On Quasifree States of CAR and Bogoliubov Automorphisms

By
Huzihiro Araki

Abstract

A necessary and sufficient condition for two quasifree states of CAR to be quasiequivalent is obtained. Quasifree states is characterized as the unique KMS state of a Bogoliubov automorphism of CAR. The structure of the group of all inner Bogoliubov automorphisms of CAR is clarified.

§1. Introduction

A classification of gauge invariant quasifree states of the canonical anticommutation relations (CAR) up to quasi and unitary equivalence is recently obtained by Powers and Størmer [12]. We shall generalize their result to arbitrary quasifree states.

We use the formalism developped earlier [2] and study quasifree state φ_{s} of a selfdual CAR algebra. it is then shown that $\varphi_{S_{1}}$ and $\varphi_{s_{2}}$ are quasiequivalent if and only if $S_{1}^{1 / 2}-S_{2}^{1 / 2}$ is in the Hilbert Schmidt class. For a gauge invariant quasifree state φ_{A} in the paper of Powers and Størmer, $S=A \oplus(1-A)$ and hence our result is a direct generalization of Powers and Størmer.

The quasifree primary state φ_{s} for which S does not have eigenvalue 1 is shown to be the unique KMS state for the one parameter group $\tau(U(\lambda))$ of Bogoliubov * automorphisms of CAR, where $\tau(U(\lambda))$ corresponds to a unitary transformation $U(\lambda)=\exp i \lambda H$ of the direct sum of testing function spaces of creation and annihilation operators and H is related to S by $S=\left(1+e^{-H}\right)^{-1}$. This is used to simplify some of arguments. A quasifree state φ_{S} is primary unless $1 / 2$ is an isolated point spectrum of S, has an odd multiplicity and $S(1-S)$ is in the

Hilbert Schmidt class.
It is shown that a Bogoliubov automorphism $\tau(V)$ is inner if and only if $V-1$ is in the trace class and $\operatorname{det} V>0$ or $V+1$ is in the trace class and $\operatorname{det} V<0$. It is a $*$ automorphism if and only if V is unitary. A double valued representation of the identity component (i.e. $\operatorname{det} V>0$) of the group of inner Bogoliubov automorphisms of a CAR algebra by elements of CAR algebra (such that it implements the automorphism) is obtained with a help of bilinear hamiltonians. It is a generalization of the observable algebra introduced by Araki and Wyss [4].

A necessary and sufficient condition for the unitary implementability of a Bogoliubov transformation in a Fock representation is obtained.

In an appendix, a general structure of two projections is presented and an angle operator is inroduced. Some of the discussions in the main text can be carried out by introducing a specific basis, although we have avoided this in the present paper. For such a purpose, this general analysis of two projections is useful.

The CAR algebra has been extensively studied by many authors ($[4 \sim 7,10,12 \sim 17]$) and some of our results such as Theorem 6 and 7 are in these earlier references.

§2. Basic Notations

We quote a few notions concerning a self dual CAR algebra from an earlier paper [2].

Let K be a complex Hilbert space and Γ be an antiunitary involution (a complex conjugation, $\left.\Gamma^{2}=1,(\Gamma f, \Gamma g)=(g, f)\right)$ on K. A self dual CAR algebra $\mathfrak{थ}_{\text {sbc }}(K, \Gamma)$ over (K, Γ) is a $*$ algebra generated by $\mathrm{B}(f), f \in K$, its conjugate $\mathrm{B}(f)^{*}, f \in K$ and an identity which satisfy the following relations: (1) $\mathrm{B}(f)$ is (complex) linear in f, (2) $\mathrm{B}(f) \mathrm{B}(g)^{*}+\mathrm{B}(g)^{*} \mathrm{~B}(f)=(g, f) 1$, and (3) $\mathrm{B}(f)^{*}=\mathrm{B}(\Gamma f)$.

If K has a finite dimension, $\mathfrak{\Re}_{\mathrm{SDC}}(K, \Gamma)$ has a finite dimension. Irrespective of the dimension of $K, \mathfrak{N}_{\mathrm{sC} \nu}(K, \Gamma)$ has a unique C^{*} norm and $\overline{\mathfrak{Y}}_{\mathrm{sdc}}(K, \Gamma)$ denotes its C^{*} completion.

Any unitary operator U on K commuting with Γ preserves the
above relations (1) $\sim(3)$ and hence defines a $*$ automorphism $\tau(U)$ of $\overline{\mathfrak{Q}}_{\text {sDC }}(K, \Gamma)$ by $\tau(U) \mathrm{B}(f)=\mathrm{B}(U f) . \quad U$ and $\tau(U)$ shall be called a Bogoliubov transformation and a Bogoliubov * automorphism.

The antilinear transformation

$$
\tau(\Gamma) \sum_{n=1}^{N} c_{n} \mathrm{~B}\left(f_{1}^{(n)}\right) \cdots \mathrm{B}\left(f_{k_{n}}^{(n)}\right)=\sum_{n=1}^{N} c_{n}^{*} \mathrm{~B}\left(\Gamma f_{1}^{(n)}\right) \cdots \mathrm{B}\left(\Gamma f_{k_{n}}^{(n)}\right)
$$

also leaves relations (1) $\sim(3)$ invariant and hence can be extended to a conjugate $*$ automorphism (i.e. antilinear $*$ isomorphism onto itself) which will be denoted by $\tau(\Gamma)$.

Any projection operator P on K satisfying $\Gamma P \Gamma=1-P$ is called a basis projection. There exists a basis projection P if and only if the dimension of K. is even or infinite. Any two basis projections P_{1} and P_{2} can be transformed to each other by a Bogoliubov transformation $U: P_{1}=U P_{2} U^{*}$.

Any projection P on K such that $P \perp \Gamma P \Gamma$ is called a partial basis projection. $\operatorname{dim}(1-P-\Gamma P \Gamma)$ is called the Γ codimension of P.

By identifying $\mathrm{B}(f)$ and $B(\Gamma f), f \in P K$ with creation and annihilation operators on a CAR algebra $\mathfrak{Y}_{\text {CAR }}\left(K_{1}\right)$ over $K_{1}=P K$, we have a $*$ isomorphism of $\overline{\mathscr{थ}}_{\text {SDC }}(K, \Gamma)$ with $\bar{श}_{\text {CAR }}\left(K_{1}\right)$, where P is any basis projection.

Here $\mathfrak{Y}_{\mathrm{CAR}}\left(K_{1}\right)$ is the $*$ algebra generated by creation operators ($\left.\mathrm{a}^{\dagger}, f\right), f \in K_{1}$, their conjugates ($\left.\mathrm{a}^{\dagger}, f\right)^{*} \equiv(f, \mathrm{a}$) (annihilation operators) and an identity, satisfying the following relations: (1) $\left(\mathrm{a}^{\dagger}, f\right)$ is (complex) linear in f, (2) $\left(\mathrm{a}^{\dagger}, f\right)\left(\mathrm{a}^{\dagger}, g\right)+\left(\mathrm{a}^{\dagger}, g\right)\left(\mathrm{a}^{\dagger}, f\right)=(f, \mathrm{a})(g, \mathrm{a})$ $+(g, \mathrm{a})(f, \mathrm{a})=0, \quad\left(\mathrm{a}^{\dagger}, f\right)(g, \mathrm{a})+(g, \mathrm{a})\left(\mathrm{a}^{\dagger}, f\right)=(g, f) 1 . \quad \overline{श ⿹}_{\text {CAR }}\left(K_{1}\right)$ is the completion of $\mathscr{M}_{\mathrm{CAR}}\left(K_{1}\right)$ with respect to its unique C^{*} norm.
(A more precise notation will be something like $\mathrm{B}_{K, \Gamma}(f)$, $\left(\mathrm{a}_{K_{1}}^{\mathrm{r}}, f\right)$ and $\left(f, \mathrm{a}_{K_{1}}\right)$, which is useful whenever elements of more than one algebras with different K, Γ, and K_{1} appear at the same time. We shall meet in later sections a case where elements of $\overline{\mathscr{थ}}_{\text {spo }}(\mathrm{K}, \Gamma)$ and $\overline{\mathfrak{N}}_{\mathrm{sDC}}(\widehat{K}, \widehat{\Gamma}), \widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus(-\Gamma)$, appear at the same time. In this case, $\mathrm{B}_{K, r}(f), f \in K$ is identified with $\mathrm{B}_{\widehat{K}, \widehat{r}}(f \oplus 0)$ and will be denoted simply as $\mathrm{B}(f)$.)

§3. Quasiequivalence of Quasifree States

Definition 3.1. A state φ on $\overline{\mathfrak{M}}_{\text {sDC }}(K, \Gamma)$ satisfying the following relation is called a quasifree state:
(3.1) $\varphi\left(\mathrm{B}\left(f_{1}\right) \cdots \mathrm{B}\left(f_{2 n+1}\right)\right)=0$,
(3.2) $\quad \varphi\left(\mathrm{B}\left(f_{1}\right) \cdots \mathrm{B}\left(f_{2 n}\right)\right)=(-1)^{n(n-1) / 2} \sum \varepsilon(\mathrm{~s}) \prod_{j=1}^{n} \varphi\left(\mathrm{~B}\left(f_{\mathrm{s}(j)}\right) \mathrm{B}\left(f_{\mathrm{s}(j+n)}\right)\right)$,
where $n=1,2, \cdots$, the sum is over all permutations s satisfying

$$
\begin{aligned}
& \mathrm{s}(1)<\mathrm{s}(2)<\cdots<\mathrm{s}(n), \\
& \mathrm{s}(j)<\mathrm{s}(j+n), \quad j=1, \cdots, n
\end{aligned}
$$

and $\varepsilon(\mathrm{s})$ is the signature of s .
Lemma 3.2. For any state φ over $\overline{\mathfrak{Y}}_{\text {sDC }}(K, \Gamma)$, there exists a bounded operator S on K satisfying

$$
\begin{align*}
& \varphi(\mathrm{B}(f) * \mathrm{~B}(g))=(f, S g) \tag{3.3}\\
& 1 \geqq S^{*}=S \geqq 0 \\
& S+\Gamma S \Gamma=1
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
\mathrm{B}(f)^{*} \mathrm{~B}(f) \leqq \mathrm{B}(f)^{*} \mathrm{~B}(f)+\mathrm{B}(f) \mathrm{B}(f)^{*}=\|f\|^{2} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\|\mathrm{B}(f)\|=\left\|\mathrm{B}(f)^{*} \mathrm{~B}(f)\right\|^{1 / 2} \leqq\|f\|^{\|} \tag{3.7}
\end{equation*}
$$

Hence (3.3) defins a bounded linear operator S on K.
From the positivity of φ, it follows that $S^{*}=S \geqq 0$. From the anticommutation relations, we have

$$
\begin{aligned}
\varphi\left(\mathrm{B}(f)^{*} \mathrm{~B}(g)\right) & =(f, g)-\varphi\left(\mathrm{B}(g) \mathrm{B}(f)^{*}\right) \\
& =(f, g)-\varphi\left(\mathrm{B}(\Gamma g)^{*} \mathrm{~B}(\Gamma f)\right) \\
& =(f, g)-(\Gamma g, S \Gamma f) .
\end{aligned}
$$

Since

$$
\begin{equation*}
(h, \Gamma f)=(\Gamma(\Gamma h), \Gamma f)=(f, \Gamma h), \tag{3.8}
\end{equation*}
$$

we have $(\Gamma g, S \Gamma f)=(S \Gamma g, \Gamma f)=(f, \Gamma S \Gamma g)$. Hence (3.5) follows.
From $S \geqq 0$ and $1-S=\Gamma S \Gamma$, it follows that $1-S \geqq 0$. Q.E.D.

Lemma 3.3. For any bounded linear operator S satisfying (3.4) and (3.5), there exists a unique quasifree staie φ satisfying (3.3).

The uniqueness is immediate from (3.1) and (3.2). The existence follows from Lemma 4.6.

Definition 3.4. The unique quasifree state of Lemma 3.3 is denoted φ_{s}.

From Lemmas 3.2 and $3.3, \varphi_{s}$ exhausts all quasifree states of $\overline{\mathfrak{V}}_{\mathrm{sDC}}(K, \Gamma)$.

Theorem 1. Two quasifree states φ_{s} and $\varphi_{s^{\prime}}$ give rise to mutually quasiequivalent representations of $\overline{\mathfrak{Y}}_{\text {sDc }}(K, \Gamma)$ if and only if $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is in the Hilbert Schmidt class.

The proof will be presented in section 5 .

§4. Fock Representation Induced by Quasifree States

Definition 4.1. $\mathfrak{S}_{s}, \pi_{s}$, and Ω_{s} denote the Hilbert space, the representation and the cyclic unit vector canonically associated with the quasifree state φ_{s} through the relation

$$
\varphi_{s}(A)=\left(\Omega_{s}, \pi_{s}(A) \Omega_{s}\right), \quad A \in \overline{\mathfrak{Z}}_{\mathrm{sDC}}(K, \Gamma)
$$

Lemma 4.2. Let φ_{s} be a quasifree state. If a Bogoliubov transformation U commutes with S, then there exists a unitary operator $\mathrm{T}_{s}(U)$ on \mathfrak{S}_{s} such that

$$
\begin{equation*}
\mathrm{T}_{s}(U) \Omega_{S}=\Omega_{s} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{s}(U) \pi_{s}(A) \mathrm{T}_{s}(U)^{*}=\pi_{s}(\tau(U) A) \tag{4.2}
\end{equation*}
$$

for all $A \in \overline{\mathfrak{Y}}_{\text {SDC }}(K, \Gamma)$.
Proof. If $[U, S]=0$, then $\varphi_{s}(\tau(U) A)=\varphi_{s}(A)$. Hence

$$
\mathrm{T}_{s}(U) \sum c_{i} \pi_{s}\left(A_{i}\right) \Omega_{s}=\sum c_{i} \pi_{s}\left(\tau(U) A_{i}\right) \Omega_{S}
$$

and

$$
\mathrm{T}_{s}\left(U^{*}\right) \sum c_{i} \pi_{s}\left(A_{i}\right) \Omega_{s}=\sum c_{i} \pi_{s}\left(\tau\left(U^{*}\right) A_{i}\right) \Omega_{s}
$$

define isometric linear mappings from a dense subset of \mathfrak{W}_{s} into \mathfrak{K}_{s} satisfying

$$
\begin{aligned}
& \mathrm{T}_{s}(U) \mathrm{T}_{s}\left(U^{*}\right)=\mathrm{T}_{s}\left(U^{*}\right) \mathrm{T}_{s}(U) \subset 1, \\
& \mathrm{~T}_{s}(U) \subset \mathrm{T}_{s}\left(U^{*}\right)^{*} .
\end{aligned}
$$

Therefore, the closure of this $\mathrm{T}_{s}(\mathbb{U})$ is unitary and satisfies (4.1) and (4.2).

Note that $\mathrm{T}_{s}(-1)$ is defined for all S.
Lemma 4.3. Let P be a basis projection. If a state φ of $\overline{\mathfrak{n}}_{\text {sDC }}(K, \Gamma)$ satisfies

$$
\begin{equation*}
\varphi\left(\mathrm{B}(f) \mathrm{B}(f)^{*}\right)=0, \quad f \in P K \tag{4.3}
\end{equation*}
$$

then $\varphi=\varphi_{P}$. The representation π_{P} is irreducible.
Proof. By splitting every $\mathrm{B}(f)$ as $\mathrm{B}(P f)++\mathrm{B}(P \Gamma f)^{*}$ and using commutation relations to bring $\mathrm{B}(P f)$ to the left and $\mathrm{B}(P g)^{*}$ to the right, any element A in $\Re_{\mathrm{sdo}}(K, \Gamma)$ can be written as

$$
A=\sum_{j} \mathscr{P}_{j} \mathrm{~B}\left(f_{j}\right)^{*}+\sum_{j} \mathrm{~B}\left(g_{j}\right) \mathscr{P}_{j}^{\prime}+\lambda
$$

where $f_{j}, g_{j} \in P K, \mathscr{P}_{j}$ and \mathscr{P}_{j}^{\prime} are polynomials. The condition (4.3) implies $\varphi(A)=\lambda$ and hence state φ satisfying (4.3) is unique.

From (3.3), φ_{P} satisfies (4.3).
The condition (4.3) may be stated as $\varphi\left(A^{*} A\right)=0$ whenever A belongs to the closed left ideal \mathbb{R} generated by $\mathrm{B}(f) *, f \in P K$. The uniqueness of such state implies that \mathfrak{Z} is maximal and the unique state φ is pure [9].
Q.E.D.

The state φ_{P} is called a Fock state and π_{P} is called a Fock representation. Under the identification of $\bar{\varkappa}_{\mathrm{NDC}}(K, \Gamma)$ with $\bar{M}_{\mathrm{CAR}}(P K)$, this coincides with an ordinary definition of the Fock vaccuum of CAR and the existence of such state φ_{P} is known. A different choice of the basis projection P produces a different identification α_{P} of the selfdual CAR algebra with a CAR algebra and correspondingly different Fock state φ_{P}. All of them are mutually related by Bogoliubov automorphisms.

Definition 4.4. Let S be an operator on K. Then P_{s} donotes the operator on $K \oplus K$ given by a matrix

$$
P_{s}=\left(\begin{array}{cc}
S & S^{1 / 2}(1-S)^{1 / 2} \tag{4.4}\\
S^{1 / 2}(1-S)^{1 / 2} & 1-S
\end{array}\right) .
$$

Lemma 4.5. If S satisfies (3.4) and (3.5), then P_{s} is a basis projection on $(\widehat{K}, \widehat{\Gamma})$ where $\widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus(-\Gamma)$.

Proof. A direct computation shows $P_{s}^{2}=P_{s}=P_{s}^{*}, \Gamma P_{s} \Gamma=1-P_{s}$.
Lemma 4.6. Let $S, P_{s}, \widehat{K}, \widehat{\Gamma}$ be as in Lemma 4.5. Then the restriction of the Fock state $\varphi_{P_{S}}$ of $\overline{\mathfrak{M}}_{\mathrm{SDC}}(\widehat{K}, \widehat{\Gamma})$ to $\overline{\mathfrak{M}}_{\mathrm{SDC}}(K, \Gamma)$ is the quasifree state φ_{s}.

Since $\varphi_{P_{s}}$ is quasifree, its restriction is also quasifree. $\varphi_{P_{s}}\left(\mathrm{~B}(f)^{*}\right.$ $\mathrm{B}(g))=\left(f, P_{s} g\right)=(\widehat{f}, S \hat{g})$ if $f=\widehat{f} \oplus 0, g=\widehat{g} \oplus 0 . \quad$ Q.E.D.

Lemma 4.7. Let P be a basis projection and

$$
\begin{equation*}
\pi_{P}^{\mathrm{t}}(\mathrm{~B}(f))=\pi_{P}[\mathrm{~B}([2 P-1] f)] \mathrm{T}_{P}(-1), \quad f \in K \tag{4.5}
\end{equation*}
$$

Then there exists a representation π_{P}^{t} of $\overline{\mathfrak{A}}_{\mathrm{SDC}}(K, \Gamma)$ on \mathfrak{S}_{P} which is uniquely determined by (4.5). Ω_{P} is cyclic for π_{P}^{t} and the corresponding vector state is φ_{P}.

Proof. It follows from (4.5) that $\pi_{P}^{\mathrm{t}}(\mathrm{B}(f))$ satisfies relations (1), (2) and (3) for $\overline{\mathfrak{\Re}}_{\text {sDC }}(K, \Gamma)$ in section 2. Hence the existence of a representation π_{P}^{t} of $\overline{\mathscr{M}}_{\text {sDr }}(K, \Gamma)$ satisfying (4.5) follows. Since $\mathrm{B}(f)$ generates $\bar{श}_{\text {spo }}(K, \Gamma)$, π_{P}^{t} is unique. By applying $\pi_{P}^{\mathrm{t}}\left(\mathrm{B}\left(f_{i}\right)\right), i=1, \cdots, n$ successively on Ω_{P}, one can reprcduce $\pi_{P}\left(\mathrm{~B}\left(f_{1}\right)\right) \cdots \pi_{P}\left(\mathrm{~B}\left(f_{n}\right)\right) \Omega_{P}$ up to \pm sign and hence Ω_{P} is cyciic. From the same computation, it is seen that the vector state given by Ω_{P} is φ_{P}.

Lemma 4.8. Let K_{0} be a Γ invariant subset of $K, \mathrm{E}\left(K_{0}\right)$ be the projection operator for the smallest closed subspace of K containing K_{0} and

$$
\begin{equation*}
\mathrm{R}_{P}\left(K_{0}\right)=\left\{\pi_{P}(\mathrm{~B}(f)) ; f \in K_{0}\right\}^{\prime \prime} \tag{4.6}
\end{equation*}
$$

The following conditions are equivalent.
(1) Ω_{P} is cyclic for $\mathrm{R}_{P}\left(K_{0}\right)$,
(2) $\left(1-\mathrm{E}\left(K_{0}\right)\right) \wedge(1-P)=0$,
(3) $\quad\left(1-\mathrm{E}\left(K_{0}\right)\right) \wedge P=0$.

Here $P \wedge P^{\prime}$ denotes the projection for $P K \cap P^{\prime} K$. The following conditions are also equivalent.
(1)' Ω_{P} is separating for $\mathrm{R}_{P}\left(K_{0}\right)$,
(2) ${ }^{\prime} \mathrm{E}\left(K_{0}\right) \wedge(1-P)=0$,
(3) $\quad \mathrm{E}\left(K_{0}\right) \wedge P=0$.

Proof. (3) $\rightarrow(1)$: As is known, \mathfrak{K}_{P} is a direct sum of subspaces $\mathcal{S}_{P}^{(n)}, n=0,1, \cdots$, such that the set of vectors $\prod_{i=1}^{n}\left(\mathrm{~B}\left(f_{i}\right)\right) \Omega_{P}, f_{i} \in P K$, is total in $\mathscr{S}_{P}^{(n)}$. (3) implies that $P f, f \in K_{0}$ is total in $P K$. [If ($g, P f$) $=0$ for all $f \in K_{0}$ and $g \in P K$, then $(g, f)=(g, P f)=0$ and hence $\left.g \in K_{0}^{\perp} \cap P K=\{0\}.\right] \quad$ Assume that $\mathscr{S}_{P}^{(k)} \subset \overline{\mathrm{R}_{P}\left(K_{0}\right) \Omega_{P}}$ for $k<n$. (This is true for $n=1$.) Then

$$
\begin{aligned}
& \pi_{P}[\mathrm{~B}(P f)] \mathfrak{S}_{P}^{(k)} \subset \pi_{P}[\mathrm{~B}(f)] \mathfrak{S}_{P}^{(k)}-\pi_{P}[\mathrm{~B}(\{1-P\} f)] \mathfrak{S}_{P}^{(k)}, \\
& \pi_{P}[\mathrm{~B}(\{1-P\} f)] \mathfrak{C}_{P}^{(k)} \subset \mathscr{S}_{P}^{(k-1)} .
\end{aligned}
$$

Therefore, $\mathrm{B}(P f) \mathfrak{S}_{P}^{(k)}$ and hence $\mathfrak{W}_{P}^{(k+1)}$ are in $\overline{\mathrm{R}_{P}\left(K_{0}\right) \Omega_{P}}$.
$(1) \rightarrow(2):$ Assume that (2) does not hold and $\left(1-\mathrm{E}\left(K_{0}\right)\right) g$ $=(1-P) g=g \neq 0$. Then $\pi_{P}[\mathrm{~B}(g)]$ anticommutes with all $\pi_{P}[B(f)]$, $f \in K_{0}$ and hence $\pi_{P}[B(g)] \mathrm{R}_{P}\left(K_{0}\right) \Omega_{P}=0$. Therefore $\pi_{P}[\mathrm{~B}(g)]^{*} \Omega_{P} \neq 0$ is orthogonal to $\mathrm{R}_{P}\left(K_{0}\right) \Omega_{P}$ and (1) is false.
$(2) \rightarrow(3): \quad$ Immediate from $\Gamma \mathrm{E}\left(K_{0}\right) \Gamma=\mathrm{E}\left(K_{0}\right)$ and $\Gamma(1-P) \Gamma=P$.
To prove the rest, let

$$
\begin{equation*}
\mathrm{R}_{P}^{\mathrm{t}}\left(K_{0}\right)=\left\{\pi_{P}^{\mathrm{t}}(\mathrm{~B}(f)) ; f \in K_{0}\right\}^{\prime \prime} \tag{4.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{R}_{P}^{\mathrm{t}}\left((2 P-1) K_{0}^{1}\right) \subset \mathrm{R}_{P}\left(K_{0}\right)^{\prime} \tag{4.8}
\end{equation*}
$$

$(3)^{\prime} \rightarrow(1)^{\prime}:$ We have $\mathrm{E}\left(K_{0}\right)=1-\mathrm{E}\left(K_{0}^{\perp}\right)$. Hence (3)' implies that Ω_{P} is cyclic for $\mathrm{R}_{P}\left(K_{0}^{\perp}\right)$ by $(3) \rightarrow(1)$ and so for $\mathrm{R}_{P}^{\mathrm{t}}\left((2 P-1) K_{0}^{\perp}\right)$. Due to (4.8), this implies (1)'.
$(1)^{\prime} \rightarrow(2)^{\prime}: \quad$ Assume that $(2)^{\prime}$ does not hold and $\mathrm{E}\left(K_{0}\right) g=(1-P) g$
$=g \neq 0$. Then $Q \equiv \pi_{P}(\mathrm{~B}(g))$ is in $\mathrm{R}_{P}\left(K_{0}\right)$ and $Q \Omega_{P}=0$. Hence (1) is false.
$(2)^{\prime} \rightarrow(3)^{\prime}: \quad$ Same as $(2) \rightarrow(3)$.
Q.E.D.

Remark 4.9. It is known that an equality holds in (4.8).
Corollary 4.10. Let

$$
\begin{equation*}
R_{S} \equiv \pi_{P_{S}}\left(\overline{\mathfrak{A}}_{\mathrm{SDD}}(K, \Gamma)\right)^{\prime \prime} \tag{4.9}
\end{equation*}
$$

Then the following conditions are equivalent.
(1) $\Omega_{P_{s}}$ is cyclic for R_{s}.
(2) $\Omega_{P_{s}}$ is separating for R_{s}.
(3) S does not have an eigenvalue 1.
(4) S does not have an eigenvalue 0.

Proof. Let Q be the projection $1 \oplus 0$ acting on $\widehat{K}=K \oplus K$. Then, by Lemma 4.8, (1) is equivalent to $0=(1-Q) \wedge P_{s}=$ the eigenprojection of $(1-Q) P_{s}(1-Q)=0 \oplus(1-S)$ for an eigenvalue 1 and hence is equivalent to (4). Similarly (2) is equivalent to $0=Q \wedge P_{s}=$ the eigenprojection of $Q P_{s} Q=S \oplus 0$ for an eigenvalue 1 and hence is equivalent to (3). Since $\Gamma S \Gamma=1-S,(3) \Leftrightarrow(4)$.
Q.E.D.

If any of the conditions (1)~(4) is satisfied, we can identify \mathfrak{W}_{s} and Ω_{s} with $\mathfrak{S}_{P_{S}}$ and $\Omega_{P_{S}}$. In general, \mathscr{S}_{s} is identified with a subspace of $\mathfrak{C}_{P_{s}}$.

Lemma 4.11. If $1 / 2$ is an eigenvalue of S with an even or 0 or infinite multiplicity, then R_{s} is a factor.

Proof. First we consider the case where S does not have an eigenvalue $1 / 2$ (i.e. its multiplicity is 0). We show that $R=\left\{R_{s} \cup R_{s}^{\prime}\right\}^{\prime \prime}$ is irreducible. For this purpose, it is enough to show that $\Omega_{P_{S}}$ is cyclic for R and that there exists a subset $\mathfrak{Z} \subset R$ such that $Q \Psi=0$ for all $Q \in \mathcal{R}$ is equivalent to $\Psi=c \Omega_{P_{S}}$ for some complex number c.

