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Abstract

A necessary and sufficient condition for two quasifree states of CAR to
be quasiequivalent is obtained. Quasif ree states is characterized as the unique
KMS state of a Bogoliubov automorphism of CAR. The structure of the
group of all inner Bogoliubov automorphisms of CAR is clarified.

§1. Introduction

A classification of gauge invariant quasifree states of the canonical

anticommutation relations (CAR) up to quasi and unitary equivalence

is recently obtained by Powers and St0rmer [12]. We shall generalize

their result to arbitrary quasifree states.

We use the formalism developped earlier [2] and study quasifree

state <ps of a self dual CAR algebra. It is then shown that <pSi and <pS2

are quasiequivalent if and only if Sllz — Sllz is in the Hiibert Schmidt

class. For a gauge invariant quasifree state <pA in the paper of Powers
and St0rmer, S = A@(1 — A) and hence our result is a direct generali-

zation of Powers and St0rmer.

The quasifree primary state <ps for which 5 does not have eigen-

value 1 is shown to be the unique KMS state for the one parameter

group r(£/GO) of Bogoiiubov * automorphisms of CAR, where r(t/GO)
corresponds to a unitary transformation U(£)=ex.piAH of the direct

sum of testing function spaces of creation and annihilation operators

and H is related to 5 by S= (l + e"*)"1. This is used to simplify some

of arguments. A quasifree state q>s is primary unless 1/2 is an isolated

point spectrum of 5, has an odd multiplicity and S(l — S1) is in the
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Hilbert Schmidt class.

It is shown that a Bogoliubov automorphism r(F) is inner if and
only if F—1 is in the trace class and detF>0 or F+l is in the trace
class and det F<D. It is a * automorphism if and only if V is unitary.

A double valued representation of the identity component (i.e. det F>>0)

of the group of inner Bogoliubov automorphisms of a CAR algebra by
elements of CAR algebra (such that it implements the automorphism)
is obtained with a help of bilinear hamiltonians. It is a generalization

of the observable algebra introduced by Araki and Wyss [4].

A necessary and sufficient condition for the unitary irnplementa-
bility of a Bogoliubov transformation in a Fock representation is obtained.

In an appendix, a general structure of two projections is presented
and an angle operator is inroduced. Some of the discussions in the
main text can be carried out by introducing a specific basis, although
we have avoided this in the present paper. For such a purpose, this

general analysis of two projections is useful.

The CAR algebra has been extensively studied by many authors

([4—7, 10, 12—17]) and some of our results such as Theorem 6 and

7 are in these earlier references.

§28 Basic Notations

We quote a few notions concerning a self dual CAR algebra from
an earlier paper [2].

Let K be a complex Hilbert space and F be an antiunitary invo-

lution (a complex conjugation, F2 = l, (F/, rg) = (#,/)) on K. A self

dual CAR algebra SWC^T, f) over (K, F) is a * algebra generated by

B(/), /e/f, its conjugate B(/)*, /eK and an identity which satisfy
the following relations: (1) B(/) is (complex) linear in /, (2)

B(/)B(#)* + B(*)*B(/) = (#,/) 1, and (3) B(/)*=B(r/).

If K has a finite dimension, §ISDc(^, F) has a finite dimension.

Irrespective of the dimension of K, SIscoC^T, r) has a unique C* norm
and *$tSDc(K, F) denotes its C* completion.

Any unitary operator U on K commuting with F preserves the
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above relations (1)~~ (3) and hence defines a * automorphism r(£7) of

tsDc(^F) by r(t/)B(/)-B(£7/). U and r(Z7) shall be called a

Bogoliubov transformation and a Bogoliubov * automorphism,

The antilinear transformation

rCOSc.BC/n-'-BC/^^
W-l 11 = 1

also leaves relations (1)~(3) invariant and hence can be extended to

a conjugate * automorphism (i.e. antilinear * isomorphism onto itself)

which will be denoted by r(F)0

Any projection operator P on K satisfying FPF=1 — P is called

a basis projection. There exists a basis projection P if and only if

the dimension of K is even or infinite. Any two basis projections Pi

and P2 can be transformed to each other by a Bogoliubov transformation

Any projection P on K such that PJ_FPF is called a partial basis

projection. dim(l — P— FPF) is called the T codimension of P.

By identifying B(/) and J3(F/)5 /eP/f with creation and annihi-

lation operators on a CAR algebra 2ICAR(^i) over Kl = PKJ we have

a * isomorphism of SIsocC-K", F) with §JCAR(/A), where P is any basis
projection.

Here §!GAR(^I) is the * algebra generated by creation operators

(aT,/), f^Ki, their conjugates (a1, /)* = (/, a) (annihilation operators)

and an identity, satisfying the following relations: (1) (aT
? /) is

(complex) linear in /, (2) (ar, /) (aT, *) + (ar
? #) (^ /) = (/, a) (^ a)

+ (*,a)(/,a)=0 f (a t
5/)(^a) + (^a)(a t

3/)^(^5/)l. ICAR(^) is

the completion of §!GAR(^I) ¥/ith respect to its unique C* norm.

(A more precise notation will be something like B/f,r(/), (a/fl,/)

and (/, a^), which is useful whenever elements of more than one

algebras with different K, F, and KI appear at the same time. We

shall meet in later sections a case where elements of 2JSDc(K, F) and

STsDcC^r), K=K®K, F = F0(-F), appear at the same time. In this

case, Bjr.r(/)i f^K is identified with Bj?.?(/00) and will be denoted

simply as B(/).)



388 Huzihiro Araki

§3. Qeasiequivalenee of Quasifree States

Definition 30 1. A state <p on 3ISDc(-K", F) satisfying the following
relation is called a quasi free state:

(3.1)

(3. 2)

where # = 1,2, • • • , the sum is over all permutations s satisfying

and e(s) is the signature of s.

Lemma 30 20 For any state <p over 2lSDc(^,r), there exists a
bounded operator S on K satisfying

(3.3)

(3.4)

(3.5) s+rSr=i.

Proof. We have

(3.6) B(/)*B(/)^B(/)*B(/)+B(/)B(/)* = |

(3.7) ||B(/)|| = ||B(/)*B(/)li1/^||/|'.

Hence (3. 3) defins a bounded linear operator 5 on K.

From the positivity of <p, it follows that S* = S3^0. From the
anticommutation relations, we have

Since

(3. 8) (h, r/) = (r(rA), r/) = (/, rh\
we have (rg, Srf) = (Srg,rf) = (f,rSFg^. Hence (3.5) follows.

From S^O and l-S = rSr, it follows that 1-S^O. Q.E.D.
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Lemma 3. 3. For any bounded linear operator S satisfying

(3.4) and (3.5), there exists a unique quasi free state <p satisfying

(3.3).

The uniqueness is immediate from (3.1) and (3.2). The existence

follows from Lemma 4. 6.

Definition 3. 4. The unique quasifree state of Lemma 3. 3 is

denoted <ps.

From Lemmas 3. 2 and 3. 3, <ps exhausts all quasifree states of

%Do(#,r).

Theorem 1. Two quasifree states <ps and <ps, give rise to mutu-

ally quasiequivalent representations of SWC-ff, r) if and only if

S1/2-(S')1/2 is in the Hilbert Schmidt class,

The proof will be presented in section 5.

§4. Fock Representation Induced by Qeasifree States

Definition 4.1. §5, TTC, and Qs denote the Hilbert space, the re-
presentation and the cyclic unit vector canon ically associated with the
quasifree state <ps through the relation

f, r).

Lemma 4. 2. Let <ps be a quasifree state. If a Bogoliubov trans-

formation U commutes with S, then there exists a unitary operator
T5(LO on & such that

(4.1)

(4.2)

for all

Proof. If [C7, S] = 0, then <ps(r(U}A)= cps(A). Hence

Ts ( f/) S Ci ns (Ad Ss = S Ct ns (r
and
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define isometric linear mappings from a dense subset of §s into
satisfying

Ts(t/)cTs(l7*)*.

Therefore, the closure of this Ts(£7) is unitary and satisfies (4.1)
and (4.2).

Note that T5(-l) is defined for ail S.

Lemma 40 3. Let P be a basis projection. If a state, <p of

§ISDC(^", r) satisfies

(4.3) *(B(/)B(/)*)=0, fe=PK,

then (p = (pP. The representation nP is irreducible.

Proof. By splitting every B(/) as B(P/) + +B(Pr/)* and

using commutation relations to bring B(P/) to the left and

to the right, any element A in SlsooC-K', F) can be written as

where fhgs^PK9 £P/ and <Py are polynomials. The condition (4.3)
implies (p(A)=& and hence state <p satisfying (4.3) is unique.

From (3.3), <pp satisfies (4.3).

The condition (4.3) may be stated as <p(A*A)=Q whenever A

belongs to the closed left ideal 2 generated by B(/)*, f^PK. The
uniqueness of such state implies that 8 is maximal and the unique
state q> is pure [9]. Q.E.D.

The state cpP is called a Fock state and nP is called a Fock re-

presentation. Under the identification of 31SDC(K,r') with ^1GAR(PK},

this coincides with an ordinary definition of the Fock vaccuum of CAR

and the existence of such state <pP is known. A different choice of the
basis projection P produces a different identification aP of the selfdual
CAR algebra with a CAR algebra and correspondingly different Fock

state (pp. All of them are mutually related by Bogoliubov automor-
phisms.
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Definition 4. 4, Let S be an operator on K. Then P5 denotes the

operator on K@K given by a matrix

(4.4) ft=/ S S1/2(l-5)1/2\

\S1/2(1-S)1/2 1-S /.

Lemma 4*5. // S satisfies (3.4) and (3.5), then Ps is a basis
projection on (K, F) w/^re K=K@K, r=r0(-r).

A direct computation shows Pl=Ps = P*> rPsF=l-Ps.
/x /x

Lemma 4. 6. Z,££ 5, Ps, K, F be as in Lemma 4. 5. T%£^ the
- XX XX

restriction of the Fock state q>Ps of SWCff, r) to $ISDc(^,F) is fAe

quasi free state <ps.

Since <pPs is quasifree, its restriction is also quasifrea ^Ps(B(/)*

if /=/00, ^=^00. Q.E.D.

Lemma 40 70 Lrf P be a basis projection and

(4.5) wKB(/))=7Tp[B([2P-l]/)]Tp(-l),

there exists a representation nP of 2ISDc(^, r) o^ §P which is

uniquely determined by (4. 5) . £P zs cyclic for nP and the correspond-

ing vector state is <pP.

Proof. It follows from (4.5) that 7rP(B(/)) satisfies relations

(1), (2) and (3) for §ISDc(-^, F) in section 2. Hence the existence of

a representation nP of 2ISD(.(J?5 r) satisfying (4. 5) follows. Since B(/)

generates §ISDc(^5r), HP is unique. By applying TTP(B (/,-)), i = l, --,n

successively on QP, one can reproduce 7rP(B(/1))---7rP(B(/M))j2P up to

± sign and hence QP is cyclic. From the same computation, it is seen

that the vector state given by J2P is <pp.

Lemma 4e 8. Let KQ be a r invariant subset of K, E(J5T0) be

the projection operator for the smallest closed subspace of K con-

taining KQ and

(4. 6) RPOf0) = fe(B(/)) ; /e Jfo}".

The following conditions are equivalent,
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(1) tip is cyclic for Rp(/f0),
(2) (l-EC?fo))A(l-P)=0,

(3) (l-E(#o))A^=0.

Here Pf\P' denotes the projection for PKf}P'K. The following
conditions are also equivalent,

(1)' tip is separating for RPCK"0)>
(2)'

(3)'

Proof. (3)— >(1): As is known, §P is a direct sum of subspaces
n

§PK), n = Q, 1, • • - , such that the set of vectors n(B(/f-))£p, fi^PK, is1=1
total in §PB). (3) implies that P/, /<E K, is total in PK [If (#, P/)
= 0 for all /eJT0 and g^PK, then (#,/) = (#, P/)=0 and hence

{0}.] Assume that ^cR^o)^ for A<». (This is
true for # = 1.) Then

Therefore, B(P/)§^ and hence §^+1) are in

(l)-^(2): Assume that (2) does not hold and (1
= (l-P)g=g=£Q. Then ;rp[B(^)] anticommutes with all
/e^0 and hence 7rP[5(^)]Rp(J5ro)^p = 0. Therefore 7rP[B(^)] * J2p=£0 is
orthogonal to RP(^O)^P and (1) is false.

