Γ-Unitaries, Dilation and a Natural Example

by
Tirthankar Bhattacharyya and Haripada Sau

Abstract

This note constructs an explicit normal boundary dilation for a commuting pair (S, P) of bounded operators with the symmetrized bidisk $$
\Gamma=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right):\left|z_{1}\right|,\left|z_{2}\right| \leq 1\right\}
$$ as a spectral set. Such explicit dilations have hitherto been constructed only in the unit disk [11], the unit bidisk [3] and in the tetrablock [6]. The dilation is minimal and unique under a suitable condition. This paper also contains a natural example of a Γ-isometry. We compute its associated fundamental operator.

2010 Mathematics Subject Classification: Primary 47A20, 47A25; Secondary 32A70, 46E22. Keywords: Symmetrized bidisk, spectral set, Γ-contraction, Γ-unitary, dilation.

§1. Introduction

This section contains the background and the statements of two main results.
In 1951, von Neumann proved the inequality

$$
\|f(T)\| \leq \sup \{|f(z)|:|z| \leq 1\}
$$

where T is a Hilbert space contraction and f is a polynomial. A proof, different from that of von Neumann, emerged when Sz.-Nagy proved his dilation theorem: Every contraction T can be dilated to a unitary U, i.e., if T acts on \mathcal{H}, then there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a unitary U on \mathcal{K} such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}} .
$$

[^0]Indeed, the proof of von Neumann's inequality then is

$$
\|f(T)\|=\left\|\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}\right\|_{\mathcal{H}} \leq\|f(U)\|_{\mathcal{K}} \leq \sup \{|f(z)|:|z| \leq 1\}
$$

because $f(U)$ is a normal operator with $\sigma(f(U))=\{f(z): z \in \sigma(U)\} \subset\{f(z)$: $|z|=1\}$.

It has long been a theme of research whether the converse direction is possible. This means that one chooses a compact subset K of the plane or of \mathbb{C}^{d} for $d>1$, considers a d-tuple $\underline{T}=\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ of commuting bounded operators that satisfies

$$
\|f(\underline{T})\| \leq \sup \{|f(z)|: z \in K\}
$$

for all rational functions f with poles off K and tries to see if there is a commuting tuple of bounded normal operators $\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{d}\right)$ with $\sigma(\underline{N}) \subset b K$, the distinguished boundary of K, such that

$$
f(\underline{T})=\left.P_{\mathcal{H}} f(\underline{N})\right|_{\mathcal{H}} .
$$

The tuple \underline{N} is then called a normal boundary dilation. An explicit construction of such an \underline{N} has succeeded, apart from in the disk [11], only in the bidisk [3], although the existence of a dilation is abstractly known for an annulus [1].

The (closed) symmetrized bidisk

$$
\Gamma=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right):\left|z_{1}\right|,\left|z_{2}\right| \leq 1\right\}
$$

is polynomially convex. Then, by the Oka-Weil theorem, a polynomial dilation is the same as a rational dilation. In other words,

$$
T_{1}^{k_{1}} \cdots T_{d}^{k_{d}}=\left.P_{\mathcal{H}} N_{1}^{k_{1}} \cdots N_{d}^{k_{d}}\right|_{\mathcal{H}}
$$

for $k_{1}, \ldots, k_{d} \geq 0$.
Consider the class $A(\Gamma)$ of functions continuous in Γ and holomorphic in the interior of Γ. A boundary of Γ (with respect to $A(\Gamma)$) is a subset on which every function in $A(\Gamma)$ attains its maximum modulus. It is known that there is a smallest one among such boundaries. This particular smallest one is called the distinguished boundary of the symmetrized bidisk and is denoted by $b \Gamma$. It is well known that $b \Gamma$ is the symmetrization of the torus, i.e., $b \Gamma=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right):\left|z_{1}\right|=1=\left|z_{2}\right|\right\}$.

Definition 1. A Γ-contraction is a commuting pair of bounded operators (S, P) on a Hilbert space \mathcal{H} such that the set Γ is a spectral set for (S, P), i.e.,

$$
\|f(S, P)\| \leq \sup \{|f(s, p)|:(s, p) \in \Gamma\}
$$

for any polynomial f in two variables.

Definition 2. A Γ-unitary (R, U) is a commuting pair of bounded normal operators on a Hilbert space \mathcal{H} such that $\sigma(R, U) \subset b \Gamma$ (this is automatically a Γ-contraction).

Definition 3. A Γ-isometry is the restriction of a Γ-unitary to a joint invariant subspace.

The work of the first author and other co-authors showed in [4] that given a Γ-contraction (S, P), there exists a unique operator $F \in \mathcal{B}\left(\mathcal{D}_{P}\right)$ with numerical radius no greater than 1 that satisfies the fundamental equation

$$
\begin{equation*}
S-S^{*} P=D_{P} F D_{P} \tag{1.1}
\end{equation*}
$$

where $D_{P}=\left(I-P^{*} P\right)^{1 / 2}$ is the defect operator of the contraction P and $\mathcal{D}_{P}=$ $\overline{\operatorname{Ran}} D_{P}$ (the second component of a Γ-contraction is always a contraction). This operator F is called the fundamental operator of the Γ-contraction (S, P). Our first major result is the construction of a Γ-unitary dilation of a Γ-contraction explicitly. Let F be the fundamental operator of a Γ-contraction (S, P) on \mathcal{H}. The Γ-isometry, discovered in [4], that dilates (S, P) is described below. The space is $\widetilde{\mathcal{H}}=\mathcal{H} \oplus \mathcal{D}_{P} \oplus \mathcal{D}_{P} \oplus \cdots$, which is the same as the minimal isometric dilation space of the contraction P. In fact, the second component V of the Γ-isometric dilation $\left(T_{F}, V\right)$ is the minimal isometric dilation of P. So

$$
V=\left(\begin{array}{c|cccc}
P & 0 & 0 & 0 & \cdots \\
\hline D_{P} & 0 & 0 & 0 & \cdots \\
0 & I & 0 & 0 & \cdots \\
0 & 0 & I & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The first component T_{F} is

$$
\left(\begin{array}{c|cccc}
S & 0 & 0 & 0 & \cdots \\
\hline F^{*} D_{P} & F & 0 & 0 & \cdots \\
0 & F^{*} & F & 0 & \cdots \\
0 & 0 & F^{*} & F & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The Γ-unitary dilation is obtained by extending the Γ-isometry above. Note that by Definition 3, every Γ-isometry is the restriction of a Γ-unitary to a joint invariant subspace. So the existence of a Γ-unitary dilation of (S, P) is guaranteed the moment one produces a Γ-isometric dilation. We construct it below.

The defining criterion of a Γ-contraction implies that the adjoint pair $\left(S^{*}, P^{*}\right)$ is also a Γ-contraction. Consider its fundamental operator $G \in \mathcal{B}\left(\mathcal{D}_{P^{*}}\right)$, where $D_{P^{*}}=\left(I-P P^{*}\right)^{1 / 2}$ is the defect operator and $\mathcal{D}_{P^{*}}=\overline{\operatorname{Ran}} D_{P^{*}}$ is its defect space. This G satisfies

$$
\begin{equation*}
S^{*}-S P^{*}=D_{P^{*}} G D_{P^{*}} \tag{1.2}
\end{equation*}
$$

Just as the Γ-isometric dilation acts on the space of minimal isometric dilation of P, it turns out that the Γ-unitary dilation acts on the space of minimal unitary dilation of P. For brevity, let us denote $\mathcal{D}_{P^{*}} \oplus \mathcal{D}_{P^{*}} \oplus \cdots$ by $l^{2}\left(\mathcal{D}_{P^{*}}\right)$. Note that the isometry V above has a natural unitary extension U on $\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$. In operator matrix form it is

$$
\left(\begin{array}{ll}
V & X^{\prime} \\
0 & Y^{\prime}
\end{array}\right)
$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$, where the operators $X^{\prime}: l^{2}\left(\mathcal{D}_{P^{*}}\right)$ $\rightarrow \widetilde{\mathcal{H}}\left(=\mathcal{H} \oplus \mathcal{D}_{P} \oplus \mathcal{D}_{P} \oplus \cdots\right)$ and $Y^{\prime}: l^{2}\left(\mathcal{D}_{P^{*}}\right) \rightarrow l^{2}\left(\mathcal{D}_{P^{*}}\right)$ are given by

$$
\left(\begin{array}{cccc}
D_{P^{*}} & 0 & 0 & \cdots \\
-P^{*} & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
0 & I & 0 & \cdots \\
0 & 0 & I & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \text { respectively. }
$$

On the same space, the Γ-unitary dilation acts. Its first component R is the following extension of T_{F} :

$$
\left(\begin{array}{cc}
T_{F} & X \\
0 & Y
\end{array}\right)
$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$, where the operators $X: l^{2}\left(\mathcal{D}_{P^{*}}\right) \rightarrow$ $\widetilde{\mathcal{H}}$ and $Y: l^{2}\left(\mathcal{D}_{P^{*}}\right) \rightarrow l^{2}\left(\mathcal{D}_{P^{*}}\right)$ are given by

$$
\left(\begin{array}{cccc}
D_{P^{*}} G & 0 & 0 & \cdots \\
-P^{*} G & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccccc}
G^{*} & G & 0 & 0 & \cdots \\
0 & G^{*} & G & 0 & \cdots \\
0 & 0 & G^{*} & G & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \text { respectively. }
$$

Theorem 4. The pair (R, U) is a Γ-unitary dilation of (S, P).
Note the similarity of the construction to Schäffer's construction in [11] of the unitary dilation of a contraction. The crucial inputs are F and G in the construction of R. After we completed this work, we came to know that Pal [9] has independently proved the theorem above.

