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A posteriori Error Estimates of
Galerkin-approxirnate Solutions to the Third

Boundary Value Problem for Elliptic
Differential Equations*

By

Tetsuhiko MIYOSHI

§ I. Introduction

In the present paper we shall show that in the third boundary value

problem for elliptic partial differential equations one can get some formulas

giving a posteriori error estimates to the approximate solutions obtained

by Galerkin's method.

Trefftz has proposed in [112] an approximation method which can be

used also for getting error estimates to the approximate solutions obtained

by Galerkin's method. His method is based on the use of trial functions

satisfying the given differential equations. For details of his method, see

H3], Ki, D-2]. In practical applications, however, his method is not so

convenient, because in general it is not easy to find functions satisfying

the conditions requested for the trial functions.

On the other hand, in F4T] and Q9], Bramble, Payne and Weinberger

gave integral inequalities which can be used for getting error estimates

by the use of arbitrary functions satisfying only some smoothness condi-

tions. However the error estimation based on their integral inequalities

are not valid, say, when the coefficients of the given differential equation

are not continuous.

Our method also is based on the use of some trial functions. They
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do not need to satisfy any condition except smoothness conditions. Error

estimates obtained by our method, nevertheless, is valid when the coef-

ficients are not continuous.

In our method, in order to get the formulas for error estimation, we

use some integral inequalities connected with so-called 'equivalent norms'

in Sobolev space W\(Q}. Since our aim is to get practical error estimates

of approximate solutions, the constants appearing in the integral inequali-

ties must be estimated practically. In §2, following the method of

Friedrichs [JT], we shall derive these inequalities with the constants which

can be evaluated practically.

In §3 we shall derive formulas for a posteriori error estimations for

Galerkin-approximate solutions to self-adjoint and positive definite problems.

Some numerical results obtained by our method will be shown in §4.

As well known, for self-adjoint and positive definite problems, if a

suitable coordinate system is employed, Galerkin's method is, in a certain

sense, an optimal approximation method in accuracy. In the appendix it

will be shown that, although in a little weakened sense, the above pro-

perty is preserved even when the problems lose the self-adjointness or the

positive definiteness.

Throughout the present paper, a piecewise continuous function is

meant only a function that is smooth on the closure of each related

subinterval. When a piecewise continuous function is continuous on the

whole interval, it is called a piecewise smooth function. The boundary

of a domain in (xi, #2)-plane is called to be piecewise smooth if for any

point p on the boundary there is a disk V centered at p such that the

portion of the boundary inside V can be described in a suitable local

coordinate system by an equation x2=f(xi) with piecewise smooth /(#i).

The terms piecewise continuous and piecewise smooth are used in a

similar way for functions of two variables under the assumption that the

boundaries of related subregions are piecewise smooth.

§2. Integral Inequalities

Let Q be a bounded domain in (#1, ̂ 2)-plane with piecewise smooth
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boundary P and JT* be a portion of P. Then in many cases we have

(2.1) Ik

and

(2.2) \\u

for any function u£ W\(S) (W\(&) denotes the Sobolev space of func-

tions). In (2.1) and (2.2) ||u'|, ||&|!r* and \\u\\r denote respectively

L2(J2)-, L2CT*)- and L2(JT)-norm of u and {C,-} are some definite constants

independent of function u.

If these inequalities are valid for smooth functions in 5, then they

are valid for any u 6 JP^Q), because the class Cl(S) is dense in fF|(^)

and the imbedding operator W\{S)-*L2(P} is continuous by the as-

sumption of piecewise smoothness of the boundary P (see, for example,

[ij, [u]).
First consider the closed region $0 bounded by two smooth arcs

and by two line segments

Put

L = max

and suppose that

< T> (' -i o\
1Q (I — 1, Zj.

Then making use of the equality

_ f*i
(2.3) u(xi, x2) = u^i
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by double integration we easily get

/O A \ I I __ I I 9. ^ J fl } I II 2 ... I 7 f9J CX^

and

(i)

If we use instead of (2.3) the equality

(x 2) Qu
(t,

x1 X\

then we easily get

/••\ ii n2 ^ -^V J- ~T J- n 11 119. i r / i~V" >n9. O^Z^

Further, if we put

and make use of the equalities

U(s, x2)=U(s,a) +

and

U(s, X2)=U(s, /9)- (s, t)dt,

then by double integration we easily get

II, l | 2 / n v > >

2L

l«ll!H
du

Adding (i), (ii) and (iii) and substituting (2.4) into the result we have

du(2.5)
«=1

where FQ = \JS(
0
i} and k(

0
3\ k($} are definite constants.

i=l
Now, suppose that, for example, S(^ = F*, then the inequalities (2.4) and
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(2.5) are the desired inequalities of the type (2.1) and (2.2) for the

region S0.

