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A Lemma for Microlocal Sheaf Theory in the
∞-Categorical Setting

by

Marco Robalo and Pierre Schapira

Abstract

The microlocal sheaf theory of Kashiwara and Schapira (Sheaves on manifolds, Grund-
lehren der mathematischen Wissenschaften 292, Springer, Berlin, 1990) makes essential
use of an extension lemma for sheaves due to Kashiwara, and this lemma is based on
a criterion of the same author giving conditions in order that a functor defined in Rop

with values in the category Sets of sets be constant. In the first part of this paper,
using classical tools, we show how to generalize the extension lemma to the case of
the unbounded derived category. In the second part, we extend Kashiwara’s result on
constant functors by replacing the category Sets with the ∞-category of spaces and apply
it to generalize the extension lemma to ∞-sheaves, the ∞-categorical version of sheaves.
Finally, we define the micro-support of sheaves with values in a stable (∞, 1)-category.
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§1. Introduction

Microlocal sheaf theory appeared in [KS82] and was developed in [KS85, KS90].

However, this theory is constructed in the framework of the bounded (or bounded

from below) derived category of sheaves Db(kM ) on a real manifold M , for a com-

mutative unital ring k, and it appears necessary in various problems to extend

the theory to the unbounded derived category of sheaves D(kM ). See in particu-

lar [Tam08, Tam15].

A crucial result in this theory is the “non-characteristic deformation lemma”

[KS90, Prop. 2.7.2]. This lemma, which first appeared in [Kas75, Kas83]), asserts

that if one has an increasing family of open subsets {Us}s∈R of a topological
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Hausdorff space M and an object F of Db(kM ) such that the cohomology of F on

Us extends through the boundary of Us for all s, then RΓ(Us;F ) is constant with

respect to s. A basic tool for proving this result is the “constant functor criterion”,

again due to Kashiwara, a result which gives a condition in order that a functor

X : Rop −→ Sets is constant, where Sets is the category of sets in a given universe.

In Section 2 we generalize the extension lemma to the unbounded setting, that

is, to objects of D(kM ). Our proof is rather elementary and is based on the tools

of [KS90]. This generalization being achieved, readers can persuade themselves

that most of the results of [KS90], such as the functorial behavior of the micro-

support, extend to the unbounded case.

Next, we consider a higher categorical generalization of this result. In Section 3

we generalize the constant functor criterion to the case where the 1-category Sets

is replaced with the∞-category S of spaces. Using this new tool, in Section 4.1, we

generalize the extension lemma for∞-sheaves with values in any stable compactly

generated ∞-category D . When D is the ∞-category Mod∞(kM ) of ∞-sheaves of

unbounded complexes of k-modules we recover the results of Section 2.

Finally, in Section 4.2 we define the micro-support of any ∞-sheaf F with

general stable higher coefficient.

Remark 1.1. After this paper was written, David Treumann informed us of the

result by Dmitri Pavlov [Pav16] which generalizes Kashiwara’s “constant functor

criterion” to the case where the functor takes values in the∞-category of spectra.

Note that Theorem 3.2 below implies Pavlov’s result on spectra.

§2. Unbounded derived category of sheaves

Let Sets denote the category of sets, in a given universe U . In the sequel, we

consider R as a category with the morphisms being given by the natural order ≤.

We first recall a result due to Kashiwara (see [KS90, §1.12]).

Lemma 2.1 (Constant functor criterion). Consider a functor X : Rop −→ Sets.

Assume that for each s ∈ R,

(2.1) lim−→
t>s

Xt
∼−−→ Xs

∼−−→ lim←−
r<s

Xr.

Then the functor X is constant.

Let k denote a unital ring and denote by Mod(k) the abelian Grothendieck

category of k-modules. For brevity, we set

C(k) := C(Mod(k)), the category of chain complexes of Mod(k),

D(k) := D(Mod(k)), the (unbounded) derived category of Mod(k).
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We look at the ordered set (R,≤) as a category and consider a functor X : Rop −→
C(k). For brevity, we write Xs = X(s).