In the case of any dilation, uniqueness is a natural question, i.e., given $\underline{T}=$ $\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ acting on \mathcal{H} and a dilation $\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{d}\right)$ acting on $\mathcal{K} \supset \mathcal{H}$, is it true that any other dilation, say $\underline{N^{\prime}}=\left(N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{d}^{\prime}\right)$ on $\mathcal{K}^{\prime} \supset \mathcal{H}$ is unitarily equivalent to \underline{N} ? The answer is yes when the compact set $K=\overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq$ $1\}$ and the number d of co-ordinates of \underline{T} is 1 under a certain natural condition called minimality. If T is a contraction, N is a unitary dilation and the space \mathcal{K} is minimal, i.e.,

$$
\mathcal{K}=\left\{N^{n} h: h \in \mathcal{H} \text { and } n \in \mathbb{Z}\right\}
$$

then any other minimal unitary dilation of T is unitarily equivalent to N. The Γ unitary dilation constructed above is minimal. Moreover, it is unique in the sense described in the theorem below.

Theorem 5 (Uniqueness). Let (S, P) be a Γ-contraction on a Hilbert space \mathcal{H} and (R, U), as defined above, be the Γ-unitary dilation of (S, P).
(i) If (\tilde{R}, U) is another Γ-unitary dilation of (S, P), then $\tilde{R}=R$.
(ii) If (\tilde{R}, \tilde{U}), on some Hilbert space $\tilde{\mathcal{K}}$ containing \mathcal{H}, is another Γ-unitary dilation of (S, P), where \tilde{U} is a minimal unitary dilation of P, then (\tilde{R}, \tilde{U}) is unitarily equivalent to (R, U).

This theorem is special because when $K=\overline{\mathbb{D}} \times \overline{\mathbb{D}}$, then the corresponding minimality condition does not yield unitary equivalence; see [8].

The last section of this paper, i.e., Section 5, has concrete examples of fundamental operators. Fundamental operators are of utmost importance in the study of Γ-contractions, as is clear from the discussion above and also from abundant use of fundamental operators in the literature. A few notable mentions of the uses of the fundamental operator are [5, Prop. 4.3 and Thm. 4.4] and [10, Thm. 3.5]. Computing the fundamental operator of a given Γ-contraction is usually difficult. In Section 5, we explicitly compute the fundamental operators of three natural examples. These examples originate from function theory on the bidisk, which has been a rich source of examples of Γ-contractions; see [4].

§2. Elementary results on Γ-contractions

This section contains certain preliminary results on Γ-contractions. Just as

$$
\begin{equation*}
P D_{P}=D_{P^{*}} P \tag{2.1}
\end{equation*}
$$

and its adjoint equation

$$
\begin{equation*}
D_{P} P^{*}=P^{*} D_{P^{*}} \tag{2.2}
\end{equation*}
$$

have been known since the time of Sz.-Nagy and Foias, we have a crucial operator equality in the case of a Γ-contraction (S, P) that relates S, P and the fundamental operator F. It is

$$
\begin{equation*}
D_{P} S=F D_{P}+F^{*} D_{P} P \tag{2.3}
\end{equation*}
$$

The adjoint form of this equality involves the Γ-contraction $\left(S^{*}, P^{*}\right)$ and its fundamental operator G. It is

$$
\begin{equation*}
D_{P^{*}} S^{*}=G D_{P^{*}}+G^{*} D_{P^{*}} P^{*} \tag{2.4}
\end{equation*}
$$

The next lemma gives a relation between the fundamental operators of the two Γ-contractions (S, P) and $\left(S^{*}, P^{*}\right)$. This can be found in [5, Prop. 2.3]. Hence we omit the proof.

Lemma 6. Let (S, P) be a Γ-contraction and F, G are fundamental operators of (S, P) and $\left(S^{*}, P^{*}\right)$ respectively. Then

$$
\begin{equation*}
P^{*} G=\left.F^{*} P^{*}\right|_{\mathcal{D}_{P^{*}}} \tag{2.5}
\end{equation*}
$$

Remark 7. If one applies Lemma 6 for the Γ-contraction $\left(S^{*}, P^{*}\right)$ in place of (S, P), then the result is $P F=\left.G^{*} P\right|_{\mathcal{D}_{P}}$.

The next two lemmas give new relations between the fundamental operators of Γ-contractions (S, P) and $\left(S^{*}, P^{*}\right)$.

Lemma 8. Let (S, P) be a Γ-contraction on a Hilbert space \mathcal{H}. If F and G are fundamental operators of (S, P) and $\left(S^{*}, P^{*}\right)$ respectively, then

$$
\begin{equation*}
\left.\left(S D_{P}-D_{P^{*}} G P\right)\right|_{\mathcal{D}_{P}}=D_{P} F \tag{2.6}
\end{equation*}
$$

Proof. Note that the LHS and the RHS of (2.6) are operators from \mathcal{D}_{P} to \mathcal{H} :

$$
\begin{aligned}
\left(S D_{P}-D_{P^{*}} G P\right) D_{P} h & =S\left(I-P^{*} P\right) h-D_{P^{*}} G P D_{P} h \\
& =S h-S P^{*} P h-\left(D_{P^{*}} G D_{P^{*}}\right) P h \\
& =S h-S P^{*} P h-S^{*} P h+S P^{*} P h \\
& =S h-S^{*} P h=D_{P} F D_{P} h \quad \text { for all } h \in \mathcal{H} .
\end{aligned}
$$

Since $\mathcal{D}_{P}=\overline{\operatorname{Ran}} D_{P}$ and the operators are bounded, we are done.
Remark 9. If one applies Lemma 8 for the Γ-contraction $\left(S^{*}, P^{*}\right)$ in place of (S, P), then the result is $S^{*} D_{P^{*}}-D_{P} F P^{*}=D_{P^{*}} G$.

Lemma 10. Let F and G be the fundamental operators of (S, P) and $\left(S^{*}, P^{*}\right)$ respectively. Then

$$
\begin{equation*}
\left.\left(F^{*} D_{P} D_{P^{*}}-F P^{*}\right)\right|_{\mathcal{D}_{P^{*}}}=D_{P} D_{P^{*}} G-P^{*} G^{*} \tag{2.7}
\end{equation*}
$$

Proof. Note that the LHS and the RHS of (2.7) are operators from $\mathcal{D}_{P^{*}}$ to \mathcal{D}_{P} :

$$
\begin{array}{rlrl}
\left(F^{*} D_{P} D_{P^{*}}-F P^{*}\right) D_{P^{*}} h & =F^{*} D_{P}\left(I-P P^{*}\right) h-F P^{*} D_{P^{*}} h & \\
& =F^{*} D_{P} h-F^{*} D_{P} P P^{*} h-F D_{P} P^{*} h & & {[\operatorname{using}(2.2)]} \\
& =F^{*} D_{P} h-\left(F^{*} D_{P} P+F D_{P}\right) P^{*} h & \\
& =\left(F^{*} D_{P}-D_{P} S P^{*}\right) h & & {[\operatorname{using}(2.3)]} \\
& =\left(D_{P} S^{*}-P^{*} G^{*} D_{P^{*}}\right) h-D_{P} S P^{*} h & {[\operatorname{using}(2.6)]} \tag{2.6}\\
& =D_{P}\left(S^{*}-S P^{*}\right) h-P^{*} G^{*} D_{P^{*}} h & \\
& =D_{P} D_{P^{*}} G D_{P^{*}} h-P^{*} G^{*} D_{P^{*}} h & \\
& =\left(D_{P} D_{P^{*}} G-P^{*} G^{*}\right) D_{P^{*}} h &
\end{array}
$$

for all $h \in \mathcal{H}$. Since $\mathcal{D}_{P^{*}}=\overline{\operatorname{Ran}} D_{P^{*}}$ and the operators are bounded, we are done.

§3. Г-unitary dilation of a Γ-contraction: Proof of Theorem 4

The starting point of the proof of Theorem 4 is the pair $\left(T_{F}, V\right)$ on $\widetilde{\mathcal{H}}=\mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P}\right)$, where

$$
T_{F}\left(h \oplus\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=\left(S h \oplus\left(F^{*} D_{P} h+F a_{0}, F^{*} a_{0}+F a_{1}, F^{*} a_{1}+F a_{2}, \ldots\right)\right)
$$

and

$$
V\left(h \oplus\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=\left(P h \oplus\left(D_{P} h, a_{0}, a_{1}, a_{2}, \ldots\right)\right) .
$$

We know from [4] that this pair is a Γ-isometric dilation for (S, P). So the job reduces to finding an explicit Γ-unitary extension of $\left(T_{F}, V\right)$. For that, it is natural to consider the minimal unitary extension U of V on $\mathcal{K}=\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$. The explicit form of U due to Schäffer [11] is given in Section 1. Schäffer proved that U is the minimal unitary dilation of P.