Starting from the inequalities (2.4) and (2.5) we can obtain the

desired inequalities for more complicated regions. For example, suppose

that the region J20 is connected with another closed region Si with

piece wise smooth boundary 7\ in such a way that the intersection of $0

and Si is only a curve Si and for any smooth function u in Si hold the

following inequalities.

! 2

(2.7)
. fl!

where {fi0} are given definite constants. Then the inequalities (2.4),

(2.5) and (2.6) imply the validity of the inequality of the type

(9 Q} I I - . H2 ^-" 7 - ( 1 ) l ! _ . 112 ... i 7.(2) V VU

and (2.7) implies with (2.5)

(2.9) \\u\\*

for any smooth function u in S0^JSi, where {k[i}} are definite constants

and 7" 01 denotes the boundary of SQ*USi. Therefore, if the closure of

the domain S under consideration is constructed by finite number of

subregions {Si} which are obtained by continuing the above procedure,

then it is evident that the inequalities of the type (2.1) and (2.2) hold

for domain S and, of course, the constants are explicitly determined.

Remark 1. Let @ be a piece wise smooth arc lying in S. Then, by

the above discussion we see that an inequality of the type

2 ^r// o i n \ 11 _ . 11 ? . ^ /^ 11 _ . 11 ? . i / ^ - x - i vy*

will be easily obtained.

In fact, it is sufficient if we can get an inequality of the type
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du

But this inequality has just the same type as inequalities (i), (ii) and

(iii). Therefore the evaluation of these constants are not difficult for

many cases.

§3. Error Estimates

Let us consider the equation

(3.1) Lu^-_E--ali--=f(x1,X2-) in Q
i , j = l O OC i \ O Xj /

under the boundary condition

[ 2 ft-.. ~l

2 a,-y-^-cos(ra, xd + ffu =0.
i,j=i oxj Jr

Here Q is a bounded domain with piecewise smooth boundary /"3 and n

is outward normal to F. The function Of/a^- = a/,-) is piecewise continuous

in Q and for any $ € R2

(3.3) 2 a /y f , fy>f fo2£? (*o = const. >0).

The function f(x\^xz) is square summable over J2. We assume for 6

that it is non-negative and piecewise continuous on F, and there is a

positive constant ff0 and a portion /"* of /" consisting of piecewise

smooth arcs such that

(3.4) <T><To>0 on F*.

Furthermore we assume that for any u 6 W\(Q') and its trace to F hold

the inequalities of the type (2.1) and (2.2).

Put

(3-5) Bl»>K-

for u ,0G W\{&)^ where (u, v) = \ u*v dx\dx2- Then the inequality (2.1)
JQ

and the continuity of the imbedding operator W\(Q}-+L2(F} implies that
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the norm introduced by

(3.6) ll«ll^5CB,u:

is equivalent to the norm in W\(Q). Therefore by Riesz's representation

theorem the problem (3.1) with (3.2) has always a unique weak solution

for any /G.L2(J2), that is, there exists a function u£ W\(@) satisfying

the equation

(3.7) B[>, £] = (/, 0) for any 0

Let 0n=(0i5 02, - - - 5 0»)(0»£ H^K^)) be a vector consisting of linearly

independent functions. In Galerkin's method we seek the approximate

solution of order n in the form

(3.8) un=f]ai(f>i
1=1

and determine the coefficients {ô -} by solving the system of equations

(3.9) Blu» &X/, A) i = l, 2, ..., n.

(a) First we consider such case that all of the coefficients {a,-/} are

smooth. Let us introduce two functional F($) and G(0) by defining

(3.10)

and

(3.11) - + (70
2

r
for 06

where — ̂ — denotes the co-normal derivative 2 a,-/ . COS(TI, ^,-) and
O1^ 9^y

/o -i o\ / / ^jCi 2Co \ 7 /(3.12) /bi = maxf—-±-,-^-J, A;2 = max (
\ (T0

Theorem 1. Lg?; wE W\{&) be the weak solution of the boundary

value problem (3.1), (3.2). Then hold the following estimates'.

