Convexity Properties of Intersections of Decreasing Sequences of q-Complete Domains in Complex Spaces

by
Mihnea Colţoiu and Cezar Joiţa

Abstract

We construct a decreasing sequence of 3 -complete open subsets in \mathbb{C}^{5} such that the interior of their intersection is not 3 -complete. We also prove that, for every $q \geq 2$, there exists a normal Stein space X with only one isolated singularity and a decreasing sequence of open sets that are 2 -complete, but the interior of their intersection is not q-complete with corners. In the concave case we show that, for every integer $n>1$, there exists a connected complex manifold M of dimension n such that M is an increasing union of 1 -concave open subsets and M is not weakly ($n-1$)-concave.

2010 Mathematics Subject Classification: Primary 32F10; Secondary 32E10.
Keywords: Stein space, q-complete space, q-concave space.

§1. Introduction

Suppose that $\left\{D_{\nu}\right\}$ is a sequence of open subsets of \mathbb{C}^{n} and let $D:=\operatorname{Int}\left(\bigcap D_{\nu}\right)$. If each D_{ν} is a domain of holomorphy, then D is also a domain of holomorphy. More generally, if each D_{ν} is Hartogs q-convex (see Definition 6) then D has the same property. However Hartogs q-convexity is not a very useful notion since one does not get vanishing results for the cohomology groups of a Hartogs q-convex domain with values in a coherent sheaf. Andreotti and Grauert [1] introduced the notion of q-complete complex spaces and proved that they are cohomologically q-complete. In their setting, 1 -complete spaces are precisely the Stein spaces. In general the intersection of finitely many q-complete domains is not q-complete.

[^0]Therefore, for $q>1$, we consider decreasing sequences of q-complete open subsets of a Stein space and we want to study the convexity properties of the interior of their intersection.

We prove, by means of a counterexample, that for a decreasing sequence $\left\{D_{\nu}\right\}$ of q-complete domains in $\mathbb{C}^{n}, \operatorname{Int}\left(\bigcap D_{\nu}\right)$ is not necessarily q-complete (Theorem 5).

On the other hand, because for domains in \mathbb{C}^{n}, or more generally in Stein manifolds, Hartogs q-convexity is equivalent to q-completeness with corners (see [14]), it follows that, in the above setting, $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is q-complete with corners.

We show that a similar statement does not hold for singular complex spaces. Namely, for each $q \geq 2$, we give an example of a normal Stein X space with only one singular point and a decreasing sequence $\left\{D_{\nu}\right\}$ of 2-complete domains in X, such that $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is not q-complete with corners (Theorem 6).

As a dual statement, in the concave case, we show that for every integer $n>1$ there exists a connected complex manifold M of dimension n such that M is an increasing union of 1 -concave open subsets and is not weakly ($n-1$)-concave (Theorem 8).

§2. Decreasing sequences of q-complete domains

Definition 1. Suppose that D is an open subset of \mathbb{C}^{n}. A smooth function φ : $D \rightarrow \mathbb{R}$ is called weakly q-convex if its Levi form $\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(p) \xi_{j} \bar{\xi}_{k}$ has at least $n-q+1$ nonnegative eigenvalues at every point $p \in D$. The function φ is called strictly q-convex if its Levi form has at least $n-q+1$ positive eigenvalues at every point $p \in D$.

Using local embeddings these notions can be extended to complex spaces.
Definition 2. Suppose that X is a complex space and q a positive integer:
(a) The space X is called q-convex if there exists a continuous exhaustion function $\varphi: X \rightarrow \mathbb{R}$ (i.e., $\{x \in X: \varphi(x)<c\} \Subset X$ for every $c \in \mathbb{R}$) and a compact set $K \subset X$ such that φ is strictly q-convex on $X \backslash K$.
(b) If we can choose $K=\emptyset$ in the above definition, X is called q-complete.

Definition 3. If $H^{p}(X, \mathcal{F})=0$ for every coherent sheaf \mathcal{F} on a complex space X and every $p \geq q$, then X is called cohomologically q-complete.

By the results of Andreotti and Grauert [1] we have the following theorem.
Theorem 1. Every q-complete complex space is cohomologically q-complete.
Definition 4. (a) A continuous function $\varphi: X \rightarrow \mathbb{R}$ defined on a complex space is called q-convex with corners if, for every $x \in X$, there exists a neighborhood
U of x and finitely many strictly q-convex \mathcal{C}^{∞} functions $\varphi_{1}, \ldots, \varphi_{l}$, defined on U, such that $\varphi_{\mid U}=\max \left\{\varphi_{1}, \ldots, \varphi_{l}\right\}$.
(b) A complex space X is called q-complete with corners if there exists a q-convex with-corners exhaustion function $\varphi: X \rightarrow \mathbb{R}$.

