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Pfaffian of Appell’s Hypergeometric System F4 in
Terms of the Intersection Form of Twisted

Cohomology Groups

by

Yoshiaki Goto, Jyoichi Kaneko and Keiji Matsumoto

Abstract

We study a Pfaffian of Appell’s hypergeometric system F4(a, b, c) of differential equa-
tions by twisted cohomology groups associated with Euler type integrals representing
solutions. We simplify its connection matrix by the pull-back under a double cover of the
complement of the singular locus. We express the simplified connection matrix in terms
of the intersection form between the twisted cohomology groups.
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§1. Introduction

There are several hypergeometric series in two variables x = (x1, x2). One of

them, Appell’s hypergeometric series F4(a, b, c;x), is defined in (2.1) below, where

a, b and c = (c1, c2) are complex parameters. It satisfies Appell’s hypergeometric

system F4(a, b, c) generated by the differential equations (2.2). This system is a

holonomic system of rank 4 with singular locus

S = {(x1, x2) ∈ C2 | x1x2R(x) = 0} ∪ L∞,
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where R(x) = x21 + x22 − 2x1x2 − 2x1 − 2x2 + 1 and L∞ is the line at infinity in

the projective plane P2.

In this paper, we study a Pfaffian system of F4(a, b, c) by a twisted cohomol-

ogy group H2(Ω•(C2
x),∇) associated with Euler type integrals (2.3) representing

solutions to this system. By regarding this Pfaffian system as a connection ∇X of

a vector bundle

H2(Ω•,0(X),∇) =
⋃
x∈X

H2(Ω•(C2
x),∇)

over X = P2 − S with fiber H2(Ω•(C2
x),∇) of rank 4, we find a global frame

of this vector bundle and represent the connection as Ξ = Ξ1dx1 + Ξ2dx2 in

Theorem 4.1. The connection matrix satisfies the integrability condition dΞ = Ξ∧Ξ

and has no apparent singularity, but Ξ1 and Ξ2 are complicated and dΞ 6= O. As

shown in Proposition 4.2, the system F4(a, b, c) does not admit an expression of

the connection matrix as a sum of constant matrices times logarithmic 1-forms

associated with the singular locus S, like other Appell’s hypergeometric systems.

To make the connection matrix simple, we consider a double cover Y of X defined

by the map

pr : C2 3 (y1, y2) 7→ (x1, x2) = (y1(1− y2), y2(1− y1)) ∈ C2.

It induces the pull-back bundle and the pull-back connection ∇Y . By changing

a frame of the pull-back bundle, we express the pull-back connection ∇Y as a

sum of constant matrices times logarithmic 1-forms associated with S̃ in Theo-

rem 5.1, where S̃ is the preimage of S under the double cover pr. In particular,

the connection matrix Ξ̂ of ∇Y satisfies d Ξ̂ = Ξ̂ ∧ Ξ̂ = O. It is shown in [Kat]

that the pull-back of F4(a, b, c;x) under a similar map satisfies a Pfaffian equation

equivalent to ours.

Let H2(Ω•(C2
x),∇∨) be the twisted cohomology group defined by the dual

derivative ∇∨ of ∇. This space is regarded as the dual of H2(Ω•(C2
x),∇) via

the intersection form Ic. We have the dual vector bundle over X and the dual

connection ∇∨X satisfying

d Ic(ϕ,ϕ′) = Ic(∇Xϕ,ϕ′) + Ic(ϕ,∇∨Xϕ′),

where ϕ and ϕ′ are sections of the vector bundle and of its dual, respectively.

Proposition 3.2 states that there is no global frame of H2(Ω•,0(X),∇) satisfying

(1.1) d Ic(ϕi, ϕ∨j ) = 0, 1 ≤ i, j ≤ 4,

where ϕi ∈ H2(Ω•(C2
x),∇) and ϕ∨j is the image of ϕj under the natural map from

H2(Ω•,0(X),∇) to H2(Ω•,0(X),∇∨). The intersection form is also defined between
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the pull-back bundles. The frame of the pull-back bundle used in Theorem 5.1

satisfies (1.1). In fact, we find the double cover Y ofX such that such a frame exists.