(I)

(II)
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for any 0e W\(ff) and 0E W\(Sf). If the solution u belongs to W\(Q\

then we have

(I)' mmF(<fi)=-(f, M) = maxG(0).
wl(m wl(m

Proof, By generalized Green's identity, for any 0 G

\\u-<P\\2
H=Il

i ,y=i

Therefore, by Schwarz's inequality

(3.13) \\u-

On the other hand, by (2.1) and (2.2) we have

Substituting these inequalities into (3.13) we have

Therefore, for any 0 6 JF|(£) it holds that

(3.15) -(/,u) = J

The theorem follows immediately from these relations,

(b) Now, if one of the coefficients {a -̂} is only piecewise continuous in

J2, the above estimates lose it's validity because the function £0 is not

integrable. We propose another formula valid for such case too.

Let @ be the set consisting of all discontinuous points of {a#} and
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N
@=^@Rk be a direct sum of subregions, in each of which {a -̂} are

k=i
smooth (we can assume that the boundary of Rk is piece wise smooth).

Let us assume that

du(3.16) for any u 6

where C5 and C6 are explicitly given constants (see the remark in §2).

Of course, we assume the validity of the inequalities (2.1) and (2.2) for

the domain $.

For any 0 <E {0 G IF|(£); 0<E W\(Q — ©)} holds the equality

where u is the exact solution. By generalized Green's identity

(3.18)
i ,y= i

2

fcj

= E (^0, ^ - 0)*t + ( S a/y -^- cos

S\ ( E aij--
(^=iJdRk~r\i,j=i OXj

where 9J?^ denotes the boundary of region

Here we may write that

(3.19)

\
Jd(Q-

E aH-^r-
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dx

X cos (71, # / ) M M —

where ( + &) and ( — A) are symbols to denote the traces of functions to

dRk-r from inside of Rk and to d(^-Rk)-r( = dRk-F as a set)

from inside of & — Rk respectively. For brevity, let us introduce two
~*^ r dd) Tfunctions L(b and ^ by defining

L dv J

(3.20) L0^{L0 in Rk-dRk (4 = 1, 2, . . . , -AT)}

and

[
on

for 0€{^€^K^); 0€^1(^ — @)>. By suitably defining its value on

the set of measure zero, each of these functions can be regarded as a

function belonging to L2(£) and L2(^dRk-F) respectively. By (3.18)
k

and (3.19) we have

(3-22)

Substituting this into (3.17) and using Schwarz's inequality we have

(3.23) |k-0||ir
r Ir

Therefore, by (2.1), (2.2) and (3.16) we have

(3.24) | |u-0| |2
H<-
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where

(3.25) £3

From (3.24), we then get the following theorem in a similar way as for

theorem 1.

Theorem 2. Let us set

(3.26)

where ki, k^ and k% are the constants defined by (3.12) and (3.25). Then

for any 0e W\(Q} and 0 e {0 e W\(Q)\ 0 e JTi(fi-@)} /zoMs rt« estimate

(3.27) l|u-0|!

where u is the exact solution of the problem (3.7).

Now, let un be the solution of (3.9). Then

F(un)=\\Un\\
2
H-2(f, Un}=-(f, Un).

Therefore, for example, in case (6), the error of Galerkin-approximate

solution un is estimated by

where 0 is arbitrary function satisfying the condition in Theorem 2. Note

that un minimize the functional F in the linear manifold spanned by the

functions {&} (i — 1, 2, • • • , n).

Remark 2. If the boundary condition (3.2) is inhomogeneous,

r 2
(3.2)'

then the functional -F and G in Theorem 2 take the following expressions

respectively.

(3.10)'

(3.26)'
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Remark 3. Let us put /=0 in (3.7). Then, clearly u = Q. There-

fore by (3.14) we have

2

for any 0 G W\(Q\
r

which is similar to the results in [Jf], [JT]. By using this inequality we

can again estimate the error of approximate solutions. But this inequality

can not be used when the exact solution belongs merely to W\{&),

because the boundary value of du/dxi can not be well defined for such

case and the expression du/dv has no positive meaning.

§4. Numerical Example

Let & be the unit square 0<#i ,# 2 <l and F be its boundary. We

approximate the solution of the problem

d ( du \ 9 / du \ -— — — ( a— — 1 — — — ( a— — ) =
dxi \ dxi / dx2 \ 9*2 /

in

du
dv '""Jr

where the function a and ff satisfy the following conditions.