Vectors $\pi_{P_{s}}\left(\prod_{i=1}^{n} \mathrm{~B}\left(f_{i} \oplus g_{i}\right)\right) \Omega_{P_{s}}$ are total in $\mathfrak{S}_{P_{s}}$. Since $\pi_{P_{s}}\left(\prod_{i=1}^{n} \mathrm{~B}\left(f_{i} \oplus 0\right)\right)$ $\in R_{s}$ and $\pi_{P_{s}}\left(\prod_{i=1} \mathrm{~B}\left(0 \oplus g_{i}\right)\right) \mathrm{T}_{P_{s}}(-1) \in R_{S}^{\prime}, \quad \Omega_{P_{S}}$ is cyclic for R.

We now take the set of all

$$
\mathrm{A}(f) \equiv \pi_{P_{s}}\left(\mathrm{~B}\left[(1-S)^{1 / 2} f \oplus 0\right]\right)-\pi_{P_{s}}\left(\mathrm{~B}\left[0 \bigoplus S^{1 / 2} f\right]\right) \mathrm{T}_{P_{s}}(-1)
$$

to be R. The first term is in R_{s} and the second term is in R_{s}^{\prime} by (4.8). $A(f) \Omega_{P_{s}}=0$. We shall show that $\mathrm{A}(f) \Psi=0$ for all $f \in K$ implies $\Psi=c \Omega_{P_{s}}$.

Let

$$
\Psi_{ \pm}=\left[1 \pm \mathrm{T}_{P_{s}}(-1)\right] \Psi .
$$

Since $\mathrm{T}_{P_{s}}(-1)$ anticommutes with $\mathrm{A}(f)$, we have $\mathrm{A}(f) \Psi_{ \pm}=0$.
On $\Psi_{+}, \quad \mathrm{T}_{P_{s}}(-1)=1 \quad$ and hence $\mathrm{A}(f) \Psi_{+}=\pi_{P_{s}}\left(\mathrm{~B}\left(f^{\prime}\right)\right) \Psi_{+}, \quad f^{\prime}$ $=(1-S)^{1 / 2} f \oplus\left(-S^{1 / 2} f\right)$. Obviously $\quad P_{s} f^{\prime}=0$. Since $\quad\left[(1-S)^{1 / 2} f\right]^{\prime}$ $+\widehat{\Gamma}\left[\Gamma S^{1 / 2} f\right]^{\prime}=f \oplus 0$ and $-\left[S^{1 / 2} f\right]^{\prime}+\widehat{\Gamma}\left[\Gamma(1-S)^{1 / 2} f\right]^{\prime}=0 \oplus f$, the set $\left\{f^{\prime} ; f \in K\right\}$ coincides with $\left(1-P_{s}\right) \widehat{K}$. Therefore $\Psi_{+}=c \Omega_{P_{s}}$ by Lemma 4. 3.

On $\Psi_{-}, \mathrm{A}(f) \Psi_{-}=\pi_{P_{s}}\left(\mathrm{~B}\left(f^{\prime \prime}\right)\right) \Psi_{-}, f^{\prime \prime}=(1-S)^{1 / 2} f \oplus S^{1 / 2} f . \quad \mathrm{A}(f) \Psi_{-}$ $=0$ for all $f \in K$ implies that the vector state of $\overline{\mathfrak{M}}_{\mathrm{sdc}}(\widehat{K}, \widehat{\Gamma})$ induced by $\left\|\Psi_{-}\right\|^{-1} \Psi_{-}$is a Fock state for the basis projection $P_{s}^{\prime} \equiv 2(S \oplus(1-S))$ $-P_{s}$ provided that $\Psi_{-} \neq 0$. Here $\left(\Psi_{-}, \Omega_{P_{s}}\right)=0$ while, from the equation (9.27) and Theorem 6, $\left(\Psi_{-}, \Omega_{P_{s}}\right)$ can vanish only when $P_{s}^{\prime}\left(1-P_{s}\right) P_{s}^{\prime}$ has an eigenvalue 1. From $P_{s}^{\prime} f=f$ and $P_{s} f=0$ for $f=f_{1} \oplus f_{2}$, we have $\left(S f_{1}\right)=(1 / 2) f_{1}, S f_{2}=(1 / 2) f_{2}$. Hence, if S does not have an eigenvalue $1 / 2$, then $\Psi_{-}=0$.

We now consider the general case where the eigenvalue $1 / 2$ of S has a nonvanishing multiplicity. We shall reduce it to the previous case by Lemma 5.3. Let $E_{1 / 2}$ be the eigenprojection of S for an eigenvalue $1 / 2$. By Lemma 3.3 of [2], there exists a subprojection E of $E_{1 / 2}$ such that $E+\Gamma E \Gamma=E_{1 / 2}$. Let T be a Hilbert Schmidt class operator such that $0 \leqq T \leqq 2^{-1}$ and $(1-E)$ is the eigenprojection of T for an eigenvalue 0 . Let

$$
\widehat{S}=S-T+\Gamma T \Gamma
$$

Then $\widehat{S}=\widehat{S}^{*}, \Gamma \widehat{S} \Gamma=1-\widehat{S}, \quad \widehat{S}$ does not have an eigenvalue $1 / 2$ and

$$
\widehat{S}^{1 / 2}-S^{1 / 2}=\left[(1 / 2-T)^{1 / 2}-(1 / 2)^{1 / 2}\right]+\Gamma\left[(1 / 2+T)^{1 / 2}-(1 / 2)^{1 / 2}\right] \Gamma .
$$

Since $(1 / 2 \pm T)^{1 / 2}-(1 / 2)^{1 / 2}= \pm\left[(1 / 2 \pm T)^{1 / 2}+(1 / 2)^{1 / 2}\right]^{-1} T$ is in the

Hilbert Schmidt class, R_{s} and $R_{\widehat{s}}$ are quasiequi valent by Lemma 5.3. We already know that $R_{\widehat{S}}$ is a factor. Therefore R_{S} is a factor.
Q.E.D.

A full characterization of the case where R_{S} becomes a factor is given in Theorem 9.

Remark 4.12. From the beginning part of the preceding proof, it follows that $\Omega_{P_{S}}$ is cyclic for $\left(R_{s} \cup R_{s}^{\prime}\right)^{\prime \prime}$ for any S and hence is separating for the center of R_{s}.

§5. Proof of Theorem 1

The following is Lemma 4.5 of [12], for which we give a different proof.

Lemma 5.1. $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is in the Hilbert Schmidt class if and only if $P_{s}-P_{s^{\prime}}$ is in the Hilbert Schmidt class.

Proof. Let $\rho=S^{1 / 2}, \rho^{\prime}=\left(S^{\prime}\right)^{1 / 2}$. If $\rho-\rho^{\prime}$ is $H S$ (a Hilbert Schmidt class operator), then all of

$$
\begin{align*}
(5.1) & S-S^{\prime}=\left\{\left(\rho-\rho^{\prime}\right)\left(\rho+\rho^{\prime}\right)+\left(\rho+\rho^{\prime}\right)\left(\rho-\rho^{\prime}\right)\right\} / 2 \tag{5.1}\\
(5.2) & (1-S)^{1 / 2}-\left(1-S^{\prime}\right)=\Gamma\left(\rho-\rho^{\prime}\right) \Gamma \\
(5.3) & \rho(1-S)^{1 / 2}-\rho^{\prime}\left(1-S^{\prime}\right)^{1 / 2} \\
& =\left(\rho-\rho^{\prime}\right)(1-S)^{1 / 2}+\rho^{\prime}\left((1-S)^{1 / 2}-\left(1-S^{\prime}\right)^{1 / 2}\right)
\end{align*}
$$

are $H S$. Hence $P_{s}-P_{s^{\prime}}$ is $H S$.
Conversely, assume $P_{s}-P_{s}^{\prime}$ is HS. Then, by Lemma 5.2,

$$
\begin{equation*}
\left\|\left|P_{s}-Q^{\prime}\right|-\left|P_{s^{\prime}}-Q^{\prime}\right|\right\|_{\mathrm{H.S.} .} \leqq\left\|P_{s}-P_{s^{\prime}}\right\|_{\text {н.s. }} \tag{5.4}
\end{equation*}
$$

where $Q^{\prime}=0 \oplus 1$ on $K \oplus K$. Since $\left|P_{s}-Q^{\prime}\right|^{2}=S \oplus S,\left|P_{s^{\prime}}-Q^{\prime}\right|^{2}=S^{\prime} \oplus S^{\prime}$, we have $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ in the $H S$ class.
Q.E.D.

Lemma 5.2. Let A and B be bounded selfadjoint operators, then

$$
\begin{equation*}
\|A-B\|_{\text {H.S. }} \geqq\||A|-|B|\|_{\text {f.s. }} . \tag{5.5}
\end{equation*}
$$

Proof. (5.5) is equivalent to

$$
\begin{equation*}
\operatorname{tr}\left\{A^{2}+B^{2}-A B-B A\right\} \geqq \operatorname{tr}\left\{A^{2}+B^{2}-|A||B|-|B||A|\right\} . \tag{5.6}
\end{equation*}
$$

First consider the case, where A has purely discrete spectrum. Let Ψ_{α} be a complete orthonormal set of eigenvectors of A with eigenvalues λ_{α}. Then
(․ 7) $\operatorname{tr}\left\{A^{2}+B^{2}-A B-B A\right\}=\sum_{\alpha}\left\{\lambda_{\alpha}^{2}+\left(\Psi_{\alpha}, B^{2} \Psi_{\alpha}\right)-2 \lambda_{\alpha}\left(\Psi_{\alpha}, B \Psi_{\alpha}\right)\right\}$,

$$
\begin{align*}
& \operatorname{tr}\left\{A^{2}+B^{2}-|A||B|-|B||A|\right\} \tag{5.8}\\
& \quad=\sum_{\alpha}\left\{\lambda_{\alpha}^{2}+\left(\Psi_{\alpha}, B^{2} \Psi_{\alpha}\right)-2\left|\lambda_{\alpha}\right|\left(\Psi_{\alpha},|B| \psi_{\alpha}\right)\right\}
\end{align*}
$$

Since $|B| \geqq B \geqq-|B|, \quad\left(\Psi_{\alpha},|B| \Psi_{\alpha}\right) \geqq\left|\left(\Psi_{\alpha}, B \Psi_{\alpha}\right)\right|$. Therefore we have (5.6), where $+\infty$ is allowed.

Fcr any selfadjoint operator A and $\varepsilon>0$, there exists a selfadjoint cperatcr A_{ε} with purely discrete spectrum such that $\left\|A-A_{\varepsilon}\right\|_{\text {н.s. }}<\varepsilon$. Hence [5]. From (5.5), we have $\left\||A|-\left|A_{\varepsilon}\right|\right\|_{\text {н.S. }} \leqq\left\|A-A_{\varepsilon}\right\|_{\text {н... }}<\varepsilon$.

$$
\begin{align*}
\|A-B\|_{\text {н.s. }} & \geqq\left\|A_{\varepsilon}-B\right\|_{\text {н.s. }}-\varepsilon \tag{5.9}\\
& \geqq\left\|\left|A_{\varepsilon}\right|-|B|\right\|_{\text {r.s. }}-\varepsilon \\
& \geqq\||A|-|B|\|_{\text {н.s. }}-2 \varepsilon .
\end{align*}
$$

Since ε is arbitrary, we have (5.5) for general A and B. Q.E.D.
Lemma 5. 3. If $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is in the Hilbert Schmidt class, then φ_{s} and φ_{s} are quasiequivalent. If S and S^{\prime} satisfy any of conditions (1) $\sim(4)$ of Corollary 4.10, in addition, then π_{s} and π_{s}, are unitarily equivalent.

Proof. If $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is $H S$, then $P_{s}-P_{S^{\prime}}$ is $H S$. Hence by the first half of Theorem 6 (essentially Lemma 9.4), there exists a vector Ω^{\prime} in $\mathfrak{X}_{P_{s}}$ such that the vector state of Ω^{\prime} on $\overline{\mathfrak{N}}(\widehat{K}, \widehat{\Gamma})$ is $\varphi_{P_{s^{\prime}}}$, where $\widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus(-\Gamma)$. Hence φ_{s} and $\varphi_{s^{\prime}}$ are given as vector states of $\pi_{P_{s}}(\overline{\mathfrak{A}}(K, \Gamma))$ by $\Omega_{P_{s}}$ and Ω^{\prime} which are separating for the center of $\pi_{P_{s}}(\overline{\mathfrak{A}}(K, \Gamma))^{\prime \prime}$ due to Remark 4.12. Therefore φ_{s} and $\varphi_{s^{\prime}}$ are quasiequivalent. If both S and S^{\prime} satisfy conditions in Corollary 4.10, then \mathfrak{S}_{s} and $\mathfrak{S}_{s^{\prime}}$ can be both identified with $\mathfrak{S}_{P_{s}}$ and hence π_{s} and $\pi_{s^{\prime}}$ are unitarily equivalent.

Lemma 5.4. Let A_{n} be a sequence of bounded linear operators on a Hilbert space with a strong limit A. Then

$$
\begin{equation*}
\|A\|_{\text {r.s. }} \leqq \underline{\lim \left\|A_{n}\right\|_{\text {H.S. }} .} \tag{5.10}
\end{equation*}
$$

(Here $\|C\|_{\text {H.s. }}=\left\{\Sigma\left\|C \psi_{i}\right\|^{22}\right\}^{1 / 2}$ for a complete orthonormal basis $\left\{\psi_{i}\right\}$ and we allow $+\infty$. It is independent of the basis.)

Proof. We have

$$
\underline{\lim }\left\|A_{n}\right\|_{\mathrm{H.s.}}^{2} \geqq \underline{\lim } \sum_{i=1}^{N}\left\|A_{n} \psi_{t}\right\|^{2}=\sum_{i=1}^{N}\left\|A \psi_{i}\right\|^{2} .
$$

Since N is arbitrary, we obtain (5.10).
Q.E.D.

Lemma 5.5. If S and S^{\prime} satisfy any of conditions (1)~(4) of Corollary 4.10, and if $P_{s}-P_{s^{\prime}}$ is not in the Hilbert Schmidt class, then π_{s} and $\pi_{s^{\prime}}$ are not quasiequivalent.

Proof. Let Q_{n} be an increasing sequence of finite even dimensional projections commuting with Γ and tending to 1 on K. From Lemma 5.4, we have

$$
\lim _{n \rightarrow \infty}\left\|\left(Q_{n} S Q_{n}\right)^{1 / 2}-\left(Q_{n} S^{\prime} Q_{n}\right)^{1 / 2}\right\|_{\mathrm{H}, \mathrm{~s},}=\infty
$$

From (5.4), we have

$$
\lim _{n \rightarrow \infty}| | P_{Q_{n} S Q_{n}}-P_{Q_{n} S^{\prime} Q_{n}} \|_{\text {H.s. }}=\infty .
$$

From Lemma 6.6, we obtain

$$
\lim _{n \rightarrow \infty}\left\|\left(\varphi_{S}-\varphi_{s^{\prime}}\right) \mid \mathfrak{H}_{\mathrm{SDC}}\left(Q_{n} K, \Gamma\right)\right\|=2
$$

Therefore, we have

$$
\begin{equation*}
\left\|\varphi_{s}-\varphi_{s^{\prime}}\right\|=2 . \tag{5.11}
\end{equation*}
$$

Since S and S^{\prime} both satisfy the condition of Corollary 4.10, the representations π_{s} and $\pi_{s^{\prime}}$ have cyclic and separating vectors Ω_{s} and $\Omega_{s^{\prime}}$. If π_{s} and $\pi_{s^{\prime}}$ are quasiequivalent, then they are unitarily equivalent. Therefore there exists a separating vector Ω^{\prime} in \mathfrak{E}_{s} such that ($\Omega^{\prime}, \pi_{s}(A) \Omega^{\prime}$) $=\varphi_{s^{\prime}}(A)$. Since Ω^{\prime} is cyclic for the commutant, there exists a unitary operator W in $\pi_{s}\left(\mathfrak{A}_{\text {sDC }}(K, \Gamma)\right)^{\prime}$ such that $\left(W \Omega^{\prime}, \Omega_{s}\right) \neq 0$. Then the vector state for $\Omega^{\prime \prime}=W \Omega^{\prime}$ is again $\varphi_{s^{\prime}}$ and we have

$$
\begin{align*}
& \left\|\varphi_{s}-\varphi_{s^{\prime}}\right\| \tag{5.12}\\
& \quad \leqq \operatorname{tr}\left|P\left(\Omega_{S}\right)-P\left(\Omega^{\prime \prime}\right)\right|=2\left\{1-\left|\left(\Omega_{S}, \Omega^{\prime \prime}\right)\right|^{2}\right\}^{1 / 2} \\
& \quad<2
\end{align*}
$$

where $P(\Psi)$ denote the projection operator on the one dimensional space spanned by Ψ. The contradiction of (5.11) and (5.12) proves the Lemma.
Q.E.D.

Proof of Theorem 1. If $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is in the Hilbert Schmidt class, then φ_{S} and $\varphi_{s^{\prime}}$ are quasiequivalent by Lemma 5.3.

Now assume that $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is not in the Hilbert Schmidt class. Let E_{1} and E_{1}^{\prime} be eigenprojections of S and S^{\prime} for an eigenvalue 1. Let T and T^{\prime} be Hilbert Schmidt class operators such that $0 \leqq T<1$, $0 \leqq T^{\prime}<1$ and the eigenprojection of T and T^{\prime} for an eigenvalue 0 are $1-E_{1}$ and $1-E_{1}^{\prime}$. Let

$$
\begin{aligned}
& \widehat{S}=S-T^{2}+\Gamma T^{2} \Gamma \\
& \widehat{S}^{\prime}=S^{\prime}-\left(T^{\prime}\right)^{2}+\Gamma\left(T^{\prime}\right)^{2} \Gamma
\end{aligned}
$$

Then \widehat{S} and \widehat{S}^{\prime} have the properties (3.4) and (3.5) and satisfy the condition (3) of Corollary 4.10. Further,

$$
\begin{aligned}
& \widehat{S}^{1 / 2}-S^{1 / 2}=\Gamma T \Gamma-\left[\left(1-T^{2}\right)^{1 / 2}+1\right]^{-1} T^{2} \\
& \left(\widehat{S}^{\prime}\right)^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}=\Gamma T^{\prime} \Gamma-\left[\left(1-\left(T^{\prime}\right)^{2}\right)^{1 / 2}+1\right]^{-1}\left(T^{\prime}\right)^{2}
\end{aligned}
$$

are both in the Hilbert Schmidt class. This implies by Lemma 5.3 that φ_{s} is quasiequivalent to φ_{S} and $\varphi_{s^{\prime}}$ is quasiequivalent to $\varphi_{s^{\prime}}$. It also implies that $\left(\widehat{S^{\prime}}\right)^{1 / 2}-(\widehat{S})^{1 / 2}$ is not in the Hilbert Schmidt class.

We can now apply Lemma 5.5 and conclude that $\varphi \widehat{s^{\prime}}$ is not quasiequivalent to $\varphi_{\widehat{s}}$ and hence that $\varphi_{s^{\prime}}$ is not quasiequivalent to φ_{s}.
Q.E.D.

In the present section, we have assumed Lemma 9.4 and Lemma 6.6. We shall prove Lemma 9.4 in the course of our discussion on the unitary implementability of Bogoliubov transformations, although a more direct and hence shorter proof of this Lemma is also possible. We shall prove Lemma 6.6 by using a known structure of $K M S$ states.

§6. Uniqueness Theorems

Let $\tau(\lambda)$ be a continuous one parameter group of automorphisms of a C^{*}-algebra \mathfrak{N}. A state φ of \mathfrak{A} is said to be a state of finite $\tau(\lambda)$ -
energy if there exists a such that

$$
\begin{equation*}
\int \varphi(B \tau(\lambda) A) f(\lambda) \mathrm{d} \lambda=0, \quad A, B \in \mathcal{A} \tag{6.1}
\end{equation*}
$$

whenever $f \in \mathcal{S}$ and

$$
\begin{equation*}
\widetilde{f}(p)=\int f(\lambda) e^{i \lambda p} \mathrm{~d} \lambda=0 \tag{6.2}
\end{equation*}
$$

for $p \geq a$. When a can be chosen to be $0, \varphi$ is called $\tau(\lambda)$-vacuum.
A state φ is called a KMS state of $\tau(\lambda)$ with inverse temperature β, if

$$
\begin{equation*}
\int \varphi\left(B_{\tau}(\lambda) A\right) f(\lambda) \mathrm{d} \lambda=\int \varphi((\tau(\lambda) A) B) f(\lambda+i \beta) \mathrm{d} \lambda \tag{6.3}
\end{equation*}
$$

for $A, B \in \mathfrak{A}$ and $\widetilde{f \in \mathscr{D}}$ such that

$$
\begin{equation*}
f(\lambda)=\frac{1}{2 \pi} \int e^{-i \lambda \phi} \widetilde{f}(p) \mathrm{d} p \tag{6.4}
\end{equation*}
$$

(6.3) is referred to as the $K M S$ condition.

Theorem 2. Let $\mathrm{U}(\lambda)$ be a continuous one parameter group of Bogoliubov transformations. Let $\mathrm{E}(p)$ be the spectral projections:

$$
\begin{align*}
& \mathrm{U}(\lambda)=\int e^{i \lambda \rho} \mathrm{E}(\mathrm{~d} p)=e^{i \lambda H}, \tag{6.5}\\
& H=\int p \mathrm{E}(\mathrm{~d} p) .
\end{align*}
$$

Let $E_{+}=\mathrm{E}((0, \infty)), E_{0}=\mathrm{E}(\{0\})$. Then φ is a $\tau(\lambda)$-vacuum if and only if

$$
\begin{align*}
& \varphi(A B)=\varphi_{E_{+}}(A) \varphi^{\prime}(B), \tag{6.6}\\
& A \in \overline{\mathfrak{N}}_{\mathrm{SDC}}\left(\left(1-E_{0}\right) K, \Gamma\right), \quad B \in \overline{\mathfrak{U}}_{\mathrm{SDC}}\left(E_{0} K, \Gamma\right),
\end{align*}
$$

where $\varphi_{E_{+}}$is a Fock state and φ^{\prime} is an arbitrary state on $\overline{\mathfrak{Y}}_{\text {SDC }}\left(E_{0} K, \Gamma\right)$.
Proof. Since $\mathrm{U}(\lambda)$ is a Bogoliubov transformation, $\Gamma E_{0} \Gamma=E_{0}$ and $\Gamma E_{+} \Gamma=1-E_{0}-E_{+}$. Namely E_{+}is a basis projection for $\left(1-E_{0}\right) K$. Let φ_{1} be the restriction of φ to $\overline{\mathscr{N}}_{\text {sDC }}\left(\left(1-E_{0}\right) K, \Gamma\right) \equiv \mathfrak{N}$.

Next we have

$$
\int \tau(\mathrm{U}(\lambda)) \mathrm{B}(g) f(\lambda) \mathrm{d} \lambda=\mathrm{B}(\widetilde{f}(H) g) .
$$

If \widetilde{f} runs over all $\widetilde{f} \in \mathcal{S}$ such that $\widetilde{f}(p)=0$ for $p \geq 0$, then the set of $\widetilde{f}(H) g, g \in K$ is a dense subset of $E_{-} K$. Hence (6.1) requires

$$
\varphi_{1}(\mathrm{~B}(f) * \mathrm{~B}(f))=0
$$

for all $f \in E_{-} K$. By Lemma 4.3, this implies $\varphi_{1}=\varphi_{E_{+}}$.
Let π_{ρ} be the representation of $\overline{\mathcal{U}}_{\text {sDC }}(K, \Gamma)$ and Ω_{ρ} be a cyclic vector associated with φ. If $h_{j} \in E_{0} K,\left\|h_{j}\right\|^{2}=2$ and $\Gamma h_{j}=h_{j}, j=1, \cdots$, then the vector states of \mathfrak{N} by $\Psi=\pi_{\rho}\left(\prod_{j=1}^{n} \mathrm{~B}\left(h_{j}\right)\right) \Omega_{\rho}$ are the same Fock states $\varphi_{E_{+}}$. Since the union of $\pi_{\varphi}(\mathfrak{K}) \Psi$ for all such Ψ is total in $\mathfrak{S}_{\mathscr{P}}$, $\pi_{\mathscr{P}} \mid \mathfrak{A}$ is quasiequivalent to the Fock representation $\pi_{E_{+}}$. Hence, by Lemma 4.2 for $U=-1$ and $S=E_{+}$and by the irreducibility of $\pi_{E_{+}}$, there exists $T \in \pi_{\varphi}(\mathfrak{X})^{\prime \prime}$ (corresponding to $\mathrm{T}_{E_{+}}(-1)$) such that $T \Omega_{\rho}=\Omega_{\rho}$, $T^{*}=T, T^{2}=1$ and $T_{\pi_{\rho}}(A) T^{*}=\pi_{\rho}(\tau(-1) A)$ for $A \in \mathfrak{N}$. Let $\pi_{\rho}^{\prime}(\mathrm{B}(h))$ $=\pi_{\varphi}(\mathrm{B}(h)) T$ for $h \in E_{0} K$. We have $\pi_{\varphi}^{\prime}(\mathrm{B}(h)) \in \pi_{\varphi}(\mathfrak{C})^{\prime}$. Hence $\pi_{\rho}(\mathrm{B}(h))$ $=\pi_{\rho}^{\prime}(\mathrm{B}(h)) T$ commutes with T. Therefore $\pi_{\rho}^{\prime}(\mathrm{B}(h))$ generates a representation of $\overline{\mathfrak{N}}_{\mathrm{SDC}}\left(E_{0} K, \Gamma\right)$, which we denote by π_{φ}^{\prime}. More explicitly, $\pi_{\rho}^{\prime}(C)=\pi_{\rho}(C)(1+T) / 2+\pi_{\rho}(\tau(-1) C)(1-T) / 2$. Let φ_{2} be the restriction of φ to $\bar{श}_{\text {sDC }}\left(E_{0} K, \Gamma\right)$. Since $T \Omega_{\rho}=\Omega_{\varphi}, \varphi_{2}$ is the vector state given by $\varphi_{2}(C)=\left(\Omega_{\rho}, \pi_{\rho}^{\prime}(C) \Omega_{\rho}\right)$. Since Ω_{ρ} gives rise to a pure state of \mathfrak{A}, we have $\varphi(A C)=\left(\Omega_{\varphi}, \pi_{\varphi}(A) \pi_{\varphi}^{\prime}(C) \Omega_{\varphi}\right)=\varphi_{E_{+}}(A) \varphi_{2}(C)$ for $A \in \mathfrak{H}$ and $C \in \overline{\mathfrak{Y}}_{\text {SDC }}\left(E_{0} K, \Gamma\right)$.

Conversely, if φ_{2} is a state on $\overline{\mathfrak{N}}_{\text {SDC }}\left(E_{0} K, \Gamma\right)$ and $\mathscr{E}_{2}, \Omega_{2}, \pi_{2}$ is canonically associated with it, then

$$
\begin{aligned}
\pi(A B) & =\pi_{E_{+}}(A) \otimes\left(\pi_{2}(B)+\pi_{2}(\tau(-1) B)\right) / 2 \\
& +\pi_{E_{+}}(A) \mathrm{T}_{E_{\tau}}(-1) \otimes\left(\pi_{2}(B)-\pi_{2}(\tau(-1) B)\right) / 2
\end{aligned}
$$

on $\mathfrak{S}_{E_{+}} \otimes H_{2}$ uniquely extends to a representation of $\overline{\mathfrak{M}}_{\text {SDC }}(K, \Gamma)$ and $\Omega=\Omega_{E_{+}} \otimes \Omega_{2}$ satisfies $(\Omega, \pi(A B) \Omega)=\varphi_{E_{+}}(A) \varphi_{2}(B)$. Further, $\tau(\mathrm{U}(\lambda))$ leaves the vector state by Ω invariant, and is unitarily implementable by an operator $T_{E_{+}}(\mathrm{U}(\lambda)) \otimes 1$, whose generator is known to be positive semidefinite for $H E_{+} \geq 0$. Hence (6.1) is satisfied.
Q.E.D.