The existence of the frame enables us to represent the pull-back connection ∇Y
by the intersection form Ic in our main result, Theorem 5.2. We remark that this

expression is independent of the choice of frames with (1.1), not given in terms of

matrices.

The monodromy representation of F4(a, b, c) was initially given in [Kan] by a

twisted homology group associated with the integrals (2.3), and reformulated in

[GM1] in terms of the intersection form. By results [GM1, §4], we can express the

circuit matrix along a loop turning around each component of S by the intersection

form and a subspace of vanishing cycles as x approaches the component. On the

other hand, we express in Proposition 5.1 the coefficient matrix of the logarithmic

1-form corresponding to a component of S̃ in Ξ̂ by the intersection form and a sub-

space of vanishing forms as x approaches the component. Note that these matrices

admit a common characterization by the intersection form and vanishing vectors.

We also point out the similarity between the normalized intersection matrices of

twisted homology and cohomology groups in Remark 5.1.

Appell’s hypergeometric system F4(a, b, c) generalizes to Lauricella’s hyper-

geometric system FC(a, b, c) of rank 2m with m variables. For this system, we have

twisted (co)homology groups associated with integrals representing solutions. The

monodromy representation of FC(a, b, c) is expressed in terms of the intersection

form between twisted homology groups in [G, §5]. However, we have not been

able to deduce that the system FC(a, b, c) admits a Pfaffian system with a simple

expression.

For Pfaffians of Lauricella’s hypergeometric systems FA and FD in m vari-

ables, it is easy to find frames satisfying (1.1) without considering covering maps.

Their Pfaffians are expressed in terms of intersection forms between twisted coho-

mology groups associated with integrals representing solutions [M1], [M2]. Re-

cently, a similar result was obtained in [GM2] for the hypergeometric system

E(k+ 1, k+n+ 2;α) (see [AoKi, Chapter 3] for its definition). Its Pfaffian system

admits a frame satisfying (1.1), and its singular locus contains components given

by non-linear equations.

§2. Appell’s hypergeometric function F4

In [ApKa], Appell’s hypergeometric series F4(a, b, c;x) of variables x1, x2 with

parameters a, b, c = (c1, c2) is defined by

(2.1) F4(a, b, c1, c2;x1, x2) =

∞∑
n1,n2=0

(a, n1 + n2)(b, n1 + n2)

(c1, n1)(c2, n2)n1!n2!
xn1
1 xn2

2 ,
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where c1, c2 6= 0,−1,−2, . . . and (a, k) = a(a+ 1) · · · (a+ k− 1) = Γ (a+ k)/Γ (a).

This series converges in the domain

D = {x = (x1, x2) ∈ C |
√
|x1|+

√
|x2| < 1},

and satisfies the differential equations[
x1(1− x1)∂21 − x22∂22 − 2x1x2∂1∂2

+ {c1 − (a+ b+ 1)x1}∂1 − (a+ b+ 1)x2∂2 − ab
]
f(x) = 0,

(2.2) [
x2(1− x2)∂22 − x21∂21 − 2x1x2∂1∂2

+ {c2 − (a+ b+ 1)x2}∂2 − (a+ b+ 1)x1∂1 − ab
]
f(x) = 0.

The system generated by them is called Appell’s hypergeometric system F4(a, b, c)

of differential equations. This system is of rank 4 with singular locus

S = {(x1, x2) ∈ C2 | x1x2R(x) = 0} ∪ L∞ ⊂ P2,

where L∞ is the line at infinity and

R(x) = x21 + x22 − 2x1x2 − 2x1 − 2x2 + 1.