(2)->(3): Immediate from rE(K0)r=E(K^ and

To prove the rest, let

(4. 7)

Then

(4. 8)

(3)/->(l)/: We have E(#0) -l-ECJfo1). Hence (3) 7 implies that
^P is cyclic for RP(^) by (3)->(l) and so for RX^P-DJTo1). Due
to (4.8), this implies (I)7.

(iy-K2)': Assume that (2)7 does not hold and E(K»)g= (l-P)g
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Then Q=nP(B(g^ is in RP(KQ*) and QSP = 0. Hence (I)7 is

false.
(2)'->(3)': Same as (2)->(3). Q.KD.

Remark 4.9. It is known that an equality holds in (4.8).

Corollary 4e 10. Let

(4.9) ^7r^sDc(^,r))".

Then the following conditions are equivalent.

(1) QPS is cyclic for Rs.

(2) ®PS is separating for Rs.

(3) 5 does not have an eigenvalue 1.

(4) S does not have an eigenvalue 0.

Proof. Let Q be the projection 100 acting on K=K@K. Then,

by Lemma 4. 8, (1) is equivalent to 0= (1 —Q)/\P s = the eigenprojection
of (1 —Q)P<?(1 —Q)=00(l —S) for an eigenvalue 1 and hence is
equivalent to (4). Similarly (2) is equivalent to Q = 0/\Ps = ihe eigen-
projection of QP<?Q = S00 for an eigenvalue 1 and hence is equivalent
to (3). Since rSr=l-S, (3)<=>(4). Q.E.D.

If any of the conditions (1) — (4) is satisfied, we can identify £>s

and tis with £>PS and QPs. In general, fe is identified with a subspace

of %PS.

Lemma 4.11. // 1/2 is an eigenvalue of S with an even or 0
or infinite multiplicity, then Rs is a factor.

Proof. First we consider the case where S does not have an
eigenvalue 1/2 (i.e. its multiplicity is 0). We show that R= {RS\JR'S}"
is irreducible. For this purpose, it is enough to show that &PS is cyclic

for R and that there exists a subset 8dj?? such that Qw=Q for all

is equivalent to W = cQPs for some complex number c.

Vectors nPs(UB(ft(S)g^®Ps are total in £>PS. Since 7Tps(nB(/z-00))

s and 7rps(nB(00^-))Tps(-l)
e^? QPs is cyclic for R.

We now take the set of all
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to be 8. The first term is in Rs and the second term is in R's by

(4.8). A(f)QPs = 0. We shall show that A(/)r=0 for all

implies W=cQPs.

Let

Since TPs( — 1) anticommutes with A(/), we have A(/)r± = 0.

On y+, TPs (-!) = ! and hence A(/)y+ = «,g(B(/0)y+, /'

= (l-S)1"/©(-S1"/). Obviously Ps/'=0. Since [(1-S)1'1/]'

+ r[FS1/2/]'=/©0 and -[S1/2/r+r[r(l-S)1/2/]'=00/, the set
-^

{f';f^K} coincides with (l — Ps)K. Therefore ¥+ = cQps by Lemma

4.3.

On ¥.
- XN. XN

= 0 for all f^K implies that the vector state of 2lSDc(^ r) induced

by lir-H"1^ is a Fock state for the basis projection P;=2(S©(1-S))

— P5 provided that r_^0o Here (r_?tOPs)=0 while, from the equation

(9.27) and Theorem 6, (r_, J2Ps) can vanish only when Ps(l-Ps)Ps

has an eigenvalue 1. From Psf=f and Psf=0 for /=/i0/2, we have

(S/i) = (l/2)/i , S/2=(l/2)/2. Hence, if S does not have an eigenvalue

1/2, then r_ = 0.

We now consider the general case where the eigenvalue 1/2 of S

has a nonvanishing multiplicity. We shall reduce it to the previous

case by Lemma 5. 3. Let £1/2 be the eigenprojection of 5 for an eigen-

value 1/2. By Lemma 3. 3 of [2] , there exists a subprojection E of

E1I2 such that E+F£T=E1/2. Let T be a Hilbert Schmidt class

operator such that O^T^2~1 and (1 — £) is the eigenprojection of T

for an eigenvalue 0. Let

S-S-T+rTr.

Then S = S*, rSr=l-S, 5 does not have an eigenvalue 1/2 and

Si/2_Si/2= [(1/2- T)1/2-(l/2)1/2] +r[(l/2+ T)1/2~(l/2)1/2]r.

Since (l/2±T)1/2-(l/2)1/2=±[(l/2±T)1/2+(l/2)1/2]-1T is in the
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Hilbert Schmidt class, Rs and Rs are quasiequi valent by Lemma 5. 3.

We already know that Rs is a factor. Therefore Rs Is a factor.

Q.E.D.

A full characterization of the case where Rs becomes a factor is

given in Theorem 9.

Remark 4. 12. From the beginning part of the preceding proof, it

follows that QPs is cyclic for Cf?sUJ?s)" for any S and hence is sepa-

rating for the center of R^.

§58 Proof of Theorem 1

The following is Lemma 4. 5 of [12], for which we give a different

proof.

Lemma 5.1. S1/2—(S')1/2 is in the Hilbert Schmidt class if

and only if PS — PS, is in the Hilbert Schmidt class,

Proof. Let p = Sll\ p'=(S01/2. If P~P is HS (a Hilbert Schmidt

class operator), then all of

(5.1) S-S /={(p-p /)(p-i-P /) + (p + P/)(p-P/)}/2,

(5.2) (l-S)1/2- (1-50 =r(P-</)r,

(5.3) p(l-S)1/2-p/(l-S/)1/z

= (p-(/)(l-S)1/2 + p/((l-S)1/2-(l-S/)1/2),

are HS. Hence PS-PS, is HS.

Conversely, assume Ps—Ps is HS. Then, by Lemma 5.2,

(5.4) \\\Ps-Q' - P--0/|||H.s.^iP,-Ps,||H.s.

where ^ = 001 on K@K. Since \Ps-Q
f 2 = S@S, P,f~Qf 2 = S/0S/,

we have S1/2-(S')1/2 in the HS class. Q.E.D.

Lemma 5, 2. Let A and B be bounded self ad joint operators,

then

(5.5) \\A-B\\^^\\\A -|5]||H.s..

Proof. (5. 5) is equivalent to

(5.6) tr{A2 + B2-~AB-BA}^iti{A2 + B2- A\\B\-\B\\A }.
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First consider the case, where A has purely discrete spectrum. Let Wa

be a corrplete orthonormal set of eigenvectors of A with eigenvalues

^a . Then

(5. 7)

(5.8)

Since 1 5 ^£ ^ - | B \ , (ra, I B \ ¥a) ̂  I (ra, 5ya) I . Therefore we have

(5.6), where +00 is allowed.

Fcr any selfadjoint operator A and e>>0, there exists a selfadjoint

operator Ae with purely discrete spectrum such that [|>1 — -4£||H.s.<e.

Herce [5]. From (5.5), we have \\\A\-\Ae\\\v.s.<\\A-Ae\\n.^<:e.

(5. 9) \\A-B\\v.s.^\\Ae-B\\v.s.-e

Since e is arbitrary, we have (5. 5) for general A and B. Q.E.D.

Lemma 5.3. // S1/2-(Sx)1/2 is in the Hilbert Schmidt class,

then q>s and <psr are quasiequivalent. If S and S' satisfy any of

conditions (1)~~(4) of Corollary 4.10, in addition, then n? and nsr

are unitarily equivalent.

Proof. If S1/2-(Sx)1/2 is HS, then PS-PS, is HS. Hence by

the first half of Theorem 6 (essentially Lemma 9.4), there exists a
- XS XX

vector & in §PS such that the vector state of &' on §l(-K", r) is <pp ,,
X X

where K=K@K, r=T0( — r). Hence <ps and cp^r are given as vector

states of np8($l(K, r)) by J2/>s and j/ which are separating for the

center of nPs(^(K, r))/7 due to Remark 4.12. Therefore <ps and ^ff,

are quasiequivalent. If both S and S7 satisfy conditions in Corollary

4. 10, then £>s and §s, can be both identified with §PS and hence ns and

TTS; are unitarily equivalent.

Lemma 5. 4» L^^ ^4n ̂  a sequence of bounded linear operators

on a Hilbert space with a strong limit A. Then
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(5.10) \\A\\H.s<lim\\An\\«.s..

(Here ||C|]H.s. = S11C^-]|2}1/2 for a complete orthonormal basis {^} and

we allow +00. It is independent of the basis.)

Proof. We have

Since N is arbitrary, we obtain (5.10). Q.E.D.

Lemma 5. 5. // 5 and S' satisfy any of conditions (1) — (4) of

Corollary 4.10, and if PS—PS, is not in the Hilbert Schmidt class,

then ns and ns, are not quasiequivalent.

Proof. Let Q» be an increasing sequence of finite even dimensional

projections commuting with r and tending to 1 on K. From Lemma

5. 4, we have

From (5.4), we have

lim|i PQnSQn— /c.s'ojl
W->oo

From Lemma 6. 6, we obtain

Therefore, we have

(5. 11) \\VS—<PS>\\ = 2.

Since S and S' both satisfy the condition of Corollary 4. 10, the

representations ns and nsf have cyclic and separating vectors ft and ft,.

If ns and ns, are quasiequivalent, then they are unitarily equivalent.

Therefore there exists a separating vector J/ in £>s such that (Of, ns(A),Q')

= <psr(A). Since &' is cyclic for the commutant, there exists a unitary

operator W in 7rs(2lsDc(#, r))' such that (W, ft) ^0. Then the vector

state for $'=Wsf is again q>sf and we have

(5.12) \\<ps -<?s,\\

| = 2 {1 - (ft, £") | 2} 1/2
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where P(¥} denote the projection operator on the one dimensional space

spanned by ¥. The contradiction of (5. 11) and (5. 12) proves the

Lemma. Q.E.D.

Proof of Theorem 1. If S1/2-(S')1/2 is in the Hilbert Schmidt

class, then <ps and <psr are quasiequivalent by Lemma 5. 3.

Now assume that S1'2 — (S01/2 is not in the Hilbert Schmidt class.

Let EI and E[ be eigenprojections of 5 and S' for an eigenvalue 1.

Let T and T' be Hilbert Schmidt class operators such that 0<ST<1,

0<^ T'<1 and the eigenprojection of T and T' for an eigenvalue 0 are

1-Ei and 1-EL Let

S=S-T2+rT2r

Then S and S' have the properties (3. 4) and (3. 5) and satisfy

the condition (3) of Corollary 4. 10. Further,

sllz-Sll2=rTr- [(i- T2

are both in the Hilbert Schmidt class. This implies by Lemma 5. 3

that <ps is quasiequivalent to (ps and <psi is quasiequivalent to <psf. It

also implies that (S'Y12- (S)1'2 is not in the Hilbert Schmidt class.

We can now apply Lemma 5. 5 and conclude that <p$, is not quasi-

equivalent to <ps and hence that cpsr is not quasiequivalent to <ps.

Q.E.D.

In the present section, we have assumed Lemma 9. 4 and Lemma

6. 6. We shall prove Lemma 9. 4 in the course of our discussion on

the unitary implementability of Bogoliubov transformations, although

a more direct and hence shorter proof of this Lemma is also possible.

We shall prove Lemma 6. 6 by using a known structure of KMS states.

§6. Uniqueness Theorems

Let r(/i) be a continuous one parameter group of automorphisms

of a C*-algebra 21. A state <p of §1 is said to be a state of finite rGO-
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energy if there exists a such that

(6.1)

whenever f^S and

(6.2)

for p>a. When a can be chosen to be 0, <p is called T (A)-vacuum.

A state <p is called a KMS state of rGO zi^/z inverse temperature

A if

(6. 3) L(5r(/I)4)/(;i)fa=\<p(.(r0)A)5)/(/l + if)d/l

for A, E e 21 and /e 5) such that

(6.4)

(6. 3) is referred to as the KMS condition.

Theorem 2. Let U(/l) be a continuous one parameter group of

Bogoliubov transformations. Let E(/>) be the spectral projections:

(6.5) U(J) =

z/ <z^6?

0?z/3> //

(6.6)

where q?E+ is a Fock state and <p is an arbitrary state on ^DG{EQK, r).