Lemma 6.1. If the dimension of K is finite and even or infinite, $\varphi_{1 / 2}$ is the unique state of $\overline{\mathfrak{Z}}_{\mathrm{SDC}}(K, \Gamma)$ satisfying

$$
\begin{equation*}
\varphi_{1 / 2}(A B)=\varphi_{1 / 2}(B A) \tag{6.7}
\end{equation*}
$$

Proof. $\varphi_{1 / 2}$ satisfies (6.7) due to (3.1), (3.2) and

$$
\begin{equation*}
\varphi_{1 / 2}(B(f) * \mathrm{~B}(g))=\varphi_{1 / 2}\left(\mathrm{~B}(g), \mathrm{B}(f)^{*}\right)=(f, g) / 2 \tag{6.8}
\end{equation*}
$$

Let $\left\{f_{\alpha}\right\}$ be a Γ invariant orthonormal basis of K. (Such basis exists). Any element in $\mathfrak{\vartheta}_{\text {SDC }}(K, \Gamma)$ is a polynomial of $\mathrm{B}\left(f_{\alpha}\right)$. Since $\mathrm{B}\left(f_{\alpha}\right)^{2}$ $=1 / 2$ ard $\mathrm{B}\left(f_{\alpha}\right)$ anticommutes with other $\mathrm{B}\left(f_{\beta}\right)$, it is enough to deduce the value $\varphi\left(\mathrm{B}\left(f_{\alpha_{1}}\right) \cdots \mathrm{B}\left(f_{\alpha_{n}}\right)\right)$ uniquely from (6.7) when $\alpha_{1} \cdots \alpha_{n}$ are distinct. If $n \neq 0$ is even, then $\mathrm{B}\left(f_{\alpha_{1}}\right) \cdots \mathrm{B}\left(f_{\alpha_{n}}\right)=-\mathrm{B}\left(f_{\alpha_{n}}\right) \mathrm{B}\left(f_{\alpha_{1}}\right) \cdots$ implies that $\varphi\left(\prod_{k} \mathrm{~B}\left(f_{\alpha_{k}}\right)\right)=0$. If n is odd and if there is β distinct from all α_{k}, then

$$
\begin{aligned}
\mathrm{B}\left(f_{\alpha_{1}}\right) \cdots \mathrm{B}\left(f_{\alpha_{n}}\right) & =2 \mathrm{~B}\left(f_{\alpha_{1}}\right) \cdots \mathrm{B}\left(f_{\alpha_{n}}\right) \mathrm{B}\left(f_{\beta}\right)^{2} \\
& =-2 B\left(f_{\beta}\right) \mathrm{B}\left(f_{\alpha_{1}}\right) \cdots \mathrm{B}\left(f_{\alpha_{n}}\right) \mathrm{B}\left(f_{\beta}\right)
\end{aligned}
$$

implies again that $\varphi\left(\underset{k}{\Pi} \mathrm{~B}\left(f_{\alpha_{k}}\right)\right)=0$. If $\operatorname{dim} K$ is even or infinite, this shows the uniqueness.
Q.E.D.
$\varphi_{1 / 2}$ is called the central state. Existence of such $\varphi_{1 / 2}$ follows from Lemma 3.3. If $\operatorname{dim} K=2 n, \varphi_{1 / 2}$ is the trace of a full matrix algebra divided by 2^{n}.

Corollary 6.2. For any * automorphism τ of $\mathfrak{Y}_{\text {SDC }}(K, \Gamma), \varphi_{1 / 2}$ is invariant and there exists a unitary operator $\mathrm{T}_{1 / 2}(\tau)$ on $H_{1 / 2}$ such that

$$
\begin{aligned}
& \mathrm{T}_{1 / 2}(\tau) \Omega_{1 / 2}=\Omega_{1 / 2}, \quad \mathrm{~T}_{1 / 2}(\tau) \pi_{1 / 2}(A) \mathrm{T}_{1 / 2}(\tau)^{*}=\pi_{1 / 2}(\tau A), \\
& \mathrm{T}_{1 / 2}\left(\tau_{1}\right) \mathrm{T}_{1 / 2}\left(\tau_{2}\right)=\mathrm{T}_{1 / 2}\left(\tau_{1} \tau_{2}\right)
\end{aligned}
$$

Theorem 3. Let $\mathrm{U}(\lambda)$ be as in the previous theorem. Then a KMS state of $\tau(\mathrm{U}(\lambda))$ with inverse temperature β is unique and is given by a quasifree state φ_{s} with

$$
\begin{equation*}
S=\left(1+e^{-\beta H}\right)^{-1}, \tag{6.9}
\end{equation*}
$$

provided that R_{s} is a factor.
Proof. It is known that any $K M S$ state has a central decomposition as an integral over primary $K M S$ states. Hence it is enough to prove the uniqueness of primary $K M S$ state.

Let φ_{1} be a primary $K M S$ state and $\varphi(A)=\left(\varphi_{1}(A)+\varphi_{1}(\tau(-1) A)\right) / 2$. Then φ is again a $K M S$ state and has the property that $\varphi(Q)=0$ for any odd polynomial Q of $\mathrm{B}(f)$.

Let $\mathfrak{K}_{\varphi}, \pi_{\rho}, \Omega_{\rho}$ be canonically associated with $\varphi, R=\pi_{\rho}\left(\overline{\mathfrak{A}}_{\mathrm{SDO}}(K, \Gamma)\right)^{\prime \prime}$. Since $\varphi(\tau(-1) A)=\varphi(A)$ by construction, there exists a unitary operator $\mathrm{T}_{\varphi}(-1)$ such that $\mathrm{T}_{\varphi}(-1) \pi_{\varphi}(A) \Omega_{\varphi}=\pi_{\varphi}(\tau(-1) A) \Omega_{\rho}$.

A $\tau(\lambda) K M S$ state is known to be $\tau(\lambda)$ invariant. Let $\mathrm{T}_{\varphi}(\mathrm{U}(\lambda))$ be the unitary operator determined by $\mathrm{T}_{\varphi}(\mathrm{U}(\lambda)) \pi_{\varphi}(A) \Omega_{\varphi}=\pi_{\varphi}(\tau(\mathrm{U}(\lambda)) A) \Omega_{\varphi}$. Let $\mathrm{T}_{\varphi}(\mathrm{U}(\lambda))=e^{i \lambda \theta}, \Delta=e^{-\beta \theta / 2}$.

Since $\tau(-1)$ commutes with $\tau(U(\lambda)), \mathrm{T}_{\varphi}(-1)$ commutes with $\mathrm{T}_{\rho}(\mathrm{U}(\lambda))$ and $\Delta . \quad \Omega_{\rho}$ is cyclic for R by construction.

The $K M S$ condition implies that Ω_{ρ} is separating. Further, there exists an antiunitary involution J (a complex conjugation) on \mathfrak{K}_{ρ} such that

$$
\begin{align*}
& J \Omega_{\varphi}=\Omega_{\varphi}, \quad J R J=R^{\prime}, \quad\left[J, e^{i \lambda \theta}\right]=0, \tag{6.10}\\
& J A \Omega_{\varphi}=\Delta A^{*} \Omega_{\varphi}, \quad A \in \mathfrak{A}, \tag{6.11}
\end{align*}
$$

where \mathfrak{A} is a dense * subalgebra of R consisting of all $\int \pi_{\varphi}(\tau(\mathrm{U}(\lambda)))$ $\cdot A f(\lambda) \mathrm{d} \lambda$ with $A \in \pi_{\rho}\left(\overline{\mathfrak{N}}_{\mathrm{SDC}}(K, \Gamma)\right)$ and $\left.f(\lambda)=(2 \pi)^{-1} \int \widetilde{f(} p\right) \exp -i p \lambda \mathrm{~d} p$, $\widetilde{f} \in \mathscr{D}$. From the commutativity of Δ and $T_{\varphi}(-1)$ we have

$$
\begin{aligned}
T_{\varphi}(-1) & * J T_{\varphi}(-1) A \Omega_{\rho} \\
& =T_{\varphi}(-1) * \Delta\left(T_{\varphi}(-1) A T_{\varphi}(-1)\right)^{*} \Omega_{\varphi}=\Delta A^{*} \Omega_{\varphi}=J A \Omega_{\varphi}
\end{aligned}
$$

Hence J commutes with $T_{\rho}(-1)$.
Let

$$
\begin{equation*}
\pi_{\varphi}^{\prime}(A)=J_{\pi_{\varphi}}(\tau(\Gamma) A) J \tag{6.12}
\end{equation*}
$$

It is another representation of $\overline{\mathfrak{M}}_{\text {SDC }}(K, \Gamma)$ such that the closure of $\pi_{\rho}^{\prime}\left(\overline{\mathfrak{A}}_{\text {SDO }}(K, \Gamma)\right)$ is R^{\prime}.

Let $\widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus(-\Gamma)$ and consider the representation $\hat{\pi}$ of $\overline{2}_{\text {sdo }}(\widehat{K}, \widehat{\Gamma})$ generated by

$$
\begin{equation*}
\hat{\pi}(\mathrm{B}(f \oplus g))=\pi_{\varphi}(\mathrm{B}(f))+\pi_{\rho}^{\prime}(\mathrm{B}(g)) \mathrm{T}_{\varphi}(-1) \tag{6.13}
\end{equation*}
$$

It is easily verified that $\hat{\pi}(\mathrm{B}(h))$ satisfies the relations (1), (2), (3) for selfdual CAR algebra and hence determines a representation of $\mathfrak{A}_{\mathrm{sdc}}(\widehat{K}, \widehat{\Gamma})$.

Let $\mathrm{E}(\cdot)$ be the spectral projection of $\mathrm{U}(\lambda)$ in (6.5) and $g \in K$ be such that $\|\mathrm{E}(\mathrm{d} p) g\|^{2}$ has a compact support. Then $\pi_{\boldsymbol{\rho}}(\mathrm{B}(g)) \in \mathfrak{V}$.

By an analytic continuation of $\mathrm{T}_{\varphi}(\mathrm{U}(\lambda)) \pi_{\varphi}(\mathrm{B}(g)) \Omega_{\varphi}=\pi_{\varphi}(\mathrm{B}[\mathrm{U}(\lambda) g]) \Omega_{\varphi}$, we obtain

$$
\begin{equation*}
\Delta \pi_{\varphi}(\mathrm{B}(g)) \Omega_{\varphi}=\pi_{\varphi}\left(\mathrm{B}\left(e^{-\beta H / 2} g\right)\right) \Omega_{\varphi} \tag{6.14}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\hat{\pi}(\mathrm{B}(f \oplus g)) \Omega_{\varphi}=\pi_{\varphi}\left(B\left(f+e^{-\beta H / 2} g\right)\right) \Omega_{\varphi} . \tag{6.15}
\end{equation*}
$$

Let P be the projection on the subspace of \widehat{K} spanned by elements of the form

$$
\begin{equation*}
\mathrm{h}_{1}(f)=e^{-\beta H_{-} / 2} f \oplus e^{-\beta H_{+} / 2} f, \quad f \in K, \tag{6.16}
\end{equation*}
$$

where $H_{+}=H E_{+}$and $H_{-}=H_{+}-H$. Then $\widehat{\Gamma} P \widehat{K}$ is spanned by

$$
\begin{equation*}
\mathrm{h}_{2}(f)=e^{-\beta H_{+} / 2} f \oplus\left(-e^{-\beta H_{-} / 2} f\right) \tag{6.17}
\end{equation*}
$$

which is orthogonal to (6.16). Further,

$$
\begin{align*}
& \mathrm{h}_{1}\left(e^{-\beta H_{-} / 2} f\right)+\mathrm{h}_{2}\left(e^{-\beta H_{+} / 2} f\right) \tag{6.18}\\
& =\left(e^{-\beta H_{-}}+e^{-\beta H_{+}}\right) f \oplus 0 .
\end{align*}
$$

Since $e^{-\beta H_{ \pm}}$are mutually commuting positive selfadjoint operators, their sum has a dense range and hence (6.18) is dense in $K \oplus 0$. Similarly, $\mathrm{h}_{1}\left(e^{-\beta H_{+} / 2} f\right)-\mathrm{h}_{2}\left(e^{-\beta H_{-} / 2}\right)$ is dense in $0 \bigoplus K$. Hence the sum $\mathrm{h}_{1}\left(f_{1}\right)+\mathrm{h}_{2}\left(f_{2}\right)$ is dense in \widehat{K} and we have $\widehat{\Gamma} P \widehat{\Gamma}=1-P$. Therefore, P is a basis projection.
(6.15) shows that

$$
\begin{equation*}
\hat{\pi}(\mathrm{B}(h)) \Omega_{\varphi}=0 \tag{6.15}
\end{equation*}
$$

for $h=\mathrm{h}_{2}(f)$ in a dense subset of $(1-P) \widehat{K}$ and hence for all h in $(1-P) \widehat{K}$. Hence the vector state of $\mathfrak{N}_{\mathrm{sDC}}(\widehat{K}, \widehat{\Gamma})$ given by Ω_{ρ} is unique (a Fock state $\hat{\varphi}_{P}$) by Lemma 4.3. Then its restriction to $\bar{\Re}_{\mathrm{sDO}}(K, \Gamma)$ is also unique.

Since

$$
P=\left(\begin{array}{ll}
\left(1+e^{-\beta H}\right)^{-1} & \left(1+e^{-\beta H}\right)^{-1} e^{-\beta H / 2} \tag{6.20}\\
\left(1+e^{-\beta H}\right)^{-1} e^{-\beta H / 2} & \left(1+e^{-\beta H}\right)^{-1} e^{-\beta H}
\end{array}\right) .
$$

We have

$$
\begin{equation*}
\varphi=\varphi_{S}, \quad S=\left(1+e^{-\beta H}\right)^{-1} \tag{6.21}
\end{equation*}
$$

Since $R=R_{S}$ is a factor by assumption and since a primary $K M S$ state is an extremal $K M S$ state, we have $\varphi_{1}=\varphi=\varphi_{s}$. Therefore the uniqueness is proved.

It remains to show that φ_{s} given by (6.21) is actually a $K M S$ state. The $K M S$ condition amounts to $\left(\left(\Delta A^{*} \Delta^{-1}\right) \Omega_{\varphi},\left(\Delta B^{*} \Delta^{-1}\right) \Omega_{\varphi}\right)$ $=\left(B \Omega_{\varphi}, A \Omega_{\varphi}\right)$, for A, B in थ. Hence we only have to prove the antiunitarity of J defined by (6.11).

Let ε be the Bogoliubov transformation on ($\widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus-\Gamma$) given by the matrix $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$. Then $\varepsilon P_{\varepsilon}=1-P$ and hence the continuous extension of $J_{0} \hat{\pi}(C) \Omega_{\varphi}=\hat{\pi}(\tau(\widehat{\Gamma}) \tau(\varepsilon) C) \Omega_{\varphi}, C \in \overline{\mathscr{M}}_{\text {sDC }}(\widehat{K}, \widehat{\Gamma})$ defines obviously an antiunitary operator J_{0}. If we restrict C to $\overline{\mathfrak{\vartheta}}_{\text {sdo }}(K, \Gamma)(K \oplus 0 \subset \widehat{K})$, we have

$$
\begin{align*}
& J_{0} \pi_{\varphi}\left(\mathrm{B}\left(f_{1}\right)\right) \cdots \pi_{\varphi}\left(\mathrm{B}\left(f_{n}\right)\right) \Omega_{\varphi} \tag{6.22}\\
& \quad=(-1)^{n(n-1) / 2}(-i)^{n} \pi_{\varphi}^{\prime}\left(\mathrm{B}\left(\Gamma f_{1}\right)\right) \cdots \pi_{\varphi}^{\prime}\left(\mathrm{B}\left(\Gamma f_{n}\right)\right) \Omega_{\varphi} \\
& \quad=(-i)^{n^{2}}\left(\Delta \pi_{\varphi}\left(\mathrm{B}\left(f_{n}\right)\right)^{*} \Delta^{-1}\right) \cdots\left(\Delta \pi_{\varphi}\left(\mathrm{B}\left(f_{1}\right)\right)^{*} \Delta^{-1}\right) \Omega_{\varphi}
\end{align*}
$$

where f_{i} is any element in K such that $\left\|\mathrm{E}(\mathrm{d} \lambda) f_{i}\right\|$ has a compact support. Hence

$$
\begin{equation*}
J=\alpha J_{0}, \tag{6.23}
\end{equation*}
$$

where α is a function of $\mathrm{T}_{\varphi}(-1)$, being $=1$ if $\mathrm{T}_{\varphi}(-1)=1$ and $=i$ if $\mathrm{T}_{\varphi}(-1)=-1$. Since α is unitary, J is antiunitary. Q.E.D.

Corollary 6.3. Assume that $\operatorname{dim} K$ is not odd. If $S-1 / 2$ is of finite rank and S does not have an eigenvalue 1, we have for $A \in \overline{\mathfrak{A}}_{\text {sDC }}(K, \Gamma)$

$$
\begin{align*}
\varphi_{s}(A) & =\varphi_{1 / 2}\left(e^{-(\mathrm{B}, H \mathrm{~B}) / 2} A\right) / \varphi_{1 / 2}\left(e^{-(\mathrm{B}, H \mathrm{~B}) / 2}\right) \tag{6.24}\\
& =(\operatorname{det} 2 S)^{1 / 2} \varphi_{1 / 2}\left(e^{-(\mathrm{B}, H \mathrm{~B}) / 2} A\right)
\end{align*}
$$

where $(\mathrm{B}, H \mathrm{~B})$ is defined in Lemma 7.3 and $H=\log S(1-S)^{-1}$
Proof. The left hand side is a unique $K M S$ state for $\mathrm{U}(\lambda)=e^{i H \lambda}$ with $\beta=1$. Since $S-1 / 2$ is of finite rank and $\Gamma S \Gamma=1-S$, an eigenvalue $1 / 2$ of S has an infinite or even multiplicity (according as K has an infinite or finite even dimension). Hence we have only to show that
the right hand side is a $K M S$ state. Since $S(1-S)^{-1}-1$ is of finite rank due to the assumption on S, H is of finite rank. It is hermitian and satisfies $\Gamma H \Gamma=-H$. Hence, there exists $Q \equiv(\mathrm{~B}, H|\mathrm{~B}|) / 2 \in \mathfrak{M}_{\mathrm{sDo}}\left(K, I^{\prime}\right)$. We then have from (6.7)

$$
\varphi_{1 / 2}\left(e^{-Q} A B\right)=\varphi_{1 / 2}\left(e^{-Q} B^{\prime} A\right), \quad B^{\prime}=e^{Q} B e^{-Q} .
$$

Since $e^{Q} \mathrm{~B}(f) e^{-Q}=\mathrm{B}\left(e^{H} f\right), B^{\prime}$ is an analytic continuation of $\tau(\mathrm{U}(\lambda)) B$ to $\lambda=-i$. Hence the right hand side of (6.24) is a $K M S$ state for $U(\lambda)$ with $\beta=1$.

The normalization factor is computed by (8.25).
Q.E.D.

Lemma 6.4. Let $\mathfrak{N}=\mathfrak{K}_{1} \otimes \mathfrak{S}_{2}$ and $R=\mathscr{B}\left(\mathfrak{W}_{1}\right) \otimes 1$. Let Ω be a unit vector, cyclic and separating for R, and J be an antiunitary involution satisfying $J R J=R^{\prime}$ and $J \Omega=\Omega$. Assume that $(\Omega, A \mathrm{j}(A) \Omega) \geqq 0$ for all $A \in R$ where $\mathrm{j}(A)=J A J$. Then there exists a standard diagonal expansion ([3], Definition 2.2)

$$
\begin{equation*}
\Omega=\sum \lambda_{i} \Phi_{1 i} \otimes \varpi_{2 i} \tag{6.25}
\end{equation*}
$$

such that $\lambda_{i}>0$ and

$$
\begin{equation*}
J\left(\Phi_{1 i} \otimes \Phi_{2 j}\right)=\left(\Phi_{1 j} \otimes \Phi_{2 i}\right) . \tag{6.26}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\Omega=\sum \lambda_{i}^{\prime} \Psi_{1 i} \otimes \Psi_{2 i}, \quad \lambda_{i}^{\prime}>0 \tag{6.27}
\end{equation*}
$$

be a standard diagonal expansion of Ω and let J_{0} be an antiunitary involution defined by

$$
\begin{equation*}
J_{0} \sum c_{i j} \Psi_{1 i} \otimes \Psi_{2 j}=\sum c_{i j}^{*} \Psi_{1 j} \otimes \Psi_{2 i} \tag{6.28}
\end{equation*}
$$

Let $W=J_{0} J$.
Then W is unitary and satisfies $W \Omega=\Omega, W R W^{*}=R$. Hence there exists a unitary U_{1} in $\mathscr{B}\left(\mathfrak{S}_{1}\right)$ such that $W A W^{*}=\left(U_{1} \otimes 1\right) A\left(U_{1}^{*} \otimes 1\right)$ for all $A \in R$. Since $\left(U_{1}^{*} \otimes 1\right) W$ is in R^{\prime}, it can be written as $1 \otimes U_{2}$. Then $W=U_{1} \otimes U_{2}$.

Let ρ_{1} and ρ_{2} be the unique trace class operators on \mathfrak{K}_{1} and \mathfrak{K}_{2} satisfying

$$
\begin{equation*}
\operatorname{tr} \rho_{1} A_{1}=\left(\Omega,\left(A_{1} \otimes 1\right) \Omega\right) \tag{6.29a}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr} \rho_{2} A_{2}=\left(\Omega,\left(1 \otimes A_{2}\right) \Omega\right) \tag{6.29b}
\end{equation*}
$$

From $W \Omega=\Omega$ and $W=U_{1} \otimes U_{2}$, we have $\left[\rho_{\nu}, U_{\nu}\right]=0, \nu=1,2$.
Let $\rho_{\nu}=\sum x \mathrm{P}_{\nu}(x)$ be the spectral resolution of ρ_{ν}. Then $\mathrm{P}_{\nu}(x)$ $=\sum \mathrm{P}\left(\Psi_{\nu_{i}}\right)$ where $\mathrm{P}\left(\Psi_{\nu_{i}}\right)$ denotes the minimal projection of $\mathscr{B}\left(\mathfrak{S}_{\nu}\right)$ corresponding to $\Psi_{\nu i}$ and the sum extends over those i such that $\left(\lambda_{i}^{\prime}\right)^{2}=x$.

Let

$$
\begin{equation*}
\varpi_{1 k}=\sum_{i} u_{k i} \Psi_{1 i} \tag{6.30}
\end{equation*}
$$

be a complete orthonormal set of eigenvectors of U_{1} belonging to eigenvalues $e^{i \theta_{k}}$. Since $\left[\mathrm{P}_{1}(x), U_{1}\right]=0$ and each $\mathrm{P}_{1}(x)$ has a finite dimension, U_{1} has a purely discrete spectrum and we can chose $u_{k 1}$ such that $u_{k i} u_{k j} \neq 0$ only if $\lambda_{i}^{\prime}=\lambda_{j}^{\prime}$.

Let

$$
\begin{equation*}
\Phi_{2 k}=\sum_{i}\left(u_{k i}\right) * \Psi_{2 i} . \tag{6.31}
\end{equation*}
$$

Since $\left(u_{k i}\right)$ is unitary, we have (6.25) where $\lambda_{k}=\lambda_{i}^{\prime}$ if $u_{k i} \neq 0$.
From $W \Omega=\Omega$ and (6.25), we have

$$
\begin{equation*}
U_{2} \Phi_{2 k}=e^{-i \theta_{k}} \Phi_{2 k} \tag{6.32}
\end{equation*}
$$

Since $J=J_{0} W$, we have

$$
\begin{equation*}
J\left(\Phi_{1 k} \otimes \Phi_{2 l}\right)=\varepsilon_{l k}\left(\Phi_{1 \iota} \otimes \Phi_{2 k}\right), \tag{6.33}
\end{equation*}
$$

where $\varepsilon_{k l}=e^{i\left(\theta_{k}-\theta_{l}\right)}$. Since $J^{2}=1$, we have $\left(\varepsilon_{k l}\right)^{2}=1$. Therefore $\varepsilon_{k l}=\varepsilon_{l k}$ $= \pm 1$.

Let $A_{k l} \in \mathscr{B}\left(\mathfrak{K}_{1}\right)$ be defined by $A_{k l} \sum c_{j} \Phi_{1 j}=c_{l} \Phi_{1 k}+c_{k} \Phi_{1 l}$. From $(\Omega, A \mathrm{j}(A) \Omega) \geqq 0$ with $A=A_{k l} \otimes 1$, we have $A \Omega=\lambda_{k} \Phi_{11} \otimes \Phi_{2 k}+\lambda_{l} \Phi_{1 k} \otimes \Phi_{2 l}$, $J A J \Omega=J A \Omega=\varepsilon_{l k}\left(\lambda_{k} \Phi_{1 k} \otimes \Phi_{2 l}+\lambda_{l} \Phi_{1 l} \otimes \Phi_{2 k}\right)$, and hence $2 \lambda_{k} \lambda_{l} \varepsilon_{l k} \geqq 0$. From this we have $\varepsilon_{l k} \geqq 0$ and hence (6.26) holds.

Lemma 6.5. Let R be a type I factor, Ω and Ω^{\prime} be cyclic and separating unit vectors and J be an antiunitary involution such that $J R J=R^{\prime}, J \Omega=\Omega, J \Omega^{\prime}=\Omega^{\prime},(\Omega, A \mathrm{j}(A) \Omega) \geqq 0$ and $\left(\Omega^{\prime}, A \mathrm{j}(A) \Omega^{\prime}\right) \geqq 0$ for all $A \in R$ where $\mathrm{j}(A)=J A J$. Let φ and φ^{\prime} be the vector states of R given by Ω and Ω^{\prime}. Then

$$
\begin{equation*}
\left\|\varphi-\varphi^{\prime}\right\| \geqq 2\left(1-\left|\left(\Omega, \Omega^{\prime}\right)\right|\right) \tag{6.34}
\end{equation*}
$$

Proof. Since R is a type I factor, we can identify the Hilbert space and R as follows:

$$
\begin{aligned}
& \mathfrak{S}=\mathfrak{S}_{1} \otimes \mathfrak{S}_{2} \\
& R=\mathscr{B}\left(\mathfrak{K}_{1}\right) \otimes 1 .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \Omega=\sum \lambda_{i} \mathscr{\Phi}_{1 i} \otimes \Phi_{2 i}, \\
& \Omega^{\prime}=\sum \lambda_{i}^{\prime} \Phi_{1 i}^{\prime} \otimes \Phi_{2 i}^{\prime},
\end{aligned}
$$

be the standard diagonal expansions of Ω and Ω^{\prime} given by the previous Lemma.

From (6.26) and antiunitarity of J, we have

$$
\begin{equation*}
\left(\Phi_{1 i}, \mathscr{\Phi}_{1 k}^{\prime}\right)^{*}\left(\Phi_{2 j}, \Phi_{2 l}^{\prime}\right)^{*}=\left(\Phi_{1 j}, \Phi_{1 l}^{\prime}\right)\left(\Phi_{2 i}, \Phi_{2 k}^{\prime}\right) . \tag{6.35}
\end{equation*}
$$

Since the matrices $u_{i j}=\left(\Phi_{1 i}, \Phi_{1 j}^{\prime}\right)$ and $v_{i j}=\left(\Phi_{2 i}, \Phi_{2 j}\right)$ are unitary, there exists $u_{i k} \neq 0$. Setting $\varepsilon=v_{i k} / u_{i k}^{*}$, we have $v_{j l}^{*}=\varepsilon u_{j l}$, where ε is common for all j, l. From the unitarity, we have $|\varepsilon|=1$. From (6.35), we have $\varepsilon=\varepsilon^{*}$. Hence $\varepsilon= \pm 1$.