We shall first prove that (R, U) on \mathcal{K}, defined in Section 1 , is a Γ-unitary. To be able to do that, we need a tractable characterization of a Γ-unitary. This can be found in [4]: the fourth part of Theorem 2.5 there tells us that a pair of commuting operators (R, U) defined on a Hilbert space \mathcal{H} is a Γ-unitary if and only if U is unitary and (R, U) is a Γ-contraction. So, for our particular (R, U), we shall show that
(i) $R U=U R$ and
(ii) $\|f(R, U)\| \leq\|f\|_{\infty, \Gamma}$, for every polynomial f in two variables.

To show that $R=\left(\begin{array}{cc}T_{F} & X \\ 0 & Y\end{array}\right)$ and $U=\left(\begin{array}{cc}V & X^{\prime} \\ 0 & Y^{\prime}\end{array}\right)$ commute, we shall have to show $Y Y^{\prime}=Y^{\prime} Y$ and $X Y^{\prime}+T_{F} X^{\prime}=X^{\prime} Y+V X$.

Commutativity of Y and Y^{\prime} can be verified by direct computation, but perhaps a more elegant way to see it is to note that the space on which these operators act is unitarily equivalent to the space of $\mathcal{D}_{P^{*}}$-valued Hardy space on the disk. Under conjugation by the same unitary, Y^{\prime} becomes the backward shift and Y becomes the adjoint of multiplication by the operator-valued function $G+G^{*} z$ (a so-called co-analytic Toeplitz operator). Thus they commute.

For all $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in l^{2}\left(\mathcal{D}_{P^{*}}\right)$ we have

$$
\begin{aligned}
\left(X Y^{\prime}+\right. & \left.T_{F} X^{\prime}\right)\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
= & X\left(a_{1}, a_{2}, a_{3}, \ldots\right)+T_{F}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right) \\
= & \left(D_{P^{*}} G a_{1} \oplus\left(-P^{*} G a_{1}, 0,0, \ldots\right)\right) \\
& +\left(S D_{P^{*}} a_{0} \oplus\left(\left(F^{*} D_{P} D_{P^{*}}-F P^{*}\right) a_{0},-F^{*} P^{*} a_{0}, 0,0, \ldots\right)\right) \\
= & \left(S D_{P^{*}} a_{0}+D_{P^{*}} G a_{1}\right) \\
& \oplus\left(\left(F^{*} D_{P} D_{P^{*}}-F P^{*}\right) a_{0}-P^{*} G a_{1},-F^{*} P^{*} a_{0}, 0,0, \ldots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(X^{\prime} Y+\right. & V X)\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
= & X^{\prime}\left(G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, G^{*} a_{2}+G a_{3}, \ldots\right) \\
& +V\left(D_{P^{*}} G a_{0} \oplus\left(-P^{*} G a_{0}, 0,0, \ldots\right)\right) \\
= & \left(\left(D_{P^{*}} G^{*} a_{0}+D_{P^{*}} G a_{1}\right) \oplus\left(-P^{*} G^{*} a_{0}-P^{*} G a_{1}, 0,0, \ldots\right)\right) \\
& +\left(P D_{P^{*}} G a_{0} \oplus\left(D_{P} D_{P^{*}} G a_{0},-P^{*} G a_{0}, 0,0, \ldots\right)\right) \\
= & \left(\left(D_{P^{*}} G^{*}+P D_{P^{*}} G\right) a_{0}+D_{P^{*}} G a_{1}\right) \\
& \oplus\left(\left(D_{P} D_{P^{*}} G-P^{*} G^{*}\right) a_{0}-P^{*} G a_{1},-P^{*} G a_{0}, 0,0, \ldots\right)
\end{aligned}
$$

The lemmas of the previous section will now be useful. By Lemmas 10 and 6 and equation (2.4), it follows that $X Y^{\prime}+T_{F} X^{\prime}=X^{\prime} Y+V X$. Thus the proof of commutativity is complete.

We now prove that R is a normal operator. What we first prove is that $R=$ $R^{*} U$, because this will imply that R is a normal operator. Establishing the equality $R=R^{*} U$ is equivalent to showing the following equalities:
(a) $Y=Y^{*} Y^{\prime}+X^{*} X^{\prime}$;
(b) $X^{*} V=0$;
(c) $X=T_{F}^{*} X^{\prime}$; and
(d) $T_{F}=T_{F}^{*} V$.

From the definitions of X and Y, it is easy to check that

$$
X^{*}\left(h \oplus\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=\left(G^{*} D_{P *} h-G^{*} P a_{0}, \ldots\right)
$$

and

$$
Y^{*}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(G a_{0}, G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, \ldots\right) .
$$

Thus

$$
\begin{aligned}
\left(Y^{*} Y^{\prime}\right. & \left.+X^{*} X^{\prime}\right)\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
= & Y^{*}\left(a_{1}, a_{2}, a_{3}, \ldots\right)+X^{*}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right) \\
= & \left(G a_{1}, G^{*} a_{1}+G a_{2}, G^{*} a_{2}+G a_{3}, \ldots\right) \\
& +\left(G^{*}\left(I-P P^{*}\right) a_{0}+G^{*} P P^{*} a_{0}, 0,0, \ldots\right) \\
= & \left(G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, G^{*} a_{2}+G a_{3}, \ldots\right)=Y\left(a_{0}, a_{1}, a_{2}, \ldots\right),
\end{aligned}
$$

which establishes (a). To prove (b), we use equation (2.1) and see that

$$
\begin{aligned}
X^{*} V\left(h \oplus\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right) & =X^{*}\left(P h \oplus\left(D_{P} h, a_{0}, a_{1}, a_{2}, \ldots\right)\right) \\
& =\left(\left(G^{*} D_{P^{*}} P-G^{*} P D_{P}\right) h, 0,0,0, \ldots\right)=0 .
\end{aligned}
$$

To prove (c), we use Remark 9 and Lemma 6 to get

$$
\begin{aligned}
T_{F}^{*} X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right) & =T_{F}^{*}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right) \\
& =\left(S^{*} D_{P^{*}} a_{0}-D_{P} F P^{*} a_{0}\right) \oplus\left(-F^{*} P^{*}, 0,0, \ldots\right) \\
& =X\left(a_{0}, a_{1}, a_{2}, \ldots\right)
\end{aligned}
$$

Since $\left(T_{F}, V\right)$ is a Γ-isometry, (d) holds, by [4, Thm. 2.14].
Now we proceed to show that (R, U) satisfies the von Neumann inequality. For any polynomial f in two variables we have

$$
f(R, U)=\left(\begin{array}{cc}
f\left(T_{F}, V\right) & Z_{f} \\
0 & f\left(Y, Y^{\prime}\right)
\end{array}\right)
$$

where $\left(T_{F}, V\right)$ and $\left(Y, Y^{\prime}\right)=\left(M_{G+G^{*} z}, M_{z}\right)^{*}$ are Γ-contractions and Z_{f} is an operator depending on f. We have by [7, Lem. 1] that

$$
\sigma(f(R, U)) \subset \sigma\left(f\left(T_{F}, V\right)\right) \cup \sigma\left(f\left(Y, Y^{\prime}\right)\right)
$$

which gives

$$
\begin{aligned}
r(f(R, U)) \leq \max \left\{r\left(f\left(T_{F}, V\right)\right), r\left(f\left(Y, Y^{\prime}\right)\right)\right\} & \leq \max \left\{\left\|f\left(T_{F}, V\right)\right\|,\left\|f\left(Y, Y^{\prime}\right)\right\|\right\} \\
& \leq\|f\|_{\infty, \Gamma}
\end{aligned}
$$

Since R is a normal operator, so is $f(R, U)$ and hence $r(f(R, U))=\|f(R, U)\|$. This completes the proof of part (ii). Hence (R, U) is a Γ-unitary.

To complete the proof of Theorem 4, we need to show that (R, U) dilates (S, P). This is trivial because (R, U) is the extension of $\left(T_{F}, V\right)$, which is a coextension of (S, P).