Proof. Since UGO is a Bogoliubov transformation, rE0F=EQ and

rE+r=l — EQ — E+. Namely E+ is a basis projection for (1 — j

Let 0>! be the restriction of <? to 2JSDC((l-£<o)^, r)==2J.

Next we have



400 Huzihiro Araki

If / runs over all f^S such that /(^)=0 for £>0, then the set of

is a dense subset of E-K. Hence (6.1) requires

for all /e £_ Jf . By Lemma 4. 3, this implies <pi = <pE+ .

Let 7i9 be the representation of 2ISDc(^, F) and £<? be a cyclic

vector associated with <p. If hj^EQK, \\hj\\2 = 2 and Fhj = hj, j = l, • • • ,
M

then the vector states of 21 by 5^ = 7^(118 (/&/))£*> are tne same Fock
y=i

states <P£+. Since the union of np(^f)¥ for all such W is total in §<?,

7u^ 51 is quasiequivalent to the Fock representation nE+, Hence, by

Lemma 4.2 for U= — 1 and S = E+ and by the irreducibility of nE+,

there exists TeTr^CS)" (corresponding toT£+( — 1)) such that TQ9 = Q9,

T*=T, T2 = l and Tn?(A) T* = ny(r (-1)^1) for 4e=a. Let

= ̂  (B (/2) ) T f or h e £0 K We have 4 (B (A) ) e TT^ (SI) 7. Hence n9

= 4(B(A))T commutes with T. Therefore 4(B(A)) generates a re-

presentation of SIsDcCEo-K, r), which we denote by 4- More explicitly,

4 (C) = ̂  (C) (1 + T) /2 + ̂  (r ( - 1) C) (1 - T) /2. Let <?2 be the restric-

tion of <p to tyisDc(E0K, F). Since T@<p = @<p, cpz is the vector state given

by <p2(C) = (Q9>,n5,(C^£}y). Since £<? gives rise to a pure state of SI,

we have p(AC^) = ($<?, TI> (A) 4 (£•)•£?») =^+(^4)^2(C) for ^4e2I and

Conversely, if ^2 is a state on SIsDc^o^F) and §2, £2, ^2 is

canonically associated with it, then

on $QE+&)H2 uniquely extends to a representation of 2ISDc(^,r) and

Q = QBJ®Q2 satisfies (Q, n(AB')ti~) =<pE+(A)<p2(B}. Further, r(U(^)) leaves

the vector state by J2 invariant, and is unitarily implementable by an

operator T^+(U(^))01, whose generator is known to be positive semi-

definite for HE+>0. Hence (6. 1) is satisfied Q.E.D.

Lemma 6. 1. // the dimension of K is finite and even or in-

finite, <pu2 is the unique state of SlsDoC/f, r) satisfying

(6.7)
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Proof. q>llz satisfies (6.7) due to (3.1), (3.2) and

(6. 8) pi,2(B(/)*B(£)) = pi,2(B(£), B(/)*) = (/, g)/2.

Let {/a} be a F invariant orthonormal basis of K. (Such basis exists).

Any element in SISDc(^, r) is a polynomial of B(/a). Since B(/a)
z

= 1/2 ard B(/a) anticonimutes with other B(/0), it is enough to

deduce the value ^(B(/OCl)-"B(/CxJ) uniquely from (6.7) when oL^~a.n
are distinct If n*Q is even, then B(/a>--B(/aJ = -B(/ajB(/ai)---

implies that $?(IIB(/aA)) =0. If n is odd and if there is /3 distinct
k

from all <xk, then

implies again that ^(nB(/ajk)) =0. If dim^T is even or infinite, this
k

shows the uniqueness. Q.E.D.

<pi/2 is called the central state. Existence of such <pi/2 follows from

Lemma 3.3. If diraK=2n, ^1/2 is the trace of a full matrix algebra

divided by 2*.

Corollary 6.2. For any * automorphism r 0/ §ISDc(^", r), ^i/2 /5

invariant and there exists a unitary operator Ti/2(r) on Hi/2 such that

Ti/2 (r)^i/2 = ^i/2, Ti/2(<r)7ri/2(^4)Ti/2(r)* = 711/2(7^4),

Ti/2(ri)Ti/2(r2) =Ti/2(rir2).

Theorem 3. Let U(/0 te as m the previous theorem. Then a

KMS state of r(UCO) with inverse temperature 0 is unique and is

given by a quasifree state <ps with

(6.9) S=(l + e-BT1,

provided that Rs is a factor.

Proof. It is known that any KMS state has a central decom-

position as an integral over primary KMS states. Hence it is enough

to prove the uniqueness of primary KMS state.

Let <?! be a primary KMS state and p C4) = (^ CA) -f ̂ (r(-l)^4))/2.

Then <p is again a KMS state and has the property that 0>(Q)=0 for

any odd polynomial Q of B(/).
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Let £>cp, Try, £<?> be canonically associated with #>, J? = 7r<p(§ISDc(^f, r))".

Since p(r( — 1)^4) = 0>CA) by construction, there exists a unitary operator

Tjp(-l) such that Tjp( -1)^(^4)^ = ̂ (7 (-1)^4)^.

A rGO JfM5 state is known to be r(/0 invariant. Let Tjp(UOO) be

the unitary operator determined by Ty(\](^ny(A^Qy = ny(r(U(^A)Qyn

Let Tsp(U GO )=*"*, 4 = 6-*°*.

Since r( — 1) commutes with r(U(/0), Ty( — 1) commutes with

T<p (U CO) and A. Q<p is cyclic for R by construction.

The KMS condition implies that Q9 is separating. Further, there

exists an antiunitary involution / (a complex conjugation) on &y such

that

(6. 10) jQ* = a» JRJ=Rf, [/, e™} =0,

(6.11) JABr = AA*S99 ^e§l,

where 21 is a dense * subalgebra of i? consisting of all \7r9,(r(U(^)))

with 4e7rsp(aSDcCfir,r)) and

. From the commutativity of J and Ty( — 1) we have

Hence / commutes with Ty( — 1).

Let

(6.12) 4U)=/^

It is another representation of §!SDO( ,̂ r) such that the closure of

4(sTSDO(^r)) is ^.
s\ s\

Let Jf=^T0Jf, r=r©( — F) and consider the representation n of

§ISDC(^> r) generated by

(6.13) 7r(B(/©^))=^(B(/))+4(B(^))T9,(-l).

It is easily verified that 7r(B(A)) satisfies the relations (1), (2), (3)

for selfdual CAR algebra and hence determines a representation of

2lsDc(£ r).
Let E(-) be the spectral projection of U(/l) in (6.5) and g^K be

such that ||E(d£)£-||2 has a compact support. Then
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By an analytic continuation of 1

we obtain

(6. 14)

Hence,

(6. 15)
x\

Let P be the projection on the subspace of K spanned by elements
of the form

(6. 16) h, (/) = e-v^fQe-***1*/, /e= K,

where H+=HE+ and H_=-H+-H. Then rPK is spanned by

(6. 17) h2(/) = *- '̂*/0 (-*-**-''/)

which is orthogonal to (6.16). Further,

(6. 18)

Since e~BH± are mutually commuting positive self'ad joint operators,
their sum has a dense range and hence (6. 18) is dense in K®Q.

Similarly, h1(g-^/2/)-h8(e-0ffj2) is dense in 0©K Hence the sum

hi(/i)+h2(/2) is dense in K and we have rPr=l — P. Therefore, P
is a basis projection.

(6. 15) shows that

(6.15)

for A = h2(/) in a dense subset of (1 — P)Jf and hence for all A in
XX XX XX

(1 — P*)K. Hence the vector state of S(SDC(^, r) given by Q? is unique
(a Fock state ^p) by Lemma 4.3. Then its restriction to SlsDcCK,/7)

is also unique.

Since

We have

(6.21)
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Since R=RS is a factor by assumption and since a primary KMS

state is an extremal KMS state, we have <pi=(p = <ps> Therefore the
uniqueness is proved.

It remains to show that <ps given by (6. 21) is actually a KMS

state. The KMS condition amounts to ((J^*^"1)^, OAB*^"1)^)
= ( J3 J2<p, A&p) , for A9 B in 21. Hence we only have to prove the anti-

unitarity of / defined by (6.11).

Let e be the Bogoliubov transformation on (K=K®K, F=F0-F)

given by the matrix ( . J f ) . Then ePe = l — P and hence the continuous
\ l u//\ — ^^

extension of /07T(C)j29>-^(r(r)r(e)C)^, Ce2ISDc(^,F) defines obviously
- XX,

an antiunitary operator /0. If we restrict C to 2ISDc(^, F)
we have

(6.22)

where /,- is any element in K such that ||E(cLO/i|| has a compact

support. Hence

6.23) /=*/o,

where ^ is a function of T^C — 1), being =1 if TP( — 1)=1 and =/ if
T^( — 1) = — 1. Since a is unitary, / is antiunitary. Q.E.D.

Corollary 6, 30 Assume that dimK is not odd. If S— 1/2 zs of

finite rank and S does not have an eigenvalue 1, we have for

(6. 24)

where (B, HE) is defined in Lemma 7.3 and H=logS(l — 5) -1

The left hand side is a unique ^M5 state for 1100=0""
with /3 = 1. Since 5—1/2 is of finite rank and rSr = l~S, an eigen-
value 1/2 of S has an infinite or even multiplicity (according as K has
an infinite or finite even dimension). Hence we have only to show that
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the right hand side is a KMS state. Since S(l — S)"1 — 1 is of finite rank
due to the assumption on S, H is of finite rank. It is hermitian and

satisfies FHr=-H. Hence, there exists Q=(B, #|B|)/2eE51SDC(Jf, r).

We then have from (6. 7)

<p,,2(e-QB/A)9 B' = eQBe~Q.

Since eQB(f^e-Q = B(eHf), B' is an analytic continuation of
to A=—i. Hence the right hand side of (6.24) is a KMS state for
C/00 with 0 = 1.

The normalization factor is computed by (8.25). Q.E.D.

Lemma 6.4. Let § = §i®& and 7?=^(§i)(g)l. Let & be a unit
vector y cyclic and separating for R, and J be an antiunitary invo-
lution satisfying JRJ=Rf and ]Q — Q. Assume that (Q, Aj(^4)$)S^O

for all A^R where j(A)=JAJ. Then there exists a standard dia-
gonal expansion ( [3] , Definition 2. 2)

(6.25) £ =

such that h>$ and

(6. 26)

Proof. Let

(6. 27)

be a standard diagonal expansion of J2 and let /0 be an antiunitary
involution defined by

(6. 28) /0 s cw y«® yv - s c?y yi/(g)y» .
Let W=JJ.

Then F" is unitary and satisfies WQ = Q, WRW* = R. Hence there
exists a unitary Ui in ^(§0 such that WAW*= (f/1®l)^([/1*(g)l)
for all ^4ei?. Since (J7i*®l)TF is in J?', it can be written as K8)f72.
Then Wr=J71®[/g.

Let P! and p2 be the unique trace class operators on & and fe
satisfying

(6. 29a)



406 Huzihiro Araki

(6. 29b)

From Jfi2 = £ and Pr=K(8)K, we have [p,, Z/J =0, v = l,2.

Let p,, = StfPi/00 be the spectral resolution of pv. Then ?„(#)

= SP(^.0 where P(^,-) denotes the minimal projection of ^(§y) cor-

responding to SPVf and the sum extends over these i such that (^)2 = #.

Let

(6.30) ft*
i

be a complete orthonormal set of eigenvectors of f/i belonging to eigen-

values e*\ Since [Pi(#), £/i] ̂ 0 and each PI(^) has a finite dimension,

t/i has a purely discrete spectrum and we can chose utt such that

UkiUkj^O only if /l- = ^-.

Let

(6.31) ft.=S(««)*y«.i

Since (w«) is unitary, we have (6.25) where ^ = ^'- if uk,-^Qe

From W® = Q and (6.25), we have

(6.32) U2®2k=e~l9*02k.

Since /=/0 T^, we have

(6. 33) /(ft*(H)^2/) =ett(fl>i/(8)^2*),

where ekl = e*9'~0l\ Since /2 = 1, we have (e&/)
2 = l0 Therefore e*/=e/ fe

= ±1.

Let A/^<®(§i) be defined by AiS£j0u = e/0i* + c*0i/. From

with ^4=^4w(g)l, we have A0 = ^^n(8)^2*+^^i*(8)ft/,

4^iA0^2/ + /i/^i/(8)fe). and hence 2/l^/e/^O. From this

we have e/*3^0 and hence (6. 26) holds.