We now have

$$
\begin{align*}
\left(\Omega, \Omega^{\prime}\right) & =\sum \lambda_{i} \lambda_{j}^{\prime}\left(\Phi_{1 i}, \Phi_{1 j}^{\prime}\right)\left(\Phi_{2 i}, \Phi_{2 j}^{\prime}\right) \tag{6.36}\\
& =\varepsilon \sum \lambda_{i} \lambda_{j}^{\prime}\left|\left(\Phi_{1 i}, \Phi_{1 j}^{\prime}\right)\right|^{2} .
\end{align*}
$$

Let

$$
\begin{align*}
& \rho=\sum \lambda_{i}^{2} \mathrm{P}\left(\mathscr{\emptyset}_{1 i}\right), \tag{6.37}\\
& \rho^{\prime}=\sum\left(\lambda_{i}^{\prime}\right)^{2} \mathrm{P}\left(\mathscr{D}_{1 i}^{\prime}\right) . \tag{3.38}
\end{align*}
$$

Then $\varphi(A)=\operatorname{tr} \rho A$ and $\varphi^{\prime}(A)=\operatorname{tr}\left(\rho^{\prime} A\right)$. We now have

$$
\begin{align*}
\left\|\varphi-\varphi^{\prime}\right\| & =\sup _{\|A\| \leq 1}\left|\varphi(A)-\varphi^{\prime}(A)\right|=\operatorname{tr}\left|\rho-\rho^{\prime}\right| \tag{6.39}\\
& \geqq \operatorname{tr}\left(\rho^{1 / 2}-\left(\rho^{\prime}\right)^{1 / 2}\right)^{2}=2\left(1-\operatorname{tr} \rho^{1 / 2}\left(\rho^{\prime}\right)^{1 / 2}\right)
\end{align*}
$$

where the inequality is due to Lemma 4.1 of [12]. From (6.36), we have
(6.40)

$$
\operatorname{tr} \rho^{1 / 2}\left(\rho^{\prime}\right)^{1 / 2}=\left|\left(\Omega, \Omega^{\prime}\right)\right|
$$

From (6.39) and (6.40), we have (6.34).
Q.E.D.

Lemma 6.6. Assume that $\operatorname{dim} K$ is finite and even. Let φ_{s} and
$\varphi_{S^{\prime}}$ be two quasifree states of $\overline{2}_{\mathrm{SDO}}(K, \Gamma)$. Then

$$
\begin{equation*}
\left\|\varphi_{S}-\varphi_{s^{\prime}}\right\| \geqq 2\left[1-\operatorname{det}\left(1-\left(P_{S}-P_{s^{\prime}}\right)^{2}\right)^{1 / 8}\right] . \tag{6.41}
\end{equation*}
$$

Proof. Let $\widehat{K}=K \oplus K, \widehat{\Gamma}=\Gamma \oplus-\Gamma$.
First consider the case where S and S^{\prime} do not have an eigenvalue 1. In this case we can show

$$
\begin{equation*}
P_{s} \wedge\left(1-P_{s^{\prime}}\right)=0 \tag{6.42}
\end{equation*}
$$

as follows:
Let $g=g_{1} \oplus g_{2}, \quad P_{s} g=g, \quad P_{S^{\prime}} g=0$. Then $S^{1 / 2} g_{2}=(1-S)^{1 / 2} g_{1}$ and $\left(S^{\prime}\right)^{1 / 2} g_{1}=-\left(1-S^{\prime}\right)^{1 / 2} g_{2}$. Since S and S^{\prime} do not have an eigenvalue 1, the same holds for $1-S=\Gamma S \Gamma$ and for $1-S^{\prime}=\Gamma S^{\prime} \Gamma$. Therefore S, S^{\prime}, $(1-S)$ and $\left(1-S^{\prime}\right)$ have their inverses. We have $\left\{S^{-1 / 2}(1-S)^{1 / 2}\right.$ $\left.+\left(1-S^{\prime}\right)^{-1 / 2}\left(S^{\prime}\right)^{1 / 2}\right\} g_{1}=0$. From $S^{-1 / 2}(1-S)^{1 / 2}>0$ and $\left(1-S^{\prime}\right)^{-1 / 2}\left(S^{\prime}\right)^{1 / 2}$ >0, we have $g_{1}=0$. Similarly we have $\left\{(1-S)^{-1 / 2} S^{1 / 2}+\left(S^{\prime}\right)^{-1 / 2}\left(1-s^{\prime}\right)^{1 / 2}\right\}$ $g_{2}=0$ and hence $g_{2}=0$. This proves (6.42).

Let $\varepsilon=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$. Then $\varepsilon^{*}=\varepsilon^{-1}=\varepsilon, \quad[\widehat{\Gamma}, \varepsilon]=0$ and $\varepsilon P_{S} \varepsilon=1-P_{S}$ for any S. Consequently, $\widehat{\Gamma \varepsilon}$ commutes with P_{s} and $P_{s^{\prime}}$, and hence anticommutes with $\mathrm{H}\left(P_{s^{\prime}} / P_{s}\right)$ defined as in (9.2).

Let J_{0} be an antiunitary involution on $\mathfrak{S}_{P_{S}}$ defined by

$$
\begin{equation*}
J_{0} \pi_{P_{s}}(C) \Omega_{P_{s}}=\pi_{P_{s}}(\tau(\widehat{\Gamma}) \tau(\varepsilon) C) \Omega_{P_{s}} \tag{6.43}
\end{equation*}
$$

for $C \in \mathscr{\varkappa}_{\text {sDC }}(\widehat{K}, \widehat{\Gamma})$. Let $J=\alpha J_{0}$ where α is a function of $\mathrm{T}_{P_{s}}(-1)$ $=\mathrm{T}_{s}(-1)$ being $=1$ if $\mathrm{T}_{s}(-1)=1$ and $=i$ if $\mathrm{T}_{s}(-1)=-1$. For a finite even dimensional $K, \pi_{s}(\mathfrak{\lambda}(K, \Gamma))$ is always a factor and hence the proof of Theorem 3 is applicable where $H=\log \left\{S(1-S)^{-1}\right\}$ and $\beta=1$. From (6.11) we have

$$
\begin{equation*}
\left(\Omega_{P_{s}}, A(J A J) \Omega_{P_{s}}\right)=\left(A^{*} \Omega_{P_{s}}, \Delta A^{*} \Omega_{P_{s}}\right) \geqq 0 \tag{6.44}
\end{equation*}
$$

for $A \in \pi_{P_{s}}\left(\right.$ भ$\left._{\mathrm{SDD}}(K \oplus 0, \widehat{\Gamma})\right)$, where $\Delta=e^{-\theta / 2}>0$.
Let Q be defined as in (9.4) where $n=0$. Then $\pi_{\rho}(Q)$ commutes with J_{0} and $\mathrm{T}_{P_{s}}(-1)$. Hence $\Omega^{\prime}=\pi_{\rho}(Q) * \Omega_{P_{s}}$ is invariant under J_{0} and $\mathrm{T}_{P_{s}}(-1)$. Furthermore, we have

$$
\begin{equation*}
\varphi_{P_{s}}(C)=\left(\Omega^{\prime}, \pi_{P_{s}}(C) \Omega^{\prime}\right) \tag{6.45}
\end{equation*}
$$

$$
\begin{equation*}
J_{0} \pi_{P_{s}}(C) \Omega^{\prime}=\pi_{P_{s}}(\tau(\widehat{\Gamma}) \tau(\varepsilon) C) \Omega^{\prime} \tag{6.46}
\end{equation*}
$$

(6.47) $\quad \mathrm{T}_{P_{\mathrm{s}}}(-1) \pi_{P_{s}}(C) \Omega^{\prime}=\pi_{P_{s}}(\tau(-1) C) \Omega^{\prime}$,
for $C \in \mathfrak{N}_{\mathrm{sDc}}(\widehat{K}, \widehat{\Gamma})$. Therefore

$$
\begin{equation*}
\left(\Omega^{\prime}, A(J A J) \Omega^{\prime}\right)=\left(A^{*} \Omega^{\prime}, \Delta^{\prime} A^{*} \Omega^{\prime}\right) \geqq 0 \tag{6.48}
\end{equation*}
$$

for $A \in \pi_{P_{S}}\left(\mathcal{N}_{\mathrm{sDC}}(K \oplus 0, \widehat{\Gamma})\right)$, where $\Delta^{\prime}=e^{-\theta / / 2}>0$ denotes the Δ in the proof of Theorem 3 corresponding to S^{\prime}.

We can now apply the previous Lemma and obtain

$$
\begin{equation*}
\left\|\varphi_{s_{1}}-\varphi_{s_{2}}\right\| \geqq 2\left(1-\left|\left(\Omega_{P_{s}}, \Omega^{\prime}\right)\right|\right) \tag{6.49}
\end{equation*}
$$

From (9.8), we obtain (6.41).
The general case, where one or both of S and S^{\prime} have an eigenvalue 1 , can be obtained by taking a limit.
Q.E.D.

§7. Bilinear Hamiltonian

Lemma 7.1. There exists a derivation $\delta(H)$ on $\mathfrak{A}_{\mathrm{sdc}}(K, \Gamma)$ satisfying

$$
\begin{equation*}
\delta(H) \mathrm{B}(f)=\mathrm{B}(H f) \tag{7.1}
\end{equation*}
$$

if and only if H is a bounded linear operator on K satisfying

$$
\begin{equation*}
H^{*}=-\Gamma H \Gamma . \tag{7.2}
\end{equation*}
$$

If (7.2) holds, (7.1) uniquely defines $\delta(H)$. It is $a *$ derivation of $\mathfrak{U}_{\mathrm{SDC}}(K, \Gamma)$ if and only if

$$
\begin{equation*}
H^{*}=-H \tag{7.3}
\end{equation*}
$$

Proof. For the first part, we have to check the condition that $\delta(H)$ is consistent with the relations (1) and (2) for the definition of $\mathfrak{H}_{\mathrm{sDc}}(K, \Gamma)$. For the condition (1), it is necessary and sufficient that H is linear. For the condition (2), it is necessary and sufficient that (7.2) holds. From (7.2) it follows that H^{*} is defined on all K and hence H must be bounded.

For the second part, the uniqueness of $\delta(H)$ is immediate. The relation (3) for $\mathfrak{\Re}_{\mathrm{SDC}}(K, \Gamma)$ implies that $(\delta(H) \mathrm{B}(f))^{*}=\delta(H) \mathrm{B}(f)^{*}$
if and only if $\Gamma H=H \Gamma$. Under (7.2), this is equivalent to (7.3).
Lemma 7.2. The * derivation $\delta(H)$ is the infinitesimal generator of the Bogoliubov automorphism $\tau\left(e^{\lambda H}\right)$.

Proof. From (7.3) it follows that $e^{\lambda H}$ is unitary. From (7.2) and (7.3), it follows that $[H, \Gamma]=0$ and hence $\left[e^{\lambda H}, \Gamma\right]=0$. Hence $e^{\lambda H}$ is a Bogoliubov transformation. The rest is immediate.

Lemma 7.3. Let H be a finite rank operator on K and

$$
\begin{equation*}
H h=\sum_{i=1}^{n} f_{i}\left(g_{i}, h\right), \quad h \in K \tag{7.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
(\mathrm{B}, H \mathrm{~B})=\sum_{i=1}^{n} \mathrm{~B}\left(f_{i}\right) \mathrm{B}\left(g_{i}\right)^{*} . \tag{7.5}
\end{equation*}
$$

($\mathrm{B}, H \mathrm{~B}$) does not depend on the choice of f_{i} and g_{i} for a given H, is linear in H and satisfies

$$
\begin{equation*}
(\mathrm{B}, H \mathrm{~B})^{*}=\left(\mathrm{B}, H^{*} \mathrm{~B}\right) \tag{7.6}
\end{equation*}
$$

In addition, it satisfies

$$
\begin{align*}
& (\mathrm{B}, H \mathrm{~B})=(\mathrm{B}, \alpha(H) \mathrm{B})+\frac{1}{2} \operatorname{tr} H, \tag{7.7}\\
& \alpha(H)=\frac{1}{2}\left(H-\Gamma H^{*} \Gamma\right) .
\end{align*}
$$

$H=\alpha\left(H^{\prime}\right)$ satisfies (7.2) for any H^{\prime}.
If H satisfies (7.2), then $\alpha(H)=H, \operatorname{tr} H=0$ and

$$
\begin{align*}
& {[(\mathrm{B}, H \mathrm{~B}), A]=2 \delta(H) A, \quad A \in \mathfrak{A}_{\mathrm{sdc}}(K, \Gamma),} \tag{7.9}\\
& \varphi_{s}((\mathrm{~B}, H \mathrm{~B}))=-\operatorname{tr} S H, \tag{7.10}\\
& (1 / 4)\|H\|_{\mathrm{tr}} \leqq\|(\mathrm{~B}, H B)\| \leqq\|H\|_{\mathrm{tr}}, \tag{7.11}\\
& \tau(U)(\mathrm{B}, H \mathrm{~B})=\left(B, U H U^{-1} \mathrm{~B}\right), \\
& \delta\left(H_{1}\right)(\mathrm{B}, H \mathrm{~B})=\left(\mathrm{B},\left[H_{1}, H\right] \mathrm{B}\right) .
\end{align*}
$$

Here φ_{s} is a quasifree state and $\|H\|_{\mathrm{tr}}=\operatorname{tr}\left[\left(H^{*} H\right)^{1 / 2}\right]$.
(The formulae (7.12) and (7.13) hold for a general H not satisfying (7.2).)

Proof. For (B, HB) defined by (7.5), we have (cf. [2])

$$
\begin{align*}
& {[(\mathrm{B}, H \mathrm{~B}), \mathrm{B}(f)]=\mathrm{B}(2 \alpha(H) f),} \tag{7.14}\\
& \varphi_{⿱}((\mathrm{~B}, H \mathrm{~B}))=\operatorname{tr} H-\operatorname{tr} S H . \tag{7.15}
\end{align*}
$$

For the central state, $S=1 / 2$ and

$$
\begin{equation*}
\varphi_{1 / 2}((\mathrm{~B}, H \mathrm{~B}))=\operatorname{tr} H / 2 . \tag{7.16}
\end{equation*}
$$

If K has an infinite or even dimension, $\overline{\mathfrak{M}}_{\text {sDc }}(K, \Gamma)$ is known to have the trivial center. Hence (7.14) determines ($\mathrm{B}, H \mathrm{~B}$) up to a constant and (7.16) fixes that constant. Even if the dimension of K is cdd, we can make this argument by imbedding $\overline{\mathfrak{Y}}_{\mathrm{SDC}}(K, \Gamma)$ in $\overline{\mathfrak{Z}}_{\mathrm{SDC}}\left(K^{\prime}, \Gamma\right)$ with a bigger K^{\prime} with an even dimension.

This argument shows that ($\mathrm{B}, H \mathrm{~B}$) is independent of the way in which H is expressed in (7.4) and also that (7.7) holds because $\alpha(H)$ has trace 0 and both sides of (7.7) satisfy (7.14) and (7.16). Note that $\operatorname{tr} \Gamma H^{*} \Gamma=\sum_{i}\left(\Gamma^{2} e_{i}, \Gamma H^{*} \Gamma e_{i}\right)=\sum_{i}\left(H^{*} \Gamma e_{i}, \Gamma e_{i}\right)=\sum_{i}\left(\Gamma e_{i}, H \Gamma e_{i}\right)=\operatorname{tr} H$.

The linearity of ($\mathrm{B}, H \mathrm{~B}$) in H, (7.6), (7.12) and (7.13) follow from the definition (7.5). (7.9) and (7.10) follow from (7.14) and (7.15).

If H satisfies (7.2) and is selfadjoint, it has the spectral decomposition

$$
\begin{equation*}
H==\sum_{\lambda} \lambda E_{\lambda}, \tag{7.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma E_{\lambda} \Gamma=E_{-\lambda} . \tag{7.18}
\end{equation*}
$$

Hence we have a partial basis projection $\sum_{\lambda>0} E_{\lambda} \equiv E_{+}$and an orthonormal basis f_{i} in $E_{+} K$ such that

$$
\begin{equation*}
(\mathrm{B}, H \mathrm{~B})=\sum_{i} \lambda_{i}\left(\mathrm{~B}\left(f_{i}\right) \mathrm{B}\left(f_{i}\right)^{*}-B\left(f_{i}\right)^{*} B\left(f_{i}\right)\right) . \tag{7.19}
\end{equation*}
$$

Since $\left\|\mathrm{B}(f) \mathrm{B}(f)^{*}-\mathrm{B}(f)^{*} \mathrm{~B}(f)\right\| \leqq \mathrm{B}(f) \mathrm{B}(f)^{*}+\mathrm{B}(f)^{*} \mathrm{~B}(f)\|=\| f \|^{2}$, we have

$$
\begin{equation*}
\|(\mathrm{B}, H \mathrm{~B})\| \leqq \sum_{i} \lambda_{i}=\frac{1}{2}\|H\|_{\mathrm{tr}} . \tag{7.20}
\end{equation*}
$$

On the other hand, $\varphi_{s}[(\mathrm{~B}, H \mathrm{~B})]=-\sum \lambda_{i}=-\frac{1}{2}\|H\|_{\text {tr }} \quad$ for $\quad S=E_{+}$ $+(1 / 2) E_{0}$. Hence, for a selfadjoint H satisfying (7.2), we have

$$
\begin{equation*}
\|(\mathrm{B}, H \mathrm{~B})\|=\|H\|_{\mathrm{tr}} / 2 \tag{7.21}
\end{equation*}
$$

If $H=H_{1}+i H_{2}, H_{1}^{*}=H_{1}, H_{2}^{*}=H_{2}$, then consider the polar decomposition $H_{1}=\left|H_{1}\right| U_{1}$ where $U_{1}^{*}=U_{1}, U_{1}^{2}=1$. Then $\left(\operatorname{tr} H_{2} U_{1}\right)^{*}=\operatorname{tr} U_{1} H_{2}$ $=\operatorname{tr} H_{2} U_{1}$ is real and we have

$$
\begin{equation*}
\|H\|_{\mathrm{tr}}=\sup _{\|Q\| \leqq 1}|\operatorname{tr} H Q| \geqq\left|\operatorname{tr} H U_{1}\right| \geqq \operatorname{tr}\left|H_{1}\right|=\left\|H_{1}\right\|_{\mathrm{tr}} . \tag{7.22}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|H_{1}\right\|_{\mathrm{tr}}+\left\|H_{2}\right\|_{\mathrm{tr}} \geqq\|H\|_{\mathrm{tr}} \geqq \max \left(\left\|H_{1}\right\|_{\mathrm{tr}},\left\|H_{2}\right\|_{\mathrm{tr}}\right) \tag{7.23}
\end{equation*}
$$

On the other hand, for any operator $A=A_{1}+i A_{2}, A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$, we have $\|A\|=\sup _{\|\varphi\|\|\psi\| \leq 1}|(\varphi, A \psi)| \geqq \sup |(\varphi, A \varphi)| \geqq \sup \left|\left(\varphi, A_{1} \varphi\right)\right|=\left\|A_{1}\right\|$. Hence

$$
\begin{equation*}
\left\|A_{1}\right\|+\left\|A_{2}\right\| \geqq\|A\| \geqq \max \left(\left\|A_{1}\right\|,\left\|A_{2}\right\|\right) \tag{7.24}
\end{equation*}
$$

By combining (7.21), (7.23) and (7.24), we have (7.11). Q.E.D.
Lemma 7.4. Let H be a trace class operator and H_{n} be a sequence of finite rank operators such that $\left\|H-H_{n}\right\|_{\text {tr }} \rightarrow 0$ as $n \rightarrow \infty$. Then ($\mathrm{B}, H_{n} \mathrm{~B}$) has a limit $(\mathrm{B}, H \mathrm{~B})$ in $\overline{\mathfrak{N}}_{\mathrm{sDc}}(K, \Gamma)$ independent of the sequence for a given H. It is linear in H, and satisfies (7.6) and (7.7). If H satisfies (7.2), (B, HB) satisfies (7.9), (7.10), (7.11), (7.12) and (7.13).

Proof. From (7.11) and (7.7), the convergence and the uniqueness follow. The rest follows from the corresponding properties for H_{n}.

Theorem 4. The derivation $\delta(H)$ can be extended to an inner derivation of $\overline{\mathfrak{M}}_{\mathrm{sDc}}(K, \Gamma)$ if and only if H is in the trace class.

Proof. "If" part follows from Lemma 7.4 and (7.9). $\delta(H)$ can be extended to an inner derivation if and only if $\delta\left(i\left(H^{*}+H\right)\right)$ and $\delta\left(H^{*}-H\right)$ can be extended to inner $*$ derivations. For an inner * derivation $\delta(H), \tau\left(e^{\lambda H}\right)$ for all real λ m'st be an inner automorphism by Lemma 7.2. From later result in Theorem 5 this implies that either $e^{\lambda H}-1$ is in the trace class or $e^{\lambda H}+1$ is in the trace class. In either case, the selfadjoint operator $i H$ must have purely discrete spectrum.

If $e^{\lambda H}+1$ is in the trace class, then the eigenvalues x_{j} of $i H$ can have an accumulation point only at $\frac{\pi}{\lambda}(2 n+1), n=0, \pm 1, \pm 2, \cdots$ which can happen only for a countable number of λ. For other values of $\lambda, e^{\lambda H}-1$ must be in the trace class and hence $i S$ can have an accumulation point only at $2 \pi n \lambda^{-1}$. This, first of all, excludes the other possibility and further implies that i carı have an accumulation point of eigenvalues only at 0 . From the condition $\left\|e^{H}-1\right\|_{\mathrm{tr}}=\sum_{i}\left\{2\left(1-\cos x_{i}\right)\right\}^{1 / 2}<\infty$, and the inequality $1-\cos x \geqq x^{2} / 3$ for $|x| \leqq 1$, we obtain $\|H\|_{\mathrm{tr}}<\infty$. Q.E.D.

§8. Inner Bogoliubov Transformations

Definition 8.1. $\mathscr{T}_{ \pm}$denotes the set of invertible bounded linear operators V on K such that $V-1$ is in the trace class, $\operatorname{det} V= \pm 1$, respectively, and

$$
\begin{equation*}
\Gamma V^{*} \Gamma=V^{-1} \tag{8.1}
\end{equation*}
$$

$I_{ \pm}$is equipped with an operator multiplication, an adjoint operation * and a topology induced by spheres $\left\{V^{\prime}:\left\|V^{\prime}-V\right\|_{\mathrm{tr}} \leqq \varepsilon\right\}$.
\mathscr{I}_{+}and $\mathscr{I}_{+} \cup \mathscr{I}_{-}$are topological groups and \mathscr{I}_{+}is connected.
Since $V-1$ is compact, it has a (Jordan) expansion:

$$
\begin{equation*}
V-1=V_{\Delta}+\sum_{\lambda \neq \Lambda} E_{\lambda}\left(\lambda-1+N_{\lambda}\right) \tag{8.2}
\end{equation*}
$$

where Δ is a bounded open set containing $1,\left(V_{\Delta}-\lambda\right)^{-1}$ is holomorphic for $\lambda \notin \Delta$,

$$
\begin{align*}
& E_{\lambda} E_{\lambda^{\prime}}=\delta_{\lambda \lambda^{\prime}} E_{\lambda^{\prime}}, \tag{8.3}\\
& E_{\lambda^{\prime}} N_{\lambda}=N_{\lambda} E_{\lambda^{\prime}}=\delta_{\lambda \lambda^{\prime}} N_{\lambda}, \tag{8.4}\\
& N_{\lambda}^{\operatorname{dim} E_{2}}=0, \quad \operatorname{dim} E_{\lambda}<\infty, \tag{8.5}\\
& V_{\Delta} E_{\lambda}=E_{\lambda} V_{\Delta}=0 \quad(\lambda \notin \Delta), \tag{8.6}\\
& \lim _{n \rightarrow \infty}\left(V_{\Delta} / r\right)^{n}=0, \quad r=\sup _{\lambda \in \Delta-1}|\lambda| . \tag{8.7}
\end{align*}
$$

$V_{\lrcorner}, E_{\lambda}$ and N_{λ} are uniquely determined by these properties and are given by

$$
\begin{equation*}
E_{\lambda}=\lim _{\rho \rightarrow 0}(2 \pi)^{-1} \int_{0}^{2 \pi} \rho e^{i \theta}\left(\lambda+\rho e^{i \theta}-V\right)^{-1} \mathrm{~d} \theta, \tag{8.8}
\end{equation*}
$$

$$
N_{\lambda}=E_{\lambda}(V-\lambda)
$$

and (8.2). The $\operatorname{det} V$ may be computed by

$$
\begin{equation*}
\operatorname{det} V=\exp \operatorname{tr} \log V \tag{8.10}
\end{equation*}
$$

$$
\begin{align*}
\log V & =\left(1-\sum_{\lambda \notin \Delta} E_{\lambda}\right) \log \left(1+V_{\Delta}\right) \tag{8.11}\\
& +\sum_{\lambda \notin A} E_{\lambda}\left[\log \lambda+\log \left(1+\lambda^{-1} N_{\lambda}\right)\right]
\end{align*}
$$

where $\log \left(1+V_{A}\right)$ and $\log \left(1+\lambda^{-1} N_{\lambda}\right)$ are defined by power series, which converge due to (8.7) and (8.5), and we take Δ such that $r<1$. Since V is invertible, $\lambda \neq 0$.

For V satisfying (8.1), the uniqueness implies

$$
\begin{equation*}
\Gamma E_{\lambda}^{*} \Gamma=E_{\left(\lambda^{-1}\right)} \tag{8.12}
\end{equation*}
$$

$$
\begin{align*}
& \left(\lambda+\Gamma N_{\lambda}^{*} \Gamma\right)\left(\lambda^{-1}+N_{\left(\lambda^{-1}\right)}\right)=1, \tag{8.13}\\
& \left(1+\Gamma V_{\Delta}^{*} \Gamma\right)\left(1+V_{\Delta}\right)=1, \tag{8.14}
\end{align*}
$$

where (8.14) holds if Δ is invariant under $\lambda \rightarrow \lambda^{-1}$. If we choose branches of $\log \lambda$ in (8.11) such that $\log \lambda+\log \lambda^{-1}=0$ for $\lambda \neq-1$ and $\log (-1)$ $=i \pi$, then we have

$$
\begin{equation*}
\log V+\Gamma(\log V)^{*} \Gamma=2 \pi i E_{-1} \tag{8.15}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\operatorname{det} V=(-1)^{\operatorname{dim} E_{-1}} . \tag{8.16}
\end{equation*}
$$

Thus the condition $\operatorname{det} V= \pm 1$ can be replaced by $\operatorname{dim} E_{-1}=$ even or odd.
Lemma 8.2. If H is an operator in the trace class satisfying (7.2), then $e^{H} \in \mathscr{I}_{+}$. If V is a normal operator in \mathscr{I}_{+}or $V \in \mathscr{I}_{+}$ does not have an eigenvalue -1 , then there exists a trace class operator H satisfying (7.2) such that $V=e^{H}$. If $V>0, H$ can be chosen hermitian and if V is unitary, iH can be chosen hermitian.