§4. Minimality and uniqueness

In this section we prove Theorem 5. First we remark that the dilation is minimal.
Remark 11 (Minimality). Minimality of a commuting normal boundary dilation $\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{d}\right)$ on a space \mathcal{K} of a commuting tuple $\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ of bounded operators on a space \mathcal{H} means that the space \mathcal{K} is no bigger than the closure of the span of the following set:

$$
\left\{N_{1}^{k_{1}} N_{2}^{k_{2}} \cdots N_{d}^{k_{d}} N_{1}^{* l_{1}} N_{2}^{* l_{2}} \cdots N_{d}^{* l_{d}} h: h \in \mathcal{H}, \text { where } k_{i}, l_{i} \in \mathbb{N} \text { for } i=1,2, \ldots, d\right\} .
$$

Note that the space \mathcal{K} has to be at least this big. In our construction, the space is just the minimal unitary dilation space of P (which is unique up to unitary equivalence). It is a bit of a surprise that one can find the Γ-unitary dilation of (S, P) on the same space, while one would have normally expected the dilation space to be bigger. Since no dilation of (S, P) can take place on a space smaller than the minimal unitary dilation space of P (because the dilation has to dilate P as well), our construction of Γ-unitary dilation is minimal. Indeed, post facto we know from our dilation that

$$
\begin{aligned}
& \overline{\operatorname{span}}\left\{R^{m_{1}} R^{* m_{2}} U^{n} h: h \in \mathcal{H}, m_{1}, m_{2} \in \mathbb{N} \text { and } n \in \mathbb{Z}\right\} \\
& \quad=\overline{\operatorname{span}}\left\{U^{n} h: h \in \mathcal{H} \text { and } n \in \mathbb{Z}\right\}
\end{aligned}
$$

Note the absence of R on the right-hand side.
We now prove a weaker version of the uniqueness theorem and then we use it to prove the main result.

Lemma 12. Suppose (S, P) is a Γ-contraction on a Hilbert space \mathcal{H} and (R, U) is the above Γ-unitary dilation of (S, P). If (\tilde{R}, U) is another Γ-unitary dilation of (S, P) such that \tilde{R} is an extension of T_{F}, then $\tilde{R}=R$.
Proof. Suppose (\tilde{R}, U) is another Γ-unitary dilation of (S, P), such that \tilde{R} is an extension of T_{F}. Since \tilde{R} is an extension of T_{F}, \tilde{R} is of the form $\left(\begin{array}{c}T_{F} \\ 0 \\ Y\end{array}\right)$ with respect to the decomposition $\mathcal{K}=\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$. Since $U=\left(\begin{array}{cc}V & X^{\prime} \\ 0 & Y^{\prime}\end{array}\right)$ is unitary and $\tilde{R} U=U \tilde{R}$, we have, from easy matrix calculations,

$$
\begin{equation*}
Y^{\prime *} Y^{\prime}+X^{*} X^{\prime}=I, \quad X^{\prime *} V=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{Y} Y^{\prime}=Y^{\prime} \tilde{Y}, \quad \tilde{X} Y^{\prime}+T_{F} X^{\prime}=X^{\prime} \tilde{Y}+V \tilde{X} \tag{4.2}
\end{equation*}
$$

Also since (\tilde{R}, U) is a Γ-unitary, we have $\tilde{R}=\tilde{R}^{*} U$ and that gives $\tilde{X}=T_{F}^{*} X^{\prime}$. So

$$
\begin{aligned}
\tilde{X}\left(a_{0}, a_{1}, a_{2}, \ldots\right) & =T_{F}^{*} X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
& =T_{F}^{*}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right) \\
& =\left(S^{*} D_{P^{*}} a_{0}-D_{P} F P^{*} a_{0}\right) \oplus\left(-F^{*} P^{*} a_{0}, 0,0, \ldots\right) \\
& \left.=\left(D_{P^{*}} G a_{0} \oplus\left(-F^{*} P^{*} a_{0}, 0,0, \ldots\right)\right) \quad \text { [by Remark } 9\right] \\
& =X\left(a_{0}, a_{1}, a_{2}, \ldots\right)
\end{aligned}
$$

Now to find \tilde{Y}, we proceed as follows: From the second equation of (4.2) we have

$$
\begin{align*}
X^{\prime} \tilde{Y} & +V \tilde{X}=\tilde{X} Y^{\prime}+T_{F} X^{\prime} & & \\
& \Rightarrow X^{\prime *} X^{\prime} \tilde{Y}+X^{\prime *} V \tilde{X}=X^{*} \tilde{X} Y^{\prime}+X^{*} T_{F} X^{\prime} & & {\left[\text { multiplying } X^{\prime *}\right. \text { from left] }} \\
& \Rightarrow\left(I-Y^{\prime *} Y^{\prime}\right) \tilde{Y}=X^{\prime *} \tilde{X} Y^{\prime}+X^{\prime *} T_{F} X^{\prime} & & {[\text { using (4.1)] }} \\
& \Rightarrow \tilde{Y}^{*}\left(I-Y^{\prime *} Y^{\prime}\right)=Y^{\prime *} \tilde{X}^{*} X^{\prime}+X^{\prime *} T_{F}^{*} X^{\prime} . & & (*) \tag{*}
\end{align*}
$$

Note that $\left(I-Y^{\prime *} Y^{\prime}\right)$ is the orthogonal projection of $l^{2}\left(\mathcal{D}_{P^{*}}\right)$ onto the first component. Let $x=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be in $l^{2}\left(\mathcal{D}_{P^{*}}\right)$. From $(*)$ we get

$$
\tilde{Y}^{*}\left(a_{0}, 0,0, \ldots\right)=Y^{\prime *} \tilde{X}^{*} X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right)+X^{\prime *} T_{F}^{*} X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right)
$$

Thus

$$
\begin{aligned}
Y^{\prime *} \tilde{X}^{*} & X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right)+X^{\prime *} T_{F}^{*} X^{\prime}\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
= & Y^{\prime *} \tilde{X}^{*}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right)+X^{\prime *} T_{F}^{*}\left(D_{P^{*}} a_{0} \oplus\left(-P^{*} a_{0}, 0,0, \ldots\right)\right) \\
= & Y^{\prime *}\left(\left(D_{P^{*}} S-P F^{*} D_{P}\right) D_{P^{*}} a_{0}+P F P^{*} a_{0}, 0,0, \ldots\right) \\
& +X^{\prime *}\left(\left(S^{*} D_{P^{*}}-D_{P} F P^{*}\right) a_{0} \oplus\left(-F^{*} P^{*} a_{0}, 0,0, \ldots\right)\right) \\
= & \left(0,\left(D_{P^{*}} S-P F^{*} D_{P}\right) D_{P^{*}} a_{0}+P F P^{*} a_{0}, 0,0, \ldots\right) \\
& +\left(D_{P^{*}}\left(S^{*} D_{P^{*}}-D_{P} F P^{*}\right) a_{0}+P F^{*} P^{*} a_{0}, 0,0, \ldots\right) \\
= & \left(D_{P^{*}}\left(S^{*} D_{P^{*}}-D_{P} F P^{*}\right) a_{0}+P F^{*} P^{*} a_{0},\right. \\
& \left.\left(D_{P^{*}} S-P F^{*} D_{P}\right) D_{P^{*}} a_{0}+P F P^{*} a_{0}, 0,0, \ldots\right) .
\end{aligned}
$$

Let us denote the operator $\left.\left(D_{P^{*}}\left(S^{*} D_{P^{*}}-D_{P} F P^{*}\right)+P F^{*} P^{*}\right)\right|_{\mathcal{D}_{P^{*}}}$ by C. Then we have $\tilde{Y}^{*}\left(a_{0}, 0,0, \ldots\right)=\left(C a_{0}, C^{*} a_{0}, 0,0, \ldots\right)$. Note that C is an operator from $\mathcal{D}_{P^{*}}$ to $\mathcal{D}_{P^{*}}$. We shall show that $C=G$, where G is the fundamental operator of the Γ-contraction $\left(S^{*}, P^{*}\right)$. The following computation establishes that.

For h, h^{\prime} in \mathcal{H}, we have

$$
\begin{aligned}
&\left\langle C D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle\left(D_{P^{*}}\left(S^{*} D_{P^{*}}-D_{P} F P^{*}\right)+P F^{*} P^{*}\right) D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle D_{P^{*}} S^{*}\left(I-P P^{*}\right) h-D_{P^{*}}\left(D_{P} F D_{P}\right) P^{*} h+P F^{*} P^{*} D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle D_{P^{*}} S^{*} h-D_{P^{*}} S^{*} P P^{*} h-D_{P^{*}} S P^{*} h+D_{P^{*}} S^{*} P P^{*} h+P F^{*} P^{*} D_{P^{*}} h,\right. \\
&\left.D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle D_{P^{*}} S^{*} h-D_{P^{*}} S P^{*} h+P F^{*} P^{*} D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle D_{P^{*}}\left(S^{*}-S P^{*}\right) h+P F^{*} P^{*} D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle D_{P^{*}}^{2} G D_{P^{*}} h+P F^{*} P^{*} D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle\left(I-P P^{*}\right) G D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle+\left\langle F^{*} P^{*} D_{P^{*}} h, P^{*} D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle G D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle-\left\langle P^{*} G D_{P^{*}} h, P^{*} D_{P^{*}} h^{\prime}\right\rangle+\left\langle F^{*} P^{*} D_{P^{*}} h, P^{*} D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle G D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle-\left\langle F^{*} P^{*} D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle+\left\langle F^{*} P^{*} D_{P^{*}} h, P^{*} D_{P^{*}} h^{\prime}\right\rangle \\
&=\left\langle G D_{P^{*}} h, D_{P^{*}} h^{\prime}\right\rangle .
\end{aligned}
$$