Lemma 6. 5. Let R be a type I factor, @ and $ be cyclic and

separating unit vectors and ] be an antiunitary involution such that

JRJ=R', JQ = Q, Jaf = &, (Q,A}(A)Q)^Q and (tf,Aj(A)tf^Q for all

A^R where j(A) =JAJ. Let <p and <p be the vector states of R given

by Q and $. Then

(6.34) ||^
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Proof. Since R is a type I factor, we can identify the Hilbert

space and R as follows:

Let

be the standard diagonal expansions of J2 and J/ given by the previous

Lemma.

From (6. 26) and antiunitarity of /, we have

(6. 35) (ft,, Did * (0y, <4) * = (ft;, 01/) (ft/, 02*) .

Since the matrices «,-,= (ft,-, $u) and flfv=(02l-, fly) are unitary, there

exists Uik^Q. Setting e = vik/ufk, we have #*=eWy,, where e is common

for all y, /. From the unitarity, we have |e|=l. From (6.35), we

have e^s*. Hence e=±l.

We now have

(6. 36) (fl, J/)

Let

(6.37) P

(3.38) p'

Then ^(^4)=trp^4 and (p'(A)=tr(p'A). We now have

(6.39) !|?-V||= sup ^(^-/

where the inequality is due to Lemma 4.1 of [12]. From (6.36), we

have

(6.40) trp

From (6.39) and (6.40), we have (6.34). Q.E.D.

Lemma 6. 6. Assume that dim/? is finite and even. Let <p$ and
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(ps, be two quasi free states of S!SDO(^, F). Then

(6.41) ||^-^,||^2[l-det(l-(Ps-Ps02)1/8].

Proof. Let K=K@K, F-F0-F.

First consider the case where 5 and S' do not have an eigenvalue
1. In this case we can show

(6.42) PSA(1-PS,)^0,

as follows:

Let g=g&g*, Psg=g, Ps,g=Q. Then 51/2^2= (1-S)1/2^ and
(5/)1/2^i=-(l-5/)1/2^2. Since 5 and S' do not have an eigenvalue 1,
the same holds for l-S = rSF and for l-S' = rS'r. Therefore S, S',
(1-5) and (1-50 have their inverses. We have (5-1/2(l-5)1/2

+ (l-5/ri/2(5/)1/2}^i = 0. From 5~1/2(1-5)1/2>0 and (1-50~1/2(501/2

>0, we have ^ = 0. Similarly we have {(l-5)-1/251/2+ (S')-1/8(l-s01/8}
£-2 = 0 and hence g"2 = 0. This proves (6.42).

Lete=(_°. A Then e* = e-
1 = e> [F,el=0 and ePse = l-Ps for

\ l U/ ^
any 5. Consequently, Fe commutes with Ps and PS', and hence anti-

commutes with H(/>
S//PS) defined as in (9.2).

Let /o be an antiunitary involution on £>Ps defined by

(6. 43) /o7Cps(C)l0p5 = ;n.s(r(r)r(e)C)&s

xN ^\

for CeSISDC(^T, F). Let J=aJ0 where OL is a function of TPs( —1)

= T5(-1) being -1 if Ts(-l)=l and =i if Ts(-l) = -l. For a
finite even dimensional K, ns($l(K, F)) is always a factor and hence
the proof of Theorem 3 is applicable where JJ=log{S(l — S)"1} and
/3 = 1. From (6.11) we have

(6. 44) (£Ps, 4(/4/)AO = (^*^PS, ̂ *&s)^0

for ^e7rps(2IsDc(^00,F)), where A = e~el2>Q.

Let Q be defined as in (9.4) where n = 0. Then ^(Q) commutes

with /o and TPs( —!)• Hence tf = ny(Q')*£ps is invariant under /„ and
TPS( —1). Furthermore, we have

(6.45)
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(6. 46) /o*

(6. 47) Tp,

for CeSUcCff,f). Therefore

(6. 48) (£', AUAJW

for 4e7rp/asDo(tf00,r)), where /f = e~e/l2>Q denotes the A in the
proof of Theorem 3 corresponding to S' '.

We can now apply the previous Lemma and obtain

(6. 49) 11^-^11^2(1- | (ft,,, £') | ).

From (9.8), we obtain (6.41).

The general case, where one or both of 5 and S' have an eigen-
value 1, can be obtained by taking a limit. Q.E.D.

§7. Bilinear Hamiltonian

Lemma 7. 1. There exists a derivation d(H~) on 3ISDc(-K", F)
satisfying

(7.1)
if and only if H is a bounded linear operator on K satisfying

(7.2) H*=-FHr.

If (7.2) holds, (7.1) uniquely defines d(H\ It is a * derivation of

SISDc(^T, r) if and only if

(7.3) H*=-H.

Proof. For the first part, we have to check the condition that
#(/0 is consistent with the relations (1) and (2) for the definition of
SWjC-Sf, O- For the condition (1), it is necessary and sufficient that
H is linear. For the condition (2), it is necessary and sufficient that
(7. 2) holds. From (7. 2) it follows that H* is defined on all K and
hence H must be bounded.

For the second part, the uniqueness of d(H') is immediate. The

relation (3) for §W#, r) implies that (3Cff)B(/))*=3Cff)B(/)*
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if and only if rH=Hr. Under (7.2), this is equivalent to (7.3).

Lemma 7, 20 The * derivation d(H~) is the infinitesimal gene-

rator of the Bogoliubov automorphism r(^Aff).

Proof. From (7.3) it follows that eXH is unitary. From (7.2)
and (7.3), it follows that [ H 9 r ] = Q and hence [eXH, r] =0. Hence £A/f

is a Bogoliubov transformation. The rest is immediate.

Lemma 7. 3, Let H be a finite rank operator on K and

(7.4)

(7.5)
<=i

(B, .fiTB) does not depend on the choice of f, and g, for a given H,

is linear in H and satisfies

(7.6) (B, #B)* = (B, #*B).

7w addition, it satisfies

(7.7)

(7.8)

H=a(H'} satisfies (7. 2) /or a».y jy.

// H satisfies (7.2), ^/zew a(H~) = H, tiH=0 and

(7.9)

(7.10)

(7.11)

(7.12) r ( J7) (B, ̂ B) = (B, UHU'1 B) ,

(7. 13) »(#i) (B, ^B) = (B, [^, ^] B).

Here <?s is a quasifree state and \\H\\tI=ti:[(H*Hy12].

(The formulae (7. 12) and (7. 13) hold for a general H not satisfying
(7.2).)

Proof. For (B, HE) denned by (7.5), we have (cf. [2])
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(7. 14) [(B, #B), B(/)] = B(2*05Q/),

(7. 15) ^(CB, HE*)") =t*H-tTSH.

For the central state, 5 = 1/2 and

(7.16) ^/2((B,#B))=tr5/2.

If j?f has an infinite or even dimension, 5ISDc(jK", F) is known to

have the trivial center. Hence (7. 14) determines (B, HE) up to a

constant and (7. 16) fixes that constant. Even if the dimension of K

is cdd, we can make this argument by imbedding SIsDcC-K', F) in

SIsDcC^, F) with a bigger JT' with an even dimension.

This argument shows that (B, H*B) is independent of the way in

which H is expressed in (7. 4) and also that (7. 7) holds because «(#)

has trace 0 and both sides of (7.7) satisfy (7.14) and (7.16). Note

that trF#*F=S(F2£,-, rH*Tet')=^H*rei9 rei) = S(r*,, Hrei) =tiH.

The linearity of (B, JJB) in H, (7.6), (7. 12) 'and (7.13) follow

from the definition (7.5). (7.9) and (7.10) follow from (7.14) and

(7.15).

If H satisfies (7. 2) and is selfadjoint, it has the spectral decom-

position

(7.17)

where

(7.18)
Hence we have a partial basis projection S^A=£+ and an orthonormal

A>0

basis /,- in E+K such that

(7. 19) (B, firB) = S^CB(/,)B(/()*-5(/,)

Since ||B(/)B(/)*-B(/)*B(/)!|^B(/)B(/)*

we have

(7.20)

On the other hand, «cs[(B, #B)] = -5U= — \-\\H\\a for S=
£

Hence, for a selfadjoint H satisfying (7.2), we have
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(7.21) ||(

If H=H± + iH2, H* = H!, H? = H2, then consider the polar decom-

position ft=|ftlK where Uf=Ul9 lff = l. Then (tr ft K) * = tr K ft
= trH2Ui is real and we have

(7.22) ||#!L= sup |tr#Q|^ltr#K|^tr ft Hlftl
NOil^l

Hence

(7.23)

On the other hand, for any operator A = A-L
Jr iA2 , A* = A , ^4? = A ,

we have ||4|| = sup | (<?, A/r) l^sup] («?, A<p~) !^sup| (<?, A<?) = 11 Al l -
\\9\\ h*ll<l

Hence

(7. 24) || All + II All^ll Al^maxGI All, II All).

By combining (7.21), (7.23) and (7.24), we have (7.11). Q.E.D.

Lemma 7. 4. Let H be a trace class operator and Hn be a

sequence of finite rank operators such that \\H-~ ft||tr->0 as n-^°°.

Then (B, ftB) has a limit (B, ITS) in HSDc(Jf, F) independent of the
sequence for a given H. It is linear in H, and satisfies (7. 6) and

(7.7). // H satisfies (7.2), (B, #B) satisfies (7.9), (7.10), (7.11),

(7.12) and (7.13).

Proof. From (7.11) and (7.7), the convergence and the unique-
ness follow. The rest follows from the corresponding properties for Hn .

Theorem 4. The derivation d(H') can be extended to an inner

derivation of S!SDC( ,̂ r) if and only if H is in the trace class.

Proof. "If" part follows from Lemma 7.4 and (7.9). $(#) can
be extended to an inner derivation if and only if d(i(H* + H)) and
d(H* — H) can be extended to ianer * derivations, For an inner
* derivation £(#), ̂ (^^ for all real ^ must be aa innsr automorphism
by Lemma 7. 2. From later result in Theorem 5 this implies that either

eKH — 1 is in the trace class or eKHjrl is in Lhe trace class. In either
case, the self adjoint operator iH must have purely discrete spectrum.
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If £Aff + l is in the trace class, then the eigenvalues Xj of iH can have

an accumulation point only at -^-(2» + l), » = 0, ±1, ±2, ••• which can
A

happen only for a countable number of L For other values of ^, £AH — 1
must be in the trace class and hence iS can have an accumulation
point only at 2nnrl. This, first of all, excludes the other possibility
and further implies that i can have an accumulation point of eigenvalues

only at 0. From the condition |ktf-l||tl- = S{2(l-cos^)}1/2<00, and
i

the inequality l — cosx^x2/3 for i#|<]l, we obtain ||flr|!tr<00. Q.E.D.

§8. Inner Bogoliubov Transformations

Definition 8. 1. 2*± denotes the set of invertible bounded linear

operators V on K such that V—l is in the trace class, detF=±l,
respectively, and

(8.1) rV*r=V~1.

£T± is equipped with an operator multiplication, an adjoint operation

* and a topology induced by spheres {Vf\\\Vf— FlUf^e}.

£F+ and ff+LJff- are topological groups and 3"+ is connected.
Since V—l is compact, it has a (Jordan) expansion:

(8.2) F-l-F

where A is a bounded open set containing 1, (VA — ̂ )"1 is holomorphic
for

(8. 3) E\ E\f = d^\f EK, ,

(8.4) E»Ni=NiEv=dwNi,

(8.5) ^^^=0, dim£A<oo,

(8.6) V,E, = E^ = Q a$J),

(8.7) lim(Vj/r)" = 0, r=supU | .

Fj, £A and A^A are uniquely determined by these properties and are
given by

(8. 8) £A
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(8-9) N, = E,(V-t)

and (8. 2). The det V may be computed by

(8.10) det V= exp tr log V

(8.11)

where log(l-fF^) and logO-H-^"1-^) are defined by power series, which
converge due to (8. 7) and (8. 5), and we take A such that r<CL Since
V is invertible, ^0.

For V satisfying (8.1), the uniqueness implies

(8.12)

(8. 13) a+r#A*r) cr

(8.14)

where (8. 14) holds if J is invariant under Ar+r1. If we choose branches
of log/I in (8.11) such that logJ-f logr^O for ^-1 and log(-l)
= in, then we have

(8. 15) log F+r(log F) *r=27rf£'_i .

