Kripke Models and Intermediate Logics

By
Hiroakira Ono

In [10], Kripke gave a definition of the semantics of the intuitionistic logic. Fitting [2] showed that Kripke's models are equivalent to algebraic models (i.e., pseudo-Boolean models) in a certain sense. As a corollary of this result, we can show that any partially ordered set is regarded as a (characteristic) model of a intermediate logic. ${ }^{1)}$ We shall study the relations between intermediate logics and partially ordered sets as models of them, in this paper.

We call a partially ordered set, a Kripke model. ${ }^{2)}$ At present we don't know whether any intermediate logic has a Kripke model. But Kripke models have some interesting properties and are useful when we study the models of intermediate logics. In $\S 2$, we shall study general properties of Kripke models. In §3, we shall define the height of a Kripke model and show the close connection between the height and the slice, which is introduced in [7]. In §4, we shall give a model of $L P_{n}$ which is the least element in n-th slice \mathcal{S}_{n} (see [7]).

§1. Preliminaries

We use the terminologies of [2] on algebraic models, except the use of 1 and 0 instead of V and Λ, respectively. But on Kripke models, we give another definition, following Schütte [13]. ${ }^{3)}$

Definition 1.1. If M is a non-empty partially ordered set, then

[^0]we say M is a Kripke model. ${ }^{4)}$ Let M be a Kripke model which is partially ordered by a relation \leq. Suppose that W is a mapping from all the pairs of formulas and elements in M to $\{t, f\}$. W is called an M-valuation, if W satisfies the following conditions. For any u, v in M,

1) if $W(p, u)=t$ and $u \leq v$ then $W(p, v)=t$, where p is any propositional variable,
2) $W(A \wedge B, u)=t$ iff $W(A, u)=t$ and $W(B, u)=t$,
3) $W(A \bigvee B, u)=t$ iff $W(A, u)=t$ or $W(B, u)=t$,
4) $W(A \supset B, u)=t$ iff for any r in M such that $u \leq r W(A, r)$ $=f$ or $W(B, r)=t$,
5) $W(\neg A, u)=t$ iff for any r in M such that $u \leq r W(A, r)=f$.

Let W be any M-valuation. We say a formula A is valid in (M, W), if $W(A, u)=t$ for any u in M. If for any M-valuation W, A is valid in (M, W), we say A is valid in M.

Following theorem is due to Fitting [2].
Theorem 1.2. 1) For any Kripke model M and any M-valuation W, there is a pseudo-Boolean algebra P and an assignment f of P such that for any formula A, A is valid in (M, W) iff $f(A)$ $=1 .{ }^{5}$
2) Conversely, suppose that a pseudo-Boolean algebra P and its assignment f are given. Then there is a Kripke model M and an M-valuation W such that for any formula A, A is valid in (M, W) iff $f(A)=1$.

Proof. We sketch Fitting's proof.

1) Suppose that M and W are given. If a subset N of M satisfies the following condition

$$
\text { if } u \in N \text { and } u \leq v \text { then } v \in N,
$$

[^1]we say N is closed. Let P be the class of all closed subsets of M. Then we can prove that P is pseudo-Boolean algebra with respect to set intersection and set union. As for zero element we take the empty set. Define an assignment f of P by $f(p)=\{u ; W(p, u)=t\}$ for any propositional variable p. Then it is clear that our theorem holds for this f and P.
2) Suppose P and f are given. Let M be the class of all prime filters of P. Clearly, M can be partially ordered by set inclusion \subseteq. Define an M-valuation W by
$$
W(p, u)=t \quad \text { iff } \quad f(p) \in u
$$

Now, it is easy to verify that our theorem holds for this M and W.
As a corollary of Theorem 1.2, we can obtain that
Corollary 1.3. 1) For any Kripke model M, there is a pseudoBoolean algebra P such that for any formula A, A is valid in M iff A is valid in P.
2) For any pseudo-Boolean algebra P, there is a Kripke model M such that for any formula A, A is valid in P if A is valid in M.

We don't know whether the converse of Corollary 1.3.2 holds and whether any intermediate logic has a Kripke model. But we shall show in Corollary 1.5 that if P is finite then the converse holds. This implies that any finite intermediate logic has a Kripke model.

We write P_{M} (or M_{P}) for the pseudo-Boolean algebra (or Kripke model) constructing from a Kripke model M (or a pseudo-Boolean algebra P) by the method of Fitting. We know that A is valid in M_{P} iff A is valid in $P_{M_{P}}$ by Corollary 1.3.1. Now, we define a mapping f from P to $P_{M_{P}}$ by the condition that

$$
f(a)=\{F ; a \in F \text { and } F \in \mathscr{T}(P)\},
$$

where $\mathscr{I}(P)$ denote the set of all prime filters of P. It is clear that f is an isomorphism from P into $P_{M_{P}}$.

Lemma 1.4. If P is finite, then f is a mapping onto $P_{M_{P}}$.
Proof. Let U be any element in $P_{M_{P}}$. We say that an element F
in U is minimal, when if G is a subset of F then $G=F$ for any G in U. Since P is finite, U is also finite. Hence for any G in U there is a minimal element F such that F is a subset of G. Let F_{1}, \cdots, F_{k} be all the minimal elements in U. Define $U_{i}(1 \leq i \leq k)$ by

$$
U_{i}=\left\{G ; F_{i} \text { is a subset of } G \text { and } G \in \mathscr{T}(P)\right\} .
$$

It is clear that $U=\bigcup_{i=1}^{k} U_{i}$, since U is in $P_{M_{P}}$. Let $F_{i}=\left\{a_{i j} ; 1 \leq j \leq n_{i}\right\}$. Then we write $\left(F_{i}\right)_{*}^{i=1}$ for $\bigcap_{j=1}^{n_{i}} a_{i j}$. It is easy to see that $G \in U_{i}{\underset{k}{k}}_{k}\left(F_{i}\right)_{*}$ $\in G$. So, $f\left(\left(F_{i}\right)_{*}\right)=U_{i} . \quad$ Hence $f\left(\bigcup_{i=1}^{k}\left(F_{i}\right)_{*}\right)=\bigcup_{i=1}^{k} f\left(\left(F_{i}\right)_{*}\right)=\bigcup_{i=1}^{k} U_{i}=U$, since $f(a \cup b)=f(a) \cup f(b)$ for any $a, b \in P$. Thus we have Lemma 1.4.