Proof. The first part is immediate. Let $V \in \mathscr{I}_{+}$be normal. We then have $N_{-1}=0, \operatorname{dim} E_{-1}=$ even, $E_{-1}^{*}=E_{-1}, \Gamma E_{-1} \Gamma=E_{-1}$ 。 Hence there exists a subprojection F of E_{-1}, which satisfies $\Gamma F \Gamma+F=E_{-1}, F^{*}=F$ $=F^{2} . \quad H=\log V-2 \pi i F$ satisfies $e^{H}=V e^{-2 \pi i F}=V$ and (7.2) due to (8.15).
H is obviously in the trace class. If $V \in \mathscr{I}_{+}$does not have an eigenvalue -1 , then $H=\log V$ has the required property.

If $V>0$, then we can choose $\log \lambda$ to be real and for this choice of the branch of \log , H is hermitian. If V is unitary, we may take $|\operatorname{Im} \log \lambda|<\pi$ for $\lambda \neq-1$, and for this choice of the branch of $\log , i H$ is hermitian.

Lemma 8. 3. There exists a covering group \mathscr{I}_{+}^{*} of \mathcal{I}_{+}equipped with adjoint operation and $a *$ homomorphic homeomorphism π of \mathscr{I}_{+}^{*} onto \mathscr{I}_{+}such that π is 2 to 1 and the loop $\{\exp 2 \pi i \lambda E ; 0 \leqq \lambda \leqq 1\}$ for an odd dimensional partial basis projection E gives an element of \mathscr{I}_{+}^{*} different from 1 . There exists a homeomorphic *isomorphism Q from \mathscr{I}_{+}^{*} into $\overline{\mathfrak{M}}_{\mathrm{sDC}}(K, \Gamma)$ such that

$$
\begin{align*}
& Q(g) \mathrm{B}(f) Q(g)^{-1}=\mathrm{B}(\pi(g) f), \tag{8.17}\\
& \varphi_{1 / 2}(Q(g))=\exp \frac{1}{2} \operatorname{tr} \log [(1+\pi(g)) / 2], \tag{8.18}\\
& \|Q(g)\|=\exp \frac{1}{4} \operatorname{tr}|\log | \pi(g)| |, \tag{8.19}\\
& \min (\|Q(g)-1\|,\|Q(g)+1\|) \tag{8.20}\\
& \quad \leqq\|Q(g)\|-1+\frac{1}{2} \operatorname{tr}\left|\left(\pi(g)|\pi(g)|^{-1}\right)^{1 / 2}-1\right| .
\end{align*}
$$

Here the branch in (8.18) is to be determined by the analytic continuation of $\left(\operatorname{det}\left[\left(1+e^{Z H}\right) / 2\right]\right)^{1 / 2}$ from $z=0$ to 1 if $\pi(g)=e^{H}$ and if the continuous inverse image of the path $\left\{e^{\lambda H} ; 0 \leqq \lambda \leqq 1\right\}$ ends at g. It is to be determined by the continuity for other g.

Proof. Let \sum be the set of trace class operators satisfying (7.2), equipped with a topology induced by sphers $\left\{H^{\prime} ;\left\|H^{\prime}-H\right\|_{\text {tr }}<\varepsilon\right\}$. Let \mathscr{I}_{0} be the set of $V \in \mathscr{I}_{+}$such that -1 is not an eigenvalue of V.

For any $V \in \mathscr{I}_{0}$, we see from the Jordan expansion (8.2) that the following $\mathrm{H}_{y}(V)$ satisfies (7.2) and $V=e^{\mathrm{H}_{\gamma}(V)}$ for each path γ from $z=0$ to $z=1$ avoiding zeroes of $\operatorname{det}(1+z(V-1))$.

$$
\begin{align*}
& \mathrm{H}_{\gamma}(V)=\frac{1}{2}\left\{H_{0 \gamma}(V)-\Gamma \mathrm{H}_{0 \gamma}(V)^{*} \Gamma\right\} \tag{8.21}\\
& \mathrm{H}_{0 \gamma}(V)=\int_{\gamma}(1+z(V-1))^{-1}(V-1) \mathrm{d} z \tag{8.22}
\end{align*}
$$

For V in the sphere $|V-1|<1$, we can take r to be the interval $[0,1]$ on real axis. Then $\mathrm{H}_{y}(V) \rightarrow V$ is a one-to-one homeomorphism of an open neighbourhood of 0 in Σ onto an open neighbourhood of 1 in \mathscr{I}_{+}.

Let $V \in \mathcal{I}_{+}$. Let $V^{*} V=e^{H_{1}}, H_{1} \in \sum, H_{1}^{*}=H_{1}$. Let $|V|=\exp (1 / 2) H_{1}$, $U=V|V|^{-1}=e^{H_{2}}, \quad H_{2} \in \sum, \quad H_{2}^{*}=-H_{2}$. (Since V is invertible, U is unitary.) Let $\mathrm{V}(z)=e^{z H_{2}}|V| . \mathrm{V}(z) \in \mathscr{I}_{+}$for all complex number z. Since $\mathrm{V}(z)$ is an entire function of z and $\mathrm{V}(0)$ does not have an eigenvalue -1 , $\operatorname{det}(V(z)+1)=0$ has isolated roots. Hence \mathscr{I}_{0} and $\exp \Sigma$, which contains \mathscr{I}_{0}, are dense in \mathscr{I}_{+}.

For $H \in \Sigma$, define

$$
\begin{equation*}
\widehat{\mathrm{Q}}(H)=\exp \frac{1}{2}(\mathrm{~B}, H \mathrm{~B}) \tag{8.23}
\end{equation*}
$$

From Lemma 4.3, we have

$$
\begin{equation*}
\widehat{\mathrm{Q}}(H) \mathrm{B}(f) \widehat{\mathrm{Q}}(H)^{-1}=\mathrm{B}\left(e^{H} f\right) \tag{8.24}
\end{equation*}
$$

Obviously $\widehat{\mathrm{Q}}(H)^{*}=\widehat{\mathrm{Q}}\left(H^{*}\right)$.
Let $H \in \Sigma$ be selfadjoint. Then, in the Jordan expansion $H=H_{\Delta}$ $+\sum_{\lambda \neq \Lambda} E_{\lambda} \lambda, E_{+}=\sum_{\lambda>0} E_{\lambda}$ is a partial basis projection and $\widehat{\mathrm{Q}}(H)$ belongs to $\overline{\mathfrak{V}}_{\text {sDc }}\left(K^{\prime}, \Gamma\right)$ for $K^{\prime}=\left(E_{+}+\Gamma E_{+} \Gamma\right) K$. By identifying $\overline{\mathfrak{N}}_{\text {SDC }}\left(K^{\prime}, \Gamma\right)$ with $\overline{\mathfrak{V}}_{\mathrm{CAR}}\left(E_{+} K\right),(\mathrm{B}, H \mathrm{~B})=2\left(\mathrm{a}^{\dagger}, H_{+} \mathrm{a}\right)-\operatorname{tr} H_{+}$where $H_{+}=H E_{+}$and $\left(\mathrm{B}, H_{+} \mathrm{B}\right)$ $=\left(\mathrm{a}^{\dagger}, H_{+} \mathrm{a}\right)$ is $Q_{\psi}\left(H_{+}\right)$in the notation of [4]. By using the formula (12.3) of [4] with $\rho=1 / 2$, we have

$$
\begin{align*}
\varphi_{1 / 2}(\mathrm{Q}(H)) & =\exp \left\{\operatorname{tr} \log \left[\left(1+e^{H_{+}}\right) / 2\right]-\frac{1}{2} \operatorname{tr} H_{+}\right\} \tag{8.25}\\
& =\exp \operatorname{tr} \log \cosh \left(H_{+} / 2\right) \\
& =\exp \frac{1}{2} \operatorname{tr}\left(\log \left[\left(1+e^{H_{-}}\right) / 2\right]+\log \left[\left(1+e^{-H_{+}}\right) / 2\right]\right) \\
& =\exp \frac{1}{2} \operatorname{tr} \log \left[\left(1+e^{H}\right) / 2\right]
\end{align*}
$$

Note that the central state of $\overline{\mathcal{A}}_{\mathrm{sdc}}\left(K^{\prime}, \Gamma\right)$ is the same as the restriction of the central state of $\overline{\mathscr{M}}_{\mathrm{SDC}}(K, \Gamma)$ to $\overline{\mathfrak{N}}_{\mathrm{SDC}}\left(K^{\prime}, \Gamma\right)$.

Let $\mathrm{V}(z)$ be holomorphic in z and $\mathrm{V}(z) \in \mathscr{I}_{+}$. Then

$$
\begin{equation*}
\operatorname{det}[(1+V) / 2]=\exp \operatorname{tr} \log [(1+V) / 2] \tag{8.26}
\end{equation*}
$$

for $V=\mathrm{V}(z)$ is holomorphic in z and have zeros of an even order unless it is identically 0 . Hence its square root is locally holomorphic at every z. We define

$$
\begin{equation*}
\mathrm{f}(H)=\left.\exp \frac{1}{2} \operatorname{tr} \log \left[\left(1+e^{z H}\right) / 2\right]\right|_{z=1} \tag{8.27}
\end{equation*}
$$

where the value is the analytic continuation from $\mathrm{f}(0)=1$ and does not depend on the path of the analytic continuation.

By setting $H=H_{1}+z H_{2}$ in (8.25) and making an analytic continuation from real z to $z=i$, we have

$$
\begin{equation*}
\varphi_{1 / 2}(\widehat{\mathbf{Q}}(H))=\mathrm{f}(H) \tag{8.28}
\end{equation*}
$$

for all $H \in \Sigma$.
If $H \in \Sigma$ is selfadjoint, we have from (7.21)

$$
\begin{equation*}
\|\widehat{\mathbf{Q}}(H)\| \leqq \exp \frac{1}{2}\|(\mathrm{~B}, H \mathrm{~B})\|=\exp \frac{1}{4} \operatorname{tr}|H| \tag{8.29}
\end{equation*}
$$

On the other hand, we can consider the Fock state $\varphi_{\Gamma E+\Gamma}$ of $\overline{\mathfrak{M}}_{\text {sDc }}\left(K^{\prime}, \Gamma\right)$ and use (12.3) of [4] with $\rho=1$, we have

$$
\begin{equation*}
\varphi_{\Gamma E+\Gamma}(\widehat{\mathrm{Q}}(H))=\exp \frac{1}{2} \operatorname{tr} H_{+}=\exp \frac{1}{4} \operatorname{tr}|H| . \tag{8.30}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\|\widehat{\mathrm{Q}}(H)\|=\exp \frac{1}{4} \operatorname{tr}|H| . \quad\left(H^{*}=H\right) \tag{8.31}
\end{equation*}
$$

Since $\widehat{\mathrm{Q}}(H)^{-1}=\widehat{\mathrm{Q}}(-H)$ and $\widehat{\mathrm{Q}}(H)>0$, we have

$$
\begin{equation*}
\exp \frac{1}{4} \operatorname{tr}|H| \geqq \widehat{\mathrm{Q}}(H) \geqq \exp -\frac{1}{4} \operatorname{tr}|H| . \quad\left(H^{*}=H\right) \tag{8.32}
\end{equation*}
$$

Let $i H \in \sum$ be selfadjoint. Then $\widehat{Q}(H)$ as well as e^{H} are unitary. If E is a one dimersional partial basis projection and $H=i \lambda(E-\Gamma E \Gamma)$, then ($\mathrm{B}, H \mathrm{~B}$) has the spectrum $\{i \lambda,-i \lambda\}$ and hence $\|\widehat{\mathrm{Q}}(H)-1\|$ $=\frac{1}{2} \operatorname{tr}\left|e^{H / 2}-1\right|$. If $H=\sum H_{i}, H_{i}^{*}=-H_{i}, H_{i} H_{j}=H_{j} H_{i}=0$, then $\widehat{Q}(H)$ $=\widehat{\Pi}\left(H_{i}\right)$, each $\widehat{\mathrm{Q}}\left(H_{i}\right)$ is unitary and $\|\widehat{\mathrm{Q}}(H)-1\| \leqq \sum\left\|\widehat{\mathrm{Q}}\left(H_{i}\right)-1\right\|$.
(Here we have used $\widehat{\mathbf{Q}}(H)-1=\sum_{j}\left(\prod_{k>j} \widehat{\mathbf{Q}}\left(H_{k}\right)\right)\left(\widehat{\mathbf{Q}}\left(H_{j}\right)-1\right)$.) Hence we have

$$
\begin{equation*}
\|\widehat{\mathrm{Q}}(H)-1\| \leqq \frac{1}{2} \operatorname{tr}\left|e^{H / 2}-1\right| . \quad\left(H^{*}=-H\right) \tag{8.33}
\end{equation*}
$$

Let $V=e^{H}=e^{H \prime} \in \mathscr{I}_{+}, H, H^{\prime} \in \Sigma$. We show that $\widehat{\mathrm{Q}}(H)= \pm \widehat{\mathrm{Q}}\left(H^{\prime}\right)$. Let $r>0$ be sufficiently small such that $\lambda+2 n \pi i \neq x$ for any $n, 0<|x|$ $\leqq r$ and $|\lambda|>r$ in the following Jordan expansion of H :

$$
\begin{equation*}
H=\sum_{|\lambda|>r} \mathrm{E}_{\lambda}(H)\left(\lambda+\mathrm{N}_{\lambda}(H)\right)+H_{r} \tag{8.34}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathrm{E}_{\lambda}\left(H_{0}\right)=\sum_{n} \mathrm{E}_{\lambda+2 n \pi i}(H) \quad(\lambda \neq \pi i) \tag{8.35}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{N}_{\lambda}\left(H_{0}\right)=\sum_{n} \mathrm{~N}_{\lambda+2 n \pi i}(H) \quad(\lambda \neq \pi i) \tag{8.36}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{E}_{ \pm \pi i}\left(H_{0}\right)=\sum_{n \geq 0} \mathrm{E}_{ \pm(1+2 n) \pi i}(H), \tag{8.37}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{N}_{ \pm \pi i}\left(H_{0}\right)=\sum_{n \geq 0} \mathrm{~N}_{ \pm(1+2 n) \pi i}(H) \tag{8.38}
\end{equation*}
$$

$$
\begin{equation*}
H_{0}=\sum^{\prime} \mathrm{E}_{\lambda}\left(H_{0}\right)\left(\lambda+\mathrm{N}_{\lambda}\left(H_{0}\right)\right)+H_{r}+\sum_{n \neq 0} \mathrm{~N}_{2 n \pi_{\imath}}(H) \tag{8.39}
\end{equation*}
$$

where the sum Σ^{\prime} is over λ such that $|\operatorname{Im} \lambda| \leqq \pi$ and $\lambda \neq \pm(\pi i-\rho)$, $\rho>0$. Similar definitions are made for $H^{\prime} . \quad H_{0}, H_{0}^{\prime} \in \sum$.

If E is of a finite rank, $E^{*} \Gamma E=E \Gamma E^{*}=0$ and $E^{2}=E$, then we have
(8.40) $\mathrm{f}\left[2 \pi z i\left(E-\Gamma E^{*} \Gamma\right)\right]=(\cos \pi z)^{\operatorname{dim} E}$.

Hence $\widehat{\mathrm{Q}}\left(2 \pi i\left(E-\Gamma E^{*} \Gamma\right)\right)=(-1)^{\operatorname{dim} E}$. If H_{1} and H_{2} commute with each other, we have

$$
\begin{equation*}
\widehat{\mathrm{Q}}\left(H_{1}\right) \widehat{\mathrm{Q}}\left(H_{2}\right)=\widehat{\mathrm{Q}}\left(H_{1}+H_{2}\right) \tag{8.41}
\end{equation*}
$$

(8.40) and (8.41) implies

$$
\begin{equation*}
\widehat{\mathrm{Q}}(H)= \pm \widehat{\mathrm{Q}}\left(H_{0}\right), \quad \widehat{\mathrm{Q}}\left(H^{\prime}\right)= \pm \widehat{\mathrm{Q}}\left(H_{0}^{\prime}\right) \tag{8.42}
\end{equation*}
$$

From $e^{H}=e^{H \prime}$, we have $e^{H_{0}}=e^{H_{0}^{\prime}}$ and hence

$$
\begin{align*}
& H_{0}-H_{00}=H_{0}^{\prime}-H_{00}^{\prime} \tag{8.43}\\
& H_{00} \equiv \pi i\left[\mathrm{E}_{\pi i}\left(H_{0}\right)-\mathrm{E}_{-\pi \iota}\left(H_{0}\right)\right], \\
& H_{00}^{\prime} \equiv \pi i\left[\mathrm{E}_{\pi i}\left(H_{0}^{\prime}\right)-\mathrm{E}_{-\pi i}\left(H_{0}^{\prime}\right)\right], \tag{8.45}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{E}_{\pi i}\left(H_{0}\right)+\mathrm{E}_{-\pi i}\left(H_{0}\right)=\mathrm{E}_{\pi i}\left(H_{0}^{\prime}\right)+\mathrm{E}_{-\pi i}\left(H_{0}^{\prime}\right) . \tag{8.46}
\end{equation*}
$$

Since $\left[H_{0}, H_{00}\right]=\left[H_{0}^{\prime}, H_{00}^{\prime}\right]=0$, we would obtain $\widehat{\mathrm{Q}}(H)= \pm \widehat{\mathrm{Q}}\left(H^{\prime}\right)$ by (8.41), (8.42) and (8.43) if we can prove $\widehat{\mathrm{Q}}\left(H_{00}\right)= \pm \widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)$.

From (8.24), $\widehat{\mathrm{Q}}\left(H_{00}\right) \widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)^{-1}$ commutes with all $\mathrm{B}(f)$. The algebra $\overline{\mathscr{N}}_{\mathrm{SDC}}(K, \Gamma)$, which is isomorphic to CAR C^{*} algebra, is known to be simple [8] and in particular has a trivial center. Therefore $\widehat{\mathrm{Q}}\left(H_{00}\right) \widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)^{-1}=c \mathbb{1}$ for some complex number c.

On the other hand

$$
\widehat{\mathrm{Q}}\left(H_{00}\right)^{2}=\widehat{\mathrm{Q}}\left[2 \pi i\left(\mathrm{E}_{\pi i}\left(H_{0}\right)-\mathrm{E}_{-\pi i}\left(H_{0}\right)\right)\right]=(-1)^{\operatorname{dim} \mathrm{E}_{\pi i}\left(H_{0}\right)}
$$

and $\widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)^{2}=(-1)^{\operatorname{dim} \mathrm{F}_{\pi i}\left(H_{0}^{\prime}\right)}$. From (8.4.6), $\operatorname{dim} \mathrm{E}_{\pi i}\left(H_{0}\right)=\operatorname{dim} \mathrm{E}_{\pi i}\left(H_{0}^{\prime}\right)$ and hence $\widehat{\mathrm{Q}}\left(H_{00}\right)^{2}=\widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)^{2}$. Hence $c^{2} \mathbb{1}=\widehat{\mathrm{Q}}\left(H_{00}\right)^{2} \widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)^{-2}=1$. Therefore $c= \pm 1$ and $\widehat{\mathrm{Q}}\left(H_{00}\right)= \pm \widehat{\mathrm{Q}}\left(H_{00}^{\prime}\right)$. This completes the proof of $\widehat{\mathrm{Q}}(H)= \pm \widehat{\mathrm{Q}}\left(H^{\prime}\right)$.

From the above argument, $\widehat{\mathrm{Q}}\left(\mathrm{H}_{\gamma}(V)\right)= \pm \widehat{\mathrm{Q}}\left(\mathrm{H}_{\gamma^{\prime}}(V)\right)$ for any γ and r^{\prime} where $\mathrm{H}_{\gamma}(V)$ is defined by (8.21).

Let $e^{H_{:}}: e^{H_{2}} \in \mathcal{I}_{0}$ and $\mathrm{V}(z)=e^{z H_{1}} e^{z H_{2}}$. Let $z(t), 0 \leqq t \leqq 1$ be a path between $z(0)=0$ and $z(1)=1$ avoiding zeroes of $\operatorname{det}(V(z)+1)$. For each $0 \leqq t \leqq 1$, there exists an open interval I_{t} containing t and a fixed path γ_{t} such that $\operatorname{det}\left(1+z^{\prime}\left(\bar{V}\left[z\left(t^{\prime}\right)\right]-1\right)\right) \neq 0$ for $z^{\prime} \in_{\gamma_{t}}$ and $t^{\prime} \in I_{t}$. $\mathrm{H}_{\gamma_{t}}(\mathrm{~V}(z))$ defined by (8.21) is holomorphic in z at $z\left(t^{\prime}\right), t^{\prime} \in I_{t}$. The equality between two anaiytic functions of z

$$
\begin{equation*}
\widehat{\mathrm{Q}}\left(\mathrm{Hy}_{t}(\mathrm{~V}(z))\right)= \pm \widehat{\mathrm{Q}}\left(z H_{1}\right) \widehat{\mathrm{Q}}\left(z H_{2}\right) \tag{8.47}
\end{equation*}
$$

hold for all $z=z\left(t^{\prime}\right), t^{\prime} \in I_{t}$ if it holds for $z=z(t), t$ in some dense subset of an open interval in I_{t}, by the continuity and an analytic continuation.

The formula (8.47) holds with the plus sign if $|z|$ is sufficiently small by the Baker Haussdorf formula and Lemma 7.3. Since $[0,1]$ is covered by a finite number of $I_{+},(8.47)$ holds for all $z=z(t), 0 \leqq t \leqq 1$. Hence, if $e^{H_{1}} e^{H_{2}}=e^{H} \in \mathcal{I}_{0}$, we have

$$
\begin{equation*}
\widehat{\mathrm{Q}}\left(H_{1}\right) \widehat{\mathrm{Q}}\left(H_{2}\right)= \pm \widehat{\mathrm{Q}}(H) . \tag{8.48}
\end{equation*}
$$

Let $V=e^{H} \in \mathcal{I}_{0}$. Then

$$
\begin{equation*}
\widehat{\mathrm{Q}}(H)= \pm \widehat{\mathrm{Q}}\left(H_{2}\right) \widehat{\mathrm{Q}}\left(H_{1}\right) \tag{8.49}
\end{equation*}
$$

where $|V|=e^{H_{1}}, V|V|^{-1}=e^{H_{2}}$. Since $\widehat{Q}\left(H_{2}\right)$ is unitary, we obtain from (8.31)

$$
\begin{equation*}
\|\widehat{\mathrm{Q}}(H)\|=\exp \frac{1}{4} \operatorname{tr}|\log | V| | \tag{8.50}
\end{equation*}
$$

where $\log |V|$ is hermitian.
We also have

$$
\begin{aligned}
& \min (\|\widehat{\mathrm{Q}}(H)-1\|,\|\widehat{\mathrm{Q}}(H)+1\|) \\
\leqq & \left\| \pm \widehat{\mathrm{Q}}\left(H_{2}\right) \widehat{\mathrm{Q}}\left(H_{1}\right)-1\right\| \leqq\left\|\widehat{\mathrm{Q}}\left(H_{1}\right)-1\right\|+\left\| \pm \widehat{\mathrm{Q}}\left(H_{2}\right)-1\right\| .
\end{aligned}
$$

Hence we obtain from (8.32) and (8.33)

$$
\begin{align*}
& \min (\|\widehat{\mathrm{Q}}(H)-1\|,\|\widehat{\mathrm{Q}}(H)+1\|) \tag{8.51}\\
\leqq & \|\widehat{\mathrm{Q}}(H)\|-1+\frac{1}{2} \operatorname{tr}\left|e^{\left(H_{2} / 2\right)}-1\right|
\end{align*}
$$

Let $V_{n}=e^{H_{n}} \in \mathscr{I}_{0}, \quad H_{n} \in \sum$ and $\lim \left\|V_{n}-V\right\|_{\text {tr }}=0, \quad V \in \mathscr{I}_{+}$. Then $\operatorname{tr}|\log | V_{n}| |$ is bounded. Since $\left\|V_{n} V_{m}^{-1}-1\right\|_{\text {rr }} \rightarrow 0$ as $n, m \rightarrow \infty$, there exists $\varepsilon_{n}= \pm 1$ such that

$$
\begin{equation*}
\left[\varepsilon_{n} \widehat{\mathrm{Q}}\left(H_{n}\right)\right]\left[\varepsilon_{m} \widehat{\mathrm{Q}}\left(H_{m}\right)\right]^{-1} \rightarrow 1 \tag{8.52}
\end{equation*}
$$

as $n, m \rightarrow \infty$ due to (8.51). Since $\left\|\widehat{\mathrm{Q}}\left(H_{n}\right)\right\|$ is bounded due to (8.50), we have

$$
\begin{equation*}
\left\|\varepsilon_{n} \widehat{Q}\left(H_{n}\right)-\varepsilon_{m} \widehat{\mathbb{Q}}\left(H_{m}\right)\right\| \rightarrow 0, \tag{8.53}
\end{equation*}
$$

as $n, m \rightarrow \infty$. Hence there exists a limit of $\varepsilon_{n} \widehat{Q}\left(H_{n}\right)$ as $n \rightarrow \infty$. The limit does not depend on the choice of H_{a} and ε_{n} except for a factor ± 1. We shall write the linit as $\mathrm{Q}(V, \varepsilon)$ where $\varepsilon= \pm 1$ and $\mathrm{Q}(V, 1)$ $=-\mathrm{Q}(V,-1)$. The properties $\widehat{\mathrm{Q}}(S)^{*}=\widehat{\mathrm{Q}}\left(S^{*}\right),(8.24),(8.28),(8.48)$, (8.50) and (8.51) extends to $\mathrm{Q}(V, \varepsilon)$ by the continuity.

Let $\mathscr{I}_{\ddagger}^{*}$ be the abstract group with an involution $*$, which is * isomorphic to the group of operators $\mathrm{Q}(V, \varepsilon), Q$ be the * isomorphism from $g \in I_{+}^{*}$ to the corresponding $\mathrm{Q}(V, \varepsilon)$ and $\pi(g)=V$ if $Q(g)$ $=\mathrm{Q}(V, \varepsilon)$. From (8.24), $\mathrm{Q}\left(V_{1}, \varepsilon_{1}\right)=\mathrm{Q}\left(V_{2}, \varepsilon_{2}\right)$ only if $V_{1}=V_{2}$. Hence π is well defined. From $\mathrm{Q}(V, \varepsilon)^{*}= \pm \mathbf{Q}\left(V^{*}, \varepsilon^{\prime}\right)$ and (8.48) for $\mathrm{Q}(V, \varepsilon)$, π is a $*$ homomorphism. From (8.51), it is a homeomorphism. Since
$\mathrm{Q}(V, \varepsilon)=-1$ exists by (8.40), the mapping π is two to ore. (8.17)~ (8.20) follows from the corresponding properties for $Q(V, \varepsilon)$. Q.E.D.

Theorem 5. Let K be an infinite dimensional Hilbert space. A Bogoliubov transformation $\tau(U)$ of $\overline{\mathfrak{M}}_{\text {spc }}(K, \Gamma)$ is inner if and only if $U \in \mathscr{I}_{+}$or $-U \in \mathscr{I}_{-}$.

Proof of "if" part.
If $U \in \mathscr{I}_{+}$, then $Q\left(\pi^{-1} U\right)$ is unitary and induces the desired automorphism $\tau(U)$ on $\overline{\mathfrak{M}}_{\mathrm{sdo}}(K, \Gamma)$.

If $U_{1} \in \mathscr{I}_{\sigma_{1}}, U_{2} \in \mathscr{I}_{\sigma_{2}}$, then $U_{1} U_{2} \in \mathscr{I}_{\sigma_{1} \sigma_{2}}$. Hence it is enough to show that $\tau(U)$ is inner for at least one unitary U in $\mathscr{I}_{\text {. }}$.