We use the following integral representation to solutions of F4(a, b, c):

(2.3)

∫
∆

u(s, x)
ds1 ∧ ds2
s1s2

,

where

u(s, x) = sλ1
1 sλ2

2 Q(s)λ3L(s, x)λ4 ,

Q = Q(s) = s1s2 − s1 − s2, L = L(s, x) = 1− s1x1 − s2x2,
λ1 = a− c2 + 1, λ2 = a− c1 + 1, λ3 = c1 + c2 − a− 2, λ4 = −b,

and a 2-chain ∆ loading a branch of u(s, x) is a twisted 2-cycle. Refer to [AoKi]

for twisted cycles and twisted homology groups.

Remark 2.1. It is convenient for the study of a Pfaffian system of F4(a, b, c) to

use the multi-valued function u(s, x) instead of

u(t, x) = t1−c11 t1−c22 (1− t1 − t2)c1+c2−a−1
(

1− x1
t1
− x2
t2

)−b
applied in [GM1]. We get u(s, x) by the change of variables (t1, t2) = (1/s1, 1/s2)

and the replacement a 7→ a+ 1 in u(t, x).
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§3. Twisted cohomology group

We regard the parameters a, b and c = (c1, c2) as indeterminates and we set

a00 = a, a10 = a− c1 + 1, a01 = a− c2 + 1, a11 = a− c1 − c2 + 2,

b00 = b, b10 = b− c1 + 1, b01 = b− c2 + 1, b11 = b− c1 − c2 + 2.

We assume that

(3.1) aij , bij /∈ Z (i, j ∈ Z2 = {0, 1})

when we assign complex values to the parameters. Recall that

λ1 = a− c2 + 1, λ2 = a− c1 + 1, λ3 = c1 + c2 − a− 2, λ4 = −b.

In this section, we regard vector spaces as defined over the rational function field

C(λ) = C(λ1, . . . , λ4) = C(a, b, c1, c2). There is an involution on this field given by

(3.2) C(λ) 3 f(λ1, . . . , λ4) 7→ f∨(λ1, . . . , λ4) = f(−λ1, . . . ,−λ4) ∈ C(λ).

Note that

a∨ = (λ1 + λ2 − λ3)∨ = −λ1 − λ2 + λ3 = −a, b∨ = (−λ4)∨ = λ4 = −b,
c∨1 = (1+λ1+λ3)∨ = 1−λ1−λ3 = 2−c1, c∨2 = (1+λ2+λ3)∨ = 1−λ2−λ3 = 2−c2.

We set

X = {(s, x) ∈ C2 ×X | s1s2Q(s)L(s, x) 6= 0} ⊂ (P1 × P1)× P2,

where X is the complement of the singular locus S of F4(a, b, c) in P2. There is a

natural projection

p : X 3 (s, x) 7→ x ∈ X.

For any fixed x ∈ X, we have

C2
x = p−1(x) = {s = (s1, s2) ∈ C2 | s1s2Q(s)L(s, x) 6= 0}

and an inclusion map

ıx : C2
x 3 s 7→ (s, x) ∈ X.

We denote the C(λ)-algebra of rational functions on P2 with poles only along S

by O(X). Note that x1, x2 and R(x) are invertible in O(X). We denote the vector

space of rational k-forms on (P1×P1)×P2 with poles only along the complement

of X by Ωk(X), and the subspace of Ω i+j(X) consisting of those elements which

are i-forms with respect to the variables s1, s2 by Ω i,j(X).
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We set

ω = ds log(u(s, x)) =
λ1ds1
s1

+
λ2ds2
s2

+
λ3dsQ(s)

Q(s)
+
λ4dsL(s, x)

L(s, x)
,

ωX = dx log(u(s, x)) = −λ4s1dx1
L(s, x)

− λ4s2dx2
L(s, x)

,

where ds and dx are the exterior derivatives with respect to s1, s2 and to x1, x2,

respectively. Note that ω ∈ Ω1,0(X) and ωX ∈ Ω0,1(X). By using the twisted

exterior derivative ∇ = ds + ω ∧ on X, we define the quotient spaces

Hk(Ω•,0(X),∇) = ker
(
∇ : Ωk,0(X)→ Ωk+1,0(X)

)
/∇(Ωk−1,0(X))

as O(X)-modules, where k = 0, 1, 2 and we regard Ω−1,0(X) as the zero vector

space.