So, we obtain
Corollary 1.5. If P is finite, then the converse of Corollary 1.2.3 holds. ${ }^{6}$)

In §3, we shall prove that if a pseudo-Boolean algebra P is in \mathcal{S}_{n} $(n<\omega), P_{M_{P}}$ is also in S_{n}.

§2. Properties of Kripke Models

We shall henceforth write a model for a Kripke model and a logic for an intermediate logic. We write $L(M)$ for the logic characterized by a model M, i.e., the set of formulas which are valid in M. We write \leq_{M} for the relation which orders a model M. Following the notation in [7], we write $L_{1} \subset L_{2}$ if a logic L_{1} is included by a logic L_{2}, as a set of formulas.

Definition 2.1. Let M be a model. A subset N of M is called a submodel of M if N is closed with respect to \leq_{M}, i.e., for any a, b in M, if $a \in N$ and $a \leq_{M} b$ then $b \in N . \leq_{N}$ is a restriction of \leq_{M} to N.

We can prove easily that
Lemma 2.2. Let N be a submodel of M. If two M-valuation W and W^{\prime} satisfy the following condition
6) See Dummett-Lemmon [1] Lemma 2.

$$
\begin{array}{ll}
W(p, a)=W^{\prime}(p, a) & \text { for any } a \in N \text { and any propositional } \\
& \text { variable } p,
\end{array}
$$

ihen $W(A, a)=W^{\prime}(A, a)$ for any $a \in N$ and any formula A.
Corollary 2.3. If N is a submodel of M, then $L(M) \subset L(N)$.
Proof. Let W be any N-valuation. Define a mapping W^{*} by

$$
W^{*}(p, a)= \begin{cases}W(p, a) & \text { if } a \in N \\ f & \text { otherwise }\end{cases}
$$

It is easy to verify that W^{*} is really an M-valuation. Suppose that $A \notin L(N)$. Then there is $a \in N$ such that $W(A, a)=f$ for some N valuation W. By Lemma 2.2, $W^{*}(A, a)=f$. Hence $A \notin L(M)$.

Definition 2.4. Suppose that M_{i} is a submodel for any $i \in I$. The set $\left\{M_{i} ; i \in I\right\}$ is called a covering of M, if $M=\bigcup_{i \in I} M_{i}$.

Theorem 2.5. If $\left\{M_{i} ; i \in I\right\}$ is a covering of M, then $L(M) \supset \subset$ $\bigcap_{i \in I} L\left(M_{i}\right)$, where $\bigcap_{i \in I} L\left(M_{i}\right)$ denotes the intersection of $L\left(M_{i}\right)$'s as logics. ${ }^{7}$

Proof. By Corollary 2.3, for any $i \in I L(M) \subset L\left(M_{i}\right)$. So, $L(M) \subset$ $\bigcap_{i \in I} L\left(M_{i}\right)$. Suppose that $A \notin L(M)$. Then there is $a \in M$ and an M valuation W such that $W(A, a)=f$. By the definition of covering, $a \in M_{i}$ for some $i \in I$. Define an M_{i}-valuation V by restricting the domain of the second argument of W to M_{i}. Then it is easy to see that $V(A, a)=W(A, a)=f$. Thus $A \notin L\left(M_{i}\right)$ for some $i \in I$.

Now, we define two operations on models, following the operations defined in [6].

Defmilion 2.6. Let M and N be models such that $M \cap N$ is empty. The model $M \uparrow N$ is a set $M \cup N$ with a relation $\leq_{M \uparrow N}$ defined below. For any $a, b \in M \cup N$,
$a \leq_{M \uparrow N} b$ iff cither 1) $a \leq_{M} b$ and $a, b \in M$ or 2) $a \leq_{N} b$ and $a, b \in N$ or 3) $a \in M$ and $b \in N$.

[^2]If both M and N are isomorphic (as a partially ordered set) to some model L, we write $L \uparrow L$ for $M \uparrow N$.

Definition 2.7. Let M_{i} be a model for any $i \in I$, such that $M_{i} \cap M_{j}$ is empty if $i \neq j$. The model $\left(M_{i}\right)_{i \in I}$ is a set $\bigcup_{i \in I} M_{i}$ with a relation \leq defined below.
For any $a, b \in \bigcup_{i \leq I} M_{i}$,
$a \leq b$ iff there is $i \in I$ such that $a, b \in M_{i}$ and $a \leq{ }_{M_{i}} b .^{8)}$
We sometimes write $(M)_{M \in \mathscr{I}}$ for $\left(M_{i}\right)_{i \in I}$, if \mathscr{I} is the ordered set $\left\{M_{i} ; i \in I\right\}$. If each M_{i} is isomorphic to some L and the cardinal of I is σ then we write L^{σ} for $\left(M_{i}\right)_{i \in I}$. We remark that $P_{M \uparrow N}=P_{M} \uparrow P_{N}$ and the direct product of $P_{M_{i}}(i \in I)=P_{\left(M_{i}\right)_{i \in I}}$.

Corollary 2.8. $L\left(\left(M_{i}\right)_{i \in I}\right) \supset \subset \bigcap_{i \in I} L\left(M_{i}\right)$.
Proof. Because $\left\{M_{i} ; i \in I\right\}$ is a covering of $\left(M_{i}\right)_{i \in I .}$. (See [14].)
Define a model S_{n}^{\prime} for $1 \leq n<\omega$, which is totally linear ordered set with n elements. It is easy to see that $P_{s_{n}^{\prime}}=S_{n}$ where S_{n} is a pseudoBoolean model defined by Gödel [2]. So, henceforth we write S_{n} also for the Kripke model S_{n}^{\prime}.