Let $\left\{e_{\alpha}\right\}$ be a Γ invariant orthonormal basis of K. (A complete orthogonal family of Γ invariant vectors f_{α} can be obtained inductively by picking up f in $\left\{f_{\beta} ; \beta<\alpha_{0}\right\}^{\perp}$ and defining $f_{\alpha_{0}}=f+\Gamma f, f_{\alpha_{0}+1}=i(f-\Gamma f)$.) Let U be defined by the requirement of linearity, boundedness and $U e_{0}=e_{0}, U e_{\alpha}=-e_{\alpha}$ for all $\alpha \neq 0$. Then $-U \in \mathscr{I}_{-}$and $\tau(U)$ is implementable by $\sqrt{2} \mathrm{~B}\left(e_{0}\right)$.
Q.E.D.

To prove the "only if" part, we need some preparations.
Let K_{n} be a Γ invariant finite even dimensional subspace of K, $\mathfrak{\vartheta}_{n}=\overline{\mathfrak{Y}}_{\text {sDo }}\left(K_{n}, \Gamma\right)$ and $\mathfrak{Y}_{n}^{\mathrm{c}}$ be the set of elements in $\overline{\mathscr{थ}}_{\text {sDc }}(K, \Gamma)$ commuting with every element of \mathfrak{A}_{n}. We know the following properties.
(a) $\bigcup_{n} \mathscr{N}_{n}$ is dense in $\overline{\mathfrak{N}}_{\text {SDC }}(K, \Gamma)$.
(b) Let φ_{1} and φ_{2} be states of \mathfrak{A}_{n} and $\mathfrak{Y}_{n}^{\mathrm{c}}$.

Then there exists a state φ of $\overline{\mathfrak{N}}_{\text {SDC }}(\mathbb{K}, \Gamma)$ such that $\varphi\left|\mathfrak{H}_{n}=\varphi_{1}, \varphi\right| \mathfrak{H}_{n}^{\mathrm{c}}=\varphi_{2}$.
Property (b) follows from the fact that \mathfrak{N}_{n} is a full matrix algebra.
Lemma 8.4. Let U be a unitary element of $\overline{\mathfrak{M}}_{\mathrm{SDC}}(K, \Gamma)$. Then there exists a unitary V_{n} in \mathfrak{N}_{n} such that $\lim \left\|V_{n}-U\right\|=0$.

Proof. From (a), there exists $A_{n} \in \mathfrak{A}_{n}$ such that $\lim _{n}\left\|A_{n}-U\right\|=0$. Let $\left\|A_{n}-U\right\|=\varepsilon_{n}$. Then $\left\|A_{n}\right\| \leqq\|U\|+\varepsilon_{n}=1+\varepsilon_{n}$ and

$$
\left\|A_{n}^{*} A_{n}-1\right\| \leqq\left\|A_{n}^{*}-U^{*}\right\|\left\|A_{n}\right\|+\left\|U^{*}\right\|\left\|A_{n}-U\right\| \leqq \varepsilon_{n}\left(2+\varepsilon_{n}\right)
$$

Hence $\left\|\left|A_{n}\right|^{-1}\right\| \leqq\left[1-\varepsilon_{n}\left(2+\varepsilon_{n}\right)\right]^{-1 / 2}$ and $\left\|\left|A_{n}\right|^{-1}-1\right\| \leqq\left[1-\varepsilon_{n}\left(2+\varepsilon_{n}\right)\right]^{-1 / 2}$ -1 provided that $\varepsilon_{n}\left(2+\varepsilon_{n}\right) \leqq 1 .\left(\left|A_{n}\right|=\left(A_{n}^{*} A_{n}\right)^{1 / 2}.\right)$

Let $V_{n}=A_{n}\left|A_{n}\right|^{-1}$. Then V_{n} is isometric and

$$
\begin{aligned}
\left\|V_{n}-U\right\| & \leqq\left\|A_{n}-U\right\|\left\|\left|A_{n}\right|^{-1}\right\|+\left\|\left|A_{n}\right|^{-1}-1\right\| \\
& \leqq \varepsilon_{n}\left[1-\varepsilon_{n}\left(2+\varepsilon_{n}\right)\right]^{-1 / 2}+\left[1-\varepsilon_{n}\left(2+\varepsilon_{n}\right)\right]^{-1 / 2}-1 \rightarrow 0 .
\end{aligned}
$$

Therefore $\lim \left\|V_{n}-U\right\|=0$.
We now have $\lim _{n}\left\|V_{n} V_{n}^{*}-1\right\|=0$ due to $U U^{*}=1$. Since $V_{n} V_{n}^{*}$ is a projection, $\left\|V_{n} V_{n}^{*}-1\right\|=1$ unless $V_{n} V_{n}^{*}=1$. Hence V_{n} is unitary for sufficiently large n.
Q.E.D.

Lemma 8.5. Let U be a unitary element of $\overline{\mathfrak{N}}_{\mathrm{sDC}}(K, \Gamma)$ and U_{n} be unitary element in \mathfrak{N}_{n} such that $U A U^{-1}=U_{n} A U_{n}^{-1}$ for all $A \in \mathfrak{A}_{n}$. Then there exists a complex number λ_{n} such that $\left|\lambda_{n}\right|=1$ and $\lim \lambda_{n} U_{n}=U$.

Proof. Let $U_{n}^{\mathrm{c}}=U_{n}^{-1} U$. We have $U_{n}^{\mathrm{c}} \in \mathfrak{Y}_{n}^{\mathrm{c}}$. Let V_{n} be as given by Lemma 8.4. We then have

$$
\lim \left\|U_{n}^{c}-U_{n}^{-1} V_{n}\right\|=0
$$

Let $\varphi_{1 n}$ and $\varphi_{2 n}$ be states of \mathfrak{N}_{n} and \mathscr{Y}_{n}^{c} and let φ_{n} be a state of $\overline{\mathfrak{A}}_{\mathrm{SDC}}(K, \Gamma)$ such that $\varphi_{n}\left|\mathscr{U}_{n}=\varphi_{1 n}, \varphi_{n}\right| \mathfrak{Y}_{n}^{\mathrm{c}}=\varphi_{2 n}$. We have

$$
\begin{aligned}
& \sup _{\varphi_{2 n}}\left|\varphi_{2 n}\left(U_{n}^{\mathrm{c}}\right)-\varphi_{1 n}\left(U_{n}^{-1} V_{n}\right)\right| \\
\leqq & \sup _{\varphi}\left|\varphi\left(U_{n}^{\mathrm{c}}-U_{n}^{-1} V_{n}\right)\right|=\left\|U_{n}^{\mathrm{c}}-U_{n}^{-1} V_{n}\right\| \rightarrow 0 .
\end{aligned}
$$

Let $\lambda_{n}=\varphi_{1 n}\left(U_{n}^{-1} V_{n}\right)$ for a fixed sequence $\varphi_{1 n}$. Then

$$
\left\|U_{n}^{\mathrm{c}}-\lambda_{n}\right\|=\sup _{\Phi_{2 n}}\left|\varphi_{2 n}\left(U_{n}^{\mathrm{c}}-\lambda_{n}\right)\right| \rightarrow 0
$$

Therefore $\lim \left\|U-\lambda_{n} U_{n}\right\|=0$.
Q.E.D.

Proof of "only if" part of Theorem 5. Let U be a Bogoliubov transformation which can be implemented by a unitary W in $\overline{\mathcal{M}}_{\mathrm{sdc}}(K, \Gamma)$: $W A W^{*}=\tau(U) A$. Any inner $*$ automorphism is unitarily implementable in any representation. From Theorem 8, we see that $U-1$ or $U+1$ is in the Hilbert Schmidt class. In either case, U has a purely discrete spectrum.

First consider the case where multiplicities of eigenvalues 1 and -1 of U are not odd. Then there exists Γ invariant finite even dimen-
sional spectral projections E_{n} of U such that $\lim E_{n}=1$. Let $U_{n}=E_{n} U$. Let W_{n} be a unitary element of $\bar{\Re}_{\mathrm{sDc}}\left(E_{n} K, \Gamma\right)$ such that $W_{n} A W_{n}^{*}$ $=\tau\left(U_{n}\right) A$ for $A \in \overline{\mathcal{V}}_{\text {sDC }}\left(E_{n} K, \Gamma\right)$. By Lemma 8.5, there exists complex numbers λ_{n} such that $\lim \lambda_{n} W_{n}=W$.

Let $U=e^{i H},\|H\| \leqq \pi, H^{*}=H, \Gamma H \Gamma=-H$, and E_{+}be a basis projection such that $\left[E_{+}, H\right]=0, E_{+} H \leqq 0$. If multiplicities of eigenvalues 1 and -1 of U are not odd, such H and E_{+}exists. Let $E_{-}=1-E_{+}$, $H_{ \pm}=E_{ \pm} H$.

By Lemma 8. 3, W_{n} is proportional to $\widehat{\mathbf{Q}}\left(i E_{n} H\right)$ and by Lemma 9.2,

$$
\varphi_{E_{ \pm}}\left(W_{n}\right)=c \exp (i / 2) \operatorname{tr}\left(E_{n} H_{ \pm}\right),
$$

where $|c|=1$ is common for two equations. Since $\left[U, E_{\perp}\right]=0, W \Omega_{E \pm}$ must be a multiple of $\Omega_{E_{ \pm}}$by Lemma 4.3. Therefore

$$
\lim _{n \rightarrow \infty} \lambda_{n} \exp (i / 2) \operatorname{tr}\left(E_{n} H_{ \pm}\right)=c^{\prime}
$$

where c^{\prime} is common for \pm. This implies

$$
\lim _{n} \exp (i / 2) \operatorname{tr} E_{n}\left(H_{+}-H_{-}\right)=1
$$

From $\Gamma H_{+} \Gamma=-H_{-}, \quad\left[\Gamma, E_{n}\right]=0$, we have $\operatorname{tr} E_{n} H_{-}=-\operatorname{tr} E_{n} H_{+}$. Therefore

$$
\lim _{n} \exp i \operatorname{tr} E_{n} H_{+}=1
$$

Since $0 \leqq H_{+} \leqq \pi$ and E_{n} can be chosen to pick up (an increasing sequence of) any finite number of eigenvectors of H_{+}, this implies that H_{+}must be in the trace class. Therefore $U \in \mathscr{I}_{+}$in this case.

In order to consider a general case, we again use Theorem 8. If both $\operatorname{dim} E_{1}$ and $\operatorname{dim} E_{-1}$ are finite, then either 1 or -1 is an accumulation point of the spectrum of U. Then there exists a Bogoliubov transformation $U^{\prime} \in \mathcal{I}_{+}$which commutes with U such that $U U^{\prime}$ has an infinite multiplicity for an eigenvalue 1 or -1 . Since we know already that U^{\prime} is inner, it is sufficient to consider the case where either $\operatorname{dim} E_{1}$ or $\operatorname{dim} E_{-1}$ is infinite.

We now consider a case where the dimension of the eigenprojection E_{1} of U for an eigenvalue 1 is finite and odd. Let $Q_{E_{1}}(-1)$
$=\prod_{j}\left\{\sqrt{2} \mathrm{~B}\left(f_{j}\right)\right\}$ where $\left\{f_{j}\right\}$ is any complete orthonormal set of Γ invariant vectors in $E_{1} K$. Then $Q_{E_{1}}(-1)$ is unitary and implement the Bogoliubov automorphism $\tau\left(U_{1}\right)$ for U_{1} which is 1 on $E_{1} K$ and -1 on $\left(1-E_{1}\right) K$. Since $U U_{1}$ has no eigenvalue -1 and an infinite multiplicity for an eigenvalue $1, \tau\left(U U_{1}\right)$ is inner only if $U U_{1} \in \mathscr{I}_{+}$. Since $-U_{1} \in \mathscr{I}_{-}$, this implies $-U \in \mathscr{I}_{-}$.

Finally we consider a case where the dimension of the eigenprojection E_{-1} of U for an eigenvalue -1 is finite and odd. As before $\tau\left(U_{1}\right)$ is inner for U_{1} which is 1 on $E_{-1} K$ and -1 on $\left(1-E_{-1}\right) K$. Since $U U_{1}$ has no eigenvalue 1 and an infinite multiplicity for an eigenvalue -1 , it is not inner.
Q.E.D.
§9. Unitary Implementable Bogoliubov Transformations
Lemma 9.1. Let P and P^{\prime} be basis projections. Let $\sin \theta$ $=\left|P-P^{\prime}\right|, \quad 0 \leqq \theta \leqq \pi / 2 . \quad$ Let $\quad E_{\pi / 2}=P \wedge\left(1-P^{\prime}\right)+(1-P) \wedge P^{\prime}, \quad E_{0}$ $=P \wedge P^{\prime}+(1-P) \wedge\left(1-P^{\prime}\right) . \quad$ Let

$$
\begin{align*}
& F_{ \pm}=\frac{1}{2}\left(1-E_{\pi / 2}-E_{0} \pm i(\sin \theta \cos \theta)^{-1}\left[P, P^{\prime}\right]\right) \tag{9.1}\\
& \mathrm{H}\left(P^{\prime} / P\right)=\theta\left\{F_{+}-F_{-}\right\}
\end{align*}
$$

Let $e_{1} \cdots e_{n}$ be an orthonormal basis of $\left\{P \wedge\left(1-P^{\prime}\right)\right\} K(n \leqq \infty)$ and U be a unitary operator, determined by the requirement that $U e_{j}=\Gamma e_{j}$, $U T e_{j}=e_{j}, U f=f$ for $f \in\left(1-E_{\pi / 2}\right) K$. Assume that $\left|P-P^{\prime}\right|$ is in the trace class, Let

$$
\begin{equation*}
\widehat{\mathrm{R}}\left(P^{\prime} / P\right)=e^{i \mathrm{H}\left(P^{\prime} / P\right)} U \tag{9.3}
\end{equation*}
$$

$$
\begin{equation*}
Q=\left\{\exp \frac{i}{2}\left(\mathrm{~B}, \mathrm{H}\left(P^{\prime} / P\right) \mathrm{B}\right)\right\} \prod_{j=1}^{n}\left\{\mathrm{~B}\left(e_{j}\right)-\mathrm{B}\left(\Gamma e_{j}\right)\right\} \tag{9.4}
\end{equation*}
$$

Then $\widehat{\mathrm{R}}\left(P^{\prime} / P\right) \in \mathscr{I}_{\sigma}, \sigma=(-1)^{n}, Q$ is unitary and

$$
\begin{align*}
& \widehat{\mathrm{R}}\left(P^{\prime} / P\right) P \widehat{\mathrm{R}}\left(P^{\prime} / P\right)^{*}=P^{\prime} \tag{9.5}\\
& Q \mathrm{~B}(f) Q^{*}=\mathrm{B}\left((-1)^{n} \widehat{\mathrm{R}}\left(P^{\prime} / P\right) f\right) \tag{9.6}\\
& \varphi_{r}\left(Q A Q^{*}\right)=\varphi_{P \prime}(A) \tag{9.7}\\
& \varphi_{P}(Q)=(\operatorname{det} \cos \theta)^{1 / 4} \tag{9.8}
\end{align*}
$$

where the positive quartic root is taken and $A \in \overline{\mathfrak{M}}_{\mathrm{SDC}}(K, \Gamma)$.
Proof. Since $\left(P-P^{\prime}\right)^{2}$ commutes with P and P^{\prime}, θ commutes with P and $P^{\prime} . \quad \theta$ also commutes with $\Gamma . E_{0}$ and $E_{\pi / 2}$ are spectral projections of θ for the eigenvalues 0 and $\pi / 2$. From $\left[P, P^{\prime}\right]^{2}$ $=-\sin ^{2} \theta \cos ^{2} \theta$, it follows that $F_{+} F_{-}=F_{-} F_{+}=0$. Because P and P^{\prime} are basis projections, $\Gamma F_{ \pm} \Gamma=F_{\mp}$. Namely $F_{ \pm}$are partial basis projections.

If $\left|P-P^{\prime}\right|$ is in the trace class, then θ is also in the trace class and hence $\mathrm{H}\left(P^{\prime} / P\right) \in \sum$, $e^{i \mathrm{H}\left(P^{\prime} / P\right)} \in \mathcal{I}_{+}$.
(9.5) follows from a direct calculation. (Also see Appendix.)
Q is unitary. (9.6) is immediate for $f \in\left(1-E_{\pi / 2}\right) K, f=e$, and $f=\Gamma e_{j}$ and hence for all f. From (9.5) and (9.6), we have

$$
\begin{align*}
\varphi_{P}\left(Q^{*} A Q\right) & =\varphi_{P}\left(\tau\left((-1)^{n} \widehat{\mathrm{R}}\left(P^{\prime} / P\right)^{*}\right) A\right) \tag{9.9}\\
& =\varphi_{P}\left(\tau\left(\widehat{\mathrm{R}}\left(P^{\prime} / P\right)^{*}\right) A\right)=\varphi_{P^{\prime}}(A)
\end{align*}
$$

By Definition 3.1, (3.3) and $\left(g, P e_{k}\right)=\left(g, P \Gamma e_{k}\right)=(g, P f)=0$ for $g=e_{j}$ and $\Gamma e_{j}, k \neq j$ and $f \in\left(1-E_{0}\right) K$, we have for $n \neq 0$,

$$
\begin{equation*}
\varphi_{P}(Q)=0 \tag{9.10}
\end{equation*}
$$

Since $Q \in \overline{\mathscr{Y}}_{\text {sDC }}\left(\left(1-E_{0}\right) K, \Gamma\right)$, we can compute (9.8) by using the Fock state $\varphi_{P\left(1-E_{0}\right)}$ on $\overline{\mathfrak{Y}}_{\mathrm{sDC}}\left(\left(1-E_{0}\right) K, \Gamma\right)$. Herce we may assume $E_{0}=0$ without loss of generality. If $n=0$ and $E_{0}=0$, there exists a basis projection E of (K, Γ) commuting with P and P^{\prime} and a unitary orerator u such that $[u, P]=\left[u, P^{\prime}\right]=0$ and $u E u^{*}=1-E$, due to Lemma A. Then it follows that $\operatorname{tr} E H\left(P^{\prime} / P\right)=(1 / 2) \operatorname{trH}\left(P^{\prime} / P\right)=0$. We can identify $\left(\mathrm{B}, \mathrm{H}\left(P^{\prime} / P\right) \mathrm{B}\right)$ in $\overline{\mathcal{M}}_{\mathrm{sdc}}\left(\left(1-E_{0}\right) K, \Gamma\right)$ with $2\left(\mathrm{a}^{\dagger}\right.$, $E \mathrm{H}\left(P^{\prime} / P\right)$ a) in $\overline{\mathfrak{A}}_{\mathrm{CAR}}(E K)$ and use the formula for $\left\langle e^{K}\right\rangle$ in the Appendix C of [4] where $K=i \mathrm{H}\left(P^{\prime} / P\right) E\left(\left(\mathrm{a}^{\dagger} K \mathrm{a}\right)\right.$ is written as [K] in [4]) and $\rho=(1-P) E$. We have

$$
\begin{align*}
\varphi_{P}(Q) & =\exp \left\{\operatorname{tr} \log \left(1+\left(e^{K}-1\right) \rho\right)\right\} \tag{9.11}\\
& =\exp \operatorname{tr}_{E} \log \left(1+(1-P)\left(e^{K}-1\right)(1-P)\right) \\
& =\exp \operatorname{tr}_{E(1-P)} \log (\cos \theta) \\
& =\exp \frac{1}{4} \operatorname{tr} \log (\cos \theta)=\operatorname{det}(\cos \theta)^{1 / 4}
\end{align*}
$$

where the positive root is to be taken.
Q.E.D.

Lemma 9.2. Let $g \in \mathscr{I}_{+}^{*}$ and P be a basis projection. Then

$$
\begin{equation*}
\varphi_{P}(Q(g))=\operatorname{det}_{P}\left(P_{\pi}(g)^{-1} P\right)^{1 / 2}, \tag{9.12}
\end{equation*}
$$

where det_{P} is the determinant taken on the space PK, the branch of the square root is to be determined by an analytic continuation from the value 1 for $g=1$ and the continuity.

Proof. First we consider the case where $\pi(g)=e^{i H}, H^{*}=H$, $\Gamma H^{*} \Gamma=-H, H$ is in the trace class and the continuous inverse image $\pi^{-1}\left(e^{i t H}\right), 0 \leqq t \leqq 1$ connects 1 and g. Then $\pi(g)$ is a Bogoliubov transformation. Let

$$
\begin{equation*}
P^{\prime}=\pi(g) P \pi(g)^{*} \tag{9.13}
\end{equation*}
$$

which is again a basis projection. Since H is in the trace class

$$
\begin{aligned}
\left\|P^{\prime}-P\right\|_{\mathrm{tr}} & \leqq \sum_{n=1}^{\infty}(n!)^{-1} \|[\underbrace{H \cdots[H, P] \cdots] \|_{\mathrm{tr}}}_{n} \\
& \leqq \sum_{n=1}^{\infty}(n!)^{-1} 2^{n}\|H\|_{\mathrm{tr}}\|H\|^{n-1}\|P\|<\infty
\end{aligned}
$$

Let

$$
\begin{equation*}
\widehat{\mathrm{R}}\left(P / P^{\prime}\right)^{*} \pi(g)=V \tag{9.14}
\end{equation*}
$$

V commutes with the basis projection P by (9.13) and (9.5). Since $V \in \mathscr{I}_{+} \cup \mathscr{I}_{-}$, this implies $\operatorname{det} V=+1$ and hence $V \in \mathscr{I}_{+}$. Let $g^{\prime} \in \mathscr{I}_{+}^{*}$ be such that $\pi\left(g^{\prime}\right)=V$. Let $V=e^{i H \prime}$ where $H^{\prime *}=H^{\prime}, \Gamma H^{\prime} \Gamma=-H^{\prime}$, $\left[P, H^{\prime}\right]=0$. We then have $Q\left(g^{\prime}\right)= \pm \exp \frac{i}{2}\left(\mathrm{~B}, H^{\prime} \mathrm{B}\right)$. Under the identification of $\bar{श}_{\mathrm{SDC}}(K, \Gamma)$ with $\bar{श}_{\mathrm{CAR}}(P K)$, $\left(\mathrm{B}, H^{\prime} \mathcal{B}\right)=2\left(\mathrm{a}^{\dagger}, H^{\prime} P a\right)$ $-\operatorname{tr}\left(H^{\prime} P\right)$. Therefore

$$
\begin{equation*}
\varphi_{P}\left(A Q\left(g^{\prime}\right)\right)= \pm \varphi_{P}(A) \exp -\frac{i}{2} \operatorname{tr}\left(H^{\prime} P\right) . \tag{9.15}
\end{equation*}
$$

By substituting $A=\widehat{\mathrm{R}}\left(P / P^{\prime}\right)$, we obtain

$$
\begin{align*}
\varphi_{P}(Q(g)) & = \pm \operatorname{det}(\cos \theta)^{1 / 4} \exp -\frac{1}{2} \operatorname{tr}(\log V) P \tag{9.16}\\
& = \pm \operatorname{det}_{P}\left[(\cos \theta) V^{-1} P\right]^{1 / 2} .
\end{align*}
$$

Substituting $\cos \theta V^{-1} P=P \cos 0 V^{-1} P$ and $P \cos \theta=P \widehat{\mathrm{R}}\left(P / P^{\prime}\right) * P$, we obtain

$$
\begin{equation*}
\varphi_{P}(Q(g))= \pm \operatorname{det}_{P}\left(P \pi(g)^{-1} P\right)^{1 / 2} \tag{9.17}
\end{equation*}
$$

By absorbing 上 to the ambiguity in the branch of square root, we obtain (9.12).

By substituting $g_{n}(z)$ such that $\pi\left(g_{n}\right)=\exp i\left(H_{1}^{(n)}+z H_{2}^{(u)}\right), H_{j}^{(n) *}$ $=H_{j}^{(n)}, \Gamma H_{j}^{(n)} \Gamma=-H_{j}^{(n) *}$, making analytic continuation in z from $z=0$ to i and taking limit of $n \rightarrow \infty$ in the trace class norm, one obtains (9.12) for most general g.
Q.E.D.

Remark. The formula (9.12) can be also obtained by the following methcd. Consider the case where $\pi(g)-1$ and $S-(1 / 2)$ are of finite rank and S does not have eigenvalues 0 and 1 . Then from (6.24), and (8.18), we have

$$
\begin{align*}
\varphi_{S}(Q(g)) & =\varphi_{1 / 2}\left[Q(g) \exp -\frac{1}{2}\left(\mathrm{~B}, \log \left\{S(1-S)^{-1}\right\} \mathrm{B}\right)\right] \operatorname{det}(2 S)^{1 / 2} \tag{9.18}\\
& = \pm \operatorname{det}(2 S)^{1 / 2} \exp \frac{1}{2} \operatorname{tr} \log \left[\left(1+\pi(g)(1-S) S^{-1}\right) / 2\right] \\
& = \pm \exp \frac{1}{2} \operatorname{tr} \log [S+\pi(g)(1-S)]
\end{align*}
$$

We can now allow S to take eigenvalues 0 and 1 and to be not of finite rank. (9.18) holds by continuity. If S is the projection P, we have

$$
\begin{equation*}
\varphi_{P}(Q(g))=\operatorname{det}[P+(1-P) \pi(g)(1-P)]^{1^{2}} \tag{9.19}
\end{equation*}
$$

Since $\operatorname{det} \Gamma A^{*} \Gamma=\operatorname{det} A$ and $\Gamma \pi(g)^{*} \Gamma=\pi(g)^{-1}$, we obtain (9.12).
Conversely (9.18) can be obtained from (9.12) by

$$
\varphi_{s}(Q(g))=\operatorname{det}_{P_{s}}\left(P_{s} \pi(g)^{-1} P_{s}\right)^{1 / 2}=\operatorname{det}\left(1-P_{s}+P_{s} \pi(g)^{-1} P_{s}\right)^{1 / 2}
$$

where $\pi(g)$ is understocd as $\pi(g) \oplus 1$ on \widehat{K}. It can be checked easily that this ccircides with the above expression.

Note that the formula (12.3) of $[4]$ is a special case of (9.18), where $S=1-\rho$.

Lemma 9. 3. Let P be a basis projection, g_{n} be in \mathscr{I}_{+}^{*}, V be a Bogoliubov transformation $P_{n} \equiv \pi\left(g_{n}\right) P \pi\left(g_{n}\right)^{*}, P^{\prime} \equiv V P V^{*}$. Assume that $\pi\left(g_{n}\right)$ is unitary,

$$
\begin{equation*}
P \wedge\left(1-P^{\prime}\right)=0 \tag{9.20}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \pi\left(g_{n}\right)=V, \tag{9.21}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{n}-P^{\prime}\right\|_{\text {H.S. }}=0 \tag{9.22}
\end{equation*}
$$

where $\|A\|_{\text {н.s. }}=\left\|A^{*} A\right\|_{\text {tr }}$. Let χ_{n} be such that

$$
\begin{equation*}
\varphi_{P}\left(Q\left(g_{n}\right)\right)=\chi_{n}\left|\varphi_{P}\left(Q\left(g_{n}\right)\right)\right| . \tag{9.23}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{Q}_{P}(V)=\lim _{n \rightarrow \infty} \pi_{P}\left(Q\left(g_{n}\right)\right) \chi_{n}^{-1} \tag{9.24}
\end{equation*}
$$

exists and does not depend on the sequence g_{n} for a given V. It satisfies

$$
\begin{equation*}
\mathrm{Q}_{P}\left(V^{*}\right)=\mathrm{Q}_{P}(V)^{*} \tag{9.25}
\end{equation*}
$$

$\mathrm{Q}_{P}(V) \pi_{P}(\mathrm{~B}(f))=\pi_{P}(\mathrm{~B}(V f)) \mathrm{Q}_{P}(V)$
$\left(\Omega_{P}, \mathrm{Q}_{P}(V) \Omega_{P}\right)=\operatorname{det}_{P}\left(P P^{\prime} P\right)^{1 / 4}>0$.
If $H \in \Sigma \quad$ and $\quad H^{*}=-H$, then $\quad \mathrm{Q}_{P}\left(e^{H}\right)=\widehat{\mathrm{Q}}(H) \operatorname{det}\left(P e^{H} P\right)^{-1 / 2}$ $\left|\operatorname{det}\left(P e^{H} P\right)\right|^{1 / 2}$.

