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On Asymptotic Solutions of the Functional
Difference Equations Associated with Some

Nonlinear Difference Equations

By

Sen-ichiro TANAKA*

0. Introduction

Let

(0.1) y(x + V = g(*,y)

be a system of m nonlinear difference equations for the vector-valued func-

tion yO*0 = (jiO*0> r2W, • • - , yJ») of a complex variable x. g(x, y)

is an analytic function of m + l complex variables (x, j) defined in the

region XQ X F0, where

X0 : \x\>R,

R, r being positive constants. When we consider the expansion

(0.2) g(x, y) = g0(X)

the case in which gQ(x)^Q was discussed in []1]3 and the case in which

go(#) = 0, A(x)^0 was discussed in [f\. We shall deal with some cases

in which goC^O^O and A(x) = Q.

In Part II we shall discuss about a system of nonlinear difference equa-

tions of the form:

(0.3) yi(x + V= U'fitx, j) (i = l, 2, ..., 771)
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where ^//s are nonnegative integers such that

2^2 (f = l, 2, ..., m)
y-i

and /X^> j) are analytic functions of x and y in the region X0 X FO such

that /f(°°5 0)=^0 (i = l, 2, • •-, 7ft). Under the further assumption that

each eigenvalue /I/ of the mXm matrix A = (^#) is absolutely greater than

one it may be shown that without loss of generality we may assume

/,(<*>, 0) = 1.

In §6 we shall prove the existence of a transformation of the form:

(0.4) ^ = ̂ (1 + ;^ (*" = 1> 2> • • • > *0

by which the equation (0.3) are transformed into the most simple equa-

tions

(0.5) Ui(X + l)=fLu^ (i = l, 2, .... m),

so that we can conclude that the equation (0.3) has a formal solution of

the form (0.4) in which Ui is substituted by any solution u;(x) of the

equation (0.5).

On the basis of this situation we find it effective to regard the solu-

tion (0.4) as a function yt(x, u) of m + 1 independent variables x, HI,

u2, • • - , um satisfying the following equations:

(0.6) j,-(*+i, n up, n u}«, ..., n u)

which we shall call a system of functional difference equations associated

with the original system of difference equations (0.3). In §7 we shall

give a detailed discussion on this matter.

In §8 and §9 we shall prove the existence and the uniqueness of an

analytic solution of (0.6) of the form
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(0.7) y{(x, u) = m(l+ S P^kl...kmx-k^u^..-u^ + ziN(x, it))
I & l = 1

(i = l, 2, ..., m)

such that the inequality

holds with some arbitrary constant M in a certain region of (#, w) space.

In § 9 we shall show the existence of an asymptotic analytic solution of

(0.6).

In preparation for the discussions in Part II, we shall deal with a

following particular case of equation (0.3) in Part I:

(0.8) J,<* + !) = ;#/,•(*, j) (i = l, 2, • - . , HI),

where /l/s are integers >2.

Equations of the form (0.8) are important in themselves since they

appear in the study of some important nonlinear difference equations. For

example, consider a nonlinear difference equation of the form:

(0.9) *(* + !) = a0(a) + al(x)z(x) + ...... + am(x}zm(x} (m :> 2),

where dj(x) (j = Q, 1, • • - , TTI) are analytic functions of x in the region

|^|>.R such that aw(°°)::/zO. By the transformation z = l/y, equation

(0.9) is transformed to the following equation of the form (0.8):

(0.10) y(x + I) = ymf(x, j),

where

f(x, y) = (am(x) + am^(x)y+

Any solution of (0.9) that approaches to CXD as x tends to oo is then ob-

tained from a solution of (0.10) that approaches to 0 as x tends to oo.

In conclusion the author expresses his hearty thanks to Professor

HUKUHARA, Professor SIBAGAKI and Professor URABE who had through

the preparation of this paper incessant interest on our problem and gave

many criticisms and improvements.
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Part I. On the System of Nonlinear Difference Equations of the
Form yi(x + \}=y}ifl(x, j) (« = 1, 2, ..., m)

le Formal solutions- We consider the system of nonlinear dif-

ference equations of the form

(1.1) yfa + V = fcfi(x9 jl5 j2? • - . , >) (£ = 1, 2, ..., m)

where ^,-'s are integers greater than one and ffs are analytic functions of

# and J— (ji? J2? • • • ? JOT) which are defined in the domain XQ X YQ

= {x\ \ x\ >R} X {y \ lly| |<r} (|| j|| = max| y,-|) and satisfy the conditions

(1.2) /,(oo, 0, 0, . . - , 0) = /£,•=£<) (i = l, 25 ..., m).