The next result is a variant on Lemma 2.1 and the results of [KS90, §1.12].

Lemma 2.2. Assume that

for any k ∈ Z, any r ≤ s in R, the map Xk
s −→ Xk

r is surjective;(2.2)

for any k ∈ Z, any s ∈ R, Xk
s
∼−−→ lim←−

r<s

Xk
r ;(2.3)

for any j ∈ Z, any s ∈ R, lim−→
t>s

Hj(Xt) ∼−−→ Hj(Xs).(2.4)

Then for any j ∈ Z, r, s ∈ R with r ≤ s, one has the isomorphism Hj(Xt) ∼−−→
Hj(Xs). In other words, for all j ∈ Z, the functor Hj(X) is constant.

Proof. Consider the assertions for all j ∈ Z, all r, s ∈ R with r ≤ s:

for any j ∈ Z, s ∈ R, the map Hj(Xs) −→ lim←−
r<s

Hj(Xr) is surjective;(2.5)

for any j ∈ Z, r ≤ s, the map Hj(Xs) −→ Hj(Xr) is surjective;(2.6)

for any j ∈ Z, s ∈ R, the map Hj(Xs) −→ lim←−
r<s

Hj(Xr) is bijective.(2.7)

Assertion (2.5) follows from hypotheses (2.2) and (2.3) by applying [KS90, Prop.

1.12.4(a)].

Assertion (2.6) follows from (2.5) and hypothesis (2.4) in view of [KS90, Prop.

1.12.6].

It follows from (2.6) that for any j ∈ Z and s ∈ R, the projective system

{Hj(Xr)}r<s satisfies the Mittag-Leffler condition. We get (2.7) by using [KS90,

Prop. 1.12.4(b)].

To conclude, apply [KS90, Prop. 1.12.6], using (2.4) and (2.7).

Theorem 2.3 (Non-characteristic deformation lemma). Let1 M be a Hausdorff

space and let F ∈ D(kM ). Let {Us}s∈R be a family of open subsets of M . We

assume

(a) for all t ∈ R, Ut =
⋃
s<t Us;

(b) for all pairs (s, t) with s ≤ t, the set Ut \ Us ∩ suppF is compact;

(c) setting Zs =
⋂
t>s (Ut \ Us), we have for all pairs (s, t) with s ≤ t and all

x ∈ Zs, (RΓX\Ut
F )x ' 0.

1Stéphane Guillermou informed us that, some time ago, Claude Viterbo obtained a similar
result (unpublished).
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Then for all t ∈ R, we have the isomorphism in D(k),

RΓ

(⋃
s

Us;F

)
∼−−→ RΓ(Ut;F ).

We shall adapt the proof of [KS90, Prop. 2.7.2], using Lemma 2.2.

Proof. (i) Following [KS90, Prop. 2.7.2], we shall first prove the isomorphism

(2.8) (a)s : lim−→
t>s

Hj(Ut;F ) ∼−−→ Hj(Us;F ) for all j.

Replacing M with suppF , we may assume from the beginning that Ut \ Us is

compact. For s ≤ t, consider the distinguished triangle

(RΓM\Ut
F )|Zs

−→ (RΓM\Us
F )|Zs

−→ (RΓUt\Us
F )|Zs

+1−−→ .

The first two terms are 0 by hypothesis (c). Therefore (RΓUt\Us
F )|Zs

' 0 and we

get

0 ' Hj(Zs; RΓUt\Us
F ) ' lim−→

U⊃Zs

Hj(U ∩ Ut; RΓM\Us
F ) for all j,

where U ranges over the family of open neighborhoods of Zs.

For any such U there exists t′ with s < t′ ≤ t such that U ∩ Ut ⊃ Ut′ \ Us.
Therefore,

lim−→
t,t>s

Hj(Ut; RΓM\Us
F ) ' 0 for all j.