The next result is a particular case of a theorem due to Diederich and Fornaess [7]. It was generalized to the singular case in [8].

Theorem 2. If M is an n-dimensional q-complete with-corners complex manifold, then M is $\tilde{q}=\left(n-\left[\frac{n}{q}\right]+1\right)$-complete.

For $q \geq 1$ and $r>0$, we denote by $P^{q}(r) \subset \mathbb{C}^{q}$ the polydisk centered at the origin with multiradius (r, \ldots, r). For the following definition, see, e.g., [17].

Definition 5. (a) For $1 \leq q<n$ and $0<r, r_{1}<1$, we let $H^{q} \subset \mathbb{C}^{n}$ be defined by $H^{q}:=P^{q}(1) \times P^{n-q}(r) \bigcup\left[P^{q}(1) \backslash \overline{P^{q}\left(r_{1}\right)}\right] \times P^{n-q}(1)$. The pair $\left(H^{q}, P^{n}(1)\right)$ is called a standard Hartogs q-figure.
(b) If M is an n-dimensional complex manifold and $V \subset U \subset M$ are open subsets, the pair (V, U) is called a Hartogs q-figure if there exists a standard Hartogs q-figure $\left(H^{q}, P^{n}(1)\right)$ and a biholomorphism $F: P^{n}(1) \rightarrow U$ such that $F\left(H^{q}\right)=V$.

Definition 6. Let $\Omega \subset \mathbb{C}^{n}$ be an open set. If, for every Hartogs q-figure (V, U), we have that $V \subset \Omega$ implies $U \subset \Omega$, then Ω is called Hartogs q-convex.

As we mentioned in the introduction, it was proved in [14] that a domain in \mathbb{C}^{n} is Hartogs q-convex if and only if it is q-complete with corners.

The following result is Satz 2.3 in [15].
Proposition 3. If X is a complex space and U and V are open subsets of X such that U is p-complete and V is q-complete, then $U \cup V$ is $(p+q)$-complete.

Proposition 4 was proved in [18] in the smooth case and in [10] and [13] in the singular case.

Proposition 4. Suppose that X is a complex space of dimension n. If X is cohomologically q-complete then $H_{n+i}(X, \mathbb{C})=0$ for every $i \geq q$.

Our first result is the following theorem.
Theorem 5. There exists a sequence $\left\{D_{\nu}\right\}$ of 3-complete open subsets of \mathbb{C}^{5} such that $D_{\nu+1} \subset D_{\nu}$ for every ν and $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is not cohomologically 3-complete.

Proof.
We consider the following two planes in \mathbb{C}^{5} :

$$
\begin{aligned}
& L_{1}=\left\{z=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: z_{1}=z_{2}=z_{3}=0\right\} \\
& L_{2}=\left\{z=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: z_{1}=z_{4}=z_{5}=0\right\}
\end{aligned}
$$

Let $U_{1}=\mathbb{C}^{5} \backslash L_{1}, U_{2}=\mathbb{C}^{5} \backslash L_{2}$. It follows that U_{1} and U_{2} are 3-complete. At the same time, since $L_{1} \cap L_{2}=\{0\}$, we have $U_{1} \cup U_{2}=\mathbb{C}^{5} \backslash\{0\}$. Then we have $H_{8}\left(U_{1}, \mathbb{C}\right)=H_{8}\left(U_{2}, \mathbb{C}\right)=H_{9}\left(U_{1}, \mathbb{C}\right)=H_{9}\left(U_{2}, \mathbb{C}\right)=0$ and $H_{9}\left(U_{1} \cup U_{2}, \mathbb{C}\right)=\mathbb{C}$ since $H_{9}\left(S^{9}, \mathbb{C}\right)=\mathbb{C}$. From the Mayer-Vietoris exact sequence

$$
\begin{aligned}
H_{9}\left(U_{1}, \mathbb{C}\right) \oplus H_{9}\left(U_{2}, \mathbb{C}\right) & \rightarrow H_{9}\left(U_{1} \cup U_{2}, \mathbb{C}\right) \\
& \rightarrow H_{8}\left(U_{1} \cap U_{2}, \mathbb{C}\right) \\
& \rightarrow H_{8}\left(U_{1}, \mathbb{C}\right) \oplus H_{8}\left(U_{2}, \mathbb{C}\right)
\end{aligned}
$$

