+i. Remark that

=> cL/+Qi3 c n £(#,. t 50.

w Pr00/ (Afore/* 5, 1971);

C. G. Mckay defined a sequence of models /„' in "A note on the

Jaskowski sequence" Z. Math. Logik Grundlagen Math. 13 (1967) and

proved that R /« ^ c: L/. But this Is not the case. For, by the results

of Gabbay-de Jongh [3], A en/.' and L/§=A. Mckay stated in his
/'<Cw

letter to the author, dated 25th September 1970, that his result is in-

correct.
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