Lemma 2.9. Let M be a model. If $\exists a \in M \forall b \in M a \leq{ }_{M} b$ holds, then M is of the form $S_{1} \uparrow N$. (For the sake of brevity, we say M is of the form $S_{1} \uparrow N$ even if $M=S_{1}$).

Proof. Let a be an element in M such that for any $b \in M a \leq_{M} b$ holds. Let N be a submodel which is equal to $M-\{a\}$. Then it is clear that M is isomorphic to $S_{1} \uparrow N$.

Mckay [11] proved that for any pseudo-Boolean algebra P, there are pseudo-Boolean algebras $P_{i}(i \in I)$ such that $P \supset \subset \bigcap_{i \in I} S_{1} \uparrow P_{i}$. We give another proof of this result for Kripke models.*)

Theorem 2.10. For any model M there exist models $N_{i}(i \in I)$ such that $L(M) \supset \subset \bigcap_{i \in I} L\left(S_{1} \uparrow N_{i}\right)$.

[^3]Proof. For any $a \in M$, we write M_{a} for the submodel $\left\{b ; a \leq{ }_{M} b\right\}$. Clearly, $\left\{M_{a} ; a \in M\right\}$ is a covering of M. Hence by Theorem 2.5, $L\{M) \supset \subset \bigcap_{a \in M} L\left(M_{a}\right)$. Moreover, each M_{a} is of the form $S_{1} \uparrow N_{a}$ by Lemma 2.9.

It should be remarked that in contrast with the above theorem, the following statement is false. For any model M, there exists a model N such that $L(M) \supset \subset L\left(S_{1} \uparrow N\right)$.

The following theorem is useful, when we compare one logic with another logic. Let f be a surjective mapping from M to N such that 1) for any $a, b \in M$ if $a \leq_{M} b$ then $f(a) \leq_{N} f(b)$, and 2) for $a \in M$ and any $c \in N$ if $f(a) \leq_{N} c$ then there is $b \in M$ such that $f(b)=c$ and $a \leq{ }_{m} b$. Then we say f is an embedding of M into N. If there is an embedding of M into N, we say M is embeddable in N.

Theorem 2.11. If M is embeddable in N then $L(M) \subset L(N) .{ }^{9}$
Proof. Suppose $A \notin L(N)$. Then there is an N-valuation W and an element $b \in N$ such that $W(A, b)=f$. Define an M-valuation V by
$V(p, a)=W(p, f(a))$ for any propositional variable p and any $a \in M$,
where f is an embedding of M into N. We can show that V is really an M-valuation, and that $V(B, a)=W(B, f(a))$ for any formula B. Let c be an element in M such that $f(c)=b$. Now, $V(A, c)=W(A, b)$ $=f$. So, $A \notin L(M)$.

Corollary 2.12. 1) If M_{1} is embeddable in M_{2} and M_{2} is embeddable in M_{3}, then M_{1} is embeddable in M_{3}.
2) Let g be a surjective mapping from a set J to a set I. Suppose that M_{j} is embeddable in N_{i} for any $j \in J$ and any $i \in I$ such that $g(j)=i$. Then $\left(M_{j}\right)_{j \in I}$ is embeddable in $\left(N_{i}\right)_{i \in I}$.
3) Suppose that M_{1} and N_{1} are embeddable in M_{2} and N_{2}, respectively. Then $M_{1} \uparrow N_{1}$ is embeddable in $M_{2} \uparrow N_{2}$.
9) We can prove this theorem by using Theorem 4.6 in [9]. In [9], an embedding is called a strongly isotone mapping.

§3. Height of Models

In this section, we shall define the height $h(M)$ of a given model M, and prove that $L(M)$ is in the n-th slice \mathcal{S}_{n} iff $h(M)=n$, for $n \leq \omega$. We say a model M is in \mathcal{S}_{n} if $L(M) \in \mathcal{S}_{n}$ (or equivalently, $P_{M} \in \mathcal{S}_{n}$).

Lemma 3. 1. Suppose that $M_{i} \in \mathcal{S}_{n_{i}}$ for $i \in I$. Then $\left(M_{i}\right)_{i \in I} \in \mathcal{S}_{n}$, where $n=\sup \left\{n_{i} ; i \in I\right\}$. (n and n_{i} may be ω.)

Intuitively, the height of a model M is the maximal m such that $a_{1}<a_{2}<\cdots<a_{m}$ and each a_{i} is in M, where $a<b$ means $a \leq b$ and $a \neq b$. To make the definition precise, we need some preparations. Suppose that a model M is given. For any $a, b \in M$ such that $a \leq b$, we say a sequence $\alpha=\left\langle a_{1}, \cdots, a_{m}\right\rangle(m \geq 1)$ of elements in M is a chain from a to b if 1) $a_{1}=a$ and $a_{m}=b$ and 2) $a_{i}<a_{i+1}$ for $1 \leq i<m$. In such a case we define $l(\alpha)=m$. For any $a, b \in M$ such that $a \leq b$, define a mapping d by

$$
d(a, b)=\sup \{l(\alpha) ; \alpha \text { is a chain from } a \text { to } b\} .
$$

We note that if $a<b$ then $d(a, b) \geq 2$. For the sake of brevity, let $d(a, b)=0$ if $a \nleftarrow b$.

Definition 3.2. The height h is a mapping from the class of all models to $\{1,2, \cdots, \omega\}$, which is defined by

$$
h(M)=\sup \{d(a, b) ; a, b \in M\} .
$$

We remark that $h(M) \geq 1$, since $d(a, a)=1$.
Lemma 3.3. Let M be a model. If $h(M)=n$, then $M \in \mathcal{S}_{n}$, where $n<\omega$.

Proof. We prove our lemma by induction on n.

1) Case $n=1$.