Hence we have

(8.16) detF-(-l)dlmlH

Thus the condition det V= ± 1 can be replaced by dim j£_i = even or odd.

Lemma 8,2, If H is an operator in the trace class satisfying
(7.2), then eH^3+. If V is a normal operator in £T+ or Fe£T+
does not have an eigenvalue —1, then there exists a trace class ope-
rator H satisfying (7. 2) such that V=eH, If F>0, H can be chosen
hermitian and if F is unitary, iH can be chosen hermitian.

Proof. The first part is immediate. Let Fe£T+ be normal. We
then have JV_i = 0, dim ELi = even, E*i = E-i, rE^r=E_la Hence there
exists a subprojection F of E_i, which satisfies rFFJrF=B^1, F* = F

= F2. H= log F- 2niF satisfies ^ff - Ve~27TiF = V and (7. 2) due to (8. 15) .
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H is obviously in the trace class. If Fe2*+ does not have an eigen-
value — 1, then H-^logV has the required property.

If F>0, then we can choose log/I to be real and for this choice
of the branch of log, H is hermitian. If V is unitary, we may take
| Im log /I | *<7r for ^=£ —1, and for this choice of the branch of log, iH
is hermitian.

Lemma 8. 3. There exists a covering group £TJ of 3+ equipped

with adjoint operation and a * homomorphic homeomorphism n of £TJ
onto 3+ such that n is 2 to 1 and the loop {exp2niAE; 0<U<^1} for

an odd dimensional partial basis projection E gives an element of
3* different from 1. There exists a homeomorphic * isomorphism

Q from 3"J into SIsooC^, F) such that

(8.17)

(8.18)

(8.19)

(8.20)

Here the branch in (8.18) is to be determined by the analytic conti-
nuation of (det[(H-£ZH)/2])1/2 from z = 0 to 1 if n(g^)=e" and if

the continuous inverse image of the path {exn; 0<U<J1} ends at g.
It is to be determined by the continuity for other g.

Proof. Let S be the set of trace class operators satisfying (7. 2),

equipped with a topology induced by sphers {H''; \\H'—H^<s}. Let
9"0 be the set of Fe£T+ such that — 1 is not an eigenvalue of F.

For any Fe£T0, we see from the Jordan expansion (8.2) that the

following Hy(F) satisfies (7.2) and F=£Hr(F) for each path r from 2-0
to z = l avoiding zeroes of det(l-h£(F— 1)).

(8.21) I

(8.22) I
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For V in the sphere \V— 1|<1, we can take r to be the interval
[0,1] on real axis. Then Hy(F)->F is a one-to-one homeomorphism
of an open neighbourhood of 0 in S onto an open neighbourhood of 1
in £T+.

Let FEE£T+. Let V*V=e**, flieS, H? = H,. Let \V\ = exp(l/2)#1>

U=V\V\-1 = e?>, fteS, Hf=-Hi. (Since F is invertible, C7 is
unitary.) Let V(z~)=e3H2]V\. V(2)e2"+ for all complex number z.

Since ¥(2) is an entire function of z and V(0) does not have an eigen-
value — 1, det(V(2)+l)=0 has isolated roots. Hence £F0 and
which contains £T0, are dense in £T+.

For £feS, define

(8. 23) Q(#) =exp-|-(B, J5TB).

From Lemma 4. 3, we have

(8. 24)

Obviously Q(#)*=Q(#*).
Let H^^ be self adjoint. Then, in the Jordan expansion H=H^

_ /^s
+ S£"A^, -E+^S^A is a partial basis projection and Q(.ff) belongs to
_ X+A A>0 _

SIsDoC^r) for K'=(E+ + rE+r^K. By identifying §ISDG(^r) with
aCAK(£+^), (B, J7B)-2(at, H+z)-tiH+ where H+ = HE+ and (B, ZT+B)
= (aT, f/+a) is Qy(H+*) in the notation of [4]. By using the formula
(12.3) of [4] with (0 = 1/2, we have

(8.25) ^

= exp tr log cosh(#+/2)

Note that the central state of StsDc(^, r) is the same as the restriction

of the central state of 1SDC(#,F) to SUc^F).

Let V(z) be holomorphic in z and V(2)e£T+. Then
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(8. 26) det [ (1 + F) /2] = exp tr log [ (1 + F) /2]

for F=V(z) is holomorphic in z and have zeros of an even order

unless it is identically 0. Hence its square root is locally holomorphic

at every z. We define

(8. 27) f(#)=exp 1- tr log [(! + *•*) /2] !,-i ,

where the value is the analytic continuation from f(0)=l and does
not depend on the path of the analytic continuation.

By setting H=Hl-^zH2 in (8.25) and making an analytic conti-
nuation from real z to z = i, we have

(8.28)

for all

If H<= S is selfadjoin t, we have from (7. 21)

(8.29)

On the other hand, we can consider the Fock state <prE>r of 2ISDc(^',
and use (12.3) of [4] with p = l, we have

(8. 30) ^£,r(Q(/f)) =exp-^- tr ̂ + = exp^ ti\H\.

Therefore

(8.31) ||Q(#)||=exp-i-tr H\. (H* = H)

Since Q(S")-1 = Q(-^r) and Q(^)>0, we have

(8.32) exp^-tr|#|^Q(#)^exp — \-tr\H. (#* = #)
4 4

Let z/feS be selfad joint. Then Q(/f) as well as gff are unitary.

If £ is a one dimensional partial basis projection and H=iA(E—rEr~),

then (B, #B) has the spectrum (z'/l, -?/i} and hence HQC//')-!!!

= ±tr\eHl2-l\. If H=Y>Hi, H*=-H,, ftH^HjH^Q, then

= nQ(fli), each Q(fli) is unitary and
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(Here we have used Q(#)-l = S(nQ(#0)(Q(#j)-l)0 Hence
3 k>J

we have

(8.33) \\Q(H)-l\\<;-±~ti\eHl2-l\. (#*=-#)

Let V=eH = e*'^3^ H,H'^^. We show that
Let rX) be sufficiently small such that XJr2nni^x for any n, Q*<\x\

<> and Ui>r in the following Jordan expansion of H:

(8.34) H=
!

Define

(8. 35)

(8. 36)

(8. 37)

(8. 38)

(8. 39)

where the sum Sx is over /I such that |InU ^TT and A=£±(7ti — p),
p>0. Similar definitions are made for H'. H0}Ho^^.

If E is of a finite rank, E*rE = ErE* = Q and £2-£, then we

have

(8. 40) f [2nzi(E-rE*F)] = (cos7i2)dlm£.

Hence Q(2ni(E-FE*r^ = (-l)dLm*. If fli and H2 commute with

each other, we have

(8.41) Q(fli)Q(fli)=

(8.40) and (8.41) implies

(8.42) Q(#) =

From eH = eH/, we have eH° = eH'° and hence

(8. 43) Jffo — - -ffoo — -Ho — ffw i

(8. 44) Hm=id [E« (fii) - E,,,, (fii) ] ,

(8. 45) H^rd [E« (fli') - E_« (#»') ] ,
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(8. 46) E^- (flo) + E,™ (flo) ^ Em- (TO + E_m- (7f0') .

Since [#0, #00] = [^ #w] =0, we would obtain QCff) = ±QOff') by

(8.41), (8.42) and (8.43) if we can prove Q(#0o) = ±Q(K!>).

From (8.24), Q(#0o)Q (#(£>) ~1 commutes with all B(/). The

algebra 3W CK", 70 , which is isomorphic to CAR C* algebra, is known
to be simple [8] and in particular has a trivial center. Therefore
^ ^Q(7700)Q(77o'o)~1 = el for some complex number c,

On the other hand

-E_m-CHo))] = (-l)dta^'<*o)

and Q(^)2=(-l)dImF"'(£«. From (8.46), dim £„,(#>) = dimEw*CHr
0')

and hence Q(floo)2 = Q(fi"ci)2. Hence c2l=Q(^00)2Q(^o)~2-l0 There-
/x x\

fore c=±l and Q(HOQ) = ±Q(HQQ). This completes the proof of

From the above argument, Q(Hy(F)) = ±Q(Hy<F)) for any r

and / where Hy(F) is defined by (8.21).

Let ^^2e£T0 and \(z)=e?Hie*n*. Let z(0, O^^l be a path

between z(0)=0 and z(l)=l avoiding zeroes of det(V(2)+l). For
each 0<^<^1? there exists an open interval 7, containing t and a fixed

path n such that det(l + ;z'(V[zGO] -1)) ^0 for /en and fe7,.
Hy,(VGO) defined by (8.21) is holomorphic in z at z(O, f^It. The
equality between two analytic functions of z

(8. 47) Q(Hy,(VGO)) = ±

hold for all z = z(t'}, t'^It if it holds for 2 = z(0, f in some dense

subset of an open interval in 7,, by the continuity and an analytic

continuation.

The formula (8.47) holds with the plus sign if \z\ is sufficiently

small by the Baker Haussdorf formula and Lemma 7. 3. Since [0, 1] is

covered by a finite number of 7+, (8.47) holds for all 2 = z(£), 0<^<^1.

Hence, if eHleH2 = eH^3^Q, we have

(8. 48)

Let V=eH^3Q. Then
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(8. 49) Q(#) = ±Q(#2)Q(#i)
x̂ S

where \V\=eHl, V\V\"l = eH\ Since Q(ff2) is unitary, we obtain

from (8.31)

(8.50) ||Q(#)||=exp^tr|log|V||

where log|F| is hermitian.

We also have

Hence we obtain from (8= 32) and (8. 33)

(8.51) min(||QCff)-l||,

Let Fs = ̂ »e£T0, #,eS and lim||FK-F|itr = 0, Fe£T+. Then

tr | log|KH is bounded. Since HKKr1 — llltr-^0 as », m-^°°, there

exists eB = ± 1 such that

(8.52) fcQ^JJte.Q^)]-1-!

as n,m-*°° due to (8.51). Since ||Q(£TB)|| is bounded due to (8.50),

we have

(8. 53) lkQ(#0 -e.QCa.) ||-*0,
/\

as w, w-^oo. Hence there exists a limit of e,,Q (//"„) as ^->oo. The

limit does not depend on the choice of ^ and e« except for a factor
±1. We shall write the limit as Q(F, s) where e=±l and Q(F, 1)
= -Q(F, -1). The properties Q(S)* = Q(5*)? (8.24), (8.28), (8.48),
(8.50) and (8.51) extends to Q(F, e) by the continuity.

Let £T* be the abstract group with an involution *, which is

* isomorphic to the group of operators Q(F, s), Q be the * isomorphism
from g<^£* to the corresponding Q(F3s) and n(g) = V if Q(g)

-Q(F,e). From (8.24), Q(F1} fil) -Q(F2> e2) only if Fi-F2. Hence n

is well defined. From Q(F, e)*- ±Q(F*5 e
7) and (8.48) for Q(F,e),

TT is a * homomorphism. From (8.51), it is a homeomorphism. Since
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Q(V, e) = —1 exists by (8.40), the mapping n is two to one. (8.17) ~

(8.20) follows from the corresponding properties for Q(V, e). Q.E.D.

Theorem 5. Let K be an infinite dimensional Hilbert space.

A Bogoliubov transformation r(J7) of 2ISDc(^;F) is inner if and

only if f/e ET+ or — f/e ET_.

Proof of "if" part.

If £7e£T+J then Q^n^lT) is unitary and induces the desired auto-

morphism r(£7) on SIsDc(^F).

If t/i<=2*o-13 f/2e2"cr2? then UiUz^S^^. Hence it is enough to

show that r(C7) is inner for at least one unitary U in £T_.

Let {ea} be a F invariant orthonormal basis of K. (A complete

orthogonal family of F invariant vectors /« can be obtained inductively by

picking up/ in {/0; /3<*y0}
1 and defining faQ=fJrFfJ /a0+i = *'(/— F/).)

Let U be defined by the requirement of linearity, boundedness and

UeQ = eQ, Uea=—ea for all a^^O. Then — C7e9~_ and r(£7) is impie-

mentable by i/2"B(^0). Q.E.D.

To prove the "only if" part, we need some preparations.

Let KH be a F invariant finite even dimensional subspace of K,

21« = 3TsDc(-K",,, F) and 31° be the set of elements in SISDc(^, F) commuting

with every element of §IW. We know the following properties.