We remark that we may assume ^,- = 1 (z = l5 2, - - . 3 TTX) without loss

of generality. Indeed, setting ^• = ^J / (X<"1) and introducing the unknown

Zi = £iyh we have for z,- the equations

where g-f-(^5 zi, z2, • • - , zm) = #jlfi(x, ^z^ ^z^ ..., f"1^) for which

it holds

#(oo, 0, 0, ..., 0) = 1 (f = l, 23 ..., m).

Owing to the assumptions just made we have the expansions

/,-(*, ji, 72, -, >) = !+ E oiiii...*.*"*0^1^1-^"

where |&| =A;0

In finding a formal solution of the system of equations (1.1) we will

show that a transformation of the type

a Q^ A^. — 7/ Yl _I_ V n ( z ) ^--^07/*l7 /*2 T / ^ m ^
"Jy VI — UI\L\ 2^ Pkoki...km

x ul U2 -"um )

is effective, the coefficients jpioi1..^m being suitably chosen.

First, we consider the transformation of the first step

(1.4) y{ = u,( .
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which has the inverse transformation

m

(1-5) u^yid-q^x-1- Si?}"jy-t--),

where ••• represents the terms which are of higher degree than one in x~l

and jy. Setting x + I for x in (1.5) and using (1.1) and (1.4) it is im-

mediately shown that the new unknown U{ satisfies the following equation

.e.,

(1.6)

3=1

where ••• represents higher terms in x~l and Uj. Now by the assumption

%i 2^2 we can choose the coefficients qlf\ q(/} (/ = !, 2, • •-, m) so that the

coefficients of x~l and wy in the right-hand side of (1.6) may all vanish,

in other words, equation (1.6) may be of the form

This is of the form similar to (1.1) but the terms of degree one in x~l

and Uj are lacking in the right-hand expansion. Now, to this equation we

perform the transformation of the second step

which has the inverse transformation

Then, it can be shown as before that the new unknown v-% satisfies the
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equation of the form

1*1=2

Here it is observed that the expansion { } has no terms of degree one

x~l and Vi, and ••• means terms of degree higher than two in x"1 and V{.

Now by /Ul>2 we can choose the coefficients r(jQ\lm,,km for | A | = 2 so that

the coefficients of x~2 and x~kov^v^2-'-v^m for | f t | = 2 may all vanish, in

other words, the resulted equation for the unknown v may be of the form

1*1^3

It has a form similar to (1.1) but the terms of degree one and two in

x~l and v's are lacking in the right-hand expansion.

Repeating similar processes we have after N steps N transformations

Here u^ vi means, respectively, U{ti and Ui^ As composite transforma-

tion from {yi} to {u}^} we have

(1.7) ji = Ui

and the equation satisfied by U^N has the form

(1.8) uitN(x + i) = u]]N'

It is observed from the nature of the process that in all transformations

(1.7) the coefficient of x~k°u$lu$*-"U*™' preserves the value Pki
0
}k1...km,\k\ for

N= \k\, | k | +1, | k | + 2, Hence we may define the coefficients in

(1.3) by setting
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p(kQ\i.~km,\k\'

Thus we have defined the transformation (1.3) from {y,-} to {^/}. Now,

two transformations (1.3) and (1.7) give a relation between {u,i} and

{U{,N} defined by

which can be solved formally in the form

(i.io) »«=«*.

and as its inverse we have

(1.11) «,.*=

By the definition (1.9) we have in (1.10) and (1.11) the relations

so that we have

and

uilN=Ui(l+
l

When these expressions are substituted into the equation (1.8) we find

equation satisfied by {HI} are of the form:

Here N has been an arbitrary integer, so that the equation satisfied by

{HI} is really

(1.12) Ui(
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Thus we have proved that the equation (1.1) is reduced to (1.12) when

the transformation given by (1.3) is performed on it. Consequently we can

conclude that the equation (1.1) has a formal solution of the form

(1.13) y/(*, iO =
l&l = l

in which ui is substituted by a solution Ui(x) of the equation (1.12).

2. Associated functional difference equations. Making use of

the formal solution (1.13) of the equation (1.1) we shall conveniently deal

with a solution of (1.1) of the form

(2.1) yi(*) = yi(x, "(*)) (i = l, 2, - . . , in)

depending on the general solution H(X)=(UI(X), u2(x\ • •-, um(x}} of the

system of equations: u(x-}-l) = ux(x), i.e.,

(2.2) Ui(x + l) = u}*(x) (i = l, 2, ..., 771).

The general solution u(x) of (2.2) is

(2.3) iif<*)

containing an arbitrary periodic function n(x) = (TZI(X), 7r2(x\ • • • } ^w(^))

with period 1, so that the function (2.1) corresponding to (2.3) is a general

solution of (1.1).