Hence $C=G$ and hence for every a in $\mathcal{D}_{P^{*}}$,

$$
\tilde{Y}^{*}(a, 0,0,0, \ldots)=\left(G a, G^{*} a, 0,0, \ldots\right)
$$

We want to compute the action of \tilde{Y}^{*} on an arbitrary vector. Now using the first equation of (4.2), we have for every $n \geq 0$,

$$
\begin{aligned}
\tilde{Y}^{*}(\overbrace{0, \ldots, 0}^{n \text { times }}, a, 0, \ldots) & =\tilde{Y}^{*} Y^{\prime *}(a, 0,0,0, \ldots) \\
& =Y^{\prime * n} \tilde{Y}^{*}(a, 0,0,0, \ldots) \\
& =Y^{\prime * n}\left(G a, G^{*} a, 0,0, \ldots\right)=(\overbrace{0, \ldots, 0}^{n \text { times }}, G a, G^{*} a, 0,0, \ldots) .
\end{aligned}
$$

Therefore for an arbitrary element $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in l^{2}\left(\mathcal{D}_{P^{*}}\right)$, we have

$$
\begin{aligned}
\tilde{Y}^{*}\left(a_{0}\right. & \left., a_{1}, a_{2}, \ldots\right) \\
\quad= & \tilde{Y}^{*}\left(\left(a_{0}, 0,0, \ldots\right)+\left(0, a_{1}, 0, \ldots\right)+\left(0,0, a_{2}, \ldots\right)+\cdots\right) \\
& =\left(G a_{0}, G^{*} a_{0}, 0,0, \ldots\right)+\left(0, G a_{1}, G^{*} a_{1}, 0,0, \ldots\right) \\
& \quad+\left(0,0, G a_{2}, G^{*} a_{2}, 0,0, \ldots\right)+\cdots \\
& =\left(G a_{0}, G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, \ldots\right) .
\end{aligned}
$$

For $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ in $l^{2}\left(\mathcal{D}_{P^{*}}\right)$, we have

$$
\begin{aligned}
\left\langle\left(a_{0},\right.\right. & \left.\left.a_{1}, a_{2}, \ldots\right), \tilde{Y}^{*}\left(b_{0}, b_{1}, b_{2}, \ldots\right)\right\rangle \\
& =\left\langle\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(G b_{0}, G^{*} b_{0}+G b_{1}, G^{*} b_{1}+G b_{2}, \ldots\right)\right\rangle \\
& =\left\langle a_{0}, G b_{0}\right\rangle+\left\langle a_{1}, G^{*} b_{0}+G b_{1}\right\rangle+\left\langle a_{2}, G^{*} b_{1}+G b_{2}\right\rangle+\cdots \\
& =\left\langle G^{*} a_{0}+G a_{1}, b_{0}\right\rangle+\left\langle G^{*} a_{1}+G a_{2}, b_{1}\right\rangle+\left\langle G^{*} a_{2}+G a_{3}, b_{2}\right\rangle+\cdots \\
& =\left\langle\left(G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, G^{*} a_{2}+G a_{3}, \ldots\right),\left(b_{0}, b_{1}, b_{2}, \ldots\right)\right\rangle .
\end{aligned}
$$

Hence, by definition of the adjoint of an operator, we have
$\tilde{Y}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(G^{*} a_{0}+G a_{1}, G^{*} a_{1}+G a_{2}, G^{*} a_{2}+G a_{3}, \ldots\right)=Y\left(a_{0}, a_{1}, a_{2}, \ldots\right)$, for every $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in l^{2}\left(\mathcal{D}_{P^{*}}\right)$. Therefore $\tilde{R}=R$. Hence the proof is complete.

Note that when we write the operator U with respect to the decomposition $l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$ then this is of the form

$$
\left(\begin{array}{ccc}
U_{1} & U_{2} & U_{3} \\
0 & P & U_{4} \\
0 & 0 & U_{5}
\end{array}\right)
$$

where $U_{1}, U_{2}, U_{3}, U_{4}$ and U_{5} are defined as

$$
\begin{gathered}
U_{1}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(0, a_{0}, a_{1}, \ldots\right), \quad U_{2}(h)=\left(D_{p} h, 0,0, \ldots\right), \\
U_{3}\left(b_{0}, b_{0}, b_{2}, \ldots\right)=\left(-P^{*} b_{0}, 0,0, \ldots\right), \quad U_{4}\left(b_{0}, b_{1}, b_{2}, \ldots\right)=D_{P^{*}} b_{0}, \\
U_{5}\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(b_{1}, b_{2}, b_{3}, \ldots\right)
\end{gathered}
$$

for all $h \in \mathcal{H},\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in l^{2}\left(\mathcal{D}_{P}\right)$ and $\left(b_{0}, b_{0}, b_{2}, \ldots\right) \in l^{2}\left(\mathcal{D}_{P^{*}}\right)$. Note that this is the Schäffer minimal unitary dilation of the contraction P as in [11] (it can also be found in [12, Sect. 5, Chap. 1].

Lemma 13. Let (R, U) on \mathcal{K} be a dilation of (S, P) on \mathcal{H}, where P is a contraction on \mathcal{H}, and U on \mathcal{K} is the Schäffer minimal unitary dilation of P. Then R admits a matrix representation of the form

$$
\left(\begin{array}{ccc}
* & * & * \\
0 & S & * \\
0 & 0 & *
\end{array}\right)
$$

with respect to the decomposition $\mathcal{K}=l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$.

Proof. Let $R=\left(R_{k l}\right)_{k, l=1}^{3}$ with respect to $\mathcal{K}=l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$. Call $\widetilde{\mathcal{H}}=l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H}$. Since U is minimal we have $\mathcal{K}=\bigvee_{m=-\infty}^{\infty} U^{m} \mathcal{H}$ and $\widetilde{\mathcal{H}}=$ $\bigvee_{m=0}^{\infty} U^{m} \mathcal{H}=\bigvee_{m=0}^{\infty} V^{m} \mathcal{H}$, where V is the minimal isometry dilation of P. Note that

$$
P_{\mathcal{H}} R\left(U^{m} h\right)=S P^{m} h=S P_{\mathcal{H}} U^{m} h \quad \text { for all } h \in \mathcal{H} \text { and } m \geq 0 .
$$

Therefore we have $\left.P_{\mathcal{H}} R\right|_{\widetilde{\mathcal{H}}}=\left.S P_{\mathcal{H}}\right|_{\tilde{\mathcal{H}}}$ or equivalently $S^{*}=\left.P_{\widetilde{\mathcal{H}}} R^{*}\right|_{\mathcal{H}}$. This shows that $R_{21}=0$.

Call $\widetilde{\mathcal{N}}=\mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$, then note that $\widetilde{\mathcal{N}}=\bigvee_{n=0}^{\infty} U^{* n} \mathcal{H}$. We have

$$
P_{\mathcal{H}} R^{*}\left(U^{* m} h\right)=S^{*} P^{* m} h=S^{*} P_{\mathcal{H}} U^{* m} h \quad \text { for all } h \in \mathcal{H} \text { and } m \geq 0 .
$$

This and a similar argument to above give us $S=\left.P_{\widetilde{\mathcal{N}}} R\right|_{\mathcal{H}}$. Therefore $R_{32}=0$.
So far, we have shown that R admits a matrix representation of the form

$$
\left(\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & S & R_{23} \\
R_{31} & 0 & R_{33}
\end{array}\right)
$$

with respect to the decomposition $\mathcal{K}=l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$. To show that $R_{13}=0$ we proceed as follows:

From the commutativity of R with U we get, by an easy matrix calculation,

$$
\begin{equation*}
R_{31} U_{1}=U_{5} R_{31} \quad \text { and } \quad R_{31} U_{2}=0 \tag{4.3}
\end{equation*}
$$

(equating the 31 st and 32 nd entries of $R U$ and $U R$ respectively). By the definition of U_{2}, we have $\operatorname{Ran} U_{2}=\operatorname{Ran}\left(I-U_{1} U_{1}^{*}\right)$. Therefore $R_{31}\left(I-U_{1} U_{1}^{*}\right)=0$, which with the first equation of (4.3) gives $R_{31}=U_{5} R_{31} U_{1}^{*}$, which gives after the nth iteration $R_{31}=U_{5}^{n} R_{31} U_{1}^{* n}$. Now since $U_{1}^{* n}$ goes to 0 strongly as $n \rightarrow \infty$, we have that $R_{31}=0$. This completes the proof of the lemma.