it follows that $H_{8}\left(U_{1} \cap U_{2}, \mathbb{C}\right)=\mathbb{C}$.
Let W be a relatively compact open subset of $U_{1} \cap U_{2}$ such that the inclusion $W \hookrightarrow U_{1} \cap U_{2}=\mathbb{C}^{5} \backslash\left(L_{1} \cup L_{2}\right)$ induces an isomorphism $H_{8}(W, \mathbb{C}) \rightarrow H_{8}\left(U_{1} \cap U_{2}, \mathbb{C}\right)$. In fact, we have an exhaustion $\left\{W_{k}\right\}$ of $U_{1} \cap U_{2}$ such that the inclusion $W_{k} \hookrightarrow$ $U_{1} \cap U_{2}$ induces an isomorphism at all homology and homotopy groups.

For $\nu \geq 1$ we define

$$
\begin{aligned}
L_{1, \nu} & =\left\{z \in \mathbb{C}^{5}: z_{1}=\frac{1}{\nu}, z_{2}=z_{3}=0\right\} \\
L_{2, \nu} & =\left\{z \in \mathbb{C}^{5}: z_{1}=\frac{\sqrt{2}}{\nu}, z_{4}=z_{5}=0\right\}
\end{aligned}
$$

It follows that $L_{i, \mu} \cap L_{j, \nu}=\emptyset$ if $(i, \mu) \neq(j, \nu)$. Because W is relatively compact in $\mathbb{C}^{5} \backslash\left(L_{1} \cup L_{2}\right)$, it follows that there exists $\nu_{0} \geq 1$ such that, for $\nu \geq \nu_{0}, L_{1, \nu} \cap \bar{W}=\emptyset$ and $L_{2, \nu} \cap \bar{W}=\emptyset$.

For $\nu \geq \nu_{0}$, let $D_{\nu}=\mathbb{C}^{5} \backslash \bigcup_{j=\nu_{0}}^{\nu}\left(L_{1, j} \cup L_{2, j}\right)$. Since $L_{i, \mu} \cap L_{j, \nu}=\emptyset$, it follows that D_{ν} are 3-complete. Let $D=\operatorname{Int}\left(\bigcap_{\nu \geq \nu_{0}} D_{\nu}\right)$. It follows that $W \subset D \subset \mathbb{C}^{5} \backslash$ $\left(L_{1} \cup L_{2}\right)$. Hence we have

$$
H_{8}(W, \mathbb{C}) \rightarrow H_{8}(D, \mathbb{C}) \rightarrow H_{8}\left(\mathbb{C}^{5} \backslash\left(L_{1} \cup L_{2}\right), \mathbb{C}\right)
$$

where the morphisms are induced by inclusions. Since $H_{8}(W, \mathbb{C}) \rightarrow H_{8}\left(\mathbb{C}^{5} \backslash\left(L_{1} \cup\right.\right.$ $\left.\left.L_{2}\right), \mathbb{C}\right)$ is surjective, it follows that $H_{8}(D, \mathbb{C}) \rightarrow H_{8}\left(\mathbb{C}^{5} \backslash\left(L_{1} \cup L_{2}\right), \mathbb{C}\right)$ is surjective as well. In particular, we have $H_{8}(D, \mathbb{C}) \neq 0$. Proposition 4 implies that D is not cohomologically 3 -complete.

As we mentioned in the introduction, if $\left\{D_{\nu}\right\}$ is a decreasing sequence of q complete open subsets of \mathbb{C}^{n}, it follows that $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is q-complete with corners. This is not the case for singular complex spaces, as the following result shows.

Theorem 6. For every integer $q \geq 2$, there exists a normal Stein complex space X with only one isolated singularity, and $\left\{D_{\nu}\right\}$ a decreasing sequence of open subsets of X such that each D_{ν} is 2 -complete and $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is not q-complete with corners.