For a fixed x, the inclusion map ıx induces a natural map from Hk(Ω•,0(X),∇)

to the rational twisted cohomology group

Hk(Ω•(C2
x),∇) = ker

(
∇ : Ωk(C2

x)→ Ωk+1(C2
x)
)
/∇(Ωk−1(C2

x))

on C2
x with respect to the twisted exterior derivative induced from ∇. Here Ωk(C2

x)

is the vector space of rational k-forms with poles only along the complement of C2
x

in P1 × P1. The structure of Hk(Ω•(C2
x),∇) is as follows.

Fact 3.1 ([AoKi], [C]). (i) We have

dimHk(Ω•(C2
x),∇) =

{
4 if k = 2,

0 if k = 0, 1.

(ii) There is a canonical isomorphism

x : H2(Ω•(C2
x),∇)→ H2(E•c (C2

x),∇)

= ker
(
∇ : E2c (C2

x)→ E3c (C2
x)
)
/∇(E1c (C2

x)),

where Ekc (C2
x) is the vector space of smooth k-forms with compact support

in C2
x.

We have a twisted exterior derivation ∇∨ = ds − ω ∧ for −ω and

H2(Ω•,0(X),∇∨) = Ω2,0(X)
/
∇∨(Ω1,0(X)),

H2(Ω•(C2
x),∇∨) = Ω2(C2

x)/∇∨(Ω1(C2
x)).

For any fixed x ∈ X, we define the intersection form between H2(Ω•(C2
x),∇) and

H2(Ω•(C2
x),∇∨) by

Ic(ϕx, ϕ′x) =

∫
C2

x

x(ϕx) ∧ ϕ′x ∈ C(λ),
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where ϕx, ϕ
′
x ∈ Ω2(C2

x), and x is given in Fact 3.1. This integral converges since

x(ϕx) is a smooth 2-form on C2
x with compact support. It is bilinear over C(λ).

We take four elements ϕ1, . . . , ϕ4 of H2(Ω•,0(X),∇):

ϕ1 =
ds12
s1s2

, ϕ2 =
x1ds12
s2L(s, x)

,

ϕ3 =
x2ds12
s1L(s, x)

, ϕ4 =
ds12

Q(s)L(s, x)
,

where ds12 = ds1 ∧ ds2.

Proposition 3.1. For a fixed x ∈ X, the numbers Ic(ı∗x(ϕi), ı
∗
x(ϕj)) (1 ≤ i, j ≤ 4)

are (2π
√
−1)2Cij, where

C11 =
1

λ123

(
1

λ1
+

1

λ2

)
+

1

λ−134

(
1

λ0
+

1

λ2

)
+

1

λ−234

(
1

λ0
+

1

λ1

)
=

1

a00

(
1

a01
+

1

a10

)
+

1

b10

(
1

b11
+

1

a10

)
+

1

b01

(
1

b11
+

1

a01

)
,

C12 =
−1

λ−134

(
1

λ0
+

1

λ2

)
=
−1

b10

(
1

b11
+

1

a10

)
,

C13 =
−1

λ−234

(
1

λ0
+

1

λ1

)
=
−1

b01

(
1

b11
+

1

a01

)
,

C14 = 0,

C22 =

(
1

λ0
+

1

λ2

)(
1

λ4
+

1

λ−134

)
=

(
1

b11
+

1

a10

)(
−1

b00
+

1

b10

)
,

C23 =
−1

λ0λ4
=

1

b11b00
,

C24 = 0,

C33 =

(
1

λ0
+

1

λ1

)(
1

λ4
+

1

λ−234

)
=

(
1

b11
+

1

a01

)(
−1

b00
+

1

b01

)
,

C34 = 0,

C44 =
2

λ3λ4R(x)
=

2

a11b00R(x)
,

Cji = Cij for i < j,

λ0 = −(λ1 + λ2 + 2λ3 + λ4) = b11, λ123 = λ1 + λ2 + λ3 = a00,

λ−134 = −(λ1 + λ3 + λ4) = b10, λ−234 = −(λ2 + λ3 + λ4) = b01.