If there exist $a, b \in M$ such that $a<b$, then $h(M) \geq d(a, b) \geq 2$. So, for any $a, b \in M$ if $a \leq b$ then $a=b$. Therefore $M=\left(S_{1}\right)^{\sigma}$ where σ is the cardinal of M. So $L(M) \supset \subset L\left(S_{1}\right)$. This means $M \in \mathcal{S}_{1}$.
2) Case $n>1$.

For each $a \in M$, define a submodel M_{a} of M by $M_{a}=\{b ; a \leq b\}$.

By the proof of Theorem 2.10, $\left\{M_{a} ; a \in M\right\}$ is a covering of M and each M_{a} is of the form $S_{1} \uparrow N_{a}$. We first prove that
(3.1) $h\left(M_{a}\right) \leq h(M)$ for any $a \in M$ and there is $b \in M$ such that $h\left(M_{b}\right)=h(M)>1$.

Since M_{a} is a subset of $M, d(b, c) \leq h(M)$ for any $b, c \in M_{a}$. So, $h\left(M_{a}\right) \leq h(M)$. We can find $b^{\prime}, c^{\prime} \in M$ such that $b^{\prime} \leq c^{\prime}$ and $d\left(b^{\prime}, c^{\prime}\right)$ $=h(M)$, since $h(M)$ is finite. So $h\left(M_{b^{\prime}}\right) \geq d\left(b^{\prime}, c^{\prime}\right)=h(M)$. Thus, $h\left(M_{b^{\prime}}\right)=h(M)$. Next, we can show that
(3.2) for any $a \in M$, if $h\left(M_{a}\right) \neq 1$ then $h\left(N_{a}\right)=h\left(M_{a}\right)-1$.

Now, by (3.1) and (3.2), if $h\left(M_{a}\right) \neq 1$ then $h\left(N_{a}\right)=n_{a} \leq n-1$ and there is b such that $h\left(N_{b}\right)=n-1$. By the hypothesis of induction, $N_{a} \in \mathcal{S}_{n_{a}}$. Since $P_{M_{a}}=P_{S_{1}} \uparrow P_{N_{a}}=S_{1} \uparrow P_{N_{a}}$ and $P_{N_{a}} \in \mathcal{S}_{n_{a}}, \quad P_{M_{a}} \in \mathcal{S}_{n_{a}+1}$ by Theorem 6.2 in [7]. That is,
(3.3) if $h\left(M_{a}\right)>1$ then $M_{a} \in \mathcal{S}_{n_{a}+1}$, where $n_{a}+1 \leq n$ and if $h\left(M_{a}\right)=1$ then $M_{a} \in \mathcal{S}_{1}$.

By (3.1), $\max \left\{n_{c}+1 ; a \in M\right\}=n$. Thus by (3.3), Lemma 3.1 and Theorem 2.10, $M \in \mathcal{S}_{n}$.

Lemma 3.4. If there is a chain α in M such that $l(\alpha)=n+1$, then P_{n} is not valid in $M(n \geq 1)$, where P_{n} is defined inductively by

$$
\begin{aligned}
& P_{1}=\left(\left(p_{1} \supset p_{0}\right) \supset p_{1}\right) \supset p_{1}, \\
& P_{k+1}=\left(\left(p_{k+1} \supset P_{k}\right) \supset p_{k+1}\right) \supset p_{k+1} .
\end{aligned}
$$

Proof. Let α be $\left\langle a_{1}, \cdots, a_{n+1}\right\rangle$. We define an M-valuation W by

$$
\begin{aligned}
& W\left(p_{0}, b\right)=f \quad \text { for any } b \in M, \\
& W\left(p_{i}, b\right)=\left\{\begin{array}{ll}
t & \text { if } a_{n-i+1}<b \\
f & \text { otherwise }
\end{array} \quad(1 \leq i \leq n)\right.
\end{aligned}
$$

For the sake of brevity, let $P_{0}=p_{0}$. Now, we prove by induction on i that $W\left(P_{i}, a_{n-i+1}\right)=f$ for $0 \leq i \leq n$.

1) $\quad i=0 . W\left(P_{0}, a_{n+1}\right)=W\left(p_{0}, a_{n+1}\right)=f$ by the assumption.
2) $i>0$. By the hypothesis of induction, $W\left(P_{i-1}, a_{n-i+2}\right)=f$.

Since $a_{n-i+1}<a_{n-i+2}, W\left(p_{i}, a_{n-i+2}\right)=t$. So $W\left(p_{i} \supset P_{i-1}, a_{n-i+1}\right)=f$. Since $W\left(p_{i}, b\right)=t$ for $a_{n-i+1}<b, W\left(\left(p_{i} \supset P_{i-1}\right) \supset p_{i}, a_{n-i+1}\right)=t$. But $W\left(p_{i}, a_{n-i+1}\right)$ $=f$. Hence $W\left(P_{i}, a_{n-i+1}\right)=f$. If we take n for i, then we have $W\left(p_{n}, a_{1}\right)$ $=f$. This means that P_{n} is not valid in M.

Corollary 3.5. If $h(M)=\omega$, then $M \in \mathcal{S}_{\omega}$.
Proof. It can be easily proved that if $h(M)=\omega$ then for any $2 \leq n<\omega$ there is a chain α in M such that $l(\alpha)=n$. Then we have $M \notin \mathcal{S}_{m}$ for any $m<\omega$ by Lemma 3.4.

Putting these results together, we obtain
Corollary 3.6. For any $n \leq \omega, h(M)=n$ iff $M \in \mathcal{S}_{n}$.
Next, we shall prove that if a pseudo-Boolean algebra P is in \mathcal{S}_{n} $(n<\omega)$, then M_{P} is also in \mathcal{S}_{n}.