Proof. Let q be an integer, $q \geq 2$. Let $\pi: F \rightarrow \mathbb{P}^{1}$ be a negative vector bundle of rank $r \geq 3 q-1$ and let S be the zero section of F (hence S is biholomorphic to \mathbb{P}^{1}). Let X be the blow-down of $S \subset F$ and $\tau: F \rightarrow X$ be the contraction map. We let $x_{0}=\tau(S)$. We fix a point $a \in S$ and we set $U=S \backslash\{a\}$ (hence U is biholomorphic to \mathbb{C}) and $W=\pi^{-1}(U)$. We have that $\pi: W \rightarrow U$ is a trivial holomorphic vector bundle and therefore W is biholomorphic to $U \times \mathbb{C}^{r}$ (in particular W is Stein). We consider $W_{\nu} \subset F$ a fundamental system of Stein open neighborhoods of a and we define

$$
D_{\nu}=\tau\left(W \cup W_{\nu}\right)
$$

Note that D_{ν} are open neighborhoods of x_{0} in X and, since $\bigcap W_{\nu}=\{a\}$, we have that $\operatorname{Int}\left(\bigcap D_{\nu}\right)=\tau(W \backslash S)$. Hence $\operatorname{Int}\left(\bigcap D_{\nu}\right)$ is biholomorphic to $W \backslash S$ and therefore to $U \times\left(\mathbb{C}^{r} \backslash\{0\}\right)$.

Note the following points:

- $n=\operatorname{dim} X=r+1 \geq 3 q$.
- As W and W_{ν} are Stein, by Theorem 3 we have that $W \cup W_{\nu}$ is 2-complete. Therefore D_{ν} is 2-convex and since X is Stein, we deduce that D_{ν} is 2complete.
- We have that $U \times\left(\mathbb{C}^{r} \backslash\{0\}\right)$ is not cohomologically $(n-2)$ complete since $\mathbb{C}^{r} \backslash\{0\}$ is not cohomologically ($n-2$)-complete.
Because $n \geq 3 q$, we have $\tilde{q}=n-\left[\frac{n}{q}\right]+1 \leq n-2$. Using Theorems 1 and 2 we deduce that $U \times\left(\mathbb{C}^{r} \backslash\{0\}\right)$ is not q-complete with corners.

Hence although each D_{ν} is 2-complete, the interior of their intersection is not q-complete with corners.

Next we would like to say a few things about the intersection of Stein open subsets of a normal Stein space. Let X be a normal Stein complex space, and $\left\{D_{\nu}\right\}$ be a sequence of Stein open subsets of X. It is a completely open problem whether the interior of their intersection is Stein or not, even if X has dimension 2; see [2]. Of course, the problem is due to singularities. However, we have the following proposition.

Proposition 7. Let X be a normal Stein complex space and $\left\{D_{\nu}\right\}$ be a sequence of Stein open subsets of X. If $D=\operatorname{Int}\left(\bigcap D_{\nu}\right)$, then we have
(a) $\operatorname{Reg}(X) \cap \partial D$ is dense in ∂D;
(b) D is a domain of holomorphy in X.

Proof.
(a) Suppose that this is not the case and let $x_{0} \in \partial D$ and W be a Stein neighborhood of x_{0} such that $\partial D \cap W \subset \operatorname{Sing}(X)$. As X is normal and therefore locally irreducible, we have that $W \backslash \partial D$ is connected. Since $W \backslash \partial D=(W \cap$ $D) \cup(W \backslash \bar{D})$, we deduce that $W \backslash \partial D=W \cap D$. Therefore $W \backslash \operatorname{Sing}(X) \subset D$. Using again the normality of X, the Riemann second extension theorem and the fact that each D_{ν} is Stein, we deduce that the inclusion $W \backslash \operatorname{Sing}(X) \hookrightarrow D_{\nu}$ extends to W (with values in D_{ν}) and therefore $W \subset D_{\nu}$ for every ν. Hence $W \subset D$. In particular $x_{0} \in D$, which contradicts our choice of x_{0}.
(b) Obviously, D is locally Stein at every point $x \in \partial D \cap \operatorname{Reg}(X)$. Then for every sequence $\left\{x_{k}\right\}, x_{k} \in D$ such that $x_{k} \rightarrow x \in \partial D \cap \operatorname{Reg}(X)$, there exists $f \in \mathcal{O}(D)$ which is unbounded on $\left\{x_{k}\right\}$. This was proved for relatively compact domains $D \Subset X$ in [11] and extended to arbitrary domains in [16]. From this fact and part (a), we deduce that D is a domain of holomorphy in X.