(a in Ri

[l in R2
 l i> 2 , \ i, 2\

(1 on A

l<7 on A

The approximate solution is sought in the form

determining {a//} by solving the system of equations (3.9).

The constants necessary for error estimation are evaluated as follows.

By (2.4) and (i) in §2 it is easy to see that
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du
(5.1)

and

/n o\ I l _ . l l 2 ^ A \\..\\ 9. i oV~i O^

The later inequality implies inequality

du(5.3) IWl

Put & = dRi — r and S={(xi9 *2)££; #i = 0.5}. Then by (i) in §2 we

see that

(5.4) ||u||
dxl

thus

du
9A;,- [

du

(5.5) | |ul |
* = i

<4||a||f.1 + 2.252

Therefore the constants are estimated Ci = 1.0, C2r=0.5, C3 = 5.0, C*4 = 3.05

Let ^28 be the Galerkin-approximate solution and u2s be the function

maximizing the functional G(u2%). We computed the values F(u28\

G(u2s) and G(u2s) f°r various a and (?. The result is shown in Table I.

For 5 = 1, (T=l the bound of error of the approximate solution U28 is

given by

d
•((-!Jr

.2905229<3.0xlQ-7.

Since polynomials are used as coordinate functions, the estimates

become poor with the decreasing of a or ff. This is caused by the
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discontinuity of the derivatives of the exact solution. Therefore, if we

want more accurate estimates for such cases, another suitable coordinate

functions, for example, suitable functions belonging to the class C(J2)

r\C2(Rl)r\C2(R2), must be employed.

Table I. Estimates of F(uza), G(uz8) and G(UZ8).

^̂ "\ a
a ^^~~~~~-~~^^

1.0

0.8

0.6

1.0

-0. 2905227

-0.2905229

-0. 2905256

-0. 3193
-0. 3199
-0.3201

-0. 3584

-0. 3617

0.8

-0.2928

-0.2944

-0. 2990

-0. 3221

-0.3295

-0. 3309

-0.3620

-0. 3725

-0.3627 -0.3767

0.6

-0.2960

-0. 3025

-0. 3357

-0.3260

-0. 3862

-0.3954

-0.3669

-0. 4345

-0.4537

The computation has been carried out by the use of TOSBAC 3400
at R.I.M.S., Kyoto University.

APPENDIX: A Remark on the Optimality of Galerkin9s Method

Let H be denoted the space W\(&) renormed by the norm ||-||#

defined by (3.6). Let u e W\(Sf) be the solution of the problem (3.7).

Then the operator G: f( 6L2(J2))-x u(€.H) is linear and continuous. We

use the notation \\G\\H to denote the operator-norm of G:L2(£)->H.

Note that G can be regarded as a homeomorphism of Hf (dual space of

H) on to H. When we approximate the solution of problem (3.7) in the

form (3.8), the error of best approximation (in the norm of JT) is given

obviously by

where P$n denotes the orthogonal projection of H onto the linear manifold

spanned by the functions {$;} (£ = 1, 2, • ••, n).

Definition 1. A set of functions gn=($i, £2, •••, Sn) £H is called

an optimal ft -dimensional coordinate system for problem (3.7) if
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(1) \\(I-PSr)G\\H<\\(I-P^G\\H for any

Now consider the eigenvalue problem

(2) G$ = W

The operator G is self-adjoint, positive definite and completely continuous

as an operator .L2($)->Z,2($), since the imbedding H-+L2(&) is completely

continuous CllH- Therefore the eigenvalues of (2) can be numbered so

that

A i > A 2 > >4> >0

and the corresponding eigenfunctions ei, e2, • • - , ew, ... make a complete

system both in L2(Q) and H. It is then easily seen that

(3) \\(I-Pen)G\\H=^n+1.

On the other hand, for an arbitrary 0»=(0i, $2* • • • > $») £-H" consider a
H+l

function v such that v= 2 o,-e,-, IH| = 1 and B\jGv, <f>i"2 = Q(i = 1, 2, • • • , n).
1=1 _

Then we can easily prove that \\(I-P^Gv\\H^^n+i[_2^. By (3) this

implies that

that is, ere=(ei, e23 • • - , ew) is an optimal coordinate system.

For an approximate solution un obtained by Galerkin's method, we

have by (3.9)

(4) un = P,nu = P,nGf.