Now we are ready to prove Theorem 5, the main result of this section.
Proof of part (i). Since (\tilde{R}, U) is a dilation of (S, P), by Lemma 13 we have \tilde{R} of the form

$$
\left(\begin{array}{cc}
T & \tilde{R}_{12} \\
0 & \tilde{R}_{22}
\end{array}\right)
$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^{2}\left(\mathcal{D}_{P^{*}}\right)$, where $T: \widetilde{\mathcal{H}} \rightarrow \widetilde{\mathcal{H}}$ is of the form

$$
\left(\begin{array}{cc}
T_{11} & T_{12} \\
0 & S
\end{array}\right)
$$

with respect to the decomposition $l^{2}\left(\mathcal{D}_{P}\right) \oplus \mathcal{H}$. Since (T, V) on \tilde{H} is the restriction of the Γ-contraction (\tilde{R}, U) to $\widetilde{\mathcal{H}}$ and V is an isometry, we have (T, V) is a Γ isometry. Also note that $\left.T^{*}\right|_{\mathcal{H}}=S^{*}$ and $\left.V^{*}\right|_{\mathcal{H}}=P^{*}$. So (T, V) is a Γ-isometric dilation of (S, P). Also note that V is the Schäffer minimal isometric dilation of P. Now it follows from [4, Thm. 4.3(2)] that $T=T_{F}$, where T_{F} is as in Theorem 4. Therefore \tilde{R} is an extension of T_{F}. Now the proof follows from Lemma 12.
Proof of part (ii). Since \tilde{U} is a minimal unitary dilation of P, there exists a unitary operator $W: \tilde{\mathcal{K}} \rightarrow \mathcal{K}$ such that $W \tilde{U} W^{*}=U$ and $W h=h$ for all $h \in \mathcal{H}$. This shows that $\left(W \tilde{R} W^{*}, W \tilde{U} W^{*}\right)$ is another Γ-unitary dilation of (S, P). But $W \tilde{U} W^{*}=U$. Hence by part (i) we have $\left(W \tilde{R} W^{*}, W \tilde{U} W^{*}\right)=(R, U)$. Hence the proof is complete.

Remark 14. As in the case of Ando's dilation of a commuting pair of contractions, a minimal Γ-unitary dilation of a Γ-contraction need not be unique (up to unitary equivalence). In this section, we constructed a particular Γ-unitary dilation which is the most obvious one because it acts on the minimal unitary dilation space of the contraction P. Moreover, if the Γ-unitary dilation space is no bigger than the minimal unitary dilation space of the contraction P, then the Γ-unitary dilation is unique up to unitary equivalence.

§5. Examples of fundamental operators

§5.1. Hardy space of the bidisk

Consider the Hilbert space

$$
\begin{aligned}
& H^{2}\left(\mathbb{D}^{2}\right)=\left\{f: \mathbb{D}^{2} \rightarrow \mathbb{C}: f\left(z_{1}, z_{2}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} z_{1}^{i} z_{2}^{j}\right. \\
&\text { with } \left.\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|a_{i j}\right|^{2}<\infty\right\}
\end{aligned}
$$

with the inner product $\left\langle\sum_{i, j=0}^{\infty} a_{i j} z_{1}^{i} z_{2}^{j}, \sum_{i, j=0}^{\infty} b_{i j} z_{1}^{i} z_{2}^{j}\right\rangle=\sum_{i, j=0}^{\infty} a_{i j} b_{i j}^{-}$. Note that the operator pair $\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)$ on $H^{2}\left(\mathbb{D}^{2}\right)$ is a Γ-isometry, since it is the restriction of the Γ-unitary $\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)$ on $L^{2}\left(\mathbb{T}^{2}\right)$, where \mathbb{T} denotes the unit circle. For brevity, we call the pair $\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)$ on $H^{2}\left(\mathbb{D}^{2}\right)$ by (S, P). In this section, we shall first find the fundamental operator of $\left(S^{*}, P^{*}\right)$.

Note that every element $f \in H^{2}\left(\mathbb{D}^{2}\right)$ can be expressed in the matrix form

$$
\left(\left(a_{i j}\right)\right)_{i, j=0}^{\infty}=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where the $(i j)$ th entry in the matrix denotes the coefficient of $z_{1}^{i} z_{2}^{j}$ in $f\left(z_{1}, z_{2}\right)=$ $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} z_{1}^{i} z_{2}^{j}$. We shall write the matrix form instead of writing the series. In this notation,
(5.1) $S\left(\left(\left(a_{i j}\right)\right)_{i, j=0}^{\infty}\right)=\left(a_{(i-1) j}+a_{i(j-1)}\right)$ and $P\left(\left(\left(a_{i j}\right)\right)_{i, j=0}^{\infty}\right)=\left(a_{(i-1)(j-1)}\right)$
with the convention that $a_{i j}$ is zero if either i or j is negative.
Lemma 15. The adjoints of the operators S and P are as follows:

$$
S^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{11}+a_{02} & a_{12}+a_{03} & \ldots \\
a_{20}+a_{11} & a_{21}+a_{12} & a_{22}+a_{13} & \ldots \\
a_{30}+a_{21} & a_{31}+a_{22} & a_{32}+a_{23} & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\vdots & \vdots &
\end{array}\right)
$$

and

$$
P^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \cdots \\
a_{10} & a_{11} & a_{12} & \cdots \\
a_{20} & a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Proof. This is a matter of straightforward inner product computation.
Lemma 16. The defect space of P^{*} in matrix form is

$$
\mathcal{D}_{P^{*}}=\left\{\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right):\left|a_{00}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{j 0}\right|^{2}<\infty\right\}
$$

The defect space in the function form is $\overline{\operatorname{span}}\left\{1, z_{1}^{i}, z_{2}^{j}: i, j \geq 1\right\}$. The defect operator for P^{*} is

$$
D_{P^{*}}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Proof. Since P is an isometry, $D_{P^{*}}$ is a projection onto Range $(P)^{\perp}=H^{2}\left(\mathbb{D}^{2}\right) \ominus$ Range (P). The rest follows from the formula for P in (5.1).

Definition 17. Define $B: \mathcal{D}_{P^{*}} \rightarrow \mathcal{D}_{P^{*}}$ by

$$
B\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \tag{5.2}\\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{02} & a_{03} & \ldots \\
a_{20} & 0 & 0 & \ldots \\
a_{30} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

for all $a_{j 0}, a_{0 j} \in \mathbb{C}, j=0,1,2, \ldots$ with $\left|a_{00}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{j 0}\right|^{2}<\infty$.
Lemma 18. The operator B as defined in Definition 17 is the fundamental operator of $\left(S^{*}, P^{*}\right)$.

Proof. To show that B is the fundamental operator of (S^{*}, P^{*}), we shall show that B satisfies the fundamental equation $S^{*}-S P^{*}=D_{P^{*}} B D_{P^{*}}$. Using Lemma 15 , we get

$$
\begin{aligned}
& \left(S^{*}-S P^{*}\right)\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& =S^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)-S\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{11}+a_{02} & a_{12}+a_{03} & \ldots \\
a_{20}+a_{11} & a_{21}+a_{12} & a_{22}+a_{13} & \ldots \\
a_{30}+a_{21} & a_{31}+a_{22} & a_{32}+a_{23} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& -\left(\begin{array}{ccccc}
0 & a_{11} & a_{12} & a_{13} & \cdots \\
a_{11} & a_{21}+a_{12} & a_{22}+a_{13} & a_{23}+a_{14} & \cdots \\
a_{21} & a_{31}+a_{22} & a_{32}+a_{23} & a_{33}+a_{24} & \cdots \\
a_{31} & a_{41}+a_{32} & a_{42}+a_{33} & a_{43}+a_{34} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{02} & a_{03} & \ldots \\
a_{20} & 0 & 0 & \ldots \\
a_{30} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
\end{aligned}
$$

Using Lemma 16 and Definition 17, we get

$$
\begin{aligned}
D_{P^{*}} B D_{P^{*}}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=D_{P^{*}} B\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
=D_{P^{*}}\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{02} & a_{03} & \ldots \\
a_{20} & 0 & 0 & \ldots \\
a_{30} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{02} & a_{03} & \ldots \\
a_{20} & 0 & 0 & \ldots \\
a_{30} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
\end{aligned}
$$

Hence the proof is complete.
Now we shall consider two subspaces of the Hilbert space $H^{2}\left(\mathbb{D}^{2}\right)$. The first one consists of all symmetric functions in $H^{2}\left(\mathbb{D}^{2}\right)$, i.e.,

$$
H_{+}=\left\{f \in H^{2}\left(\mathbb{D}^{2}\right): f\left(z_{1}, z_{2}\right)=f\left(z_{2}, z_{1}\right)\right\}
$$

and the second one consists of all antisymmetric functions in $H^{2}\left(\mathbb{D}^{2}\right)$, i.e.,

$$
H_{-}=\left\{f \in H^{2}\left(\mathbb{D}^{2}\right): f\left(z_{1}, z_{2}\right)=-f\left(z_{2}, z_{1}\right)\right\} .
$$

It can be checked that $H^{2}\left(\mathbb{D}^{2}\right)=H_{+} \oplus H_{-}$. Since both H_{+}and H_{-}are invariant under the pair $\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)$, the spaces H_{+}and H_{-}are reducing for $\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)$. It can be easily checked from the definition of a Γ-contraction that a restriction of a Γ-contraction to an invariant subspace is again a Γ-contraction. So $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{+}}$and $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{-}}$are Γ-contractions. Since restriction of an isometry to an invariant subspace is again an isometry, $\left.M_{z_{1} z_{2}}\right|_{H_{+}}$and $\left.M_{z_{1} z_{2}}\right|_{H_{-}}$are isometries. Hence by [4, Thm. 2.14(2)], the pairs $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{+}}$ and $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{-}}$are Γ-isometries. For brevity, we shall use the notation $\left(S_{+}, P_{+}\right)$and $\left(S_{-}, P_{-}\right)$for the pairs $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{+}}$and $\left.\left(M_{z_{1}+z_{2}}, M_{z_{1} z_{2}}\right)\right|_{H_{-}}$ respectively. We shall find their fundamental operators.