Remark 1. Using the method in [6] it can be proved that, in the same setting, if $\operatorname{dim}(X)=2$ then D satisfies the disk property. This means that if $\bar{\Delta}=\{z \in$ $\mathbb{C}:|z| \leq 1\}$ is the closed unit disk and $f_{n}: \bar{\Delta} \rightarrow X$ is a sequence of holomorphic functions converging uniformly to a holomorphic function $f: \bar{\Delta} \rightarrow X$ and if $f_{n}(\bar{\Delta}) \subset D$ and $f(\partial \Delta) \subset D$, then $f(\bar{\Delta}) \subset D$.

§3. Increasing sequences of q-concave domains

We want to discuss a dual question, namely concavity properties of a union of q-concave open subsets of a complex manifold.

For the next definition, see [1].
Definition 7. A complex space X is called q-concave if there exists a continuous function $\varphi: X \rightarrow(0, \infty)$ and a compact set $K \subset X$ such that φ is strictly q-convex on $X \backslash K$ and $\{x \in X: \varphi(x)>c\} \Subset X$ for every $c>0$.

By analogy with the notion of weakly q-convex space, we introduce the following definition:

Definition 8. A complex space X is called weakly q-concave if there exists a continuous function $\varphi: X \rightarrow(0, \infty)$ and a compact set $K \subset X$ such that φ is weakly q-convex on $X \backslash K$ and $\{x \in X: \varphi(x)>c\} \Subset X$ for every $c>0$.

Remark 2. A proper modification of a q-concave manifold is weakly q-concave.
Example. The following example appears in [3]. Let $a \in \mathbb{P}^{2}$ and $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence in $\mathbb{P}^{2} \backslash\{a\}$ converging to a, and M be the blow-up of $\mathbb{P}^{2} \backslash\{a\}$ at this sequence. Then M is weakly 1 -concave but it is not 1-concave. Moreover, M is an increasing sequence of 1 -concave open subsets. Indeed, we let $M_{k}, k \geq 1$ be the blow-up of $\mathbb{P}^{2} \backslash\left(\{a\} \cup\left\{x_{n}: n \geq k+1\right\}\right)$ at x_{1}, \ldots, x_{k}. Then M_{k} is an open subset of $M, M_{k} \subset M_{k+1}$ and $\bigcup_{k \geq 1} M_{k}=M$. It was noticed in [9] that if $\left\{A_{n}\right\}$ is a countable set of closed, completely pluripolar subsets of a complex manifold Ω such that $A:=\bigcup A_{n}$ is closed in Ω, and Ω^{\prime} is an open subset of Ω such that $\Omega^{\prime} \Subset \Omega$ then $A \cap \Omega^{\prime}$ is completely pluripolar in Ω^{\prime}. It follows then that $\mathbb{P}^{2} \backslash\left(\{a\} \cup\left\{x_{n}: n \geq k+1\right\}\right)$ is 1-concave and hence M_{k} is 1-concave.

Theorem 8. For every integer $n>1$ there exists a connected complex manifold M of dimension n such that M is an increasing union of 1-concave open subsets and M is not weakly ($n-1$)-concave.

Proof. The following construction was used in [4] and [5]. We start with $\Omega_{0}:=\mathbb{P}^{n}$ (or any compact complex manifold of dimension n) and we choose $a_{0} \in \Omega_{0}$ to be any point. We set $M_{0}:=\Omega_{0} \backslash\left\{a_{0}\right\}$ and let $p_{0}: \Omega_{1} \rightarrow \Omega_{0}$ be the blow-up of Ω_{0} at a_{0}. Let a_{1} be a point on the exceptional divisor of $p_{0}, M_{1}=\Omega_{1} \backslash\left\{a_{1}\right\}$ and $p_{1}: \Omega_{2} \rightarrow \Omega_{1}$ be the blow-up of Ω_{1} at a_{1}. Suppose now that we have defined inductively

- Ω_{j} for $j=0, \ldots, k$;
- $a_{j} \in \Omega_{j}, p_{j}: \Omega_{j+1} \rightarrow \Omega_{j}$ and $M_{j}=\Omega_{j} \backslash\left\{a_{j}\right\}$ for $j=0, \ldots, k-1$.

We choose a point a_{k} on the exceptional divisor of $p_{k-1}: \Omega_{k} \rightarrow \Omega_{k-1}$ such that a_{k} is not on the proper transform of the exceptional divisor of $p_{k-2}: \Omega_{k-1} \rightarrow \Omega_{k-2}$. We let $M_{k}=\Omega_{k} \backslash\left\{a_{k}\right\}$ and $p_{k+1}: \Omega_{k+1} \rightarrow \Omega_{k}$ be the blow-up of Ω_{k} at a_{k}.