Therefore, if an optimal coordinate system is employed we have

(5) \\u-un\\H<mf{\\(I-P^G\\H} - \ \ f \ \ .
$n^H

This inequality shows that, if an optimal coordinate system, say, the

system consisting of eigenfunctions of operator G, is used, the procedure

in Galerkin's method is optimal in accuracy for general /€EZ/2($).

Our purpose in this appendix is to extend these results to more

general problem

(6) B [u, £] + (Ku, j) = (/, 0) for any
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where K is a differential operator of first order with bounded, measurable

coefficients. We assume that this problem has always a unique solution

ueH for any /<EL2(J2).

By Riesz's representation theorem, equation (6) can be represented by

the equation

O, <f)H+(GKu, 0)ff=(G/, (f)H for any

or

(7) u+GKu=Gf.

Since GK: H—>H is completely continuous (see, e.g., [JT]), by Riesz-

Schauder's theory the assumption of unique solvability of problem (6)

implies the unique solvability of the equation

u + GKu = v v G H

and thus the operator (I+GK) has bounded inverse (I+GK)~lm. H-*H

by Banach's theorem. Therefore, the solution of (7) is given by u

Let us put

(8) G'

Note that the operator (I+KG) is not only a homeomorphism of Hr onto

H', but of L2(J2) onto Z,2(£). Because, the equation

u + KGu=f

has always a unique solution u belonging at least to H r, but this implies

Corresponding to definition 1 we put

Definition 2. A set of functions £n = (?i, £2? • • • » £n)^If is called a

quasi-optimal n -dimensional coordinate system for problem (6) if

(9) \(I-Ptn)G'\\H<C\\(I-Ptn}Gf\\H for any fn£H,

where C is a constant independent of n and function fn.

Theorem (A)e The vector en of the first n eigenf unctions of the
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eigenvalue problem (2) is a quasi-optimal coordinate system for problem

(6) and

(10)

c, = \\i+KG\\-1
 C2=\\(i+KGrl\\,

where An+i is the (n + \)-th eigenvalue of the eigenvalue problem (2).

Proof. The theorem can be proved by almost similar way to the

self-adjoint, positive definite case Q2].

Let / I i ^> / l 2> - - ->0 be the eigenvalues of the problem (2) and {et}

(i — 1, 2, • • • ) be the system of orthonormalized eigenf unctions correspond-

ing to these eigenvalues. Since {et} is complete both in L2($) and in

#, for any

G'f= E (Gy, ei) et= E ((I+KGYlf, Gei)
i=l i=l

(ID
= X Vi; ((/+ KG) ~ l f , ed VI- e,,

i = 1

and by Parseval's equality,

|!G'/-P.,.G7|||r= S
i=n+l

f =11+1

which establishes the second inequality in (10). On the other hand, for

f=(I+KG)en+i in (11) we have G'f=An+ien+i, therefore

from which follows the first inequality in (10).

Quasi-optimality of en: Let $n=(<f>ii$2, • • • , <f>n) £ H be arbitrary vector
»+i

and t?=2] a f ez be the vector satisfying ||t;|| = l and B[jGv, 0J = 0 (i^l,
» = i

2, • • - , TI). Then we have
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1=1

Therefore we have

that is,

Then from (10) we readily get

which completes the proof of the theorem.

Now, let us apply Galerkin's method to the problem (6). Let {$/} be

a complete system of linearly independent functions. We seek the ap-
n

proximate solution of order n in the form un=^ai^ and determine the
1=1

coefficients {a/} by solving the system of equations

(12) Blun, fal + (KuH9 &) = (/, &) (i = l, 2, ..., *).

Clearly this system of equations is equivalent to the equation

(13) un + P,nGKun=P*nGf

which approximate the original equation (7). Hence the well known

theory of approximation method is applicable and we can verify that for

sufficiently large n the system of equations (12) has always a unique

solution un and holds the following asymptotic error estimate.

(14) \\u — zzw||#<const« \u — P$nii\\H

(for more detail proof, see [J7], Cl(T]). Therefore, if we employ a quasi-

optimal coordinate system, then we have

(15) ||a-

This inequality shows that, if we use a quasi-optimal coordinate system,

say, the system consisting of eigenfunctions of operator G, the procedure
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in Galerkin's method is quasi-optimal in accuracy for problem (6).

Remark. The above discussion is applicable to first and second

boundary value problems without essential modification.
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