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Convexity Properties of Intersections of
Decreasing Sequences of q-Complete Domains in

Complex Spaces

by

Mihnea Colţoiu and Cezar Joiţa

Abstract

We construct a decreasing sequence of 3-complete open subsets in C5 such that the
interior of their intersection is not 3-complete. We also prove that, for every q ≥ 2,
there exists a normal Stein space X with only one isolated singularity and a decreasing
sequence of open sets that are 2-complete, but the interior of their intersection is not
q-complete with corners. In the concave case we show that, for every integer n > 1, there
exists a connected complex manifold M of dimension n such that M is an increasing
union of 1-concave open subsets and M is not weakly (n−1)-concave.
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§1. Introduction

Suppose that {Dν} is a sequence of open subsets of Cn and let D := Int (
⋂
Dν).

If each Dν is a domain of holomorphy, then D is also a domain of holomorphy.

More generally, if each Dν is Hartogs q-convex (see Definition 6) then D has the

same property. However Hartogs q-convexity is not a very useful notion since one

does not get vanishing results for the cohomology groups of a Hartogs q-convex

domain with values in a coherent sheaf. Andreotti and Grauert [1] introduced the

notion of q-complete complex spaces and proved that they are cohomologically

q-complete. In their setting, 1-complete spaces are precisely the Stein spaces. In

general the intersection of finitely many q-complete domains is not q-complete.
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Therefore, for q > 1, we consider decreasing sequences of q-complete open subsets

of a Stein space and we want to study the convexity properties of the interior of

their intersection.

We prove, by means of a counterexample, that for a decreasing sequence {Dν}
of q-complete domains in Cn, Int (

⋂
Dν) is not necessarily q-complete (Theorem 5).

On the other hand, because for domains in Cn, or more generally in Stein

manifolds, Hartogs q-convexity is equivalent to q-completeness with corners (see

[14]), it follows that, in the above setting, Int (
⋂
Dν) is q-complete with corners.

We show that a similar statement does not hold for singular complex spaces.

Namely, for each q ≥ 2, we give an example of a normal Stein X space with only

one singular point and a decreasing sequence {Dν} of 2-complete domains in X,

such that Int (
⋂
Dν) is not q-complete with corners (Theorem 6).

As a dual statement, in the concave case, we show that for every integer

n > 1 there exists a connected complex manifold M of dimension n such that M

is an increasing union of 1-concave open subsets and is not weakly (n−1)-concave

(Theorem 8).

§2. Decreasing sequences of q-complete domains

Definition 1. Suppose that D is an open subset of Cn. A smooth function ϕ :

D → R is called weakly q-convex if its Levi form
∑n
j,k=1

∂2ϕ
∂zj∂zk

(p)ξjξk has at least

n − q + 1 nonnegative eigenvalues at every point p ∈ D. The function ϕ is called

strictly q-convex if its Levi form has at least n−q+1 positive eigenvalues at every

point p ∈ D.

Using local embeddings these notions can be extended to complex spaces.

Definition 2. Suppose that X is a complex space and q a positive integer:

(a) The space X is called q-convex if there exists a continuous exhaustion function

ϕ : X → R (i.e., {x ∈ X : ϕ(x) < c} b X for every c ∈ R) and a compact set

K ⊂ X such that ϕ is strictly q-convex on X \K.

(b) If we can choose K = ∅ in the above definition, X is called q-complete.

Definition 3. If Hp(X,F) = 0 for every coherent sheaf F on a complex space X

and every p ≥ q, then X is called cohomologically q-complete.

By the results of Andreotti and Grauert [1] we have the following theorem.

Theorem 1. Every q-complete complex space is cohomologically q-complete.

Definition 4. (a) A continuous function ϕ : X → R defined on a complex space

is called q-convex with corners if, for every x ∈ X, there exists a neighborhood
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U of x and finitely many strictly q-convex C∞ functions ϕ1, . . . , ϕl, defined

on U , such that ϕ|U = max{ϕ1, . . . , ϕl}.
(b) A complex space X is called q-complete with corners if there exists a q-convex

with-corners exhaustion function ϕ : X → R.

The next result is a particular case of a theorem due to Diederich and Fornaess

[7]. It was generalized to the singular case in [8].

Theorem 2. If M is an n-dimensional q-complete with-corners complex mani-

fold, then M is q̃ = (n−
[
n
q

]
+ 1)-complete.