The matrix C = (Cij)i,j is symmetric and its determinant is

det(C) =
4λ3

λ0λ1λ2λ34λ123λ
−
134λ

−
234R(x)

=

( ∏
i,j=0,1

1

aijbij

)
4a211

b200R(x)
.
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Divisor λ’s aij , bij a, b, c1, c2

E∞ λ0 b11 b− c1 − c2 + 2

s1 = 0 λ1 a01 a− c2 + 1

s2 = 0 λ2 a10 a− c1 + 1

Q(s) = 0 λ3 −a11 −a+ c1 + c2 − 2

L(s, x) = 0 λ4 −b00 −b
E0 λ123 a00 a

s1 =∞ λ−134 b10 b− c1 + 1

s2 =∞ λ−234 b01 b− c2 + 1

Table 1. Residues for components of the pole divisor of ω.

Proof. For a fixed x, we blow up P1 × P1 (⊃ C2
x) at two points (0, 0) and (∞,∞).

We tabulate the residue of the pull-back of ω to this space in Table 1, where E0

and E∞ are exceptional divisors coming from the blow up of P1×P1 at the points

(0, 0) and (∞,∞), respectively. Now using these data, follow the proof of [GM1,

Theorem 5.1].

Note that the matrix C is well-defined and det(C) 6= 0 for any x ∈ X under our

assumption. The natural map ı∗x : H2(Ω•,0(X),∇)→ H2(Ω•(C2
x),∇) is surjective

by Fact 3.1.

Corollary 3.1. The O(X)-modules H2(Ω•,0(X),∇) and H2(Ω•,0(X),∇∨) can be

regarded as vector bundles⋃
x∈X

H2(Ω•(C2
x),∇),

⋃
x∈X

H2(Ω•(C2
x),∇∨),

over X with the natural projection p. The classes of ϕ1, . . . , ϕ4 form a frame of

H2(Ω•,0(X),∇) and that of H2(Ω•,0(X),∇∨).

Proof. We have only to prove that the natural map from H2(Ω•,0(X),∇) to

H2(Ω•(C2
x),∇) is injective. We show that if ϕ ∈ Ω2,0(X) satisfies ı∗x(ϕ) = 0 as an

element of H2(Ω•(C2
x),∇) for any fixed x ∈ X then ϕ ∈ ∇(Ω1,0(X)). There exists

ψx ∈ Ω1(C2
x) such that ∇ψx = ı∗x(ϕ) for any x. Since this is a differential equation

in variables s1, s2 with parameters x1, x2, ψx can be globally extended to ψ. Hence

we obtain ψ ∈ Ω1,0(X) such that ∇(ψ) = ϕ.

By Proposition 3.1 and Corollary 3.1, the intersection form Ic can be regarded

as a map from H2(Ω•,0(X),∇) × H2(Ω•,0(X),∇∨) to O(X). We show that it is

impossible to eliminate R(x) in the matrix C by any frame change of t(ϕ1, . . . , ϕ4).
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Figure 1. Pole divisor of ω.

Proposition 3.2. There is no frame change G in

{G ∈M(4, 4;O(X)) | det(G) 6= 0}

of t(ϕ1, . . . , ϕ4) such that all entries of the intersection matrix of Gt(ϕ1, . . . , ϕ4)

are independent of x ∈ X.