By using the distinguished triangle RΓM\Us
F −→ F −→ RΓUs

F
+1−−→, we get (2.8).

(ii) We shall follow [KS06, Prop. 14.1.6, Thm. 14.1.7] and recall that if C is a

Grothendieck category, then any object of C(C ) is qis (quasi-isomorphic) to a

homotopically injective object whose components are injective. Hence, given F ∈
D(kM ), we may represent it by a homotopically injective object F

• ∈ C(kM )

whose components F k are injective. Then RΓ(Us;F ) is represented by Γ(Us;F
•
) ∈

C(k). Set

Xk
s = Γ(Us;F

k), Xs = Γ(Us;F
•
).

Then (2.2) is satisfied since F k is flabby, (2.3) is satisfied since F k is a sheaf and

(2.4) is nothing but (2.8).

(iii) To conclude, apply Lemma 2.2.
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§3. The constant functor criterion for S

§3.1. On ∞-categories

The aim of this subsection is essentially notational and references are made to

[Lur09, Lur17]. We use Joyal’s quasi-categories to model (∞, 1)-categories. If not

necessary we will simply use the terminology ∞-categories.

Denote by Cat∞ the (∞, 1)-category of all (∞, 1)-categories in a given uni-

verse U and by Cat the 1-category of all 1-categories in U .

To C ∈ Cat, one associates its nerve, N(C ) ∈ Cat∞. Denoting by N(Cat)

the image of Cat by N , the embedding ι : N(Cat) ↪→ Cat∞ admits a left adjoint

h, namely the functor which to an (∞, 1)-category C associates its homotopy

category hC . We get the functors

h: Cat∞
// N(Cat) : ιoo

Hence, h ◦ ι ' id1 and there exists a natural morphism of ∞-functors id∞ −→ ι ◦ h,

where id1 and id∞ denote the identity functors of the categories Cat and Cat∞,

respectively.

Looking at Cat∞ as a simplicial set, its degree-0 elements are the (∞, 1)-

categories, its degree-1 elements are the∞-functors, etc. Hence the functor h sends

a (∞, 1)-category to the usual category, an ∞-functor to the usual functor, etc. It

sends a stable (∞, 1)-category to a triangulated category where the distinguished

triangles are induced by the cofiber–fiber sequences. Moreover, it sends an ∞-

functor to a triangulated functor, etc. See [Lur17, 1.1.2.15].

Let S (resp. S∗) denote the (∞, 1)-category of spaces (resp. pointed spaces)

[Lur09, 1.2.16.1]. Informally, one can think of S as a simplicial set whose vertices

are CW-complexes, 1-cells are continuous maps, 2-cells are homotopies between

continuous maps, etc. Recall that S admits small limits and colimits in the sense

of [Lur09, 1.2.13]. Moreover, by Whitehead’s theorem, a map f : X −→ Y in

S is an equivalence if and only if the induced map π0(f) : π0(X) −→ π0(Y ) is an

isomorphism of sets and for every base point x ∈ X, the induced maps πn(X,x) −→
πn(Y, f(x)) are isomorphisms for all n ≥ 1.

It is also convenient to recall the existence of a Grothendieck construction

for (∞, 1)-categories. Namely, for any (∞, 1)-category C , the straightening and

unstraightening constructions establish an equivalence of (∞, 1)-categories

(3.1) St : (Cat∞/C )cart ' Fun(C op,Cat∞) : Un

where on the left-hand side we have the (∞, 1)-category of ∞-functors D −→ C

that are Cartesian fibrations and functors that preserve Cartesian morphisms (see

[Lur09, Def. 2.4.1.1]), and on the right-hand side we have the (∞, 1)-category of
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∞-functors from C op to Cat∞. See [Lur09, 3.2.0.1]. The same holds for diagrams

in S, where we find

(3.2) St : (Cat∞/C )Right-fib ' Fun(C op,S) : Un

where this time on the left-hand side we have the (∞, 1)-category of ∞-functors

D −→ C that are right fibrations. See [Lur09, 2.2.1.2]. The equivalence (3.2) will

be useful for the following reason: for any diagram X : C op −→ S, its limit in S
can be identified with the space of sections of Un(X) [Lur09, 3.3.3.4]:

(3.3) limX ' MapC (C ,Un(X)).