For q ≥ 1 and r > 0, we denote by P q(r) ⊂ Cq the polydisk centered at the

origin with multiradius (r, . . . , r). For the following definition, see, e.g., [17].

Definition 5. (a) For 1 ≤ q < n and 0 < r, r1 < 1, we let Hq ⊂ Cn be defined by

Hq := P q(1) × Pn−q(r)
⋃[

P q(1) \ P q(r1)
]
× Pn−q(1). The pair (Hq, Pn(1))

is called a standard Hartogs q-figure.

(b) If M is an n-dimensional complex manifold and V ⊂ U ⊂ M are open sub-

sets, the pair (V,U) is called a Hartogs q-figure if there exists a standard

Hartogs q-figure (Hq, Pn(1)) and a biholomorphism F : Pn(1)→ U such that

F (Hq) = V .

Definition 6. Let Ω ⊂ Cn be an open set. If, for every Hartogs q-figure (V,U),

we have that V ⊂ Ω implies U ⊂ Ω, then Ω is called Hartogs q-convex.

As we mentioned in the introduction, it was proved in [14] that a domain in

Cn is Hartogs q-convex if and only if it is q-complete with corners.

The following result is Satz 2.3 in [15].

Proposition 3. If X is a complex space and U and V are open subsets of X such

that U is p-complete and V is q-complete, then U ∪ V is (p+q)-complete.

Proposition 4 was proved in [18] in the smooth case and in [10] and [13] in

the singular case.

Proposition 4. Suppose that X is a complex space of dimension n. If X is co-

homologically q-complete then Hn+i(X,C) = 0 for every i ≥ q.

Our first result is the following theorem.

Theorem 5. There exists a sequence {Dν} of 3-complete open subsets of C5 such

that Dν+1 ⊂ Dν for every ν and Int (
⋂
Dν) is not cohomologically 3-complete.
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Proof.

We consider the following two planes in C5:

L1 =
{
z = (z1, z2, z3, z4, z5) ∈ C5 : z1 = z2 = z3 = 0

}
,

L2 =
{
z = (z1, z2, z3, z4, z5) ∈ C5 : z1 = z4 = z5 = 0

}
.

Let U1 = C5 \L1, U2 = C5 \L2. It follows that U1 and U2 are 3-complete. At

the same time, since L1 ∩ L2 = {0}, we have U1 ∪ U2 = C5 \ {0}. Then we have

H8(U1,C) = H8(U2,C) = H9(U1,C) = H9(U2,C) = 0 and H9(U1 ∪ U2,C) = C
since H9(S9,C) = C. From the Mayer–Vietoris exact sequence

H9(U1,C)⊕H9(U2,C)→ H9(U1 ∪ U2,C)

→ H8(U1 ∩ U2,C)

→ H8(U1,C)⊕H8(U2,C),

it follows that H8(U1 ∩ U2,C) = C.

Let W be a relatively compact open subset of U1 ∩U2 such that the inclusion

W ↪→ U1∩U2 = C5\(L1∪L2) induces an isomorphism H8(W,C)→ H8(U1∩U2,C).

In fact, we have an exhaustion {Wk} of U1 ∩ U2 such that the inclusion Wk ↪→
U1 ∩ U2 induces an isomorphism at all homology and homotopy groups.

For ν ≥ 1 we define

L1,ν =
{
z ∈ C5 : z1 = 1

ν , z2 = z3 = 0
}
,

L2,ν =
{
z ∈ C5 : z1 =

√
2
ν , z4 = z5 = 0

}
.

It follows that Li,µ ∩Lj,ν = ∅ if (i, µ) 6= (j, ν). Because W is relatively compact in

C5\(L1∪L2), it follows that there exists ν0 ≥ 1 such that, for ν ≥ ν0, L1,ν∩W = ∅
and L2,ν ∩W = ∅.

For ν ≥ ν0, let Dν = C5 \
⋃ν
j=ν0

(L1,j ∪ L2,j). Since Li,µ ∩Lj,ν = ∅, it follows

that Dν are 3-complete. Let D = Int
(⋂

ν≥ν0 Dν

)
. It follows that W⊂D⊂C5 \

(L1 ∪ L2). Hence we have

H8(W,C)→ H8(D,C)→ H8(C5 \ (L1 ∪ L2),C),

where the morphisms are induced by inclusions. Since H8(W,C)→ H8(C5 \ (L1 ∪
L2),C) is surjective, it follows that H8(D,C)→ H8(C5 \ (L1∪L2),C) is surjective

as well. In particular, we have H8(D,C) 6= 0 . Proposition 4 implies that D is not

cohomologically 3-complete.
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As we mentioned in the introduction, if {Dν} is a decreasing sequence of q-

complete open subsets of Cn, it follows that Int (
⋂
Dν) is q-complete with corners.