(a) U?J« is dense in 2ISDc(lf, F).

(b) Let <pi and (pz be states of SIM and Wn.

Then there exists a state <p of 2ISDc(^, F) such that <p 2I,, = ^i, ^ 2I« = ^2 =

Property (b) follows from the fact that SI« is a full matrix algebra.

Lemma 3, 4. Z,g£ U be a unitary element of SISDo(JT, F).

exists a unitary Vn in 2I« s^cA ^^ lim||FB— C7|| =0.

From (a), there exists Ae2t« such that lim|IA— U\\ =0.

e.. Then \\An\\<,\\U\\-i-*n = l + en and

Hence || 1 AMI^ [l-s,(2 + ew)] "1/2 and || | Al"1-!]!^ [l-e.(2 +
-1 provided that eK(2-4-£w)^l. (|^ =(A*Any

12.')
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Let Vtt = An An\~
l, Then Vn is isometric and

Therefore lim||K- U\\ =0.

We now have lim||KF*-l|| =0 due to UU* = 1. Since V,,V* is
n

a projection, \\VHV* — 1||=1 unless VnV? = l. Hence Vn is unitary for
sufficiently large n. Q.E.D.

Lemma 80 5, Z,g£ U be a unitary element of SJSDc(^F) «wrf Un

be unitary element in §!„ such that UAU~1=UtlAU^1 for all
Then there exists a complex number /U such that M» | = 1

. Let U:=Un!U. We have f/H
ce§I^. Let Vn be as given

by Lemma 8. 4. We then have

Let 0>i« and ^2« be states of SIfI and SfS and let ^s be a state of

such that <pn S = ^2». We have

Let ^« = ^is(J7fr
1K) for a fixed sequence ^ lM. Then

Therefore Km|| C/-^f/J| =0. Q.E.D.

Proof of "only if" part of Theorem 5. Let U be a Bogoliubov

transformation which can be implemented by a unitary W in 3ISDc(-/f, F) :
Wr-4Wr* = r(f7)A Any inner * automorphism is unitarily implemen-
table in any representation. From Theorem 8, we see that U—l or
U-\- 1 is in the Hilbert Schmidt class. In either case, U has a purely
discrete spectrum.

First consider the case where multiplicities of eigenvalues 1 and
— 1 of U are not odd. Then there exists F invariant finite even dimen-
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sional spectral projections E» of U such that lim£'„ = !. Let Un = EnU.

Let Wn be a unitary element of W,SDC(EH K, r) such that WHAW*

= r(f/K)^4 for ^.eSIsDcC^/f, r). By Lemma 8.5, there exists complex

numbers Xn such that lim^TF"M=IF.

Let U=eiH, || filler, H* = H, FHr=-H, and E+ be a basis pro-

jection such that [E+, H] = 0, E+H<^Q. If multiplicities of eigenvalues

1 and — 1 of U are not odd, such H and E+ exists. Let £"_ = ! — £_,,

#±=£jy.
XX

By Lemma 8. 3, Wn is proportional to Q(iEnH^) and by Lemma 9. 2,

^ TO = * exp (*/2) tr (£. #J,

where |c|=l is common for two equations. Since [U,E±]=Q, W@E±

must be a multiple of &± by Lemma 4. 3. Therefore

lim tn exp(*'/2) tr (£. Zf±) -^
n-^oo

where cf is common for ±. This implies

lim expGf/2) trEn(H+-H^=L

From rH+r=-H_, [r, £„] =0, we have tiEHH-=-ti:EnH+.

Therefore

lim expz trEnH+ = l.
n

Since Q<,H+<^n and E1,, can be chosen to pick up (an increasing

sequence of) any finite number of eigenvectors of H+, this implies that

H+ must be in the trace class. Therefore £7e£T+ in this case.

In order to consider a general case, we again use Theorem 8. If

both dim^i and dimEU are finite, then either 1 or —1 is an accumu-

lation point of the spectrum of U. Then there exists a Bogoliubov

transformation J7/e£T+ which commutes with U such that UU' has an

infinite multiplicity for an eigenvalue 1 or —1. Since we know already

that U' is inner, it is sufficient to consider the case where either

dim^i or dimE^i is infinite.

We now consider a case where the dimension of the eigenpro-

jection EI of U for an eigenvalue 1 is finite and odd. Let QEl( — l)
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= II {T/2B (/,•)} where {/,-} is any complete orthonormal set of F
j

invariant vectors in E^K. Then Q^( — 1) is unitary and implement
the Bogoliubov automorphism r(C/i) for t/i which is 1 on E±K and

— 1 on (1 — E-^K. Since t/t/i has no eigenvalue —1 and an infinite
multiplicity for an eigenvalue 1? r(f/f/3) is inner only if UUi^3'+.

Since — Keff., this implies ~U^S_.

Finally we consider a case where the dimension of the eigenpro-
jection j£_i of U for an eigenvalue — 1 is finite and odd. As before

r(C/i) is inner for t/i which is 1 on E^K and —1 on (1 — E_^)K.

Since t/t/i has no eigenvalue 1 and an infinite multiplicity for an
eigenvalue — 1, it is not inner. Q.E.D.

§9. Unitary Implementable Bogoliubov Transformations

Lemma 9, 1. Let P and P' be basis projections. Let sin#
= \P-P'\, O^^Tr/2. Let ^/2

-^0. Let

(9.1) F± =

(9.2)

i"-^« ^ an orthonormal basis of {P/\Q — P'}}K (^^°o) and

U be a unitary operator, determined by the requirement that Ue3 = rei9

UFej = ejJ Uf=f for /e (1-^,0 K. Assume that \P~Pf\ is in the

trace class, Let

(9.3) R(PyP)-^H(p//p)C7.

(9. 4) Q= jexp4-(B, H(P7P)B)| fl
I Z ) j=i

Then R(PVP)e£Tff, <t =(-!)", Q is

(9. 5) R (pyp) PR (pyp) * -
(9. 6)

(9.7)

(9.8)
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where the positive quartic root is taken and -AeSlsDoC-K", F).

Proof. Since (P— P7)2 commutes with P and P7, 0 commutes

with P and P7. 0 also commutes with F. £"0 and .EV/2 are spectral

projections of 6 for the eigenvalues 0 and n/2. From [P, P7] 2

= -sin20cos20, it follows that F+F_ = F_F+ = Q. Because P and P7 are

basis projections, FF±F = F+. Namely F± are partial basis projections.

If I P— P7 1 is in the trace class, then 0 is also in the trace class

and hence H(P7/P)eI], *IH(p//p)e£r+.

(9. 5) follows from a direct calculation. (Also see Appendix.)

Q is unitary. (9.6) is immediate for /e (1 — £V/2)jST, /=£j and
f=rej and hence for all /. From (9.5) and (9.6), we have

(9.9)

By Definition 3.1, (3.3) and (#, P^) = (^ Pr^) - (#, P/) -0 for

£ = 0y and F£y, k^j and f^(l — E0*)K, we have for ^^0,

(9.10) *p(Q)=0.

Since (?^§ISDc((l — E0*)K, F), we can compute (9.8) by using the

Fock state ^FCI_EO) on SISDo((l — Eo)K, F). Herce we may assume Eo^O
without loss of generality. If n = 0 and ^0 = 0, there exists a basis

projection E of (Jf, F) commuting with P and P7 and a unitary

operator u such that [u, P] = [u, P7] =0 and uEu* = l — E, due to

Lemma A. Then it follows that tr£lH(P7/P) = (1/2) trH(P7/P) =0.

We can identify (B, H(P7/P)B) in §TsDc((l-£o)#, F) with 2(at,

EH(P7/P)a) in WGAR(EK) and use the formula for O*> in the

Appendix C of [4] where K=iR(P'/P)E ((alfiTa) is written as [K]

in [4]) and p=(l-P)E. We have

(9.11)

^i.p) log (cos 0)

= exp— - tr log (cos 0) =det(cos0)1/4.
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where the positive root is to be taken. Q.E.D.

Lemma 9.2. Let g^3% and P be a basis projection. Then

(9. 12) *p(C(£)) =detP(Pn(gTlPy'\

where detP is the determinant taken on the space PK, the branch of

the square root is to be determined by an analytic continuation from

the value 1 for g=l and the continuity.

Proof. First we consider the case where n(g}=eiH, H* = H,

rH*F= — H, H is in the trace class and the continuous inverse image

7r-
1(g«»)j 0<^<^1 connects 1 and g. Then n(g) is a Bogoliubov trans-

formation. Let

(9.13) P' = x(g)P*(;g)*

which is again a basis projection. Since H is in the trace class

i\\ [H-~[H, P] • • • ] (U

Let

(9.14)

V commutes with the basis projection P by (9.13) and (9.5). Since

Feff+USL, this implies detF= + l and hence Feff^. Let g'^3%

be such that n(g') = V. Let V=e"" where H'* = H\ rH'r=-H',

[P,H']=Q. We then have Q(#') = ±exp-|-(B, ffB). Under the

identification of 1SDC(^, r) with WCAR(P#), (B, H'B)=2(a\ H'Pa)

-tr(#'P). Therefore

(9. 15)

By substituting yl = R(P/PO, we obtain

(9. 16) <Pp(Q(g» = ±det(cos/?)1/4 exp— ~ tr(logF)P

Substituting cos^F-'P-Pcos^F"1/3 and Pco$0=PR(P/P')*P, we

obtain
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(9. 17)

By absorbing ± to the ambiguity in the branch of square root, we

obtain (9.12).

By substituting gn(z) such that n{g^=sj&i(HF + zH<P}, Hjw*

= H}"\ r///")F= — jfiT/B)*, making analytic continuation in z from z = Q

to i and taking limit of n—>^ in the trace class norm, one obtains

(9. 12) for most general g. Q.E.D.

Remark. The formula (9. 12) can be also obtained by the follow-

ing methcd. Consider the case where n(g') — 1 and S— (1/2) are of

finite rank and S does not have eigenvalues 0 and 1. Then from

(6.24), and (8.18), we have

(9. 18)

We can now allow 5 to take eigenvalues 0 and 1 and to be not of

finite rank. (9. 18) holds by continuity. If S is the projection P,

we have

(9.19) ^(Q(^))^det[P+(l-P)7r(^)(l-P)]1/2.

Since detr^4*r-det^4 and Pn(gy*r=7i(g)-\ we obtain (9.12).

Conversely (9. 18) can be obtained from (9. 12) by

where n(g~) is understood as 7r(^)01 on K. It can be checked easily

that this coircides with the above expression.

Note that the formula (12.3) of [4] is a special case of (9.18),

where S=l — p.

Lemma 9. 38 Let P be a basis projection, gn be in 2"! , V be a
Bogoliubov transformation Pn=7z(gn*)Pn(gH')*, P'=FPF*. Assume
that n(gn) is unitary,
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(9.20) PA (1-/")=0,

(9.21)

(9.22)
K-»oo

where ||^4l|H.s. = ||^4M||tr. Let x, be such that

(9.23)

(9.24)
n->oo

exists and does not depend on the sequence gn for a given V. It

satisfies

(9.25) Qp(V r*)=QP(V r)*

(9. 26) QP( V>p(B(/)) =*p(B(y/))Qp(y)

(9. 27) (ft,, Qp(F)£p) =detp(PP/P)1/4>0.

// ^^S ^^ H*=-H, then

Proof. Since n(gn)— 1 is in the trace class, (jPM~P) is in the
trace class and hence is in the H.S. class. From (9.22) (P7— P) is

also in the H.S. class. Hence P(l- P'*)P = P(P/ '- P)2P is in the trace
class, and (l-P'}P= (P-P'}P is in the H.S. class. From (9.22),
it follows

(9.28) ||(i-/>,)p-(i-POP||H.8. = IK/'.-PO-P||H.s.->0.

Hence || (1 — P,,)P |H.s. is uniformly bounded.
We now have

(9.29) \\PP.P -PP'P\\«=\\{P(l-Pd-P<J.-P')} (\-PJP

We also note that (9.22) implies \\P, — P»||ii.s.-»0 as n,m^°°. Hence
P,m=n(ga,')*Pan(gm) satisfies |PM-P||H.s. = IIP.-/'.||H.8.-*0 as n,m
-»oo. Therefore
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(9.30) \PPnmP

as w, w-^^o.
Let

(9. 31) G^zirV

We obtain, from (9.29),

(9. 32) (£P, ST.)