§3.2. A criterion for a functor to be constant

In this subsection, we generalize [KS90, Prop. 1.12.6] to the case of an ∞-functor.

Let X : Rop −→ S be an ∞-functor. We set

(3.4) Xs = X(s), ρs,t : Xt −→ Xs (s ≤ t).

Lemma 3.1 (Constant ∞-functor criterion for spaces). Let X : Rop −→ S be an

∞-functor. Assume that for each s ∈ R, the natural morphisms in S,

(3.5) colim
s<t

Xt −→ Xs −→ lim
r<s

Xr,

are both equivalences. Then for every t ≥ s, the morphism Xt −→ Xs in S is an

equivalence.

The proof adapts and uses that of [KS90, Prop. 1.12.6] to the case of S.

Proof. Step I. It is enough to prove that for each c ∈ R, the restriction of X to

R<c is constant.

Step II: Choosing base points. Let c ∈ R and again let X denote the restriction

of X to R<c. The hypothesis

lim
s<c

Xs ' Xc

ensures that the choice of a base point in Xc determines a compatible system of

base points up to homotopy at every Xs with s < c, i.e., the choice of a 2-simplex

σ : ∆2 −→ Cat∞:

(3.6) S∗

��
N(Rop

<c)

X

;;

X
// S.

σ
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For the reader’s convenience we explain how to construct the 2-simplex σ. Thanks

to (3.3), the limit lim[s<c]Xs can be identified with the category of sections of the

right fibration Un(X) −→ N(R<c). Therefore, the hypothesis of the lemma ensures

that the choice of a base point in Xc provides a section of Un(X).2 Its image via

the functor St of (3.2) provides the lifting (3.6).

Recall that the forgetful functor S∗ −→ S preserves filtrant colimits and all

small limits and is conservative. Therefore the hypotheses are also valid for X.

Step III: Working with a fixed choice of base points. Given an ∞-functor Y :

Nop −→ S∗ we have for each n ∈ N, a short exact sequence (of groups when

n ≥ 1 and pointed sets when n = 0) called the Milnor exact sequence (see for

instance [MP12, Prop. 2.2.9] or [GJ09, Prop. 2.15 Chap. VI]):

(3.7) 0 −→ R1 lim
i∈Nop

πn+1(Yi) −→ πn( lim
i∈Nop

Yi) −→ lim
i∈Nop

πn(Yi) −→ 0.

As the inclusion Nop ⊆ Rop is cofinal, the Milnor sequence is also valid for Rop-

towers. In what follows, we fix for each s ∈ R an isomorphism of posets αs : R '
R<s and use αs to transfer the cofinality argument to the poset R<s. Clearly the

arguments below are independent of the chosen αs.

Choose any lifting X of X. The preceding discussion applied to Y = X yields

for each n ∈ N, s ∈ R<c, a short exact sequence

(3.8) 0 −→ R1 lim
r<s

πn+1(Xr) −→ πn(lim
r<s

Xr) −→ lim
r<s

πn(Xr) −→ 0.

Under the hypothesis of the lemma, we get short exact sequences

(3.9) 0 −→ R1 lim
r<s

πn+1(Xr) −→ πn(Xs) −→ lim
r<s

πn(Xr) −→ 0.