Lemma 3.7. Let P be a pseudo-Boolean algebra in $\mathcal{S}_{n}(n<\omega)$. Then there is no set of prime filters $\left\{F_{i} ; 0 \leq i \leq n\right\}$ of P such that

$$
\begin{equation*}
F_{n} \subsetneq F_{n-1} \subsetneq \cdots \subsetneq F_{0} \tag{3.4}
\end{equation*}
$$

($F_{i} \varsubsetneqq F_{j}$ means that F_{i} is a proper subset of F_{j}).
Proof. Suppose that a set of prime filters $\left\{F_{i} ; 0 \leq i \leq n\right\}$ satisfies (3.4). We prove that there is an assignment f of P such that

1) $f\left(P_{0}\right) \in P-F_{0}$ and
2) $f\left(P_{k}\right) \in F_{k-1}-F_{k}$ for any k such that $1 \leq k \leq n$,
where P_{i} is the formula defined in Lemma 3.4. We define f by induction. Define $f\left(p_{0}\right)=a_{0}$, where $a_{0}=0$. Then it is clear that $f\left(P_{0}\right)=$ $f\left(p_{0}\right)=0 \in P-F_{0}$. Suppose that we define $f\left(p_{i}\right)$ for $0 \leq i \leq k<n$ such that $f\left(P_{k}\right)=b \in F_{k-1}-F_{k}$. Since $F_{k+1} \varsubsetneqq F_{k}$, we can take an element a_{k+1} out of $F_{k}-F_{k+1}$. We define $b_{k+1}=a_{k+1} \cup\left(a_{k+1} \supset b\right)$ and $f\left(p_{k+1}\right)=b_{k+1}$. We first show

$$
\begin{equation*}
b_{k+1} \in F_{k}-F_{k+1} . \tag{3.6}
\end{equation*}
$$

Since F_{k} is a filter, $a_{k+1} \leq b_{k+1}$ and $a_{k+1} \in F_{k}$, so $b_{k+1} \in F_{k}$. If $b_{k+1} \in F_{k+1}$, then either $a_{k+1} \in F_{k+1}$ or $a_{k+1} \supset b \in F_{k+1}$, since F_{k+1} is prime. But a_{k+1}
$\in F_{k+1}$ contradicts the hypothesis. So, $a_{k \mid 1} \supset b \in F_{k+1}$. Then $a_{k+1} \in F_{k}$, $a_{k+1} \supset b \in F_{k}, a_{k+1} \cap\left(a_{k+1} \supset b\right) \leq b$, and hence $b \in F_{k}$. But this contradicts the assumption. Thus $b_{k+1} \notin F_{k+1}$. Next we show that

$$
\begin{equation*}
b_{k+1} \supset b=b . \tag{3.7}
\end{equation*}
$$

Since $a_{k+1} \cap\left(b_{k+1} \supset b\right) \leq b_{k+1} \cap\left(b_{k+1} \supset b\right) \leq b, \quad\left(b_{k+1} \supset b\right) \leq\left(a_{k+1} \supset b\right) \leq b_{k+1}$. So $b_{k+1} \supset b=b_{k+1} \cap\left(b_{k+1} \supset b\right) \leq b$. Hence $b_{k+1} \supset b=b$, since $b_{k+1} \supset b \geq b$ always holds. By (3.6) and (3.7), $f\left(P_{k+1}\right)=b_{k+1} \in F_{k}-F_{k+1}$. If we take n for k in (3.5), we have $f\left(P_{n}\right) \in F_{n-1}-F_{n}$. Since $1 \in F_{n}, f\left(P_{n}\right) \neq 1$. So P_{n} is not valid in P. But this contradicts $P \in \mathcal{S}_{n}$.

By Lemma 3.7, if $P \in \mathcal{S}_{n}$ then $h\left(M_{P}\right) \leq n$. But by Corollary 1.3, $L\left(M_{P}\right) \subset P$. So $h\left(M_{P}\right)=n$. This means $M_{P} \in \mathcal{S}_{n}$.

§4. Applications of Kripke Models

In this section, we shall study about models of the $\operatorname{logic} L P_{n}$, which is defined by adding axiom schema P_{n} (see Lemma 3.4) to the intuitionistic propositional logic. ${ }^{10)}$ It is proved in [7] that S_{n} is the greatest and $L P_{n}$ is the least element in \mathcal{S}_{n}. We now know that a model M is in S_{n} iff $h(M)=n$ and that the Kripke model S_{n} is a linearly ordered set with n elements. So, it is natural to ask what models the least element $L P_{n}$ has.

First we introduce the monotonic descending sequence of models $\left\{R_{n m} ; m<\omega\right\}$ and show that this sequence coverges to $L P_{n}$. Moreover we show $\left\{R_{n m} ; n<\omega\right\}$ converges to the logic D_{m-1} which is discussed in Gabby-de Jongh [3]. We give an axiomatization of $R_{n m}$. We also give a model of $L Q_{n}$, which is introduced in Hosoi [8].

We need some preparations.
Definition 4.1. Define a mapping w by the condition that for any model M such that $d(a, b)$ is finite for $a, b \in M$,
$w(M)=\sup [$ the cardinal of $\{b ; d(a, b)=2\} ; a \in M]$.
10) Hereafter, we sometimes write $L J+A_{1}+\cdots+A_{m}$ for the logic which is obtained by adding axiom schemata A_{1}, \cdots, A_{m} to the intuitionistic logic.

Definition 4.2. If a model M satisfies the following conditions, we call M a m-tree model.

1) There is a least element in M with respect to \leq.
2) For any a, b, c in M, if $b \leq a$ and $c \leq a$ then either $b \leq c$ or $c \leq b$.
3) $w(M) \leq m \leq \omega$.

We write $\mathcal{Q}_{n n}(m \leq \omega, n<\omega)$ for the class of all modeis M such that $h(M)=n$ and M is an m-tree model. Remark that if a subnodel M of an m-tree model satisfies the condition 1), then M is also an m tree model. Any m-tree model is also an n-tree model for $m \leq n$.

An element $a \in M$ is said to be maximal if $a \leq b$ implies $a=b$ for any $b \in M$.

Definition 4.3. Let $M \in \bigvee_{n n}$. We define a model M^{*} as follows.