Proof. Since $\pi\left(g_{n}\right)-1$ is in the trace class, $\left(P_{n}-P\right)$ is in the trace class and hence is in the H.S. class. From (9.22) ($P^{\prime}-P$) is also in the H.S. class. Hence $P\left(1-P^{\prime}\right) P=P\left(P^{\prime}-P\right)^{2} P$ is in the trace class, and $\left(1-P^{\prime}\right) P=\left(P-P^{\prime}\right) P$ is in the H.S. class. From (9.22), it follows

$$
\begin{equation*}
\left\|\left(1-P_{n}\right) P-\left(1-P^{\prime}\right) P\right\|_{\text {н.s. }}=\left\|\left(P_{n}-P^{\prime}\right) P\right\|_{\text {н.s. } .} \rightarrow 0 \tag{9.28}
\end{equation*}
$$

Hence $\left\|\left(1-P_{n}\right) P\right\|_{\text {f.s. }}$ is uniformily bounded.
We now have

$$
\begin{align*}
& \| P P_{n} P-P P^{\prime} P\left\|_{\text {tr }}=\right\|\left\{P\left(1-P_{n}\right)-P\left(1-P^{\prime}\right)\right\}\left(1-P_{n}\right) P \tag{9.29}\\
&+P\left(1-P^{\prime}\right)\left\{\left(1-P_{n}\right) P-\left(1-P^{\prime}\right) P\right\} \|_{\text {tr }} \\
& \leqq\left\|\left(1-P_{n}\right) P-\left(1-P^{\prime}\right) P\right\|_{\text {н.s. }}\left\{\left\|\left(1-P_{n}\right) P\right\|_{\text {н.s. }}\right. \\
&\left.+\left\|\left(1-P^{\prime}\right) P\right\|_{\text {н.s. }\}}\right\}
\end{align*}
$$

We also note that (9.22) implies $\left\|P_{n}-P_{m}\right\|_{\text {u.s. }} \rightarrow 0$ as $n, m \rightarrow \infty$. Hence $P_{n m} \equiv \pi\left(g_{m}\right) * P_{n} \pi\left(g_{m}\right)$ satisfies $\left\|P_{n m}-P\right\|_{\text {H.S. }}=\left\|P_{n}-P_{m}\right\|_{\text {н.s. }} \rightarrow 0 \quad$ as $\quad n, m$ $\rightarrow \infty$. Therefore

$$
\begin{equation*}
\left\|P P_{n m} P-P\right\|_{\mathrm{tr}}=\left\|P\left(P_{n n}-P\right)^{2} P\right\|_{\mathrm{tr}} \rightarrow 0 \tag{9.30}
\end{equation*}
$$

as $n, m \rightarrow \infty$.
Let

$$
\begin{equation*}
Q_{n}=\chi_{n}^{-1} \pi_{P}\left(Q\left(g_{n}\right)\right), \quad \Psi_{n}=Q_{n} \Omega_{P} . \tag{9.31}
\end{equation*}
$$

We obtain, from (9.29),

$$
\begin{align*}
\left(\Omega_{P}, \Psi_{n}\right) & =\left|\operatorname{det}_{P}\left(P_{\pi}\left(g_{n}\right)^{-1} P\right)\right|^{1 / 2} \tag{9.32}\\
& =\left\{\operatorname{det}_{P}\left(P \pi\left(g_{n}\right) P\right) \operatorname{det}_{P}\left(P \pi\left(g_{n}\right)^{*} P\right)\right\}^{1 / 4} \\
& =\left[\operatorname{det}_{P}\left(P P_{n} P\right)\right]^{1 / 4} \rightarrow\left[\operatorname{det}_{P}\left(P P^{\prime} P\right)\right]^{1 / 4}
\end{align*}
$$

and, from (9.30),

$$
\begin{equation*}
\left|\left(\Psi_{n}, \Psi_{m}\right)\right|=\operatorname{det}_{P}\left(P P_{n m} P\right)^{1 / 4} \rightarrow 1 \tag{9.33}
\end{equation*}
$$

Due to (9.20), $c \equiv\left[\operatorname{det}_{P}\left(P P^{\prime} P\right)\right]^{1 / 4} \neq 0$.
Let $\exp i \theta_{n n}=\left(\Psi_{n}, \Psi_{m}\right) /\left|\left(\Psi_{n}, \Psi_{m}\right)\right|$. If $\left|1-\left|\left(\Psi_{n}, \Psi_{m}\right)\right|\right|<\varepsilon^{2} / 2$, then
 $\left|\left(\Omega_{P}, \Psi_{n}\right)-c\right|<\varepsilon$ and $\left|\left(\Omega_{P}, \Psi_{m}\right)-c\right|<\varepsilon$ in addition, then $\left|e^{i \theta_{n m}}-1\right| c<3 \varepsilon$ and hence $\left\|\Psi_{n}-\Psi_{n}\right\|<(1+3 / c)$ e.

Therefore Ψ_{n} is a Cauchy sequence and has a strong limit $\Psi(V)$.
Let $\Psi=\pi_{P}(A) \Omega_{P}, \quad A \in \mathfrak{A}_{\mathrm{sDc}}(K, \Gamma)$. Then

$$
Q_{n} \pi_{P}(A) \Omega_{P}=\pi_{P}\left(\tau\left[\pi\left(g_{n}\right)\right] A\right) Q_{n} \Omega_{P}
$$

$$
\begin{align*}
& \left\|Q_{n} \pi_{P}(A) \Omega-\pi_{P}(\tau[V] A) \Psi(V)\right\| \tag{9.34}\\
\leqq & \|A\|\left\|\Psi_{n}-\Psi(V)\right\|+\left\|\tau\left(\pi\left(g_{n}\right)\right) A-\tau(V) A\right\| \rightarrow 0,
\end{align*}
$$

where (9.21) is used for the second te-m. Hence Q_{n} has a strong limit $\mathrm{Q}_{P}(V)$, which satisfies (9.27) due to (9.32). It also satisfies

$$
\begin{equation*}
\mathrm{Q}_{P}(V) \pi_{P}(A) \Omega_{P}=\pi_{P}(\tau(V) A) \mathrm{Q}_{P}(V) \Omega_{P} \tag{9.35}
\end{equation*}
$$

(9.27) implies $\mathrm{Q}_{P}(V) \Omega_{P} \neq 0$. Since π_{P} is irreducible, (9.35) implies that the range of $\mathrm{Q}_{P}(V)$ is the whole space. As a strong limit of unitary $Q_{n}, \mathrm{Q}_{P}(V)$ is isometric and hence is unitary. (9.35) implies (9.26), which uniquely determines the unitary operator $\mathrm{Q}_{P}(V)$ up to a multiplicative constant for a given V. The constant is unique due to (9.27). Hence $\mathrm{Q}_{P}(V)$ does not depend on the sequence.
(9.26) and (9.27) are satisfied when $\mathrm{Q}_{P}\left(V^{*}\right)^{*}$ is substituted into
$\mathrm{Q}_{P}(V)$. Hence, by the uniqueness, we immediately have (9.25).
Lemma 9.4. Let P be a basis projection, V be a Bogoliubov transformation and $P^{\prime}=V^{*} P V$. If $\left(P^{\prime}-P\right)$ is in the Hilbert Schmidt class, V is unitarily implementable in the Fock representation π_{P}.

Proof. $E_{\pi / 2}=P \wedge\left(1-P^{\prime}\right)+(1-P) \wedge P^{\prime}$ is the spectral projection of $\left(P-P^{\prime}\right)^{2}$ for an eigenvalue 1 and hence has a finite dimension. Let $e_{1} \cdots e_{n}$ be an orthonormal basis of $\left(P \wedge\left(1-P^{\prime}\right)\right) K$. Let U be a unitary operator determined by the requirements $U e_{j}=\Gamma e_{j}, U \Gamma e_{j}=e_{j}$, $U f=f$ for $f \in\left(1-E_{\pi / 2}\right) K$. Then U is a Bogoliubov transformation such that $U-1$ is of finite rank. We have $\operatorname{det} U=(-1)^{n}$. Hence $\tau\left((-1)^{n} U\right)$ is inner and hence is unitarily implementable.

We now consider $V_{1}=V U, P^{\prime \prime}=V_{1}^{*} P V_{1}$. Then $v \equiv\left|P^{\prime \prime}-P\right|$ is in the H.S. class and $P \bigwedge\left(1-P^{\prime \prime}\right)=(1-P) \wedge P^{\prime \prime}=0$. There exists a monotonically increasing sequence of a finite dimensional spectral projection E_{n} of v such that $\lim E_{n}=1-E_{0}$ where E_{0} is the eigenprojection of v for an eigenvalue 0 . Consider $\mathrm{R}\left(P^{\prime \prime} / P\right)=\left(1-v^{2}\right)^{1 / 2}-\left(1-v^{2}\right)^{-1 / 2}$ $\cdot\left[P, P^{\prime \prime}\right]$. Then consider $U_{n}=\left(1-E_{n}\right)+\mathrm{R}\left(P^{\prime \prime} / P\right) E_{n}$. We have

$$
\begin{aligned}
\| U_{n} & -\mathrm{R}\left(P^{\prime \prime} / P\right)\left\|_{\text {I.s. }} \leqq\right\|\left(1-E_{n}\right)\left(\left(1-v^{2}\right)^{1 / 2}-1\right) \|_{\text {H.s. }} \\
& +\left\|\left(1-E_{n}\right)\left(1-v^{2}\right)^{-1 / 2}\left[P, P^{\prime \prime}\right]\right\|_{\text {H. } .5} \rightarrow 0
\end{aligned}
$$

where E_{n} commutes with P and $P^{\prime \prime}$ and $\left|\left[P, P^{\prime \prime}\right]\right|^{2}=\left(1-v^{2}\right) v^{2}$ is in the trace class. Hence there exists $\mathrm{Q}_{P}\left(\mathrm{R}\left(P^{\prime \prime} / P\right)\right)$ on H_{P} which implements $\tau\left(\mathrm{R}\left(P^{\prime \prime} / P\right)\right)$.

We now consider $V_{2}=V U R\left(P^{\prime \prime} / P\right)$. It commutes with P and hence φ_{P} is invariant under $\tau\left(V_{2}\right)$. Hence it is unitarily implementable in π_{P}. Q.E.D.

Theorem 6. Two Fock states φ_{P} and $\varphi_{P \prime}$ are unitarily equivalent if and only if $\left(P-P^{\prime}\right)$ is in the Hilbert Schmidt class.

Proof. First assume that $P-P^{\prime}$ is in the Hilbert Schmidt class. Then there exists a Bogoliubov transformation V bringing P^{\prime} to P, which is unitarily implementable by Lemma 9.4.

Now assume that $P-P^{\prime}$ is not in the Hilbert Schmidt class. Then
$\left(P-P^{\prime}\right)^{2}$ is not in the trace class. Since P commutes with $\left(P-P^{\prime}\right)^{2}$ and $\Gamma P\left(P-P^{\prime}\right)^{2} \Gamma=(1-P)\left(P-P^{\prime}\right)^{2}, \quad(1-P)\left(P-P^{\prime}\right)^{2}=(1-P) P^{\prime}(1-P)$ is not in the trace class.

By Lemma A, there exists a partial basis projection E and a partial isometry u such that $[E, P]=\left[E, P^{\prime}\right]=0,\left(P-P^{\prime}\right)^{2}(E+\Gamma E \Gamma)$ $=\left(P-P^{\prime}\right)^{2}, \quad[u, P]=\left[u, P^{\prime}\right]=0, u^{*} u=E$ and $u^{*} u=\Gamma E \Gamma$. Then $u E u^{*}$ $=\Gamma E \Gamma, u E(1-P) P^{\prime}(1-P) u^{*}=\Gamma E \Gamma(1-P) P^{\prime}(1-P)$ and $\{E+\Gamma E \Gamma\}$ $\cdot(1-P) P^{\prime}(1-P)=(1-P) P^{\prime}(1-P)$. Hence, if $\left(P-P^{\prime}\right)^{2}$ is not in the trace class, then $E(1-P) P^{\prime}(1-P)$ is not in the trace class.

As a consequence, there exists an infinite number of unit vectors $e_{j} \in E(1-P) K, j=1,2, \cdots$ such that $\left(e_{j}, e_{k}\right)=\left(e_{j}, P^{\prime} e_{k}\right)=0$ for $j \neq k$ and $\sum_{j}\left(e_{j}, P^{\prime} e_{j}\right)=\infty$. This is proved as follows:

If $E(1-P) P^{\prime}(1-P)$ has a continuous spectrum Ξ_{c}, then take a number $\delta>0$ such that $\Xi_{c} \cap(\delta, 1) \neq \phi$ and take an infinite number of mutually disjoint interval Δ_{j} in $[\delta, 1]$ with $\Delta_{j} \cap \Xi_{c} \neq \phi$. Take any unit vector e_{j} from $E\left(\Delta_{j}\right) K$ where $E\left(\Delta_{j}\right)$ is the spectral projector of $(1-P) P^{\prime}(1-P)$ for $\Delta_{j} . \quad\left(e_{j}, e_{k}\right)=\left(e_{j}, P^{\prime} e_{k}\right)=0$ for $j \neq k$ is automatic. Since $\left(e_{j}, P^{\prime} e_{j}\right) \geqq \delta, \sum_{j}\left(e_{j}, P^{\prime} e_{j}\right)=\infty$.

If $E(1-P) P^{\prime}(1-P)$ has a purely discrete spectrum, then take e_{j} to be a complete orthonormal set of eigenvectors of $E(1-P) P^{\prime}(1-P)$ in $E(1-P) K$. Then $e_{j} \in(1-P) K,\left(e_{j}, P^{\prime} e_{k}\right)=\left(e_{j}, E(1-P) P^{\prime}(1-P) e_{k}\right)$ $=0$ for $j \neq k$ and $\sum\left(e_{j}, P^{\prime} e_{j}\right)=\operatorname{tr}(1-P) P^{\prime}(1-P) E=\infty$.

Since $e_{j} \in E K, E K \perp \Gamma E K$ and $\left[E, P^{\prime}\right]=0$, we have $\left(e_{j}, \Gamma e_{k}\right)$ $=\left(e_{j}, P^{\prime} \Gamma e_{k}\right)=0$ for any j and k.

Let P_{j} be the projection on the space spanned by $\Gamma e_{j}, \mathrm{U}_{n}(\lambda)$ $\equiv \exp i \lambda\left(P_{n}-\Gamma P_{n} \Gamma\right), \mathrm{U}^{(n)}(\lambda)=\prod_{k=1}^{n} \mathrm{U}_{k}(\lambda)$ and $\mathrm{U}(\lambda)=\prod_{k} \mathrm{U}_{k}(\lambda)$. We have

$$
\begin{align*}
\operatorname{det} P \mathrm{U}^{(n)}(\lambda) P & =\exp i \lambda^{n}, \tag{9.36}\\
\operatorname{det} P^{\prime} \mathrm{U}^{(n)}(\lambda) F^{\prime} & =\prod_{j=1}^{n} \operatorname{det}\left\{P^{\prime} \exp i \lambda\left(P_{j}-\Gamma P_{j} \Gamma\right) P^{\prime}\right\} \tag{9.37}\\
& =(\exp i \lambda n) \prod_{j-1}^{n}\left[1+\left(e^{-i \lambda}-1\right)\left(e_{j} P^{\prime} e_{j}\right)\right]^{2}
\end{align*}
$$

From (9.36), it follows that $Q_{P}\left(\mathrm{U}^{(n)}(\lambda)\right) e^{-i \lambda n}$ has a strong limit $\mathrm{Q}_{P}(\mathrm{U}(\lambda))$. It also follows from the proof of Lemma 9.3 that approach to the limit is uniform locally in λ and hence $Q_{P}(U(\lambda))$ is continuous
in λ. Hence $\left(\mathscr{\Phi}, \mathrm{Q}_{P}(\mathrm{U}(\lambda)) \varnothing\right) \neq 0$ for sufficiently small λ for a given $\mathscr{\emptyset}$. Thus for $\varnothing \in \mathfrak{S}_{P}$, there exists λ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\mathscr{\Phi}, \mathrm{Q}_{P}\left(\mathrm{U}^{(n)}(\lambda)\right) e^{-i \lambda n} \Phi\right) \neq 0 \tag{9.38}
\end{equation*}
$$

and $\cos \lambda \neq 1$.
Let $g_{n} \in \mathscr{I}_{+}^{*}$ be such that $\pi\left(g_{n}\right)=\mathrm{U}^{(n)}(\lambda)$. Due to (9.37), it is necessary for the existence of a nonzero limit

$$
\lim _{n \rightarrow \infty} \varphi_{P^{\prime}}\left(Q\left(g_{n}\right) e^{-i \lambda n}\right) \neq 0
$$

that

$$
\begin{equation*}
\sum\left(e^{-i \lambda}-1\right)\left(e_{j}, P^{\prime} e_{i}\right)<\infty . \tag{9.39}
\end{equation*}
$$

This implies that φ_{P} and φ_{P} can not be unitarily equivalent. Q.E.D.
Theorem 7. A Bogoliubov automorphism $\tau(V)$ is unitarily implementable in the Fock representation π_{P} if and only if $(1-P) V P$ is in the Hilbert Schmidt class.

Proof. We note that

$$
\begin{equation*}
\varphi_{P}(\tau(V) A)=\varphi_{V^{*} P V}(A) \tag{9.40}
\end{equation*}
$$

Hence, if V is unitarily implementable, $\left|V^{*} P V-P\right|$ is in the Hilbert Schmidt class. Hence $P\left|V^{*} P V-P\right|^{2}=\left(P V^{*}(1-P)\right)((1-P) V P)$ is in the trace class, which implies $(1-P) V P$ is in the Hilbert Schmidt class.

Conversely, if $(1-P) V P$ is in the trace class, then $P\left|V^{*} P V-P\right|^{2}$ and $\Gamma\left\{P\left|V^{*} P V-P\right|^{2}\right\} \Gamma=(1-P)\left|V^{*} P V-P\right|^{2}$ are both in the trace class. Hence $V^{*} P V-P$ is in the Hilbert Schmidt class and V is unitarily implementable for π_{P}.
Q.E.D.

Theorem 8. A Bogoliubov automorphism $\tau(U)$ is unitarily implementable for all Fock representations if and only if $U-1$ or $U+1$ is in the Hilbert Schmidt class, where $\operatorname{dim} K \neq \mathrm{odd}$.

Proof. "If" part is immediate from Theorem 7. We may assume that $\operatorname{dim} K$ is infinite. [The case where $\operatorname{dim} K=$ odd is not considered because there is no Fock representation].

For "only if" part, we have to show that if $P U(1-P)$ is in the Hilbert Schmidt class for all basis projection P, then $U-1$ or $U+1$ is in the Hilbert Schmidt class where U satisfies $U^{*}=U^{-1}, \Gamma U \Gamma=U$.

Let Δ be any measurable subset of $\left\{e^{i \theta} ; 0<\theta<\pi\right\}$ and E_{1} be any subprojection of the spectral projection of U for the set Δ such that $\left[U, E_{1}\right]=0$. Assume that E_{1} has an infinite dimension and $E_{0}=1-E_{1}$ $-\Gamma E_{1} \Gamma$ has an infinite or an even dimension. Let $E=E_{1}+\Gamma E_{1} \Gamma$.

There exists an antiunitary involution T (a complex conjugation) on $E K$, commuting with the spectral projections of $U E_{1}$ and with Γ. Let P_{1} be the subprojection of E for the subspace spanned by $f+i \Gamma T f, f \in E_{1} K$. Then $\left(E-P_{1}\right) K$ is spanned by $f-i \Gamma T f$, $f \in E_{1} K$ and $\Gamma P_{1} \Gamma=E-P_{1}$. Hence there exists a basis projection $P>P_{1}$.

Since $U(f+i \Gamma T f)=U f+i \Gamma T U^{*} f$, we have

$$
(1-P) U(f+i \Gamma T f)=\frac{1}{2}\left[\left(U-U^{*}\right) f-i \Gamma T\left(U-U^{*}\right) f\right]
$$

Therefore

$$
\|(1-P) U(f+i \Gamma T f)\|^{2} /\|f+i \Gamma T f\|^{2}=\left\|\left(U-U^{*}\right) f / 2\right\|^{2} /\|f\|^{2}
$$

Since $(1-P) U P P_{1}=(1-P) U P_{1}$ must be in the Hilbert Schmidt class, $\left(U-U^{*}\right) E_{1}$ must be in the Hilbert Schmidt class. [Note that $2^{-1 / 2}\left(f_{j}+i \Gamma T f_{j}\right)$ is an orthonormal basis of $P_{1} K$ if f_{j} is an orthonormal basis of $E_{1} K$.]

In order that $\left(U-U^{*}\right) E_{1}$ is in the H.S. class for any E_{1}, it is necessary that U has a purely discrete spectrum and its accumulation points are at most 1 and -1 .

Next assume that $U f_{j}=e^{i \alpha} f_{j}, U g_{j}=e^{i \beta_{j}} g_{j}, j=1,2, \cdots, 0 \leqq \alpha_{j} \leqq \pi$, $0 \leqq \beta_{j} \leqq \pi, \quad\left|\alpha_{j}-\beta_{k}\right| \geqq \alpha(>0), \quad\left(f_{j}, f_{k}\right)=\left(g_{j}, g_{k}\right)=\delta_{j k} \quad$ and $\quad\left(\Gamma g_{j}, g_{k}\right)$ $=\left(\Gamma g_{j}, f_{k}\right)=\left(f_{j}, \Gamma f_{k}\right)=0$. Further assume that the orthogonal complement of the set of all $f_{j}, g_{j}, \Gamma f_{j}, \Gamma g_{j}, j=1,2, \cdots$ has an infinite or even dimension.

Let P_{1} be the subspace spanned by $\left(f_{j}+g_{j}\right)$ and $\left(\Gamma f_{j}-\Gamma g_{j}\right)$, $j=1,2, \cdots$. Then there exists a basis projection $P \geqq P_{1}$. We have

$$
(1-P) U\left(f_{j}+g_{j}\right)=\left(e^{i \alpha_{j}}-e^{i \beta_{j}}\right)\left(f_{j}-g_{j}\right) / 2 .
$$

Therefore,

$$
\begin{aligned}
\|(1-P) U P\|_{\mathrm{H.s}}^{2} & \geqq \sum_{j}\left\|(1-P) U\left(f_{j}+g_{j}\right)\right\|^{2} / 2 \\
& \geqq \sum_{j} \sin ^{2}\left[\left(\alpha_{j}-\beta_{j}\right) / 2\right] \\
& \geqq \sum_{j} \sin ^{2}(\alpha / 2)=\infty
\end{aligned}
$$

Thus, the spectrum of U can not have more than one accumulation points nor points with an infinite multiplicity.

From the above two conclusion, we see that $U-1$ or $U+1$ must be compact.

If $U+1$ is compact, then $(-U)-1$ is compact and $\tau(-1)$ is unitarily implementable in all Fock representation.

If $U-1$ is compact and an eigenvalue 1 has a finite multiplicity, there exists an infinite number of eigenvectors f_{j} of U belonging to an eigenvalue $e^{i \alpha_{j}}$ such that $0<\alpha_{j}<\pi$ and $\sum \alpha_{j}<\infty$. Let E be the projection for the subspace spanned by all f_{j} and Γf_{j} and $W=U E$ $+(1-E)$. Then $\tau(W)$ is an inner Bogoliubov autoriorphism by Lemma 8.3 and an eigenvalue 1 of $U W^{*}$ has an infinite multiplicity.

Thus we may restrict our attention to the case where $U-1$ is compact and an eigenvalue 1 of U has an infinite multiplicity. In this case Δ can be taken the whole set $\left\{e^{i \theta} ; 0<\theta<\pi\right\}$ and hence $U-U^{*}$ is in the H.S. class. This implies that $U-1$ is in the H.S. class.

> Q.E.D.

§10. Pseudo Fock States

Lemma 10.1. Let P be a partial basis projection with the Γ codimension 1. Let e_{0} be a fixed Γ invariant unit vector in $(1-P-\Gamma P \Gamma) K$. Let π_{P} on $\mathfrak{\xi}_{P}$ be the Fock representation of $\overline{\mathfrak{N}}_{\mathrm{sDc}}(P K+\Gamma P K, \Gamma)$. Then there exists an irreducible representation $\pi_{\left(P, o_{0}\right)}$ of $\overline{\mathfrak{A}}_{\mathrm{sDC}}(K, \Gamma)$ on \mathfrak{S}_{P} uniquely determined by the following requirements:

$$
\begin{equation*}
\pi_{\left(P, e_{0}\right)}(\mathrm{B}(f))=2^{-1 / 2}\left(e_{0}, f\right) \mathrm{T}_{P}(-1)+\pi_{P}[\mathrm{~B}(P f+\Gamma P \Gamma f)] . \tag{10.1}
\end{equation*}
$$

Proof. Since $\pi_{\left(P, e_{0}\right)}(\mathrm{B}(f))$ given by (10.1) satisfies the defining properties (1), (2), (3) of a selfdual CAR algebra, it automatically has a unique extension to the whole $\overline{\mathfrak{थ}}_{\text {sde }}(K, \Gamma)$.
Q.E.D.

Definition 10.2. A pseudo Fock state $\varphi_{\left(P, e_{0}\right)}$ of $\overline{\mathfrak{M}}_{\mathrm{sDC}}(K, \Gamma)$ is defined by

$$
\begin{equation*}
\varphi_{\left(P, e_{0}\right)}(A)=\left(\Omega_{P}, \pi_{\left(P, e_{0}\right)}(A) \Omega_{P}\right) \tag{10.2}
\end{equation*}
$$

where P, e_{0} and $\pi_{\left(P, e_{0}\right)}$ are given in Lemma 10.1 and Ω_{P} is the cyclic vector corresponding to the Fock state φ_{P} of $\overline{\mathfrak{2}}_{\mathrm{sdc}}(P K+\Gamma P K, \Gamma)$.

Lemma 10.3. Let P be a partial basis projection with a Γ codimension 1 and

$$
\begin{equation*}
S=(1 / 2)(1+P-\Gamma P \Gamma) . \tag{10.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varphi_{s}=(1 / 2)\left\{\varphi_{\left(P, e_{0}\right)}+\varphi_{\left(P,-e_{0}\right)}\right\} . \tag{10.4}
\end{equation*}
$$

Pure states $\varphi_{\left(P, e_{0}\right)}$ and $\varphi_{\left(P,-e_{0}\right)}$ are not unitarily equivalent. R_{S} is not a factor and its center is generated by $\pi_{s}\left(\mathrm{~B}\left(e_{0}\right)\right) \mathrm{T}_{P}(-1)$, where $\mathrm{T}_{P}(-1)$ is a unitary operator in $\pi_{s}(\mathfrak{H}(P K+\Gamma P K, \Gamma))^{\prime \prime}$ satisfying $\mathrm{T}_{P}(-1) \pi_{s}(\mathrm{~B}(f)) \mathrm{T}_{P}(-1)=\pi_{s}(\mathrm{~B}(-f))$ for $f \in P K+\Gamma P K$.

Proof. Any element A in $\mathscr{U}_{\text {sDc }}(K, \Gamma)$ can be written as $A_{1}+A_{2} \mathrm{~B}\left(e_{0}\right)=A$ where A_{1} and A_{2} are in $\hat{\mathcal{H}}_{\mathrm{sDc}}(P K+\Gamma P K, \Gamma)$. Both sides of (10.4) give $\varphi_{P}\left(A_{1}\right)$ and hence (10.4) holds.