For each n ≥ 0, each s, t ∈ R≤x with t ≥ s, we shall prove

the map colim
c>t>s

πn(Xt) −→ πn(Xs) is bijective;(3.10)

the map πn(Xs) −→ lim
r<s

πn(Xr) is surjective;(3.11)

the map πn(Xt) −→ πn(Xs) is surjective;(3.12)

the map πn(Xs) −→ lim
r<s

πn(Xr) is bijective.(3.13)

Assertion (3.10) follows from the hypothesis, the fact that the system {t : c > t >

s} is cofinal in {t : t > s} and the fact that πn commutes with filtrant colimits for

n ≥ 0.

2Thanks to [Lur09, 2.4.2.4] such a section is automatically Cartesian.
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Assertion (3.11) follows from (3.9).

Let us prove (3.12). By the surjectivity result in [KS90, Prop. 1.12.6], it is

enough to prove the surjectivity of colim[c>t>s] πn(Xt) −→ πn(Xs) and πn(Xs) −→
lim[r<s] πn(Xr) for all s ∈ R<c, which follows from (3.10) and (3.11).

By (3.12), we know that the projective systems {πn(Xr)}r<s satisfy the

Mittag-Leffler condition for all n ≥ 0, s < c. Therefore, R1 lim[r<s] πn+1(Xr) ' 0

for all n, all s ∈ R<c and (3.13) follows from (3.9). Therefore, we have isomor-

phisms for every n ≥ 0,

colim
s<t<c

πn(Xt) ' πn(Xs) ' lim
r<s

πn(Xr).

Applying [KS90, Prop. 1.12.6], we get that the diagram of sets s 7→ πn(Xs) is

constant for every n.

Step IV: End of the proof. The conclusion of Step III holds for any lifting X of the

restriction of X to R<c. As the result holds for n = 0, the diagram s < c 7→ π0(Xs)

is also constant, seen as a diagram of sets rather than pointed sets.

To conclude one must show that for any n ∈ N, t ≥ s ∈ R<c and for every

choice of a base point y in Xt, the induce maps

(3.14) ρns,t : πn(Xt, y) −→ πn(Xs, ρ
n
s,t(y))

are bijective. Since, for α < c, α 7→ π0(Xα) ∈ Sets is constant, choosing l ∈ R with

t < l < c, y determines a unique element ȳ in π0(Xl). Again, using the hypothesis

Xl ' limr<lXr with the argument of Step II, the choice of a representative for ȳ

determines a homotopy compatible system of base points at every Xr for r < l

and therefore a new lifting X of the restriction of X to R<l. The associated base

point of X at Xt is a representative of y and the composition with πn provides the

maps (3.14). By (3.10), (3.11), (3.12), (3.13) and [KS90, Prop. 1.12.6] the maps

(3.14) are isomorphisms. This conclusion holds for any c ∈ R and thus for any

t ≥ s in Rop.

We refer to [Lur09, 5.5.7.1] for the notion of a presentable compactly generated

(∞, 1)-category.

Theorem 3.2 (Presentable constant ∞-functor criterion). Let C be a presentable

compactly generated (∞, 1)-category and let X : Rop −→ C be an ∞-functor. As-

sume that for each s ∈ R, the natural morphisms

colim
s<t

Xt −→ Xs −→ lim
r<s

Xr
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are both equivalences. Then for any t ≥ s the induced map Xt −→ Xs is an equiva-

lence.

Proof. Apply Lemma 3.1 to all mapping spaces Map(Z,Xt) for each compact

object Z.

Remark 3.3. This result does not apply to C = Rop and X the identity functor.

Indeed, Rop is not compactly generated in the sense of [Lur09, 5.5.7.1].

Remark 3.4. The conclusion of Theorem 3.2 is that the ∞-functor X : Rop −→
C sends all morphisms to equivalences in C . As indicated to us by M. Porta,

this implies that X : Rop −→ C factors through the ∞-categorical localization of

N(Rop) along the class W consisting of all arrows, N(Rop)[W−1].3 The category

Rop is contractible so that N(Rop)[W−1] ' ∗ and X is equivalent to the constant

diagram.