1) If $n=1$, then $M^{*}=M$.
2) Suppose $n>1$. Let $\left\{a_{i} ; i \leq s\right\}$ be all maximal elements in M. (Since $M \in \mathcal{U}_{n m}$, s is at most ω). Now M^{*} is a set $M \cup\left\{a_{i j} ; i \leq s\right.$ and $\left.1 \leq j \leq n-d\left(a_{0}, a_{i}\right)\right\}$, where a_{0} is the leasi element and $a_{i j} \notin M$, with a relation $\leq_{M^{*}}$ such that $a \leq_{M^{*}} b$ iff either 1) $a, b \in M$ and $a \leq_{M} b$ or 2) $a \in M, a \leq{ }_{M} a_{i}$ and $b=a_{i j}$ or 3) $a=a_{i j}, b=a_{i k}$ and $j \leq k$.

Clearly if $M \in \mathcal{U}_{n m}$ then $M^{*} \in \mathcal{Q}_{n n}$.
Lemma 4.4. If $M \in \bigcup_{n m}$ for some m, n, then $L\left(M^{*}\right) \subset L(M)$.
Proof. Define a mapping f from M^{*} to M by

$$
f(a)= \begin{cases}a & \text { if } a \in M \\ a_{i} & \text { if } a=a_{i j} \text { for some } j .\end{cases}
$$

Since f is an embedding of M^{*} into $M, L\left(M^{*}\right) \subset L(M)$ by Theorem 2. 11.

Let $M \in \bigvee_{n m} . \quad M$ is said to be complete if $d\left(a_{0}, a\right)=n$ for any maximal element a of M. It is trivial that M^{*} is complete. Now, we define a special complete element in $\mathcal{U}_{n m}$.

Definition 4.5. Define a model $R_{n n}(n<\omega, m \leq \omega)$ recursively as follows.

$$
R_{1 m}=S_{1}, \quad R_{k+1 m}=S_{1} \uparrow\left(R_{k n}\right)^{m} .
$$

Clearly, $R_{n m}$ is complete and is in $\mathrm{Q}_{n m}$ for any $m^{\prime} \geq m$.
Lemma 4. 6. $R_{n m}$ is the least element in $\mathcal{U}_{n m}$.
Proof. By Lemma 4.4 and the above remark, we have only to prove that $L\left(R_{n m}\right) \subset L(M)$ for any complete elemert M in $\mathcal{U}_{n m}$. We shall show that $R_{r m}$ is embeddable in M for any complete element M in $\bigcup_{n m}$, by indaction on n. For $n=1$, the identity mapping on M is an embedding of $R_{1 m}$ into M, sicce $M \in \mathcal{U}_{1 m}$ iff $M=S_{1}=R_{1 m}$. Suppose $n>1$. By Definition 4.2, M is of the form $S_{1} \uparrow\left(M_{i}\right)_{i \leq k}$ for some $k \leq m$ and each M_{i} is in $\Theta_{n-1 m}$ since M_{i} is complete. By the assumption, $R_{n-1 m}$ is embeddable in M_{i} for any i. So, $\left(R_{n-1 m}\right)^{m}$ is embeddable in $\left(M_{i}\right)_{\imath \leq k}$ by Corollary $2.12,2$) and herce $R_{n m}$ is cmbeddable in M by Corollary $2.12,3$). Thus $L\left(R_{n, m}\right) \subset L(M)$.

Corollary 4.7. If $m \geq m^{\prime}$ and $n \geq n^{\prime}$, then $L\left(\boldsymbol{R}_{1}\right) \subset L\left(\boldsymbol{R}_{n^{\prime} m^{\prime}}\right)$. Moreover if $m>m^{\prime}, L\left(\boldsymbol{R}_{n n}\right) \subsetneq L\left(R_{n, m}\right)$ and if $n>n^{\prime}, L\left(R_{n m}\right) \varsubsetneqq L\left(R_{n^{\prime} m}\right)$.

Proof. Since $R_{n^{\prime} m^{\prime}}$ is a submodel of $R_{n m^{\prime}}$, by Corollary 2.3 $L\left(R_{n m^{\prime}}\right) \subset L\left(R_{n^{\prime} m^{\prime}}\right)$. By Lemma 4.6 $L\left(\boldsymbol{R}_{n m}\right) \subset L\left(R_{n^{\prime}}\right)$. Let A_{k} be the formula introduced by [3], i.e.,

$$
A_{k}=\bigwedge_{i=0}^{k+1}\left(\left(p_{i} \supset \bigvee_{j>2} p_{j}\right) \supset \bigvee_{j=i} p_{j}\right) \supset \bigvee_{i-0}^{k+1} p_{i} .
$$

Suppose $m>m^{\prime}$. Then by [3], $A_{n^{\prime}-1} \in L\left(R_{m^{\prime}}\right)$ but $A_{m^{\prime}-1} \notin L\left(R_{n m}\right)$. Suppcse $n>n^{\prime}$. Then $P_{n^{\prime}} \in L\left(R_{n m}\right)$ but $P_{n}, \notin L\left(R_{n m}\right)$, since $h\left(R_{k m}\right)=k$ for any $k<\omega$. So our proof is completed.

Using the idea of Kripke [10], we have the following lemma. ${ }^{11)}$
Lemma 4.8. Let \mathbb{N} be a model in \mathcal{S}_{n}, which is of the form $S_{1} \uparrow N$ and $w(M) \leq m<\omega$. Then there is a model M^{\prime} in $\cup_{n m}$ such that $L\left(M^{\prime}\right) \subset L(M)$.