= [detp(PPKP)] 1/4-> [detp(PP'P)] 1M

and, from (9.30),

(9. 33) ! (¥ny ¥m} \ = detp(PPK,wP)1/4-l.

Due to (9.20), c= [detp(PP'P)]1/4=£0.

Let exp^-C^,^)/l(^^)i. If |l-|(y.,y»)||<e2/2, then
II (exp lOSF- - rj| <e and he ice 1 ei9*~(aP, ¥n~) - (QP, Wm^ j <e . If
\(QP,W»}-c\<£ and \(QP,Wm)-c\<s in addition, then |^--
and hence \\¥n-¥M\\<(l + 3/c')e.

Therefore ¥„ is a Cauchy sequence and has a strong limit

Let ¥ = nP(A)tip, >leSIsDo(^r,r). Then

(9.34)

where (9. 21) is used for the second term. Hence QH has a strong
limit Qp(F), which satisfies (9.27) due to (9.32). It also satisfies

(9. 35)

(9.27) implies Q/>(F)£P^0. Since nP is irreducible, (9.35) implies that
the range of Q^(F) is the whole space. As a strong limit of unitary

Qn, Qp(F) is isometric and hence is unitary. (9.35) implies (9.26),
which uniquely determines the unitary operator Qp(F) up to a multi-
plicative constant for a given F The constant is unique due to (9. 27).
Hence Qp(F) does not depend on the sequence.

(9.26) and (9.27) are satisfied when QP(F*)* is substituted into
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QP(F). Hence, by the uniqueness, we immediately have (9,25).

Lemma 90 4, Let P be a basis projection, V be a Bogoliubov
transformation and P'=V*PV. If (P' — P) is in the Hilbert
Schmidt class, V is unitarily implementable in the Fock represen-
tation Tip.

Proof. EIW = P A (1 - P') + (1 - P) A P' is the spectral projection
of (P — P')2 for an eigenvalue 1 and hence has a finite dimension.
Let ei'~e* be an orthonormal basis of (P/\(1 — P'))K. Let U be a
unitary operator determined by the requirements Uej = rejy Urej = ejj

Uf=f for /e (l — Eir^K. Then 17 is a Bogoliubov transformation
such that [7—1 is of finite rank. We have det £/=( — !)". Hence
r (( — !)"£/) is inner and hence is unitarily implementable.

We now consider V,= VU, P//=VfPV1. Then v= P"-P[ is in
the H.S. class and PA (1-P") = (1-P) AP" = 0. There exists a
monotonically increasing sequence of a finite dimensional spectral pro-
jection En of v such that limEn = l — EQ where E0 is the eigenprojection
of v for an eigenvalue 0. Consider R(P"/T) = (1-^2)1/2- (1-^)~1/2

• [P, P"] . Then consider UH = (1 - £„) + R (P"/T) £. • We have

where En commutes with P and P" and | [P, P7/] |2- (l-v2}v2 is in
the trace class. Hence there exists QP(R(P"/P)) on HP which imple-
ments r(R(P"/P)).

We now consider V2= Ft/R(P"/-^)- It commutes with P and hence
<pp is invariant under -r(F2). Hence it is unitarily implementable in nP.

Q.E.D.

Theorem 60 Two Fock states 9P and <PP? are unitarily equivalent
if and only if (P— P7) is in the Hilbert Schmidt class,

Proof. First assume that P— P' is in the Hilbert Schmidt class.
Then there exists a Bogoliubov transformation V bringing P' to P,

which is unitarily implementable by Lemma 9. 4.
Now assume that P—Pf is not in the Hilbert Schmidt class. Then
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(P— P')2 is not in the trace class. Since P commutes with (P— P')2 and
rP(P-P02F-(i-P)(P-P02, (i-p)(p-p/)2-(i-P)P/(i-P)
is not in the trace class.

By Lemma A, there exists a partial basis projection E and a

partial isometry u such that [E, P] = [E, P'] -0, (P-P')2

= (P-P')2, [w, P] = [u, P'] =0, u*u = E and u*u = rEF. Then

=r£r, ^£(i-P)P/(i-P)^*-r£r(i-P)P/(i-P) and {E+rEr}
•(1-P)P'(1-P)-(1-P)P'(1-P). Hence, if (P-P')2 is not in

the trace class, then £(1 — P)P'(1 — P) is not in the trace class.

As a consequence, there exists an infinite number of unit vectors

ej^E(l-P)K, j = l,2,-~ such that (eh ek} = (eh P'ek} =0 for j^k

and Sfe-, P^O ==0°. This is proved as follows:
y

If £"(1 — P)P/(1 — P) has a continuous spectrum £?c, then take a

number £>0 such that Scn(5, 1)^0 and take an infinite number of

mutually disjoint interval A, in [5, 1] with Aj^}3c^4>. Take any unit

vector e} from E{A^)K where £"(4) is the spectral projector of

(1-P)P/(1-P) for 4-. (^,gJfc) = (^,P /gA)=0 for j^k is automatic.

Since (ehP'e,^d, ^(ehP'e^) = ^.j
If £(1 — P)P/(1 — P) has a purely discrete spectrum, then take e}

to be a complete orthonormal set of eigenvectors of £(1 — P)P/(1 — P)

in£(l-P)K Then^-e(l-P)^, (eh P'^) = fe, £(1-P)

-0 for >=££ and Sfe, P^-) -tr(l-P)P/(l-P)£=oo.

Since e^EK, EK_LrEK and [E,P']=Q, we have (e^P

= (ej9 P'Te^ =0 for any j and A.

Let P,- be the projection on the space spanned by reJ9 U,z(

) and U(A) = nU*0). We have

(9. 36) detPU(w)COP=exp^?

(9. 37) detP'U^C^P'- Ildeti
j=i

= (exp^w) n [1+ (e-'A-

From (9.36), it follows that 0p(Uc'°(^))^AM has a strong limit

Qp(UO)). It also follows from the proof of Lemma 9.3 that approach

to the limit is uniform locally in A and hence QP(U(^)) is continuous
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in X. Hence (0, Qp(UO))0)=£0 for sufficiently small ^ for a given 0.

Thus for 0e§P, there exists X such that

(9. 38)

and

Let £-weff; be such that TT(^B) =U°°CO. Due to (9.37), it is

necessary for the existence of a nonzero limit

that

(9. 39)

This implies that 9P and ^P/ can not be unitarily equivalent. Q.E.D.

Theorem 7. A Bogoliubov automorphism r(F) is unitarily

implementable in the Fock representation nP if and only if (1 — P) VP

is in the Hilbert Schmidt class.

Proof. We note that

(9.40)

Hence, if Fis unitarily implementable, \ V*PV—P\ is in the Hilbert

Schmidt class. Hence P\ V*PV-P\2= (PF*(1-P))((1-P)FP) is

in the trace class, which implies (1 — P) FP is in the Hilbert Schmidt

class.

Conversely, if (l-P)FP is in the trace class, then P| F*PF-P|2

and F{PjF*PF-Pi2}r=(l-P)|F*PF-P!2 are both in the trace

class. Hence F*PF— P is in the Hilbert Schmidt class and F is

unitarily implementable for nP. Q.E.D.

Theorem 8. A Bogoliubov automorphism r(C7) is unitarily

implementable for all Fock representations if and only if U—l or

£7+1 is in the Hilbert Schmidt class, where dim K^= odd.

Proof. "If" part is immediate from Theorem 7. We may assume

that dim -fiT is infinite. [The case where dimJ?"=odd is not considered

because there is no Fock representation].
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For "only if" part, we have to show that if PU(1 — P) is in the

Hilbert Schmidt class for all basis projection P, then £7— 1 or C7+ 1 is

in the Hilbert Schmidt class where U satisfies U^=U~\ rUr=U.

Let A be any measurable subset of {ei9; 0<J?<jr} and Ei be any

subprojection of the spectral projection of U for the set A such that

[U,E1]=0. Assume that EI has an infinite dimension and E0 = 1 — E1

— rEi_F has an infinite or an even dimension. Let E = E1i
JrrE^r.

There exists an antiunitary involution T (a complex conjuga-

tion) on EKj commuting with the spectral projections of UEi and

with F. Let PI be the subprojection of E for the subspace spanned

by f+irTf, f^E^K. Then (E-PJK is spanned by f-irTf,

and rP^.r = E—P^. Hence there exists a basis projection

Since U(f+irTf) = Uf+irTU*f, we have

Therefore

Since (1-P) UPPi= (1-P) f/Pi must be in the Hilbert Schmidt class,

(t7- £/*)£"! must be in the Hilbert Schmidt class. [Note that

2~ll2(fj
JrirTfj') is an orthonormal basis of P±K if f5 is an orthonormal

basis of EtK.]

In order that (U— C7*)J?i is in the H.S. class for any EI, it is

necessary that U has a purely discrete spectrum and its accumulation

points are at most 1 and — 1.

Next assume that Ufj = eia'fj , Ugj = e^gj , j = 1, 2, • • • , O^O^TT,

(>0), (/y, /*) = (ft, ft) =*„ and (rft, ft)
:=Q. Further assume that the orthogonal comple-

ment of the set of all /,-, ft, r/,, rft, / = !, 2, ••• has an infinite or even

dimension.

Let Pi be the subspace spanned by (// + ft) and (Tfj

j = l, 2, • • • . Then there exists a basis projection P^Pi. We have
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Therefore,

Thus, the spectrum of U can not have more than one accumulation
points nor points with an infinite multiplicity.

From the above two conclusion, we see that U— 1 or [7+1 must

be compact.

If £7+1 is compact, then (— t/)— 1 is compact and r( — 1) is
unitarily implementable in all Fock representation.

If U— 1 is compact and an eigenvalue 1 has a finite multiplicity,
there exists an infinite number of eigenvectors // of U belonging to

an eigenvalue eiaj such that (Xa>j<.n and S^v<°°- Let E be the
projection for the subspace spanned by all f} and rfs and W= UE
+ (!—£"). Then r(W) is an inner Bogoliubov automorphism by
Lemma 8, 3 and an eigenvalue 1 of UW* has an infinite multiplicity.

Thus we may restrict our attention to the case where 17—1 is

compact and an eigenvalue 1 of U has an infinite multiplicity. In this
case A can be taken the whole set {ei0; (XflOr} and hence U—U* is

in the H.S. class. This implies that £7—1 is in the H.S. class.
Q.E.D.

§10. Pseud® Fock States

Lemma 10. 1. Let P be a partial basis projection with the

F codimension 1. Let eQ be a fixed r invariant unit vector in

(l — P—rPr^K. Let TIP on &P be the Fock representation of

31sDu(PK+rPK9r'). Then there exists an irreducible representation

rcop.fo) °f 3IsDc(^,rO on £>P uniquely determined by the following
requirements :

(10.1) ^i

Proof. Since 7r(P..0)(B(/)) given by (10. 1) satisfies the defining

properties (1), (2), (3) of a self dual CAR algebra, it automatically has



Quasifree States of CAR and Bogoliubov Automorphisms 435

a unique extension to the whole §ISDC(^, F). Q.E.D.

Definition 10. 2. A pseudo Fock state ^P,e^ of SISDC(Jf, F) is

defined by

(10. 2) Pcp..0>CA) = (£P, 7r(p,eo)G4)£p),

wjAere P, £0 0«rf 7T(p,eo) #r£ gi#£^ m Lemma 10. 1 0wd £P fs the cyclic

vector corresponding to the Fock state <PP of ^^PK-i-rPK, F).

Lemma ID. 3a Let P be a partial basis projection with a F co-

dimension 1 and

(10.3) S

(10. 4) cps= (1/2) W

Pure states <pap,e^ and <p(P,-e^ are not unitarily equivalent. Rs is not

a factor and its center is generated by 7riS(B(^o))TP( — 1), where

TP( — 1) is a unitary operator in ns(^l(.PK+rPK,rW satisfying

Tp(-l)7rs(B(/))Tp(-l)=7rs(B(-/)) for f^PK+rPK.

Proof. Any element A in 2ISDo(^, F) can be written as

A + AB(e0)=-A where A and A2 are in <$SDG(PK+rPK,F'). Both
sides of (10.4) give ^p(A) and hence (10.4) holds.