Now substitute (2.1) and (2.2) into (1.1), then we have

(2.4) yi(x + l, zix) = yH*, zO/,-[>, y(x, M)] (^ = 15 2, - . - , TTI).

This equality holds formally in x and u, because y= y(x, u) is a trans-

formation reducing (1.1) to (1.12) formally in x and u. Let us write

(2.4) briefly as

(2.5) yfa + 1, u^ = y^fi(x, y) (i = l, 2, ..., m)

and call this equation an associated functional difference equation of (1.1).

Clearly y(x<> u) given by (1.13) is a formal solution of (2.5). In

order to prove the asymptoticity of this formal solution, let us put
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where

1*1=1

thus introducing new unknown function ZN(X, u).

Substituting them in (2.5), the equation for ZN becomes

where for simplicity we use the notation U(PNJTZ^ for the vector

{ui(PiN -i-ziN), u2(P2N + z2N\ • - . , um(PmN -r zmN}} . Let (piN(x, u, z) and

cw(x, u) be denned by

ciN(x, u^P^tfffa,

then we get

(2.6) ZiN(x + l, ux} = (piN(x, u, z) + CiN(x, u} (z = !3 23 • • - , m).

Writing z^, <p^ c,-#5 respectively, as z^ cp^ c,- in (2.6) for simplicity, we

have

(2.7) Zi(x + l, ux) = Vi(x, u, z) + a(x, a} (i = l, 2, ..., /?i).

Owing to the assumption made on the functions // in (1.1), and to the

fact that PiN in (2.1) are polynomials in x~l and u^ we see that there

exist positive constants R2, r2 such that c f ( x , u) are defined and analytic

in

(28) \x\>Rz, l k l l< / - 2 .

Referring to the fact that (1.3) is a formal solution of (1.1) we can con-

clude that there exists a positive constant L such that the inequality

(2.9) ||c(*,
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holds in the region (2.8). Choosing positive constants J?3, r3 suitably we

see that (pi(oc^ u, z) are analytic in the region

(2.10) \x >R3, iu||<r3, |H|03,

and moreover we have

<pi(x, u, 0) = 0 (i = l, 2, ..., 77i).

Therefore we may write (p(x, u^ z) in the form:

(x, u, z).

Here B(x, u) is an m by m matrix B(x, u) = (bik(x, u)\ whose elements

are analytic functions in the region |#|>j?3, ||w||<r3 such that

ba(x, u) = - < p i ( x , u, 0)

bik(x, u} = ukP]fi(x, uP}

so that it holds

^(A;, u 3 z) is an analytic function in the region (2.10), and there exists a

positive quantity K such that the inequality

holds in (2.10). Thus (2.6) may be written as

(2.11) zfa + 1, ux} = Ci(x, u}+ 2 bik(x, u
k=i

3. Existence theorem. In this section, we shall prove that the

functional difference equation (2.11) has an analytic solution such that
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in a certain region F X U such as

where M and d are arbitrary but fixed constants such that M > L and

? and the constants Pi and p2 will be determined in the course of
£j

proof. We shall employ the Fixed-Point Theorem to prove this.

Let F be a family of functions z(x, u) that are analytic and satisfying

the inequality (3.1) for x and u in the region Fx U, F is a convex set,

because if /(#, u) and g(x, u) belong to F the inequality

holds in Fx U for any /I such as 0</1<1. F is a closed set, because if

{zi(x, u)} is a sequence of functions belonging to -F, and converging

uniformly in any compact set in F X £7, then the limiting function z(x, u)

satisfies (3.1) and is analytic in Fx [/, which means that z(x, u) belongs

to F.

Now, referring to the equation (2.11) consider the mapping T defined

as

(3.2) z(x, u)=T(z(x, u))

, ux) — c(x, u)—H(x, u)z — (I)(x, U, z}}

where H(x^ u) = B(x, u) — A? A= diag (/li, fai • • • 3 hn)> We may choose

positive constants L, B, K, R', r' (<1) and r" (<1) such that the inequali-

ties
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hold in the region \x\>Rf , \\u\\ <r and ||*||<r". We notice that if

z(x, u)€F, then z(x + l, u^)eF.

Now, \\A-I\\ = max/l^1^-^- and M>L, we have from (3.2)
i &

\\z(x, u)\\

so that choosing px sufficiently large and P2<1 sufficiently small we have

in the region Fx U. Thus the mapped function z(x, u) which is clearly

analytic in F X U belongs also to F.

If {zn(x, u)} is a sequence of functions that belong to F and con-

verges uniformly in any compact set in F X [/, then the sequence {zn(x, u)}

of the mapped functions clearly converges uniformly to a function z(x, u)

in Fx U which is the image of the limiting function z(x, u).