Proof. A chain α from a to b is called proper, where $\alpha=\left\langle a_{1}\right.$, $\left.\cdots, a_{k}\right\rangle$, if $d\left(a_{i}, a_{i+1}\right)=2$ for any i such that $1 \leq i<k$. Let a_{0} be the least element of M. We define a model M^{\prime} by the condition 1) $M^{\prime}=\{\alpha$;
11) See also [1] and [5].
α is a proper chain from $\left.a_{0}\right\}$ and 2) for any $\alpha=\left\langle a_{1}, \cdots, a_{k}\right\rangle$ and $\beta=\left\langle b_{1}, \cdots, b_{h}\right\rangle, \alpha \leq_{M^{\prime}} \beta$ iff $k \leq h$ and $b_{i}=a_{i}$ for any $i \leq k$. Since $w(M) \leq m, w\left(M^{\prime}\right) \leq m$. It can be easily proved that M^{\prime} is a m-tree model and $h\left(M^{\prime}\right)=n$. Hence $M^{\prime} \in \mathcal{V}_{n m}$. We now prove that $L\left(M^{\prime}\right)$ $\subset L(M)$. Define a mapping f from M^{\prime} to M, by $f(\alpha)=a$ if α is a chain from a_{0} to a. Then f is an embedding of M^{\prime} into M. So $L\left(M^{\prime}\right) \subset L(M)$.

Corollary 4.9. Let M be a model in \mathcal{S}_{n}, such that $w(M) \leq m$ $\leq \omega$. Then $L\left(R_{n m}\right) \subset L(M)$.

Proof. By Theorem 2.10, there are models N_{i} 's such that $L(M)$ $\supset \subset \bigcap_{i \in I} L\left(S_{1} \uparrow N_{i}\right)$. Furthermore we can take such $S_{1} \uparrow N_{i}$'s as submodels of M, so $w\left(S_{1} \uparrow N_{i}\right) \leq m$. By Lemma 4.6 and Corollary 4.8, $L\left(R_{n m}\right)$ $\subset L\left(S_{1} \uparrow N_{i}\right)$ for any $i \in I$. Hence $L(M) \supset \subset \bigcap_{i \in I} L\left(S_{1} \uparrow N_{i}\right) \supset L\left(R_{n m}\right)$.

Theorem 4.10. 1) $L P_{n} \supset \subset \bigcap_{m<\omega} L\left(R_{n m}\right)(1 \leq n<\omega)$.
2) $D_{m} \supset \subset \bigcap_{n<\omega} L\left(R_{n m+1}\right)(0 \leq m<\omega)$, where D_{k} is a logic defined by adding axiom schema A_{k} to intuitionistic logic. (See [3]).

Proof. 1) By Mckay [12] Theorem 2. 2, $L P_{n}$ has the finite model property. So there are finite Kripke models M_{i} 's such that $L P_{n} \supset \subset$ $\bigcap_{i \in I} L\left(M_{i}\right) .{ }^{12}$ Clearly $h\left(M_{i}\right)=n_{i} \leq n$. Let $w\left(M_{i}\right)$ be m_{i}. Since M_{i} is finite, $m_{i}<\omega$. By Corollary 4. $9, L\left(R_{n_{i} m_{i}}\right) \subset L\left(M_{i}\right)$. So $L P_{n} \supset \bigcap_{m<\omega} L\left(R_{n m}\right)$. Clearly, $L P_{n} \subset \bigcap_{m<\omega} L\left(R_{n m}\right)$. 2) can be proved similarly as 1) by using the argument [3], since each D_{k} has the finite model property.

Corollary 4.11. 1) $L P_{n} \supset \subset L\left(R_{n \omega}\right)$. 2) $L J \supset \subset_{n, n<\omega} L\left(R_{n m}\right)$.
Proof. 1) Clearly $L P_{n} \supset L\left(R_{n \omega}\right)$. By Corollary 4.9 and Theorem 4.10, $L P_{n} \supset \subset \bigcap_{m<\omega} L\left(R_{n m}\right) \supset L\left(R_{n \omega}\right)$. 2) Trivial.

In [3], an axiomatization of the logic D_{m} is given, i.e., $D_{m} \supset \subset L J$ $+A_{m}$. Using this fact, we can obtain an axiomatization of $R_{n m}$.

Theorem 4.12. $L\left(R_{n m}\right) \supset \subset L J+P_{n}+A_{n-1}$ for $1 \leq m<\omega$.
Proof. Since $A_{m-1} \in D_{m-1}, L\left(R_{n m}\right) \supset L J+P_{n}+A_{m-1}$ by Theorem 4.10.
12) See Corollary 1.5.

Conversely, let P be the Lindenbaum algebra of $L J+P_{n}+A_{m-1}$. Since $P \in \mathcal{S}_{n}, M_{P}$ is also in \mathcal{S}_{n} by Lemma 3.7. So if $A \notin P$ then there is an M_{P}-valuation W such that A is not valid in $\left(M_{P}, W\right)$. Using the same method as in [3], we can prove that there is a model M such that $A \notin L(M)$ and $L(M) \supset L\left(R_{n^{\prime} m^{\prime}}\right)$ for some $n^{\prime} \leq n$ and $m^{\prime} \leq m$. Hence $A \notin L\left(R_{n m}\right)$ by Corollary 4.7. Thus we have $L\left(R_{n m}\right) \subset L J+P_{n}$ $+A_{m-1}$.

As a corollary of Theorem 4.10, cwe an give a model of $L Q_{n}$ $(2 \leq n<\omega)$, which is obtained by adding axiom schema Q to $L P_{n}$, where $Q=\neg p \bigvee \neg \neg p .^{13)}$ It is proved in Theorem 4.16 in Hosoi [8] that $L Q_{n}$ does not have a finite model if $n \geq 3$. First we have

Lemma 4.13. Let $S_{1} \uparrow M$ be a finite model, in which Q is valid. Then M is of the form $N \uparrow S_{1}$.

Proof. Suppose that both a and b are distinct maximal elements in $S_{1} \uparrow M$. Define $S_{1} \uparrow M$-valuation W by

$$
W(p, c)= \begin{cases}t & \text { if } c=a \\ f & \text { otherwise }\end{cases}
$$

It is easy to verify that $W\left(Q, a_{0}\right)=f$, where a_{0} is the least element of $S_{1} \uparrow M$. This contradicts that $Q \in L\left(S_{1} \uparrow M\right)$. So, $S_{1} \uparrow M$ has only one maximal element. Thus, M is of the form $N \uparrow S_{1}$.