This is not the case for singular complex spaces, as the following result shows.

Theorem 6. For every integer q ≥ 2, there exists a normal Stein complex space

X with only one isolated singularity, and {Dν} a decreasing sequence of open

subsets of X such that each Dν is 2-complete and Int (
⋂
Dν) is not q-complete

with corners.

Proof. Let q be an integer, q ≥ 2. Let π : F → P1 be a negative vector bundle of

rank r ≥ 3q−1 and let S be the zero section of F (hence S is biholomorphic to P1).

Let X be the blow-down of S ⊂ F and τ : F → X be the contraction map. We let

x0 = τ(S). We fix a point a ∈ S and we set U = S \{a} (hence U is biholomorphic

to C) and W = π−1(U). We have that π : W → U is a trivial holomorphic vector

bundle and therefore W is biholomorphic to U ×Cr (in particular W is Stein). We

consider Wν ⊂ F a fundamental system of Stein open neighborhoods of a and we

define

Dν = τ(W ∪Wν).

Note that Dν are open neighborhoods of x0 in X and, since
⋂
Wν = {a}, we

have that Int (
⋂
Dν) = τ(W \S). Hence Int (

⋂
Dν) is biholomorphic to W \S and

therefore to U × (Cr \ {0}).
Note the following points:

• n = dimX = r + 1 ≥ 3q.

• As W and Wν are Stein, by Theorem 3 we have that W ∪Wν is 2-complete.

Therefore Dν is 2-convex and since X is Stein, we deduce that Dν is 2-

complete.

• We have that U × (Cr \ {0}) is not cohomologically (n − 2) complete since

Cr \ {0} is not cohomologically (n−2)-complete.

Because n ≥ 3q, we have q̃ = n −
[
n
q

]
+ 1 ≤ n − 2. Using Theorems 1 and 2

we deduce that U × (Cr \ {0}) is not q-complete with corners.

Hence although each Dν is 2-complete, the interior of their intersection is not

q-complete with corners.

Next we would like to say a few things about the intersection of Stein open

subsets of a normal Stein space. Let X be a normal Stein complex space, and {Dν}
be a sequence of Stein open subsets of X. It is a completely open problem whether

the interior of their intersection is Stein or not, even if X has dimension 2; see

[2]. Of course, the problem is due to singularities. However, we have the following

proposition.
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Proposition 7. Let X be a normal Stein complex space and {Dν} be a sequence

of Stein open subsets of X. If D = Int (
⋂
Dν), then we have

(a) Reg(X) ∩ ∂D is dense in ∂D;

(b) D is a domain of holomorphy in X.

Proof.

(a) Suppose that this is not the case and let x0 ∈ ∂D and W be a Stein neigh-

borhood of x0 such that ∂D ∩W ⊂ Sing(X). As X is normal and therefore

locally irreducible, we have that W \ ∂D is connected. Since W \ ∂D = (W ∩
D)∪ (W \D), we deduce that W \∂D = W ∩D. Therefore W \Sing(X) ⊂ D.

Using again the normality of X, the Riemann second extension theorem and

the fact that each Dν is Stein, we deduce that the inclusion W \Sing(X) ↪→ Dν

extends to W (with values in Dν) and therefore W ⊂ Dν for every ν. Hence

W ⊂ D. In particular x0 ∈ D, which contradicts our choice of x0.

(b) Obviously, D is locally Stein at every point x ∈ ∂D ∩ Reg(X). Then for

every sequence {xk}, xk ∈ D such that xk → x ∈ ∂D ∩ Reg(X), there exists

f ∈ O(D) which is unbounded on {xk}. This was proved for relatively compact

domains D b X in [11] and extended to arbitrary domains in [16]. From this

fact and part (a), we deduce that D is a domain of holomorphy in X.

Remark 1. Using the method in [6] it can be proved that, in the same setting,

if dim(X) = 2 then D satisfies the disk property. This means that if ∆ = {z ∈
C : |z| ≤ 1} is the closed unit disk and fn : ∆ → X is a sequence of holomorphic

functions converging uniformly to a holomorphic function f : ∆ → X and if

fn(∆) ⊂ D and f(∂∆) ⊂ D, then f(∆) ⊂ D.