Lastly we notice that the family of the mapped functions forms a

normal family in F X U. This is clear from the fact that zn(x, u) are

analytic and equibounded by \\zn(x, u}\\ <,M{\ x |-<*+1> + \\u\\N+l}.

Hence all the necessary assumptions of the Fixed-Point Theorem were

shown to be satisfied in our case, so that we have the following existence

theorem.

Theorem 1. Let fi(x9 j) be analytic in the region XQ X YQ such as

XQ: \x\>R,

; r where

and let us consider the functional difference equation
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(2.5) >•(* + !, »x ) = .#/<(*, j),

where y= y(x, u) is a function of independent variables x and u =

• ••3 um). Then in accordance with the following formal solution

o/ (2.5) £/&ere <m"s£s correspondingly to an arbitrary but fixed quantity M

(which is greater than the quantity L introduced in (2.9)) an analytic

solution

(S) yi=Ui(l + 2
\k\ =1

such that the inequality

holds in a certain region FN X UN which is defined for a sufficiently large

quantity PIN and a sufficiently small quantity P2^v<l as

4. Uniqueness theorem. We shall consider the uniqueness of

the solution of the functional difference equation

(2.11) z(x + I, ux) = c(^3 u) + B(x, u)z(x, u) + <p(x, u, z).

We have proved that it has an analytic and bounded solution in a region

F >< U. We shall show that such a solution is unique.

Supposing two solutions zi(x, u) and z2(x, u) we set

v(x, u) = z2(x, IL) — ZI(X, u}.

Then v satisfies the equation

(4.1) v(x + l, ux} = B(x, u ) v j r < / ) ( x , u, zi + v) — (p(x9 u, zi).

Expanding the right-hand side in power of v, we can write the above
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equation in the form

(4.2) v(x + l, u^') = A(xy u^ zi)v + ¥(x, u, z^ v)

where W denotes the part containing terms of degrees higher than one in

v. By assumption A(oc^ u^ zi) is analytic in the region X\x UiXZi and

¥(x, u, zi, v} is analytic in the region X\ X Ui X Z\ X V\ where

Dl:\x >Rl9 |arg

for some suitable quantities JRi, TI, fi, TI, and it holds ^C00, 0, 0) = yi. Set

Since AO = min A,-^25 we can select a number p such that AO > p > 1.
»

Then for the positive quantity /lo~P we choose ^2 > 0 sufficiently large,

r2<0 sufficiently small so that in the region V=D2X U2xZ2X V2 such as

D2: \x\>R2, |arg x\<d,

U2:\\u\\<r29

the inequality

\\H(x, u, zdv + V(x, u, zl9 v

holds. It follows that

\\Av\\-\\A(x, u, z)v + ¥(x, u, z,

Since AO||V| |^ \\Av\\, we have ultimately

so that by (4.2) we have
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(4.3) |jt;(* + l, it^H^plK*, u)|j.

Since v(x, u) is bounded in the region D2 X U2, putting

S= sup \\v(x, u)\\

we get S^pS where p>l. So we must have 5=0. Hence zi(x, u}

= Z2(x, u) in D2x C/2- Since the solution is analytic Fx Z7, such a solu-

tion is unique in F x U. Thus we get the following theorem.

Theorem 2. Under the conditions of Theorem 1 the solution stated

in it is unique.

5. Existence of an asymptotic solution. We have proved that

for the equation

(2.5) y;0*; + l, iix) = tf*/f<*, y) (£ = 1, 2, ..., m)

there exists an analytic solution

where

such as ||z#!| ^M{| x\ ~(N+l^ + \\u\\N+l}, and that such a solution is unique

in FNX UN- The solution yi = yi(^x^ u) might depend on JV, so that tem-

porarily let us denote it by yi[_N^\. Then

where \\zN\\^M{\ x\~(N^ +\\u\\N+l} in FNxUN. Now this can be

rewritten as

= Ui(Pi}N_i(x, u) + vi>N-i(x, u)}

where

\kl=N
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Since \\zN\\<,M{\x -(N+l^\\u\\N+1} in FNxUN, it follows that

where M^-i is some positive quantity. On the other hand, according to

uniqueness theorem the solution such as

where \\zN_i\\^MN^i{\x ~^-HH|^} in FN_iXUN~i is unique, so that

it must hold

and consequently

\k\=N

in

Therefore we can conclude that there exists an analytic solution which

does not depend on N in some region of the form previously denoted by

F X U, having the property that it holds

\\ZN(X,U)\\^MN{\X\-<N+»+\\U\\N+I} in F x U,

which means that we have asymptotically

in F X U. Thus we have

Theorem 3. Under the conditions of Theorem 1 there exists an

analytic asymptotic solution of the equation (2.5) such as

(5.1) j,-(*, «)~

in the region F X U.
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Part II. On the System of Nonlinear Difference Equations of the