Theorem 4. 14. $L Q_{n+1} \supset \subset \cap_{m<\omega} L\left(R_{n m} \uparrow S_{1}\right) \supset \subset L\left(R_{n \omega} \uparrow S_{1}\right)$. In other words, there exists a pseudo-Boolean model P of $L P_{n}$ such that $L Q_{n+1} \supset \subset P \uparrow S_{1}$.

Proof. By Mckay [12], $L Q_{n+1}$ has the finite model property. So we can take finite models M_{i} 's of the form $S_{1} \uparrow N_{i}$ such that $L Q_{n+1} \supset \subset$ $\bigcap_{i \in I} L\left(M_{i}\right)$. By Lemma 4.13, M_{i} is of the form $M_{i}^{\prime} \uparrow S_{1}$. Clearly $M_{i}^{\prime} \in \mathcal{S}_{n_{i}}$ and $w\left(M_{i}^{\prime}\right)=m_{i}$ for some $n_{i} \leq n$ and $m_{i}<\omega$. So, by Lemma 4.4, Corollary 4.6 and Lemma $4.8 R_{n m_{i}}$ is embeddable in M_{i}^{\prime}. Hence $R_{n m_{i}} \uparrow S_{1}$ is embeddable in M_{i} by Corollary 2.12, 3). So $L\left(M_{i}\right) \supset L\left(R_{n m_{i}} \uparrow S_{1}\right)$ and hence $L Q_{n+1} \supset \bigcap_{m<\omega} L\left(R_{n m} \uparrow S_{1}\right)$. Since $R_{n \omega} \uparrow S_{1}$ is embeddable in $R_{n m} \uparrow S_{1}$,

[^4]$\bigcap_{m<\omega} L\left(R_{n m} \uparrow S_{1}\right) \supset L\left(R_{n \omega} \uparrow S_{1}\right)$. Clearly $L\left(R_{n \omega} \uparrow S_{1}\right) \supset L Q_{n+1}$. Femark that $L Q \supset \subset L J+Q \supset \subset \cap_{n, m \subset \omega} L\left(R_{n m} \uparrow S_{1}\right)$.

Note Added in Proof (March 5, 1971):
C. G. Mckay defined a sequence of models J_{n}^{\prime} in "A note on the Jaśkowski sequence" Z. Math. Logik Grundlagen Math. 1צ (1967) and proved that $\bigcap_{n<\omega} J_{n}^{\prime} \supset \subset L J$. But this is not the case. For, by the results of Gabbay-de Jongh [3], $D_{1} \subset \bigcap_{n<\omega} J_{n}^{\prime}$ and $L J \varsubsetneqq D_{1}$. Mckay stated in his letter to the author, dated $25^{\text {th }}$ September 1970, that his result is incorrect.

References

[1] Dummett, M. and E. J. Lemmon. Modal logics between $S 4$ and $S 5$, Z. Math. Logik Grundlagen Math. 5 (1959), 250-264.
[2] Fitting, M., Intuitionistic logic model theory and forcing, Studies in logic and the foundations of mathematics, 1969.
[3] Gabbay. D. M. and D. H. J. de Jongh, A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property, Mimeographed note, 1969.
[4] Gödel, K., Zum intuitionistischen Aussagenkalkül, Akad. Wiss. Wien, Math.naturwiss. Klasse, Anzeiger, 69 (1932), 65-66.
[5] Grzegorczyk. A., Some relational systems and the associated topological spaces, Fund. Math. 60 (1967), 223-231.
[6] Hosoi, T., On the axiomatic method and the algebraic method for dealing with propositional logics, J. Fac. Sci., Univ. Tokyo. Sec. I, $\mathbb{1 4}$ (1967). 131-169.
[7] , On intermediate logics I. Ibid. (1967), 293-312.
[8] , On intermediate logics II, Ibid. 16 (1969). 1-12.
[9] De Jongh, D. H. J. and A. S. Troelstra, On the connection of partially ordered sets with some pseudo-Boolean algebras, Indag. Math. 28 (1966), 317-329.
[10] Kripke. S. A., Semantical analysis of intuitionistic logic I, Crossley-Dummett ed., Formal system and recursive functions. Amsterdam (1955). 92-129.
[11] Mckay, C. G.. On finite logics, Indag. Math. 29 (1967), 363-365.
[12] , The decidability of certain intermediate propositional logics, J. Symbolic Logic, 33 (1968), 258-264.
[13] Schütte, K., Vollständige Systeme modaler und intuitionistischer Logik, Ergebnisse der Mathmatik und ihrer Grenzgebiete, Band 42, 1968.
[14] Segerberg, K., Propositional logics related to Heyting's and Johansson's, Theoria. 34 (1968), 26-61.

[^0]: Received September 8, 1970.

 1) These models are studicd in e.g., Segerberg [14] and Gabbay-de Jongh [3]. We deal with only propositional logics in this paper.
 2) This terminology is different from that in [2].
 3) In this paper, the word algebraic models is used to denote pseudo-Boolean algebras.
[^1]: 4) Kripke's original definition says that M is a non-empty set with a transitive, reflexive relation, but for our purposes we have only to deal with partially ordered sets, since for any set M with a transitive, reflexive relation there is a partially ordered set N such that for any formula A, A is valid in M iff A is valid in N 5) In [2], the word homomorphism is used, instead of assignment.
[^2]: 7) See Hosoi [8].
[^3]: 8) This notion is defined also in [9]. Henceforth, we sometimes abbreviate \leq_{m} as \leq, when a fixed model M is considered.
 *) Henceforth, a pseudo-Boolean model P denotes the set of formulas valid in P as well as a pseudo-Boolean algebra, whenever no confusions seem to occur.
[^4]: 13) See Definition 4.11 and Lemma 4.12 in [8].