§4. Micro-support

§4.1. The non-characteristic deformation lemma with stable

coefficients

In this subsection, we generalize [KS90, Prop. 2.7.2] and Theorem 2.3 to more

general coefficients. Let D be a presentable compactly generated stable (∞, 1)-

category. Given a topological space M , we denote by OpM the category of its

open subsets. One defines a higher categorical version of sheaves on M as follows.

Let Psh(M,D) denote the (∞, 1)-category of ∞-functors

N(Opop
M ) −→ D .

See [Lur09, 1.2.7.2, 1.2.7.3]. The category OpM is equipped with a Grothen-

dieck topology whose covering of U is the families {Ui}i such that Ui ⊆ U and⋃
i Ui = U . We let Sh(M,D)∧ denote the full subcategory of Psh(M,D) spanned

by those functors that satisfy the sheaf condition and are hypercomplete. See

[Lur09, 6.2.2] and [Lur11a, Sect. 1.1] for the theory of∞-sheaves and [Lur09, 6.5.2,

6.5.3, 6.5.4] for the notion of hypercomplete. The (∞, 1)-category Sh(M,D)∧ is

again a stable compactly generated (∞, 1)-category and when M = pt one recovers

Sh(M,D)∧ ' D .

The usual pullback and push-forward functorialities can be lifted to the higher

categorical setting and are given by exact functors. See for instance the discussion

3See [Lur17, 4.1.3.1].
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in [PYY16, Sect. 2.4]. Let jU : U ↪→M be an open embedding and let aM : M −→ pt

be the map from M to one point. We introduce the notation

Γ∞(U ; • ) := a∞M ∗ ◦ j
∞
U ∗ ◦ j

∞
U
−1 : Sh(M,D)∧ −→ D ,

where a∞M ∗, j
∞
U ∗, j

∞
U
−1 are the direct and inverse image functors for (∞, 1)-

categories of sheaves. If Z is a closed subset of U , using the cofiber–fiber sequence

associated to Γ∞(U ; • ) −→ Γ∞(U \ Z; • ), we define

Γ∞Z (U ; • ) : Sh(M,D)∧ −→ D .

The following result generalizes [KS90, Prop. 2.7.2] and Theorem 2.3 to any

context of sheaves with stable coefficients.

Theorem 4.1 (Non-characteristic deformation lemma for stable coefficients). Let

M be a Hausdorff space and let F ∈ Sh(M,D)∧. Let {Us}s∈R be a family of open

subsets of M . We assume

(a) for all t ∈ R, Ut =
⋃
s<t Us;

(b) for all pairs (s, t) with s ≤ t, the set Ut \ Us ∩ suppF is compact;

(c) setting Zs =
⋂
t>s (Ut \ Us), we have for all pairs (s, t) with s ≤ t and all

x ∈ Zs, (Γ∞X\Ut
F )x ' 0.

Then we have the equivalences in D , for all s, t ∈ R,

Γ∞
(⋃

s

Us;F

)
∼−−→ Γ∞(Ut;F ).

We shall almost mimic the proof of [KS90, Prop. 2.7.2].

Proof. (i) We shall prove the equivalences

(a)t : lim
s<t

Γ∞(Us;F ) ∼←−− Γ∞(Ut;F ),

(b)s : colim
t>s

Γ∞(Ut;F ) ∼−−→ Γ∞(Us;F ).

(ii) Equivalence (a)t is always true by hypothesis (a). Indeed, one has kUs
'

lim←−[r<s]
kUr

, which implies lim[s<t] Γ∞Us
F ∼←−− Γ∞Ut

F , and the result follows since

the direct image functor commutes with lim (because it is a right adjoint).

(iii) The proof of the equivalence (b)s for all s is formally the same as the proof

of (2.8) which itself mimics that of [KS90, Prop. 2.7.2] and we shall not repeat it.