Note that M_{k} is an open subset of M_{k+1} for every $k \geq 0$. We set $\tilde{M}:=$ $\bigcup_{k \geq 0} M_{k}$. Each M_{k} is 1-concave since it is the complement of a point in a compact complex manifold. At the same time, \tilde{M} contains a noncompact connected ($n-1$)dimensional complex subspace X such that all irreducible components of X are
compact. This subspace is the union of the (proper transforms of the) exceptional divisors of all the blow-ups defined above.

If $\varphi: M \rightarrow(0, \infty)$ is weakly $(n-1)$-convex outside a compact subset K of M, since each irreducible component of X has dimension $n-1$, we have, by the maximum principle, that φ must be constant on each irreducible component of X that does not intersect K. Therefore it is constant on at least one noncompact connected component of $X \backslash K$. Hence M cannot be weakly ($n-1$)-concave.

Remark 3. It was noticed in [3] that if a complex manifold is an increasing union of 1-concave open subsets then its cohomology with values in any locally free coherent sheaf is separated. It is an open question raised by R. Hartshorne [12] whether a complex connected manifold such that its cohomology with values in any locally free coherent sheaf is finite-dimensional is necessarily a compact manifold.

References

[1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. Zbl 0106.05501 MR 0150342
[2] M. Colţoiu, Some open problems concerning Stein spaces. Analyse complexe (Bucharest, 1989), Rev. Roumaine Math. Pures Appl. 36 (1991), 225-229. Zbl 0754.32007 MR 1144554
[3] M. Colţoiu, On the separation of cohomology groups of increasing unions of $(1,1)$ convex-concave manifolds, J. Math. Kyoto Univ. 45 (2005), 405-409. Zbl 1115.32007 MR 2161700
[4] M. Colţoiu and C. Joiţa, Convexity properties of coverings of 1-convex surfaces, Math. Z. 275 (2013), 781-792. Zbl 1287.32006 MR 3127037
[5] M. Colţoiu and C. Joiţa, On the separation of the cohomology of universal coverings of 1-convex surfaces, Adv. Math. 265 (2014), 362-370. Zbl 1300.32005 MR 3255464
[6] M. Colțoiu and M. Tibăr, On the disk theorem, Math. Ann. 345 (2009), 175-183. Zbl 1175.32004 MR 2520056
[7] K. Diederich and J. E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), 291-305. Zbl 0586.32022 MR 0809717
[8] K. Diederich and J. E. Fornaess, Smoothing q-convex functions in the singular case, Math. Ann. 273 (1986), 665-671. Zbl 0586.32023 MR 0826465
[9] H. El Mir, Sur le prolongement des courants positifs fermés, Acta Math. 153 (1984), $1-45$. Zbl 0557.32003 MR 0744998
[10] A. Ferrari, Coomologia e forme differenziali sugli spazi analitici complessi, Ann. Scuola Norm. Sup. Pisa 25 (1971), 469-480. Zbl 0233.32005 MR 0414922
[11] J. E. Fornaess and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47-72. Zbl 0411.32011 MR 0569410
[12] R. Hartshorne, Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics 156, Springer, Berlin-New York, 1970. Zbl 0208.48901 MR 0282977
[13] J. Le Potier, Une propriété topologique des espaces q-convexes, Bull. Soc. Math. France 98 (1970), 319-328. Zbl 0204.56501 MR 0281950
[14] K. Matsumoto, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds, J. Math. Soc. Japan 48 (1996), 85-107. Zbl 0860.32003 MR 1361549
[15] M. Peternell, Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z. 200 (1989), 547-581. Zbl 0675.32014 MR 0987586
[16] O. Preda, Locally Stein open subsets in normal Stein spaces, J. Geom. Anal. 25 (2015), 2759-2766. Zbl 1337.32021 MR 3427147
[17] O. Riemenschneider, Über den Flächeninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete, Invent. Math. 2 (1967), 307-331. Zbl 0148.32101 MR 0212210
[18] G. Sorani and V. Villani, q-complete spaces and cohomology, Trans. Amer. Math. Soc. 125 (1966) 432-448. Zbl 0155.40203 MR 0206335

[^0]: Communicated by T. Mochizuki. Received November 8, 2016. Revised April 10, 2017.
 M. Colţoiu: Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania;
 e-mail: Mihnea.Coltoiu@imar.ro
 C. Joiţa: Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania;
 e-mail: Cezar.Joita@imar.ro