Proof. Suppose that such a frame change G exists. Then the intersection matrix

of the frame G t(ϕ1, . . . , ϕ4) is given by GC tG∨, whose entries are independent of

x ∈ X. Here the matrix G∨ is obtained by applying the involution (3.2) to each

entry of G. By considering its determinant, we have

(3.3) det(G) det(G)∨ =
r(λ)

q(λ)
R(x),

where q(λ) and r(λ) are in C[λ1, . . . , λ4]. We set

det(G) =
g(λ, x)

h(λ, x)
, g(λ, x), h(λ, x) ∈ C[λ1, . . . , λ4][x1, x2].
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By clearing the denominators in (3.3), we have

(3.4) q(λ)g(λ, x)g(λ, x)∨ = r(λ)h(λ, x)h(λ, x)∨R(x).

We decompose g(λ, x), h(λ, x), q(λ) and r(λ) into homogeneous parts of λ1, . . . , λ4:

g(λ, x) =

mg∑
i=0

gi(λ, x), h(λ, x) =

mh∑
i=0

hi(λ, x), q(λ) =

mq∑
i=0

qi(λ), r(λ) =

mr∑
i=0

ri(λ),

where each component satisfies

gi(tλ, x) = tigi(λ, x), hi(tλ, x) = tihi(λ, x), qi(tλ) = tiqi(λ), ri(tλ) = tiri(λ).

Since

g(λ, x)∨ =

mg∑
i=0

(−1)igi(λ, x),

we have

g(λ, x)g(λ, x)∨ =
( ∑
0≤i≤mg

i∈2N

gi(λ, x)
)2
−
( ∑
0≤i≤mg

i/∈2N

gi(λ, x)
)2
.

The equality (3.4) is equivalent to

(mq∑
i=0

qi(λ)
)[( ∑

0≤i≤mg

i∈2N

gi(λ, x)
)2
−
( ∑
0≤i≤mg

i/∈2N

gi(λ, x)
)2]

=
(mr∑
i=0

ri(λ)
)[( ∑

0≤i≤mh
i∈2N

hi(λ, x)
)2
−
( ∑
0≤i≤mh

i/∈2N

hi(λ, x)
)2]

R(x).

Comparing the terms with the highest degree of λ in this equality, we have

±qmq
(λ)gmg

(λ, x)2 = rmr
(λ)hmh

(λ, x)2R(x).

Since R(x) is irreducible in C[λ1, . . . , λ4][x1, x2], we have a contradiction.

§4. Pfaffian system of F4(a, b, c)

For any ϕ ∈ H2(Ω•,0(X),∇), we have

(4.1) dx

∫
∆

u(s, x)ϕ =

∫
∆

(dxu(s, x) ∧ ϕ+ u(s, x)dxϕ) =

∫
∆

u(s, x)(∇Xϕ),

where ∇X = dx +ωX ∧. Thus the exterior derivative dx on X induces the connec-

tion ∇X = dx + ωX ∧,

∇X : H2(Ω•,0(X),∇)→ H2(Ω•,1(X),∇) = Ω2,1(X)/∇(Ω1,1(X)).
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By considering 1/u(s, x) instead of u(s, x), we also have the connection ∇∨X =

dx − ωX ∧,

∇∨X : H2(Ω•,0(X),∇∨)→ H2(Ω•,1(X),∇∨) = Ω2,1(X)/∇∨(Ω1,1(X)).

Proposition 4.1. The connection ∇X is compatible with the intersection form Ic,
i.e., they satisfy

dxIc(ϕ,ϕ′) = Ic(∇Xϕ,ϕ′) + Ic(ϕ,∇∨Xϕ′).

Proof. It is enough to show that this equality holds in any small simply connected

domain U in X. We have

dxIc(ϕ,ϕ′) = dx

∫
C2

x

u(s, x)x(ϕ) ∧ ϕ′

u(s, x)

=

∫
C2

x

dx[u(s, x)x(ϕ)] ∧ ϕ′

u(s, x)
+

∫
C2

x

u(s, x)x(ϕ) ∧ dx
ϕ′

u(s, x)

=

∫
C2

x

∇X(x(ϕ)) ∧ ϕ′ +
∫
C2

x

x(ϕ) ∧∇∨Xϕ′,

since x(ϕ) is with compact support for any point x ∈ U . By following the proof of

[M1, Lemma 7.2], we can show that ∇X(x(ϕ)) is ∇-cohomologous to x(∇X(ϕ)).