Form jr, (* + !) = H J/'lfiU, j) (* = 1, 2, ..., m)

6. Formal solutions. We consider the system of nonlinear dif-

ference equations of the form:

m
(6.1) y,.(* + l)= n tf"/,•(*, j) (i = l, 2, . . . , in)

y=i

wz
where >^-/s are nonnegative integers such that 2 ^fyl^2 (i = l, 2, . . - , m).

y = i
We assume that /*(A;, y)=fi(x, Ji5 72, • • • ? Jm) are analytic functions of

x and J = (ji5 72, • • - , ym) defined in the region X0 X F0— {^ | \x\>R}

x{y|||j||<r} (|| j|| = max | y,-|). Clearly functions /,-(A;, j) then can be

expanded in the following form:

(6.2) /,(*, y) = ai'0>_0+ S oiV*.*"*0^1^'-^-,

where | k \ means &0 + ki H h km. We assume that /X00, 0) = aS/o.-.o = fa

^0 (i = 1, 23 • •-, 77i). Furthermore we assume that each eigenvalue A,- of

the 77i by 77i matrix A = (^JJ) is absolutely greater than one.

We may assume /X00, 0) = fa — 1 (z = l, 2, • • - , m) without loss of

generality. Indeed, putting

//? Q\ A / • -j o »»,\
VU.Oj 2T/ — V » ' J X » V^ — -Lj ^3 '")Tfl)

with undetermined constants f/ and substituting (6.3) in (6.1), we get the

following system of difference equations for 2: = (2:1, z^ • • - , zm):

m m(6.4) n ?/*'*,-(#+i)==f * A-n z^'gi(x9 2) (1=1,2,. . . , TTI)
y=i y= i

where

By our assumption one is not an eigenvalue of the matrix A = (ii]
:) so that
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the constants ?,•(& = !, 2, - . - 3 m) can be so chosen that the equalities

(6.6) II #> = £,- A- (f = l, 2, - . . , m)

hold. By such choice of the constant f = (fi, £2* • • • > ?*»)> (6.4) has the

required form:

*<(*+i)= n *}*'#(*, *) (i=i, 2, ..., m).

gi(x9 z) are analytic functions in X0 X Z0 where

X0:\x >R9

Z0 HHKr' (r'^rmin |ft |) ,
/

and they can be expanded in the same form as (6.2) but with a(
Q

tQ.,,Q = l.

In this section, we shall show that we can find a formal solution of

(6.1) by means of a transformation of the form:

(6.7) y{ =

Adopting the same idea used in Part I, we shall decompose the transforma-

tion (6.7) in a series of steps.

First we take UQ(X) = /(#)• Then we consider the transformation

from y(x) to HI(X} defined by the relation of the form

(6.8) yi = «

which has the inverse transformation

(6.9) UH^ytl-qif**-1- S?i">+-),
»=1

where ••• represents terms which are of degree higher than one in x~l,

yi, J25 • • - , ym- Setting x + 1 for x in (6.9) and using (6.1) and (6.8), it

is immediately shown that the new unknown u\ satisfies the following

equation
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m m

Let £" be the unit matrix and M= (/*,•/) be the TTI by TTI matrix defined by

M=^i —£". Then (6.10) becomes

(6.11) «n( ...
J = l J = l

7W 7W

»=i y=i

By the assumption one and zero are not the eigenvalue of A, so that A

and M are regular matrices. Hence we can determine the constants q(
Q

i}

and ^° appearing in (6.8) so that the coefficients of x~l and un\ in the

right-hand side of (6.11) may all vanish.

The next step which transforms u\(x) to U2^oc) is similar. Induc-

tively let us assume that we already have the system of difference equa-

tions for UN-i of the form:

(6.12) u,.w_i( ..
y = i i & i ^ jv

We shall show that a transformation from zijv-i to UN of the form

(6.13) uiiN

can be determined in such a way that we may have the system of differ-

ence equations for UN of the form:

(6.u) Ui,N(x+i)= ri «&d+

Now (6.13) has the inverse transformation

//2 -i r\ /i V"1 yd) —
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where ••• shows the terms which are of degree higher than N in x~l,

UI,N-I, U2,N-i9 • • • 5 um,N-i* Setting x + 1 for x in (6.15), (6.12) and (6.13),

it is immediately shown that the new unknown ui>N satisfy the following

equations

3=1 \k\=N

Z
lk\=N

.e.,

C6.16) uw(* + l) = ft «&{! + ( Z
3=1 j=l

Z

Since the matrices M=(jUjj) and A = (^ij) are regular, we can determine

the coefficients T(koki...km,N so tnat in ^e right-hand side of (6.16) all the
coefficients of the terms of degree N in a;"1, UIN, ..., UOTJV may vanish,

that is, (6.6) may be of the form (6.14).