§5.2. Symmetric case

Every element $f \in H_{+}$has the form $f\left(z_{1}, z_{2}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} z_{1}^{i} z_{2}^{j}$, where $a_{i j} \in \mathbb{C}$ and $a_{i j}=a_{j i}$ for all $i, j \geq 0$. So we can write f in the matrix form

$$
\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \cdots \\
a_{01} & a_{11} & a_{12} & \ldots \\
a_{02} & a_{12} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

In what follows, we shall exhibit the fundamental operator of the Γ-isometry $\left(S_{+}, P_{+}\right)$. The results are collected and stated in two lemmas without proof because the proofs are similar to what we did above.

Lemma 19. The adjoints of S_{+}and P_{+}are

$$
S_{+}^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \cdots \\
a_{01} & a_{11} & a_{12} & \cdots \\
a_{02} & a_{12} & a_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
2 a_{01} & a_{11}+a_{02} & a_{12}+a_{03} & \ldots \\
a_{11}+a_{02} & 2 a_{12} & a_{22}+a_{13} & \ldots \\
a_{12}+a_{03} & a_{22}+a_{13} & 2 a_{23} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
P_{+}^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{01} & a_{11} & a_{12} & \ldots \\
a_{02} & a_{12} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{12} & a_{22} & a_{23} & \ldots \\
a_{13} & a_{23} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The defect space of P_{+}^{*} in matrix form is
$\mathcal{D}_{P_{+}^{*}}=\left\{\left(\begin{array}{cccc}a_{00} & a_{01} & a_{02} & \ldots \\ a_{01} & 0 & 0 & \ldots \\ a_{02} & 0 & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right): a_{0 j} \in \mathbb{C}, j \geq 0\right.$ with $\left.\left|a_{00}\right|^{2}+2 \sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}<\infty\right\}$.
The defect space in function form is $\overline{\operatorname{span}}\left\{z_{1}^{i}+z_{2}^{i}: i \geq 0\right\}$. The defect operator is

$$
D_{P_{+}^{*}}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{01} & a_{11} & a_{12} & \ldots \\
a_{02} & a_{12} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{01} & 0 & 0 & \ldots \\
a_{02} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Definition 20. Define $B_{+}: \mathcal{D}_{P_{+}^{*}} \rightarrow \mathcal{D}_{P_{+}^{*}}$ by

$$
B_{+}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \tag{5.3}\\
a_{01} & 0 & 0 & \ldots \\
a_{02} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
2 a_{01} & a_{02} & a_{03} & \ldots \\
a_{02} & 0 & 0 & \ldots \\
a_{03} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

for all $a_{0 j} \in \mathbb{C}, j \geq 0$ with $\left|a_{00}\right|^{2}+2 \sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}<\infty$.

Lemma 21. The operator B_{+}defined on $\mathcal{D}_{P_{+}^{*}}$ is the fundamental operator of $\left(S_{+}^{*}, P_{+}^{*}\right)$.

§5.3. Antisymmetric case

Every element $f \in H_{-}$has the form $f\left(z_{1}, z_{2}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} z_{1}^{i} z_{2}^{j}$, where $a_{i j} \in \mathbb{C}$ and $a_{i j}=-a_{j i}$ for all $i, j \geq 0$. So we can write f in the matrix form

$$
\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \\
-a_{01} & 0 & a_{12} & \cdots \\
-a_{02} & -a_{12} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Lemma 22. The adjoints of S_{-}and P_{-}are

$$
S_{-}^{*}\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \cdots \\
-a_{01} & 0 & a_{12} & \cdots \\
-a_{02} & -a_{12} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{02} & a_{12}+a_{03} & \cdots \\
-a_{02} & 0 & a_{13} & \cdots \\
-a_{12}-a_{03} & -a_{13} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
P_{-}^{*}\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \\
-a_{01} & 0 & a_{12} & \ldots \\
-a_{02} & -a_{12} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & \ldots \\
-a_{12} & 0 & a_{23} & \ldots \\
-a_{13} & -a_{23} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The defect space of P_{-}^{*} in matrix form is

$$
\mathcal{D}_{P_{-}^{*}}=\left\{\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \\
-a_{01} & 0 & 0 & \ldots \\
-a_{02} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right): a_{0 j} \in \mathbb{C}, j \geq 1 \text { with } 2 \sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}<\infty\right\}
$$

The defect space in function form is $\overline{\operatorname{span}}\left\{z_{1}^{i}-z_{2}^{i}: i \geq 1\right\}$ and the defect operator is

$$
D_{P_{-}^{*}}\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \\
-a_{01} & 0 & a_{12} & \ldots \\
-a_{02} & -a_{12} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \\
-a_{01} & 0 & 0 & \ldots \\
-a_{02} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Definition 23. Define $B_{-}: \mathcal{D}_{P_{-}^{*}} \rightarrow \mathcal{D}_{P_{-}^{*}}$ by

$$
B_{-}\left(\begin{array}{cccc}
0 & a_{01} & a_{02} & \ldots \tag{5.4}\\
-a_{01} & 0 & 0 & \ldots \\
-a_{02} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{02} & a_{03} & \ldots \\
-a_{02} & 0 & 0 & \ldots \\
-a_{03} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

for all $a_{0 j} \in \mathbb{C}, j \geq 1$ with $2 \sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}<\infty$.
Lemma 24. B_{-}is the fundamental operator of $\left(S_{-}^{*}, P_{-}^{*}\right)$.

§5.4. Explicit unitary equivalence

The three spaces $H^{2}\left(\mathbb{D}^{2}\right), H_{+}$and H_{-}described above provide us with examples of Γ-isometries. The respective operator pairs $(S, P),\left(S_{+}, P_{+}\right)$and $\left(S_{-}, P_{-}\right)$are pure Γ-isometries. Agler and Young in [2, Thm. 3.2] proved that any pure Γ-isometry is unitarily equivalent to $\left(M_{\varphi}, M_{z}\right)$ on $H_{\mathcal{E}}^{2}(\mathbb{D})$ for some Hilbert space \mathcal{E}. Moreover, φ is linear. It was shown later in [5, Thm. 3.1] that \mathcal{E} can be taken to be $\mathcal{D}_{P^{*}}$ and $\varphi(z)=B^{*}+B z$, where $B \in \mathcal{B}\left(\mathcal{D}_{P^{*}}\right)$ is the fundamental operator of the Γ-coisometry $\left(S^{*}, P^{*}\right)$. In the final theorem of this paper, we explicitly find the unitary operators that implement unitary equivalence for the pure Γ-isometries $(S, P),\left(S_{+}, P_{+}\right)$and $\left(S_{-}, P_{-}\right)$.

Theorem 25. The three unitary operators are described separately below.
(a) The unitary operator $U: H^{2}\left(\mathbb{D}^{2}\right) \rightarrow H_{\mathcal{D}_{P^{*}}}^{2}(\mathbb{D})$ that satisfies $U^{*} M_{B^{*}+z B} U=S$ and $U^{*} M_{z} U=P$ is $U f(z)=D_{P^{*}}\left(I-z P^{*}\right)^{-1} f$.
(b) The unitary operator $U_{+}: H_{+} \rightarrow H_{\mathcal{D}_{P_{+}^{*}}}^{2}(\mathbb{D})$ that satisfies

$$
U_{+}^{*} M_{B_{+}^{*}+z B_{+}} U_{+}=S_{+} \quad \text { and } \quad U_{+}^{*} M_{z} U_{+}=P_{+}
$$

is simply the restriction of the U above to H_{+}.
(c) The unitary operator $U_{-}: H_{-} \rightarrow H_{\mathcal{D}_{P_{-}^{*}}}^{2}(\mathbb{D})$ that satisfies

$$
U_{-}^{*} M_{B_{-}^{*}+z B_{-}} U_{-}=S_{-} \quad \text { and } \quad U_{-}^{*} M_{z} U_{-}=P_{-}
$$

is the restriction of U to H_{-}.
Proof. (a) First note that the function $z \mapsto D_{P^{*}}\left(I-z P^{*}\right)^{-1} f$ is a holomorphic function on \mathbb{D}, for every $f \in H^{2}\left(\mathbb{D}^{2}\right)$. Its Taylor series expansion is

$$
\begin{aligned}
& D_{P^{*}}\left(I-z P^{*}\right)^{-1} f \\
& \quad=D_{P^{*}}\left(I+z P^{*}+z^{2} P^{* 2}+\cdots\right) f
\end{aligned}
$$

$$
=D_{P^{*}} f+z D_{P^{*}} P^{*} f+z^{2} D_{P^{*}} P^{* 2} f+\cdots
$$

$$
=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \tag{5.5}\\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & 0 & 0 & \ldots \\
a_{31} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z^{2}\left(\begin{array}{ccc}
a_{22} & a_{23} & a_{24} \\
a_{32} & 0 & 0 \\
a_{42} & 0 & 0 \\
\vdots & \ldots \\
\vdots & \vdots & \vdots \\
\ddots
\end{array}\right)+\cdots
$$