Hence ∫
C2

x

∇X(x(ϕ)) ∧ ϕ′ =

∫
C2

x

x(∇X(ϕ)) ∧ ϕ′ = Ic(∇Xϕ,ϕ′),

which completes the proof.

Since ∇Xϕ ∈ Ω2,1(X), there exist Ξ1
i and Ξ2

i in O(X) such that

∇Xϕ = dx1 ∧
4∑
i=1

Ξ1
iϕi + dx2 ∧

4∑
i=1

Ξ2
iϕi.

By calculating Ξ1
i and Ξ2

i for ϕ = ϕ1, . . . , ϕ4, we represent the connection ∇X as

∇Xt(ϕ1, . . . , ϕ4) = Ξ ∧ t(ϕ1, . . . , ϕ4), Ξ = dx1Ξ1 + dx2Ξ2,

where Ξ1 and Ξ2 are 4 × 4-matrices over the C(λ)-algebra O(X). By (4.1), the

vector-valued function

F (x) =
t(∫

∆

u(s, x)ϕ1, . . . ,

∫
∆

u(s, x)ϕ4

)
satisfies a system of differential equations

dxF (x) = ΞF (x).

Let us determine Ξ1 and Ξ2. A straightforward calculation implies the following.
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Lemma 4.1. We have

∇X(ϕ1) = dx1 ∧
−λ4ds12
s2L

+ dx2 ∧
−λ4ds12
s1L

=
dx1
x1
∧ (−λ4)ϕ2 +

dx2
x2
∧ (−λ4)ϕ3,

∇X(ϕ2) = dx1 ∧
(1− λ4s1x1 − s2x2)ds12

s2L2
+ dx2 ∧

(1− λ4)x1ds12
L2

,

∇X(ϕ3) = dx1 ∧
(1− λ4)x2ds12

L2
+ dx2 ∧

(1− s1x1 − λ4s2x2)ds12
s1L2

,

∇X(ϕ4) = dx1 ∧
(1− λ4)s1ds12

QL2
+ dx2 ∧

(1− λ4)s2ds12
QL2

.

To obtain Ξ1 and Ξ2, we express

ds12
L2

,
s1ds12
s2L2

,
s2ds12
s1L2

,
ds12
s2L2

,
ds12
s1L2

,
s1ds12
QL2

,
s2ds12
QL2

,

in terms of ϕ1, . . . , ϕ4.

Lemma 4.2. As elements of H2(Ω•,0(X),∇), we have

2(λ4 − 1)x1x2
L2

ds12 = (λ1 + λ2 + λ3)ϕ1 + (λ2 − λ4)ϕ2

+ (λ1 − λ4)ϕ3 + λ3(1− x1 − x2)ϕ4,

(λ4 − 1)x1s1
s2L2

ds12 =
λ1 + λ3 + 1

x1
ϕ2 + λ3ϕ4,

(λ4 − 1)x2s2
s1L2

ds12 =
λ2 + λ3 + 1

x2
ϕ3 + λ3ϕ4.

Proof. Straightforward calculations imply

∇
(
x1ds1 − x2ds2

L
+
ds1
s1
− ds2

s2

)
=

2(λ4 − 1)x1x2ds12
L2

− [(λ1 + λ2 + λ3)ϕ1 + (λ2 − λ4)ϕ2 + (λ1 − λ4)ϕ3 + λ3(1− x1 − x2)ϕ4],

∇
(
−s1ds2
s2L

)
=

(λ4 − 1)x1s1
s2L2

ds12 −
[
λ1 + λ3 + 1

x1
ϕ2 + λ3ϕ4

]
,

∇
(
s2ds1
s1L

)
=

(λ4 − 1)x2s2
s1L2

ds12 −
[
λ2 + λ3 + 1

x2
ϕ3 + λ3ϕ4

]
,

which proves the lemma.
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Lemma 4.3. As elements of H2(Ω•,0(X),∇), we have