Now, by the composition of the mappings

n=l

Z
I k I — 2

(i = l, 2, ....in),

we get the following transformation from y to UN :
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/£ 1 I7\ „ ,, /I _J_ V ^(*) /v-— k n - k l , &2 ,,^m ^
(,b.l/; Ji— UiN{L-\- 2-A PkQki...km Nx ulNu2N'"umN)'

It is observed from the nature of the process that in all transformations

(6.17) the coefficient of x~kQu\l
Nu\2

N"-u^N preserves the value p(k^«kmt\k\

for N=\k\, |A;|+1, |&|+2, • • - . Hence we may define the coefficients in

(6.7) by setting

(6.18)

Thus we have defined the transformation (6.7) from y to u. Now, the

two transformations (6.7) and (6.17) give a relation between u and UN

defined as

(6.19)

which can be solved formally in the form

(6'2°) Ui=UiN(l+ E Pk^km *

and as its inverse we have

(6.21) uiN=

By the definition (6.18) we have in (6.20) and (6.21) the relations

fi(i) _ = ( * ) _ A
PkQki^km,N—pkok1...km,N — U

for k such as 1 <] | k \ ^ JV, so that we have

(6.22) u{ = u{

and

(6.23) Bw=it,-(l+

When these expressions are substituted into the equation (6.14) we find
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that the equations satisfied by {u^ are of the form

(6.24) «,(* + l ) = n «

Here N has been an arbitrary integer, so that the equation satisfied by

{HI} is really

m
(6.25) Ui(oc + l)=H u*J.

j=i

Thus we have proved that the equation (6.1) is reduced to (6.25)

when the transformation given by (6.7) is performed on it. Consequently

we can conclude that the equation (6.1) has a formal solution of the form

(6.26) y,(x,u') =
I&!=^1

m which ui is substituted by a solution Ui(x) of the equation (6.25).

7. Associated functional difference equation. Making use the

formal solution (6.7) of the equation (6.1) we shall conveniently deal with

a solution of (6.1) of the form

(7.1) yi(x, u(x)} (i = l, 2,.-., in)

depending on the general solution H(X) = (UI(X\ 1^2(^)3 • • • , um(x)) of the

system of equations

m
(7.2) Ui(x + l)= TI n/*)x" (i = l, 2, -., m).

J = i

The general solution u(x) of (7.2) may be found easily by putting vi(x)

= logUi(x). u(x) contains an arbitrary periodic function TC(X) = (TTI(X\

n2(x\ . . - , 7tm(x)) with period one, so that the function (7.1) correspond-

ing to the general solution u(x) of (7.2) is a general solution of (7.1).

Substitute (7.1) and (7.2) into (6.1), then we have

(7.3) y(x + l, nuA)= fl

i = l, 2, ..., m),
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where the left-hand side denotes the rather complicated quantity

m m m
j,-(*+i, n a}1*, n up, ..., n ^H-

y=i y=i y=i

Similarly to (2.4), equality (7.3) holds formally in x and u for y(x, u)

given by (6.7). In what follows, we shall call (7.3) an associated func-

tional difference equation of (6.1).

Corresponding to the formal solution (6.7) of the associated functional

difference equation (7.3), let us put

(7.4) yfa u) = UiPW(x, u\

(7.5) yi(x, u)

where

(7.6)

..m
I K I — 1

Substituting (7.5) in (7.3) the equation for ZN becomes

where

and

n u*', ^H ---,11
y=i y=i y=i
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Let $9jjv(#3 &, z) and CZ-JV(:E, u) be defined by

m
(7.7) cpiN(x, u, *) = II (Pw+zJNyvfi(x9 u(PN+zN))

(7.8) ciN(x9 H) =
3=1

Then we get

Writing for simplicity zw, (PIN* c/#5 respectively, as *,-, <^-, c,- in this equa-

tion we shall study the following functional difference equation:

(^7.9) Zi\X ~T~ -L} 7TM- y —— (}Pj\^3u, Z^, Z)~\~Cj\X9 U) V ^ t — - J L , Z, • • • , TTLJm

Owing to the assumption on the functions /,- in (7.8) and to the fact that

PiN in (7.6) are polynomials in x~l and u^ we see that there exist positive

constants R^ r^ such that c,-(a;, u) defined by (7.8) are analytic in the

region

(7.10) N>-R2, ikl i<^2.

Referring to the fact that (6.7) is a formal solution of (7.3), we get

the formal equalities

that is,

= l (ujP™(x, u
3=1

(7.11) n (Pu\x, u»^fi(x, uP(x, u»-P«

i = l9 2, ..., m).