To conclude, apply Theorem 3.2 to D .
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Remark 4.2. Let k denote a commutative unital ring. Theorem 4.1 recovers the

result of Theorem 2.3 in the particular case where D is the∞-version of the derived

category of k, which we will denote by Mod∞(k). We define it as follows: let

C(k) denote the 1-category of (unbounded) chain complexes over k. One considers

the nerve N(C(k)) and settles Mod∞(k) as the localization N(C(k))[W−1] along

the class of edges W given by quasi-isomorphisms of complexes. This localization

is taken inside the theory of (∞, 1)-categories as in Remark 3.4. The homotopy

category h(Mod∞(k)) is canonically equivalent to D(k) by the universal properties

of higher and classical localizations. In this case we settle on the notation

Mod∞(kM ) := Sh(M,Mod∞(k))∧.

The homotopy category of Mod∞(kM ) recovers the usual derived category of (un-

bounded) complexes of sheaves of k-modules, D(kM ). Indeed, [PYY16, Prop. 5.3(i)

–(iii)] identifies the subcategory of Sh(M,Mod∞(k)) spanned by hypercomplete

objects, with the full subcategory spanned by the left-t-complete objects (i.e., an

object that is equal to the limit of its tower of truncations). As explained in [Lur17,

1.2.1.18] we are reduced to showing that the ∞-category of left-bounded objects

in Sh(M,Mod∞(k)) is equivalent to the usual left-bounded derived category. This

follows from the fully faithful embedding of [Lur11b, Prop. 2.1.8]. When M = pt,

one recovers Mod∞(k) and D(k), respectively.

Remark 4.3. If we assume that M is a topological manifold (therefore homo-

topy equivalent to a CW-complex), then Sh(M,D)∧ is equivalent to Sh(M,D). In

particular, Mod∞(kM ) is equivalent to the higher category Sh(M,Mod∞(k)) of

∞-sheaves obtained without imposing hyperdescent. To see this we use the stan-

dard fact in general topology that M being a topological manifold, it is of finite

Lebesgue covering dimension. This is the notion of covering dimension used in

[Lur09, Def. 7.2.3.1]. The relation between the covering dimension of M and the

homotopy dimension of its associated ∞-topos is then given by [Lur09, 7.2.3.6].

Hyperdescent follows from [Lur09, 7.2.1.12].

Remark 4.4. In [KS90, Prop. 2.7.2], Zs is defined as Zs =
⋂
t>s (Ut \ Us), which

is a mistake. This mistake has already been corrected in the errata of https:

//webusers.imj-prg.fr/~pierre.schapira/books/.

§4.2. Micro-support

The definition [KS90, Def. 5.1.2] of the micro-support of sheaves immediately

extends to ∞-sheaves with stable coefficients.

Let M be a real manifold of class C1 and denote by T ∗M its cotangent bundle.

https://webusers.imj-prg.fr/~pierre.schapira/books/
https://webusers.imj-prg.fr/~pierre.schapira/books/
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Definition 4.5. Let F ∈ Sh(M,D). The micro-support of F , denoted µsupp(F ),

is the closed R+-conic subset of T ∗M defined as follows. For U open in T ∗M ,

U ∩ µsupp(F ) = ∅ if for any x0 ∈ M and any real C1-function ϕ on M de-

fined in a neighborhood of x0 satisfying dϕ(x0) ∈ U and ϕ(x0) = 0, one has

(Γ∞{x;ϕ(x)≥0}(F ))x0 ' 0.

When D is Mod∞(k), one recovers the classical definition of the micro-

support.

Remark 4.6. As already mentioned in the introduction, Theorem 2.3 is the main

tool to develop microlocal sheaf theory in the framework of classical derived cat-

egories. We hope that similarly Theorem 4.1 will be the main tool to develop

microlocal sheaf theory in the new framework of sheaves with stable coefficients.

Remark 4.7. In [KS90], the micro-support of F was denoted SS(F ), a shorthand

for “singular support”.
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