If A^WSDC(PK+rPK,r\ then n^,^(A)=^P,^A). The set of
all such 7T(Pieo)(^4) is irreducible by Lemma 4.3. Therefore any unitary

operator satisfying Wn{P,e^(A) W* = n^Pl-gQ^A) must be a multiple of

the identity. However, *(,._.„) (B(*0)) = -2-1/2TP(-l)
Therefore n^P,e^ and 7r(p,_Co) are not unitarily equivalent.

From this, it follows that

(10.6)

(10. 7)

and 7rs(B(go))(T,(-l)©T,(-l)), which is 2~1/2 on §P(P,«O) and -2~2/1

on Hy(Pi_e^ generates the center of J?s. The operator TP( — 1)0TP( — 1),
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which belongs to ns($(svc(PK-\-rPK,r}y, can be characterized up to
a multiplicative constant by its anticommutation property with B(/),

fe=PK+rPK.

Theorem 9B Let E be a partial basis projection with a finite
odd r codimension and T be a Hilbert Schmidt operator such that
TE=ET=T. Let

(10. 8) 5- T+1-FTF+ (l/2)(l-£-F£F).

Then Rs is not a factor. Conversely, if Rs is not a factor, then S

is of the form given by (10.8).

Proof. Let ei-"e2n+i be a complete orthonormal system of r
invariant vectors in (l — E—FEr^K and E0 be the projection on the
subspace spanned by e2i -+ ie2j+i , j = 1 , • • • , n. By setting E^ = E + E0 ,

Ti=T+(l/2)E0, we obtain a case where the partial basis projection
£*! has a F-codimension 1.

Let

Then S1/2-(S')1/2 is in the Hilbert Schmidt class and hence Rs and
Rsr are * isomorphic. By Lemma 10.3, where we set P=rEiF, Rs,

is not a factor and hence Rs is not a factor.

If 5 is of the form given by (10. 8) where the F codimension of
E is finite and even and T is as before. Then the same argument as

above shows that Rs is * isomorphic to Rsr where S' = rE±r is a basis
projection. Hence Rs is a factor.

If S is not of the form given by (10. 8) where the F-codirnension
of E is finite, then 51/2(1-S)1/2 is not in the Hilbert Schmidt class.

Let P/=2(S0(1-S))-PS. Then Ps~Ps is not in the Hilbert Schmidt
class. In the proof of Lemma 4.11, F_, if nonvanishing, is a vector

giving a vector states <PP'S in the representation space associated with

<pPs. By Theorem 6, we have ^_ = 0 and hence from the proof of
Lemma 4. 11, Rs must be a factor. Q.E.D.
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Appendix: ANGLE BETWEEN Two PROJECTIONS

We state a result concerning an angle operator between two pro-
jections which is essentially taken from [1] . If one of two projections

has either dimension 1 or codimension 1, then the nonzero eigenvalue
of the angle operator coincides with the geometrical angle between
corresponding subspaces.

Theorem 10. Let Pi and P2 be projection operators on a complex

Hilbert space K. Let 0(/i, P2) be defined by

(A.I)

(A. 2)

Let B(0) and E(n/2) denote eigenprojections of 0(Pi, P2) for eigen-

values 0 and 7c/2, E=E(0)+E(7c/2), and

(A. 3) ^-cosflCPt, P2), 02 = 811100?!, P2).

Let

(A. 4) R(/VP2) = 01 + i;r1 [P*, P2] ,

(A. 5)

(A. 6) UnOPi/P2)-Pi(l-£),

(A. 7) 11.2(̂ 1/̂ 2) = (l-A)(l-£),

(A. 8) ulz(Pi/P2) ^ (vi^^PiP.Cl-Pi),

(A. 9) u21(P,/P2) - (t;1z;2)-
1(l-P1)P2P1 .

Z,£tf PAP' rfewofe ̂ ^ projection on PKr\PfK if P and P' are pro-
jections. Let & be the von Neumann algebra {Pi, P2}" generated by

Pi and P2 and 3 be its center ^fW-

Tte 3 is generated by 0(PX, P2)=0(P2, Pi), £Pi flwrf ̂ P2. 58 w
generated by its center 3 ^^ u0-(Pi/P2), f, .7 = 1, 2 satisfying

(A. 10)

(A. 11)
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is commutative and is generated by four minimal projections

PAP., PiAd-.fi), (l-POA-fi and (l-POAd--fi) where

E(O) = PI AfiH-d--POAd-.fi),

EGr/2) = Pi A d - #) + (1 - ^0 A ft.

S(l—.E) z's « tensor product of the center 3(1—-E) c«<^ ^Ae fjy/>e 72

factor generated by the matrix unit u^(Pi/P2). Relative to this
matrix unit, we have

(A. 12) P, (!-£) =/I ON
\0 OA

(A. 13)

(A. 14)

(A.15) I (Pi, P2) (!-£) = /%, »:

The operator R(Pi/P2) satisfies

(A. 16)

(A. 17)

(A. 18)

(A. 19)

TTzg operator I(f/i, t/2) satisfies

(A. 20) I(P1; PO* = I(Pi, Pt)=I(P», P.),

(A. 21) ICPx.PO^l-.EGr/^),

(A. 22) I(P1; PO^(Pi/P,)I(Pi, P.) =ui,(P2/P1).

. Since - l^Pi - P2^l, we have 0<: | P! - P2 1 ̂ 1 and hence
0(Pi, P2) is uniquely well defined by (A. 2) and (A.I). By a direct
calculation,

(A. 23) [ (P± - P2)
 2, A] = [ (P, - P2)

 2, P2] = 0

and hence 0(P,,P2)e3.
If (P3-P2)/=/, then C/.P,/)^!)/!) and (/, P,/)^0 imply
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||P2/H=0 and hence P2/=0, Pi/=/. If (Pi-A)/ = -/, we obtain

P2f=f, p1f=Q. Converses are obviously tme. Hence we have

(A. 24) EGr/2) = Pi A (1 ~ PO + (1 - ^) A Pa •

Next assume P1f=P2f. Let # = Pi/, £2=(l-Pi)/. Then P^

=£i = P2«i and (l-Pi)ft=ft=(l-P»)^. Hence g^^P^P^K,

gz^ {(I — Pi) f\(l — Pz)} K and f=gi + gz- Conversely, such/ satisfies

(Pi-P2y=0. Hence

(A. 25) E(0) = P,AP»+(1-POA(1-PO.

Obviously P! A P2, (1-POAP2, PiA(l-P») and (1-PO A (1-P»)

belong to 3-

From (A. 23), (A. 24) and definitions, we have

(A. 26) u,XP./P2)£ = £uH(P1/P2) =0.

By using identities

(A. 27) P1(Pi-P2)8 = Pi(l-P2)Pi = Pi-PiftPi

(A. 28) P2(P1-P2)
2 = P2(1-P1)P2 = P2-P2P1P2

(A. 29) (l-P1)(P1-P2)2^(l-P1)P2(l-Pi),

(A. 30) (l-P2)(Pi-P2)8=(l-P.)P1(l-P2),

we obtain (A. 10) and (A. 11). This also shows that uij(P1/P2) are

everywhere defined bounded operators. [The range of PiP2(l —Pi) and

(1 —POP^ is in (1—E)K, where (^i^)"1 is uniquely defined].

By using (A. 27) and (A. 29), we have (A. 13). (A. 12), (A. 14)

and (A. 15) are immediate from the definition. (A. 16) ~ (A. 22) are

obtained from (A. 12)—(A. 15).

® is generated by Pt and P2 and hence by 0(P1? P2), EPl9 EP2

and uf,-(P1/P2). Since £ulV(P1/P2)=0, &E is generated by E0(Pl9 P2),

i, £P2 and hence as is stated in the Lemma.

On (! — £)/£, u0-(Pi/P2) generates a type J2 factor and hence

—£) is as is stated in the Lemma and 3 is generated by 0(Pi, P2),

i and £P2. Q.E.D.

As an immediate application of Theorem 10, we have
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Theorem 11. Let Pi and P2 be basis projections on K relative

to F. Then

(A. 31) r0(P1,P2)r=g(P1,P2),

(A. 32) rR(P1/A)r=R(P1/JP2),
(A. 33) rl(P1; P2)r=-i(P1)P2),
(A. 34) ru,.,(P1/P2)r=-u,i(P1/P2)

(A. 35) ru,,(P1/P2)r=u,,(P1/P2)

(A. 36) r(P1AP2)r=(l-P1)A(l-P2),
(A. 37) r(P1A(i-P2))r=(i-P1)AJP2.

There exists an antiunitary involution T which commutes with

0(P1; P2), IH/PI, P2) <md r.
x̂ S

TA0 linear operator R(Pi, P2) defined by

(A. 38a) R(P1/P2)E(7r/2) -

(A. 38b) RGPi/

is unitary, commutes with 6 (Pi, P2) <2^ r and satisfies

(A. 39) R(A, P2)P2R(P1? P8)* = P! .

F tw (1 — £)jfiT is

(A. 40) F(l-E) =

where e is a linear operator, commutes with ^(P1? P2), ulV(Pi, P2), T
r <2^ satisfies e*=—e, £2 = E—1. The multiplicity of 6 (Pi, P2)

w (0, 7T/2) is # multiple of 4,

Proof. From FPir=l-Pi and definitions, we obtain (A. 31) —
(A. 37) . We shall prove the existence of the operator T and its
property.

Let 0i be any r invariant vector. Let K(0i) be a closed real linear
space generated by {^3>ijulj(P1/P2)-i-S

)E}e1 where 5>lV and S> are

any bounded self adjoint operator in 3- Then K(004-iK(0i) is a closed
subspace of .K', containing e^ and invariant under F and ^. Further-
more, for any W± and r2 in K(^), (Fx, r2) is real. Note that
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(*, 5>,yu,y(Pi/P8)«i)=0 if i*j due to (A. 34).
If mutually orthogonal subspaces K(^)+/K(^) having such pro-

perties are given for v<Ci/0 , then by choosing any F invariant vector eVQ

in ( U {K (£„) + iK (>„) } ) L, we can obtain K (^0) + z'K (O , which is
1><VO

orthogonal to K(^) +/K(^), y<Ty0 and has such properties. By induction,
the total Hilbert space is a direct sum of such K(^)+fK(^). Let
T^[](fv-}-igv)=^(fv — igJ,') for /,,, ^eK(^). Then T is an antiunitary
involution commuting with 0(Pi, P2), ulV(Pi, P2) and F.

x\

The statements concerning R(Pi/P2) and s are immediate where
e is defined by rr(u12(Pi/P2)-u21(P1/P2)). Since Te restricted to
(1— .E)Jf is an antiunitary operator, commuting with 0(Pi, P2) and Pi
and satisfying (Te)2- -(!-£), 0(Pi, P2) restricted to P^l-E1) has
an even multiplicity. Since 0(Pi, P2) restricted to 1 — PI has the same
multiplicity as 0(Pi, P2) restricted to PI due to rPiF=l — P±, and
[0(Ti,P2),F] =0, the multiplicity of 0(Plf P2) at any point in (0, Tr/2)
must be a multiple of 4. Q.E.D.

Lemma A. Z,££ P #nrf P' be basis projections. Then there
exists a partial basis projection F and a partial isometry u, both

commuting with P and P', such that F+FFF=1-E(0) -£(*/£),
u*u = F and uu*=PFr.

Proof. Use the notation in the proof of Theorem 11. The ope-
rator e has at most three eigenvalues 0, i and —i. The eigenprojection
for 0 is 1 — E(0) — E(7r/2). Let F be an eigenprojection for i. Since
[F, e] =0, PFF must be an eigenprojection for —i and hence P is a
partial basis projection commuting with SL

Next we modify the construction of K(^) as follows. We restrict
our attention to (l-E(0)-E(rc/2))#. Let K(^), y<y0 be given.
Then choose a unit vector evo in F( U {K(O +z"K(>I/)})1. Let "/^0

_ i/Oo

= ^fl + r^0 and •/2^0+1 = f(^0 — ̂ O- Since ^f
vo = ie'VQ, ^Te^=—iTe'VQ and

[s, ffi]=0, (ffl^,SrO=0 and hence K(O-LK(^0+1). Note that
( U (K(g^) +fK(^)})1 is invariant under F and F^=0 on this subspace

i/Oo

unless F+FFr = l — E is 0 on this subspace, which occurs only if this
subspace is EK.
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We define u' to be 1 on K(eVQ), -1 on K(ev^ and 0 on EK.

Then u = n'F commutes with ^ and u*u = F, uu* = rFr. Q.E.D.
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