§3. Increasing sequences of q-concave domains

We want to discuss a dual question, namely concavity properties of a union of

q-concave open subsets of a complex manifold.

For the next definition, see [1].

Definition 7. A complex space X is called q-concave if there exists a continuous

function ϕ : X → (0,∞) and a compact set K ⊂ X such that ϕ is strictly q-convex

on X \K and {x ∈ X : ϕ(x) > c} b X for every c > 0.
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By analogy with the notion of weakly q-convex space, we introduce the fol-

lowing definition:

Definition 8. A complex space X is called weakly q-concave if there exists a

continuous function ϕ : X → (0,∞) and a compact set K ⊂ X such that ϕ is

weakly q-convex on X \K and {x ∈ X : ϕ(x) > c} b X for every c > 0.

Remark 2. A proper modification of a q-concave manifold is weakly q-concave.

Example. The following example appears in [3]. Let a ∈ P2 and {xn}n≥1 be

a sequence in P2 \ {a} converging to a, and M be the blow-up of P2 \ {a} at

this sequence. Then M is weakly 1-concave but it is not 1-concave. Moreover, M

is an increasing sequence of 1-concave open subsets. Indeed, we let Mk, k ≥ 1

be the blow-up of P2 \ ({a} ∪ {xn : n ≥ k + 1}) at x1, . . . , xk. Then Mk is an

open subset of M , Mk ⊂ Mk+1 and
⋃
k≥1Mk = M . It was noticed in [9] that

if {An} is a countable set of closed, completely pluripolar subsets of a complex

manifold Ω such that A :=
⋃
An is closed in Ω, and Ω′ is an open subset of Ω

such that Ω′ b Ω then A ∩ Ω′ is completely pluripolar in Ω′. It follows then that

P2 \ ({a} ∪ {xn : n ≥ k + 1}) is 1-concave and hence Mk is 1-concave.

Theorem 8. For every integer n > 1 there exists a connected complex manifold

M of dimension n such that M is an increasing union of 1-concave open subsets

and M is not weakly (n−1)-concave.

Proof. The following construction was used in [4] and [5]. We start with Ω0 := Pn

(or any compact complex manifold of dimension n) and we choose a0 ∈ Ω0 to be

any point. We set M0 := Ω0 \ {a0} and let p0 : Ω1 → Ω0 be the blow-up of Ω0

at a0. Let a1 be a point on the exceptional divisor of p0, M1 = Ω1 \ {a1} and

p1 : Ω2 → Ω1 be the blow-up of Ω1 at a1. Suppose now that we have defined

inductively

• Ωj for j = 0, . . . , k;

• aj ∈ Ωj , pj : Ωj+1 → Ωj and Mj = Ωj \ {aj} for j = 0, . . . , k − 1.

We choose a point ak on the exceptional divisor of pk−1 : Ωk → Ωk−1 such that ak
is not on the proper transform of the exceptional divisor of pk−2 : Ωk−1 → Ωk−2.

We let Mk = Ωk \ {ak} and pk+1 : Ωk+1 → Ωk be the blow-up of Ωk at ak.

Note that Mk is an open subset of Mk+1 for every k ≥ 0. We set M̃ :=⋃
k≥0Mk. Each Mk is 1-concave since it is the complement of a point in a compact

complex manifold. At the same time, M̃ contains a noncompact connected (n−1)-

dimensional complex subspace X such that all irreducible components of X are
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compact. This subspace is the union of the (proper transforms of the) exceptional

divisors of all the blow-ups defined above.

If ϕ : M → (0,∞) is weakly (n−1)-convex outside a compact subset K of

M , since each irreducible component of X has dimension n−1, we have, by the

maximum principle, that ϕ must be constant on each irreducible component of

X that does not intersect K. Therefore it is constant on at least one noncompact

connected component of X \K. Hence M cannot be weakly (n−1)-concave.

Remark 3. It was noticed in [3] that if a complex manifold is an increasing

union of 1-concave open subsets then its cohomology with values in any locally

free coherent sheaf is separated. It is an open question raised by R. Hartshorne

[12] whether a complex connected manifold such that its cohomology with values

in any locally free coherent sheaf is finite-dimensional is necessarily a compact

manifold.
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