To see that U is an isometry, we do a norm computation:

$$
\begin{aligned}
\|U f\|_{H_{\mathcal{D}_{P^{*}}}^{2}(\mathbb{D})}^{2} & =\left\|D_{P^{*}} f\right\|_{\mathcal{D}_{P^{*}}}^{2}+\left\|D_{P^{*}} P^{*} f\right\|_{\mathcal{D}_{P^{*}}}^{2}+\left\|D_{P^{*}} P^{* 2} f\right\|_{\mathcal{D}_{P^{*}}}^{2}+\cdots \\
& =\|f\|^{2}-\lim _{n \rightarrow \infty}\left\|P^{* n} f\right\|^{2}=\|f\|_{H^{2}\left(\mathbb{D}^{2}\right)}^{2} \quad[\text { since } P \text { is pure }] .
\end{aligned}
$$

From equation (5.5) it is easy to see that U is onto $H_{\mathcal{D}_{P^{*}}}^{2}(\mathbb{D})$. Therefore U is unitary.

We now show that $U^{*} M_{z} U=P$:

$$
\begin{aligned}
& \left.+z^{3}\left(\begin{array}{cccc}
a_{22} & a_{23} & a_{24} & \ldots \\
a_{32} & 0 & 0 & \ldots \\
a_{42} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots\right) \\
& =\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
0 & a_{00} & a_{01} & a_{02} & \ldots \\
0 & a_{10} & a_{11} & a_{12} & \ldots \\
0 & a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=P\left(\begin{array}{ccc}
a_{00} & a_{01} & a_{02}
\end{array}\right)\left(\begin{array}{ccc}
a_{10} & a_{11} & a_{12}
\end{array} \ldots .\right.
\end{aligned}
$$

From the definition of B (Definition 17), one can easily find that for all $a_{j 0}$, $a_{0 j} \in \mathbb{C}, j=0,1,2, \ldots$ with $\left|a_{00}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{0 j}\right|^{2}+\sum_{j=1}^{\infty}\left|a_{j 0}\right|^{2}<\infty$,

$$
B^{*}\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \tag{5.6}\\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{00} & a_{01} & \ldots \\
a_{00} & 0 & 0 & \ldots \\
a_{10} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

To show that $U^{*} M_{B^{*}+z B} U=S$, we first calculate $M_{B^{*}+z B} U$. Now

$$
\begin{aligned}
& M_{B^{*}+z B} U\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& =M_{B^{*}+B z}\left(\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & 0 & 0 & \ldots \\
a_{31} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\right. \\
& \left.+z^{2}\left(\begin{array}{cccc}
a_{22} & a_{23} & a_{24} & \ldots \\
a_{32} & 0 & 0 & \ldots \\
a_{42} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots\right) \\
& =M_{B^{*}}\left(\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & 0 & 0 & \ldots \\
a_{31} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\right. \\
& \left.+z^{2}\left(\begin{array}{cccc}
a_{22} & a_{23} & a_{24} & \ldots \\
a_{32} & 0 & 0 & \ldots \\
a_{42} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots\right) \\
& +M_{B}\left(z\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & 0 & 0 & \ldots \\
a_{20} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z^{2}\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & 0 & 0 & \ldots \\
a_{31} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\right. \\
& \left.+z^{3}\left(\begin{array}{cccc}
a_{22} & a_{23} & a_{24} & \ldots \\
a_{32} & 0 & 0 & \ldots \\
a_{42} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots\right) \\
& =\left(\left(\begin{array}{cccc}
0 & a_{00} & a_{01} & \ldots \\
a_{00} & 0 & 0 & \ldots \\
a_{10} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z\left(\begin{array}{cccc}
0 & a_{11} & a_{12} & \ldots \\
a_{11} & 0 & 0 & \ldots \\
a_{21} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+z^{2}\left(\begin{array}{cccc}
0 & a_{22} & a_{23} & \ldots \\
a_{22} & 0 & 0 & \cdots \\
a_{32} & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots\right) \\
& +\left(z\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{02} & a_{03} & \ldots \\
a_{20} & 0 & 0 & \ldots \\
a_{30} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z^{2}\left(\begin{array}{cccc}
a_{21}+a_{12} & a_{13} & a_{14} & \ldots \\
a_{31} & 0 & 0 & \ldots \\
a_{41} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\right. \\
& +z^{3}\left(\begin{array}{cccc}
a_{32}+a_{23} & a_{24} & a_{25} & \ldots \\
a_{42} & 0 & 0 & \ldots \\
a_{52} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots \cdot \\
& =\left(\begin{array}{cccc}
0 & a_{00} & a_{01} & \ldots \\
a_{00} & 0 & 0 & \ldots \\
a_{10} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+z\left(\begin{array}{cccc}
a_{10}+a_{01} & a_{11}+a_{02} & a_{12}+a_{03} & \ldots \\
a_{20}+a_{11} & 0 & 0 & \ldots \\
a_{30}+a_{21} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& +z^{2}\left(\begin{array}{cccc}
a_{21}+a_{12} & a_{22}+a_{13} & a_{23}+a_{14} & \ldots \\
a_{31}+a_{22} & 0 & 0 & \cdots \\
a_{41}+a_{32} & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+\cdots
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& U^{*} M_{B^{*}+B z} U\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & \ldots \\
a_{10} & a_{11} & a_{12} & \ldots \\
a_{20} & a_{21} & a_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& \\
& = \\
& \\
&
\end{aligned}
$$

(5.7)

$$
=\left(\begin{array}{ccccc}
0 & a_{00} & a_{01} & a_{02} & \ldots \\
a_{00} & a_{10}+a_{01} & a_{11}+a_{02} & a_{12}+a_{03} & \ldots \\
a_{10} & a_{20}+a_{11} & a_{21}+a_{12} & a_{22}+a_{13} & \ldots \\
a_{20} & a_{30}+a_{21} & a_{31}+a_{22} & a_{32}+a_{23} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=S\left(\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \ldots \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right) .
$$

Therefore $S=U^{*} M_{B^{*}+B z} U$. Surjectivity of $\left.U\right|_{H_{+}}$and $\left.U\right|_{H_{-}}$can be easily checked. The rest of the argument is as above.

Acknowledgements

The authors' research is supported by Department of Science and Technology, India through the project numbered SR/S4/MS:766/12 and University Grants Commission Centre for Advanced Studies. We are particularly thankful to the referee for valuable input.

References

[1] J. Agler, Rational dilation on an annulus, Ann. of Math. 121 (1985), 537-563. Zbl 0609.47013 MR 0794373
[2] J. Agler and N. J. Young, A model theory for Γ-contractions, J. Operator Theory 49 (2003), 45-60. Zbl 1019.47013 MR 1978320
[3] T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88-90. Zbl 0116.32403 MR 0155193
[4] T. Bhattacharyya, S. Pal and S. Shyam Roy, Dilations of Γ-contractions by solving operator equations, Adv. Math. 230 (2012), 577-606. Zbl 1251.47010 MR 2914959
[5] T. Bhattacharyya and S. Pal, A functional model for pure Γ-contractions, J. Operator Theory 71 (2014), 327-339. Zbl 1324.47015 MR 3214641
[6] T. Bhattacharyya and H. Sau, Explicit and unique construction of tetrablock unitary dilation in a certain case, Complex Anal. Oper. Theory 10 (2016), 749-768. Zbl 1344.47006 MR 3480602
[7] H. K. Du and P. Jin, Perturbation of spectrum of 2 by 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761-766. Zbl 0814.47016 MR 1185266
[8] W. S. Li and D. Timotin, The central Ando dilation and related orthogonality properties, J. Funct. Anal. 154 (1998), 1-16. Zbl 0913.47008 MR 1616520
[9] S. Pal, From Stinespring dilation to Sz.-Nagy dilation on the symmetrized bidisc and operator models, New York J. Math. 20 (2014), 645-664. Zbl 1314.47016 MR 3262025
[10] S. Pal and O. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct. Anal. 266 (2014), 5779-5800. Zbl 1311.47008 MR 3182959
[11] J. J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322. Zbl 0064.11602 MR 0068740
[12] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic analysis of operators on Hilbert space, 2nd ed., Universitext, Springer, New York, 2010. Zbl 1234.47001 MR 2760647

[^0]: Communicated by N. Ozawa. Received November 9, 2015. Revised August 26, 2016.
 T. Bhattacharyya: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India;
 e-mail: tirtha@member.ams.org
 H. Sau: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; e-mail: haripadasau215@gmail.com