By (7.6), (7.11) and the definition (7.8) of a(x, u), we get the estima-

tion
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Therefore we can conclude that there exists a positive constant L such

that

holds in (7.10). Choosing positive constants R^^ r3 suitably we see that

(Pi(x, u, z) are analytic in the region

(7-12) |*| >*3, INKra, !WI<r3 ,

and moreover we have $?,•(#, u, 0) = 0 (i = l, 2, • ••, m,). Therefore we may

write 0> = (0>i, ^2, - - - 5 #>w) in the form

Here j8(:r3 w) is an m by TTI matrix 5(^3 u') = (bik(x, u)) whose elements

are analytic in | jc |>i?35 !^||<r3 such that

2 ., m
-

+ u k l
j = i

Hence we have

0(.T, a, z) is an analytic function in (7.12), and there exists a positive

quantity K such that the inequality

holds in (7.12). Therefore (7.9) may be written as

(7.13) zi(x + I, 7tuA) = Ci(x.) u)+ 2 bij(x, u)zj+(/}{(x, u, z)
3=1

(i = l, 25 ..., m).

Let us put AO— niin A , - | . By assumption we have Ao>l . For an
i

arbitrary but fixed constant S such as
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(7.14) Ao-l>£>0

there exists a regular matrix S such that

(7.15) Aj=S~lAS Oi

where Aj is a Jordan's canonical form of A:

Mi

(7.16) Aj=

0
(*/ *

, 4=

n

0 \

4/1

and each djk satisfies the following inequality

Denoting the diagonal matrix diag (Ai, • • - , AI, ^25 • • • J ^2? - - - s A/, • • - , A/) by

AD, we have

(7.17)

Now, putting

(7.18) z(x, u) = Sw(x, u),

and substituting this in (7.13), we have the equation for w

(7.19) w(x + l, nuA) = S-lc(x, u') + S~1B(x, u) Sw+S^^x, u, Sw).

For simplicity, we put

W(x, u, w) = S~l<fi(x, u, Sw).

Then (7.19) becomes

(7.20) w(x + l, nuA) = tf(x, u) + &(x, u}w + ¥(x, u, w).
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We may choose R* sufficiently large and r* (< 1) sufficiently small so

that the following conditions (A.I), (A. II) and (A. Ill) may be satisfied.

(A.I) The components of, &(x, u) are analytic in Xx U where

X: x\>R*, U: \\u\\ <r*,

and the inequality

(7.21)

holds in XxU.

(A. II) The inequality

(7.22) \\0(x, u)-

holds in Xx U.

(A. Ill) The components of ¥(x, U, w) are analytic in Xx Ux W such as

X:\x\>R*9 t/:|H|<r*, r:|M|<r*,

and the inequality

(7.23) \\¥(x, K,ti»||^£iN|2 (Kl = K\\S-l\\\\S\\^

holds in Xx Ux W.

8. Existence theorem. In this section, we shall prove that the

system of the functional difference equation (7.20) has an analytic solution

such that

(8.1) \\w(x, u)\\<,

in a certain region P X UQ such as

F : \x >PI,
(8.2)

^o:i!^||<P2

where M and a are arbitrary but fixed constants such that M > L

/(^Q — l—d} and 0<a<-^~, and PI and p2 are constants to be determined

in the course of the proof. We shall employ the Fixed-Point Theorem to
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prove this.

Let F be a family of vector-valued functions w(x, u) whose elements

are analytic and satisfy the inequality (8. 1) for (#, u) in the region

rxc/o.
Now, rewriting the equation (7.20), we have

w(x, U) = ADI{W(X + !, nuA)-tf(x, u) — (0(x, U)-AD)W-¥(X, u, w)}

where AD is the diagonal matrix diag (/li, • •-, ^i, ^23 • • • > ^2? ...... 5 Ah • • • > ̂ /)-

Consider the mapping T : w(x, u)-+w(x, u) defined by

(8.3) w(x, u)= T(w(x, M))

— ¥ ( X , u, w)}.

The most important fact to be proved is that if w(x, u)^F then also

w(x, u)€F. We shall prove this only, since the rests may be proved

similarly as in Part I.

We shall notice that if (x, u)€FxUQ then (x + 1, 7ruA)erx UQ, i.e.,

if w(x, u)€F9 then also w(x + l9 nuA)eF. On the other hand, by (A.I),

(A.II) and (A.III) the inequalities

(7.21)

(7.22)

hold in the region Xx U and the inequality

(7.23) l|y(*,«,«OII^*iNI2

holds in the region Xx Ux W. By these facts we may get the inequality

^^l/^O) the inequality
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(8.4) \\w(X, u)||^-

holds in the region Xx U.