If $A \in \overline{\mathfrak{N}}_{\text {sdo }}(P K+\Gamma P K, \Gamma)$, then $\pi_{\left(P, e_{0}\right)}(A)=\pi_{\left(P,-e_{0}\right)}(A)$. The set of all such $\pi_{\left(P, e_{0}\right)}(A)$ is irreducible by Lemma 4.3. Therefore any unitary operator satisfying $W \pi_{\left(P, e_{0}\right)}(A) W^{*}=\pi_{\left(P,-e_{0}\right)}(A)$ must be a multiple of the identity. However, $\pi_{\left(P,-\theta_{0}\right)}\left(\mathrm{B}\left(e_{0}\right)\right)=-2^{-1 / 2} \mathrm{~T}_{P}(-1) \neq \pi_{\left(P, e_{0}\right)}\left(\mathrm{B}\left(e_{0}\right)\right)$. Therefore $\pi_{\left(P, e_{0}\right)}$ and $\pi_{\left(P,-\varepsilon_{0}\right)}$ are not unitarily equivalent.

From this, it follows that

$$
\begin{equation*}
\mathfrak{S}_{s}=\mathfrak{S}_{q_{\left(P, e_{0}\right)}} \oplus \mathfrak{S}_{\mathcal{P}_{\left(P,-\varepsilon_{0}\right)}} \tag{10.5}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{S}=2^{-1 / 2}\left(\Omega_{\varphi_{\left(P, e_{0}\right)}} \oplus \Omega_{\varphi_{\left(P,-\varepsilon_{0}\right)}}\right) \tag{10.6}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{s}(\mathrm{~B}(f))=\pi_{\varphi_{\left(P, e_{0}\right)}}(\mathrm{B}(f)) \oplus \pi_{\varphi_{\left(P,-\epsilon_{0}\right)}}(\mathrm{B}(f)) \tag{10.7}
\end{equation*}
$$

and $\pi_{s}\left(\mathrm{~B}\left(e_{0}\right)\right)\left(\mathrm{T}_{P}(-1) \oplus \mathrm{T}_{P}(-1)\right)$, which is $2^{-1 / 2}$ on $\mathscr{W}_{\varphi_{\left(P, e_{0}\right)}}$ and $-2^{-2 / 1}$ on $H_{\varphi_{\left(P,-\ell_{0}\right)}}$ generates the center of R_{S}. The operator $\mathrm{T}_{P}(-1) \oplus \mathrm{T}_{P}(-1)$,
which belongs to $\pi_{s}\left(\overline{\mathfrak{n}}_{\mathrm{sDC}}(P K+\Gamma P K, \Gamma)\right)^{\prime \prime}$, can be characterized up to a multiplicative constant by its anticommutation property with $\mathrm{B}(f)$, $f \in P K+\Gamma P K$.

Theorem 9. Let E be a partial basis projection with a finite odd Γ codimension and T be a Hilbert Schmidt operator such that $T E=E T=T . \quad$ Let

$$
\begin{equation*}
S=T+1-\Gamma T \Gamma+(1 / 2)(1-E-\Gamma E \Gamma) \tag{10.8}
\end{equation*}
$$

Then R_{s} is not a factor. Conversely, if R_{s} is not a factor, then S is of the form given by (10.8).

Proof. Let $e_{1} \cdots e_{2 n+1}$ be a complete orthonormal system of Γ invariant vectors in $(1-E-\Gamma E \Gamma) K$ and E_{0} be the projection on the subspace spanned by $e_{2 j}+i e_{2 j+1}, j=1, \cdots, n$. By setting $E_{1}=E+E_{0}$, $T_{1}=T+(1 / 2) E_{0}$, we obtain a case where the partial basis projection E_{1} has a Γ-codimension 1.

Let

$$
S^{\prime}=\Gamma E_{1} \Gamma+(1 / 2)\left(1-E_{1}-\Gamma E_{1} \Gamma\right)
$$

Then $S^{1 / 2}-\left(S^{\prime}\right)^{1 / 2}$ is in the Hilbert Schmidt class and hence R_{S} and $R_{S^{\prime}}$ are $*$ isomorphic. By Lemma 10.3, where we set $P=\Gamma E_{1} \Gamma, R_{s^{\prime}}$ is not a factor and hence R_{S} is not a factor.

If S is of the form given by (10.8) where the Γ codimension of E is finite and even and T is as before. Then the same argument as above shows that R_{s} is $*$ isomorphic to $R_{S^{\prime}}$ where $S^{\prime}=\Gamma E_{1} \Gamma$ is a basis projection. Hence R_{S} is a factor.

If S is not of the form given by (10.8) where the Γ-codimension of E is finite, then $S^{1 / 2}(1-S)^{1 / 2}$ is not in the Hilbert Schmidt class. Let $P_{s}^{\prime} \equiv 2(S \oplus(1-S))-P_{s}$. Then $P_{s}^{\prime}-P_{s}$ is not in the Hilbert Schmidt class. In the proof of Lemma 4.11, Ψ_{-}, if nonvanishing, is a vector giving a vector states $\varphi_{P_{S}^{\prime}}$ in the representation space associated with $\varphi_{P_{S}}$. By Theorem 6, we have $\Psi_{-}=0$ and hence from the proof of Lemma 4.11, R_{s} must be a factor.
Q.E.D.

Appendix: Angle between Two Projections

We state a result concerning an angle operator between two projections which is essentially taken from [1]. If one of two projections has either dimension 1 or codimension 1 , then the nonzero eigenvalue of the angle operator coincides with the geometrical angle between corresponding subspaces.

Theorem 10. Let P_{1} and P_{2} be projection operators on a complex Hilbert space K. Let $\theta\left(P_{1}, P_{2}\right)$ be defined by

$$
\begin{equation*}
0 \leqq \theta\left(P_{1}, P_{2}\right) \leqq \pi / 2 \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
\sin \theta\left(P_{1}, P_{2}\right)=\left|P_{1}-P_{2}\right| . \tag{A.2}
\end{equation*}
$$

Let $\mathrm{E}(0)$ and $\mathrm{E}(\pi / 2)$ denote eigenprojections of $\theta\left(P_{1}, P_{2}\right)$ for eigenvalues 0 and $\pi / 2, E=\mathrm{E}(0)+\mathrm{E}(\pi / 2)$, and

$$
\begin{equation*}
v_{1}=\cos \theta\left(P_{1}, P_{2}\right), \quad v_{2}=\sin \theta\left(P_{1}, P_{2}\right) \tag{A.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{R}\left(P_{1} / P_{2}\right)=v_{1}+v_{1}^{-1}\left[P_{1}, P_{2}\right] \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{I}\left(P_{1}, P_{2}\right)=v_{1}^{-1}\left(P_{1}+P_{2}-1\right) \tag{A.5}
\end{equation*}
$$

Let
(A. 6)

$$
\mathrm{u}_{11}\left(P_{1} / P_{2}\right)=P_{1}(1-E)
$$

(A. 7)

$$
\mathrm{u}_{22}\left(P_{1} / P_{2}\right)=\left(1-P_{1}\right)(1-E),
$$

$$
\begin{equation*}
\mathrm{u}_{12}\left(P_{1} / P_{2}\right)=\left(v_{1} v_{2}\right)^{-1} P_{1} P_{2}\left(1-P_{1}\right), \tag{A.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{u}_{21}\left(P_{1} / P_{2}\right)=\left(v_{1} v_{2}\right)^{-1}\left(1-P_{1}\right) P_{2} P_{1} . \tag{A.9}
\end{equation*}
$$

Let $P \wedge P^{\prime}$ denote the projection on $P K \cap P^{\prime} K$ if P and P^{\prime} are projections. Let Ω be the von Neumann algebra $\left\{P_{1}, P_{2}\right\}^{\prime \prime}$ generated by P_{1} and P_{2} and 3 be its center $\Omega \cap \Omega^{\prime}$.

Then 3 is generated by $\theta\left(P_{1}, P_{2}\right)=\theta\left(P_{2}, P_{1}\right), E P_{1}$ and $E P_{2} . \Omega$ is generated by its center 3 und $\mathrm{u}_{i j}\left(P_{1} / P_{2}\right), i, j=1,2$ satisfying

$$
\begin{equation*}
\mathrm{u}_{i j}\left(P_{1} / P_{2}\right)^{*}=\mathrm{u}_{j i}\left(P_{1} / P_{2}\right), \tag{A.10}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{u}_{i j}\left(P_{1} / P_{2}\right) \mathrm{u}_{k l}\left(P_{1} / P_{2}\right)=\delta_{j k} \mathrm{u}_{i l}\left(P_{1} / P_{2}\right) \tag{A.11}
\end{equation*}
$$

ΩE is commutative and is generated by four minimal projections $P_{1} \wedge P_{2}, P_{1} \wedge\left(1-P_{2}\right),\left(1-P_{1}\right) \wedge P_{2}$ and $\left(1-P_{1}\right) \wedge\left(1-P_{2}\right)$ where

$$
\begin{aligned}
& \mathrm{E}(0)=P_{1} \wedge P_{2}+\left(1-P_{1}\right) \wedge\left(1-P_{2}\right) \\
& \mathrm{E}(\pi / 2)=P_{1} \wedge\left(1-P_{2}\right)+\left(1-P_{1}\right) \wedge P_{2}
\end{aligned}
$$

$\Omega(1-E)$ is a tensor product of the center $3(1-E)$ and the type I_{2} factor generated by the matrix unit $\mathrm{u}_{i j}\left(P_{1} / P_{2}\right)$. Relative to this matrix unit, we have
(A. 12)

$$
P_{1}(1-E)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

(A. 13)

$$
P_{2}(1-E)=\left(\begin{array}{lr}
v_{1}^{2}, & v_{1} v_{2} \\
v_{1} v_{2}, & v_{2}^{2}
\end{array}\right),
$$

(A. 14)

$$
\mathrm{R}\left(P_{1} / P_{2}\right)(1-E)=\left(\begin{array}{rr}
v_{1}, & v_{2} \\
-v_{2}, & v_{1}
\end{array}\right),
$$

(A. 15)

$$
\mathrm{I}\left(P_{1}, P_{2}\right)(1-E)=\left(\begin{array}{rr}
v_{1}, & v_{2} \\
v_{2}, & -v_{1}
\end{array}\right)
$$

The operator $\mathrm{R}\left(P_{1} / P_{2}\right)$ satisfies

$$
\begin{equation*}
\mathrm{R}\left(P_{1} / P_{2}\right)^{*}=\mathrm{R}\left(P_{2} / P_{1}\right), \tag{A.16}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(P_{1} / P_{2}\right) \mathrm{R}\left(P_{1} / P_{2}\right) *=\mathrm{R}\left(P_{1} / P_{2}\right) * \mathrm{R}\left(P_{1} / P_{2}\right)=1-E(\pi / 2), \tag{A.17}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(P_{1} / P_{2}\right) P_{2} \mathrm{R}\left(P_{1} / P_{2}\right)^{*}=P_{1}-P_{1} \wedge\left(1-P_{2}\right) \tag{A.18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(P_{1} / P_{2}\right) * P_{1} \mathrm{R}\left(P_{1} / P_{2}\right)=P_{2}-P_{2} \wedge\left(1-P_{1}\right) \tag{A.19}
\end{equation*}
$$

The operator $\mathrm{I}\left(U_{1}, U_{2}\right)$ satisfies

$$
\begin{equation*}
\mathrm{I}\left(P_{1}, P_{2}\right)^{*}=\mathrm{I}\left(P_{1}, P_{2}\right)=\mathrm{I}\left(P_{2}, P_{1}\right), \tag{A.20}
\end{equation*}
$$

(A. 21)

$$
I\left(P_{1}, P_{2}\right)^{2}=1-E(\pi / 2)
$$

$$
\begin{equation*}
\mathrm{I}\left(P_{1}, P_{2}\right) \mathrm{u}_{i j}\left(P_{1} / P_{2}\right) \mathrm{I}\left(P_{1}, P_{2}\right)=\mathrm{u}_{i j}\left(P_{2} / P_{1}\right) \tag{A.22}
\end{equation*}
$$

Proof. Since $-1 \leqq P_{1}-P_{2} \leqq 1$, we have $0 \leqq\left|P_{1}-P_{2}\right| \leqq 1$ and hence $\theta\left(P_{1}, P_{2}\right)$ is uniquely well defined by (A.2) and (A.1). By a direct calculation,

$$
\begin{equation*}
\left[\left(P_{1}-P_{2}\right)^{2}, P_{1}\right]=\left[\left(P_{1}-P_{2}\right)^{2}, P_{2}\right]=0 \tag{A.23}
\end{equation*}
$$

and hence $\theta\left(P_{1}, P_{2}\right) \in \mathfrak{3}$.
If $\left(P_{1}-P_{2}\right) f=f$, then $\left(f, P_{1} f\right) \leqq\|f\|$ and $\left(f, P_{2} f\right) \geqq 0$ imply
$\left\|P_{2} f\right\|=0$ and hence $P_{2} f=0, P_{1} f=f$. If $\left(P_{1}-P_{2}\right) f=-f$, we obtain $P_{2} f=f, P_{1} f=0$. Converses are obvicusly true. Hence we have

$$
\begin{equation*}
\mathrm{E}(\pi / 2)=P_{1} \wedge\left(1-P_{2}\right)+\left(1-P_{1}\right) \wedge P_{2} . \tag{A.24}
\end{equation*}
$$

Next assume $P_{1} f=P_{2} f$. Let $g_{1}=P_{1} f, g_{2}=\left(1-P_{1}\right) f$. Then $P_{1} g_{1}$ $=g_{1}=P_{2} g_{1}$ and $\left(1-P_{1}\right) g_{2}=g_{2}=\left(1-P_{2}\right) g_{2}$. Hence $g_{1} \in\left(P_{1} \wedge P_{2}\right) K$, $g_{2} \in\left\{\left(1-P_{1}\right) \wedge\left(1-P_{2}\right)\right\} K$ and $f=g_{1}+g_{2}$. Conversely, such f satisfies $\left(P_{1}-P_{2}\right) f=0$. Hence

$$
\begin{equation*}
\mathrm{E}(0)=P_{1} \wedge P_{2}+\left(1-P_{1}\right) \wedge\left(1-P_{2}\right) \tag{A.25}
\end{equation*}
$$

Obviously $P_{1} \wedge P_{2},\left(1-P_{1}\right) \wedge P_{2}, P_{1} \wedge\left(1-P_{2}\right)$ atd $\left(1-P_{1}\right) \wedge\left(1-P_{2}\right)$ belong to 3 .

From (A. 23), (A. 24) and definitions, we have

$$
\begin{equation*}
\mathrm{u}_{i j}\left(P_{1} / P_{2}\right) E=E \mathrm{u}_{i j}\left(P_{1} / P_{2}\right)=0 \tag{A.26}
\end{equation*}
$$

By using identities

$$
\begin{equation*}
P_{1}\left(P_{1}-P_{2}\right)^{2}=P_{1}\left(1-P_{2}\right) P_{1}=P_{1}-P_{1} P_{2} P_{1} \tag{A.27}
\end{equation*}
$$

(A. 28)

$$
\begin{equation*}
P_{2}\left(P_{1}-P_{2}\right)^{2}=P_{2}\left(1-P_{1}\right) P_{2}=P_{2}-P_{2} P_{1} P_{2} \tag{A.29}
\end{equation*}
$$

$\left(1-P_{1}\right)\left(P_{1}-P_{2}\right)^{2}=\left(1-P_{1}\right) P_{2}\left(1-P_{1}\right)$,
$\left(1-P_{2}\right)\left(P_{1}-P_{2}\right)^{2}=\left(1-P_{2}\right) P_{1}\left(1-P_{2}\right)$,
we obtain (A.10) and (A.11). This also shows that $\mathrm{u}_{i j}\left(P_{1} / P_{2}\right)$ are everywhere defined bounded operators. [The range of $P_{1} P_{2}\left(1-P_{1}\right)$ and $\left(1-P_{1}\right) P_{2} P_{1}$ is in $(1-E) K$, where $\left(v_{1} v_{2}\right)^{-1}$ is uniquely defined].

By using (A.27) and (A.29), we have (A.13). (A.12), (A.14) and (A.15) are immediate from the definition. (A.16) $\sim(A .22)$ are obtained from (A.12) ~(A.15).
Ω is generated by P_{1} and P_{2} and hence by $\theta\left(P_{1}, P_{2}\right), E P_{1}, E P_{2}$ and $\mathrm{u}_{i j}\left(P_{1} / P_{2}\right)$. Since $E \mathrm{u}_{i j}\left(P_{1} / P_{2}\right)=0$, $\AA E$ is generated by $E \theta\left(P_{1}, P_{2}\right)$, $E P_{1}, E P_{2}$ and hence as is stated in the Lemma.

On $(1-E) K, \mathrm{u}_{i j}\left(P_{1} / P_{2}\right)$ generates a type I_{2} factor and hence $\Omega(1-E)$ is as is stated in the Lemma and $\mathcal{3}$ is generated by $\theta\left(P_{1}, P_{2}\right)$, $E P_{1}$ and $E P_{2}$.
Q.E.D.

As an immediate application of Theorem 10, we have

Theorem 11. Let P_{1} and P_{2} be basis projections on K relative to Γ. Then
(A. 31)

$$
\begin{equation*}
\Gamma \theta\left(P_{1}, P_{2}\right) \Gamma=\theta\left(P_{1}, P_{2}\right), \tag{A.32}
\end{equation*}
$$ $\Gamma \mathrm{R}\left(P_{1} / P_{2}\right) \Gamma=\mathrm{R}\left(P_{1} / P_{2}\right)$, $\Gamma \mathrm{I}\left(P_{1}, P_{2}\right) \Gamma=-\mathrm{I}\left(P_{1}, P_{2}\right)$,

There exists an antiunitary involution T which commutes with $\theta\left(P_{1}, P_{2}\right), \mathrm{u}_{i j}\left(P_{1}, P_{2}\right)$ and Γ.

The linear operator $\widehat{\mathrm{R}}\left(P_{1}, P_{2}\right)$ defined by
(A. 38a)

$$
\widehat{\mathrm{R}}\left(P_{1} / P_{2}\right) \mathrm{E}(\pi / 2)=T \Gamma \mathrm{E}(\pi / 2),
$$

(A. 38b)

$$
\widehat{\mathrm{R}}\left(P_{1} / P_{2}\right)(1-\mathrm{E}(\pi / 2))=\mathrm{R}\left(P_{1} / P_{2}\right)
$$

is unitary, commutes with $\theta\left(P_{1}, P_{2}\right)$ and Γ and satisfies

$$
\begin{equation*}
\widehat{\mathrm{R}}\left(P_{1}, P_{2}\right) P_{2} \widehat{\mathrm{R}}\left(P_{1}, P_{2}\right)^{*}=P_{1} \tag{A.39}
\end{equation*}
$$

Γ on $(1-E) K$ is given by
(A. 40)

$$
\Gamma(1-E)=T_{\varepsilon}\left(\mathrm{u}_{12}\left(P_{1} / P_{2}\right)-\mathrm{u}_{21}\left(P_{1} / P_{2}\right)\right)
$$

where ε is a linear operator, commutes with $\theta\left(P_{1}, P_{2}\right), \mathrm{u}_{i j}\left(P_{1}, P_{2}\right), T$ ana Γ and satisfies $\varepsilon^{*}=-\varepsilon, \varepsilon^{2}=E-1$. The multiplicity of $\theta\left(P_{1}, P_{2}\right)$ at any point in $(0, \pi / 2)$ is a multiple of 4 .

Proof. From $\Gamma P_{i} \Gamma=1-P_{i}$ and definitions, we obtain (A.31)~ (A.37). We shall prove the existence of the operator T and its property.

Let e_{1} be any Γ invariant vector. Let $\mathrm{K}\left(e_{1}\right)$ be a closed real linear space generated by $\left\{\sum \mathscr{P}_{i j} u_{i j}\left(P_{1} / P_{2}\right)+\mathscr{R} E\right\} e_{1}$ where $\mathscr{R}_{i j}$ and \mathscr{P} are any bounded selfadjoint operator in 3 . Then $\mathrm{K}\left(e_{1}\right)+i \mathrm{~K}\left(e_{1}\right)$ is a closed subspace of K, containing e_{1} and invariant under Γ and Ω. Furthermore, for any Ψ_{1} and Ψ_{2} in $\mathrm{K}\left(e_{1}\right),\left(\Psi_{1}, \Psi_{2}\right)$ is real. Note that
$\left(e_{1}, \mathscr{P}_{i j} \mathrm{u}_{i j}\left(P_{1} / P_{2}\right) e_{1}\right)=0$ if $i \neq j$ due to (A. 34).
If mutually orthogonal subspaces $\mathrm{K}\left(e_{\nu}\right)+i \mathrm{~K}\left(e_{\nu}\right)$ having such properties are given for $\nu<\nu_{0}$, then by choosing any Γ invariant vector $e_{\nu_{0}}$ in $\left(\bigcup_{\nu<\nu_{0}}\left\{\mathrm{~K}\left(e_{\nu}\right)+i \mathrm{~K}\left(e_{\nu}\right)\right\}\right)^{\perp}$, we can obtain $\mathrm{K}\left(e_{\nu_{0}}\right)+i \mathrm{~K}\left(e_{\nu_{0}}\right)$, which is orthogonal to $\mathrm{K}\left(e_{\nu}\right)+i \mathrm{~K}\left(e_{\nu}\right), \nu<\nu_{0}$ and has such properties. By induction, the total Hilbert space is a direct sum of such $K\left(e_{\nu}\right)+i K\left(e_{\nu}\right)$. Let $T \sum\left(f_{\nu}+i g_{\nu}\right)=\sum\left(f_{\nu}-i g_{\nu}\right)$ for $f_{\nu}, g_{\nu} \in \mathrm{K}\left(e_{\nu}\right)$. Then T is an antiunitary involution commuting with $\theta\left(P_{1}, P_{2}\right), \mathrm{u}_{i j}\left(P_{1}, P_{2}\right)$ and Γ.

The statements concerning $\widehat{\mathrm{R}}\left(P_{1} / P_{2}\right)$ and ε are immediate where ε is defined by $\Gamma T\left(\mathrm{u}_{12}\left(P_{1} / P_{2}\right)-\mathrm{u}_{21}\left(P_{1} / P_{2}\right)\right)$. Since T_{ε} restricted to $(1-E) K$ is an antiunitary operator, commuting with $\theta\left(P_{1}, P_{2}\right)$ and P_{1} and satisfying $\left(T_{\varepsilon}\right)^{2}=-(1-E), \theta\left(P_{1}, P_{2}\right)$ restricted to $P_{1}(1-E)$ has an even multiplicity. Since $\theta\left(P_{1}, P_{2}\right)$ restricted to $1-P_{1}$ has the same multiplicity as $\theta\left(P_{1}, P_{2}\right)$ restricted to P_{1} due to $\Gamma P_{1} \Gamma=1-P_{1}$, and $\left[\theta\left(P_{1}, P_{2}\right), \Gamma\right]=0$, the multiplicity of $\theta\left(P_{1}, P_{2}\right)$ at any point in ($0, \pi / 2$) must be a multiple of 4 .

Lemma A. Let P and P^{\prime} be basis projections. Then there exists a partial basis projection F and a partial isometry u, both commuting with P and P^{\prime}, such that $F+\Gamma F \Gamma=1-\mathrm{E}(0)-\mathrm{E}(\pi / 2)$, $u^{*} u=F$ and $u u^{*}=\Gamma F \Gamma$.

Proof. Use the notation in the proof of Theorem 11. The operator ε has at most three eigenvalues $0, i$ and $-i$. The eigenprojection for 0 is $1-\mathrm{E}(0)-\mathrm{E}(\pi / 2)$. Let F be an eigenprojection for i. Since $[\Gamma, \varepsilon]=0, \Gamma F \Gamma$ must be an eigenprojection for $-i$ and hence F is a partial basis projection commuting with Ω.

Next we modify the construction of $\mathrm{K}\left(e_{\nu}\right)$ as follows. We restrict our attention to $(1-\mathrm{E}(0)-\mathrm{E}(\pi / 2)) K$. Let $\mathrm{K}\left(e_{\nu}\right), \nu<\nu_{0}$ be given. Then choose a unit vector $e_{\nu_{0}}^{\prime}$ in $F\left(\bigcup_{\nu<\nu_{0}}^{\cup}\left\{\mathrm{K}\left(e_{\nu}\right)+i \mathrm{~K}\left(e_{\nu}\right)\right\}\right)^{\perp}$. Let $\sqrt{2} e_{\nu_{0}}$ $=e_{\nu_{0}}^{\prime}+\Gamma e_{\nu_{0}}^{\prime}$ and $\sqrt{2} e_{\nu_{0}+1}=i\left(e_{\nu_{0}}^{\prime}-\Gamma e_{\nu_{0}}^{\prime}\right)$. Since $\varepsilon e_{\nu_{0}}^{\prime}=i e_{\nu_{0}}^{\prime}, \varepsilon \Gamma e_{\nu_{0}}^{\prime}=-i \Gamma e_{\nu_{0}}^{\prime}$ and $[\varepsilon, \Re]=0, \quad\left(\Omega e_{\nu}^{\prime}, \Omega \Gamma e_{\nu_{0}}^{\prime}\right)=0$ and hence $K\left(e_{\nu_{0}}\right) \perp K\left(e_{\nu_{0}+1}\right)$. Note that $\left(\bigcup_{\nu<\nu_{0}}\left\{\mathrm{~K}\left(e_{\nu}\right)+i \mathrm{~K}\left(e_{\nu}\right)\right\}\right)^{\perp}$ is invariant under F and $F \neq 0$ on this subspace unless $F+\Gamma F \Gamma=1-E$ is 0 on this subspace, which occurs only if this subspace is $E K$.

We define u^{\prime} to be 1 on $K\left(e_{\nu_{0}}\right),-1$ on $K\left(e_{\nu_{0}+1}\right)$ and 0 on $E K$. Then $u=u^{\prime} F$ commutes with Ω and $u^{*} u=F, u u^{*}=\Gamma F \Gamma$. Q.E.D.

References

[1] Araki, H., A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. Math. Phys. 4 (1963), 1343-1362.
[2] -, On the diagonalization of a bilinear Hamiltonian by a Bogoliubov transformation, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 4 (1968), 387-412.
[3] - and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A. 4 (1968), 51-130.
[4] , and W. Wyss, Representations of canonical anticommutation relations, Helv. Phys. Acta, 37 (1964), 136-159.
[5] Balslev, E., J. Manuceau and A. Verbeure. Representations of anticommutation relations and Bogoliubov transformations, Comm. Math. Phys. 8 (1968), 315-326.
[6] and A. Verbeure, States on Clifford algebras, Comm. Math. Phys. 7 (1968), 55-76.
[7] dell'Antonio, G. F., Structure of the algebras of some free systems, Comm. Math. Phys. 9 (1968), 81-117.
[8] Haag. R. and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848-861.
[9] Kadison, R. V., Irreducible operator algebras, Proc. Nat. Acad. Sci. USA, 43 (1957), 273-276.
[10] Manuceau, J., F. Rocca and D. Testard, On the product form of quasi-free states, Comm. Math. Phys. 12 (1969), 43-57.
[11] von Neumann, J., Charakterisierung des Spektrums eines Integral Operators, Act. Sci. et Ind.. No. 229 (1935).
[12] Powers, R. T. and E. St ϕ rmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1-33.
[13] Rideau, G., On some representations of the anticommutation relations. Comm. Math. Phys. 9 (1968), 229-241.
[14] Rocca, F., M Sirugue and D. Testard, Translation invariant quasifree states and Bogoliubov transformations, Ann. Inst. H. Poincaré, 3 (1969), 247-258.
[15] -, On a class of equilibrium states under the Kubo-Martin-Schwinger boundary condition, Comm. Math. Phys. 13 (1969), 317-334.
[16] Shale, D. and W. F. Stinespring, States on the Clifford algebra, Ann. of Math. 80 (1964). 365-381.
[17] Shale, D. and W. F. Stinespring, Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 (1965), 315-322.