Let us choose M so that M>Li/(AQ — l — 8\ and let us take

sufficiently large and £2(0*) sufficiently small. Then we have

in the region F X E/o which is contained in XxU. Hence we get the

inequality

in F X UQ. Therefore by (8.4), we have

for any w(x, u) G F. Hence the mapped function w(x, u) which is clearly

analytic in F X UQ belongs also to F. Thus we get the following

Theorem 4. Consider the system of functional difference equations

(7.20) w(x + l, nuA) = tf(x, u) + &(x, u)w(x, u) + W(x, u, w(x, u}}

where ^(x, u)5 &(x, u) and ¥(x, IL, w) satisfy the conditions (A.I), (A.II)

and (A.III) in §7. Equation (7.20) then has an analytic solution such

that

\\w(x, u)\\^M{ | x | ~(N+V+\\u\ N+l}

in a certain region Fx UQ— {x \ \ x \ >pi, | arg x \ <a} X {u \ ||u||<p2<l}5

where M and a are arbitrary but fixed constants such that M>Li/(A0 — l — d)

and 0<a<-2~5 and Pi, p2 are suitable constants.

9. Uniqueness theorem. In this section, we shall consider the

uniqueness of the solution of the functional difference equation
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(7.20) w(x + l, nuA} = (g(x, u) + &(x, u}w(x, u) + ¥(x, u, w(x, u))

under the conditions (A.I), (A.II) and (A.III) in § 7. We shall prove that if

(7.20) has an analytic solution satisfying \\w(x, u)\\<^M{\x \ ~(N+1^+\\u\\N+1}

in the region F X £/o? then such a solution is unique.

Let us assume that there exist two solutions wi(x, u) and w^x^ u).

Put

(9.1) v(x, u) = W2^x^ IL) — WI(XI &),

then v satisfies the following equation

(9.2) v(x + l, 7tuA} = @(x, u}

Expanding the right-hand side in power of v, we can write the above

equation in the form

(9.3) v(x + l, nuA) = A(x, u, wi)v + ¥i(x, u, wi, v),

where W\ denotes the part containing terms of degrees higher than one in

v.

Let us choose constants RI (J> max (PI, 1?*)) sufficiently large, and

fi (= min (p2? T"*)) sufficiently small, and consider the regions DI, f/i, W\

and FI defined by

Dl :\x\^

\u\\ <^

Then we may assume that A (x, u, wi) is analytic in the region DI X Ui X JFi

and the equality

(9.4) A(oo, 0, 0) = Aj

holds, where Aj is the Jordan's canonical form (7.16) of A = (Ajj). On the

other hand, Wi(x> u, w^ v) is analytic in the region DiXUiX WiX FI

and the inequality
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||0i(*, u, wi, v)\\<^K2\\v\\2

holds in DI X Ui X W\ X FI, where K2 is a constant suitably chosen.

Set H(x, u> wi) = A(x, u, Wi) — Aj, then (9.3) becomes

(9.5) v(x + l, 7tuA) = (Aj+H(x, u, wi))v + W^x^ u, wi, v).

As is easily seen, the inequality

holds for any t;, where ^o^ min U/| and d is a constant satisfying

(7.14) ^o-l>fl>0.

Now let us choose an arbitrary but fixed positive constant Si such that

(Q y} ^ ^ S^>S ^> 0

Then, choosing suitably the constants R2^ f^ r2 and r2 the inequality

holds in the region V=D2X U2X W2X V2 such as

D2 : x\^>R2 C^iRi), \argx\<a,

+r r+1) = ?2,

By (9.5), (9.6) and (9.8), we have

(9.9) \\v(x + l,nuAy\

(x, u, wi)v + ¥i(x, u, wi, v)\\

| — \\H(x, u, wi*)v + ¥i(x, u, wi, w)

in the region V. Putting p = A0 — S — Si we get p>l by (9.7). Then

the inequality
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(9.10) I

holds in the region V. Since v is bounded in the region D2 X U2, putting

S= sup \\v(x, u)\\ we have Sl>pS where p>l. Hence 5=0, i.e.,
D2*U2

Wi(x, u) = W2 (x, u). The solution being analytic F x [/, such a solution

is unique in F X U. Thus we get the following

Theorem 5. Under the conditions of Theorem 4 the solution stated

in it is unique.

The existence of an analytic asymptotic solution can be proved in a

similar manner as in Part I by using Theorem 4, Theorem 5 and the

inequality ||z|| <^ \\S\\ \\w\\ in (7.18). Thus we have

Theorem 6. Under the conditions of Theorem 4 there exists an

analytic solution of (7.3) for which we have the asymptotic expansion

in the region P X U.
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