2(λ4 − 1)x2
s1L2

ds12 = (λ1 + λ2 + λ3)ϕ1 + (λ2 − λ4)ϕ2

+ (λ1 + 2λ2 + 2λ3 + λ4)ϕ3 + λ3(1− x1 + x2)ϕ4,

2(λ4 − 1)x1
s2L2

ds12 = (λ1 + λ2 + λ3)ϕ1 + (2λ1 + λ2 + 2λ3 + λ4)ϕ2

+ (λ1 − λ4)ϕ3 + λ3(1 + x1 − x2)ϕ4.

Proof. Note that (
1

s1L2
− x1
L2
− s2x2
s1L2

)
ds12 =

ds12
s1L

=
ϕ3

x2
,(

1

s2L2
− x2
L2
− s1x1
s2L2

)
ds12 =

ds12
s2L

=
ϕ2

x1
.

Use Lemma 4.2.

Lemma 4.4. As elements of H2(Ω•,0(X),∇), we have

s1ds12
QL2

=
1− x1 + x2

R(x)
ϕ4 +

(λ1 + λ2 + 2λ3 + λ4)(1 + x1 − x2)x2
λ3R(x)

ds12
L2

− 2λ1x2
λ3R(x)

ds12
s1L2

− λ2(1− x1 − x2)

λ3R(x)

ds12
s2L2

,

s1ds12
QL2

=
1 + x1 − x2

R(x)
ϕ4 +

(λ1 + λ2 + 2λ3 + λ4)(1− x1 + x2)x1
λ3R(x)

ds12
L2

− λ1(1− x1 − x2)

λ3R(x)

ds12
s1L2

− 2λ2x1
λ3R(x)

ds12
s2L2

.

Proof. Set

η0 =
ds12
QL2

, η1 =
s1ds12
QL2

, η2 =
s2ds12
QL2

.

There is a relation

η0 − x1η1 − x2η2 =
(1− s1x1 − s2x2)ds12

QL2
= ϕ4

among them. We have

∇
(
x1ds1 + x2ds2

L2

)
= λ3(x1 − x2)η0 − λ3x1η1 + λ3x2η2 +

(
λ1x2
s1L2

− λ2x1
s2L2

)
ds12,
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∇
(
ds1 − ds2

L2
+

(x1 + x2)(−s2ds1 + s1ds2)

L2

)
= 2λ3η0 + λ3(x1 + x2 − 1)η1 + λ3(x1 + x2 − 1)η2

−
(

λ1
s1L2

+
λ2
s2L2

− (λ1 + λ2 + 2λ3 + λ4)(x1 + x2)

L2

)
ds12,

which are zero as elements of H2(Ω•,0(X),∇). By regarding these relations as

linear equations in variables η0, η1, η2, we can solve them. The solutions yield the

lemma.

Remark 4.1. The form η0 = ds12/(QL
2) in the proof of Lemma 4.4 is expressed

as

η0 =
1− x1 − x2

R(x)
ϕ4 +

2(λ1 + λ2 + 2λ3 + λ4)x1x2
λ3R(x)

ds12
L2

− λ1x2(1 + x1 − x2)

λ3R(x)

ds12
s1L2

− λ2x1(1− x1 + x2)

λ3R(x)

ds12
s2L2

.

Now we are ready to find an expresssion of the connection matrix Ξ.

Theorem 4.1. With respect to the frame t(ϕ1, . . . , ϕ4), the connection ∇X is

represented as

∇Xt(ϕ1, . . . , ϕ4) = Ξ ∧ t(ϕ1, . . . , ϕ4),

where Ξ = Ξ1dx1 + Ξ2dx2 and

Ξ1 =



0 −λ4
x1

0 0

0 −λ1 + λ3
x1

0 −λ3

−λ1 + λ2 + λ3
2x1

−λ2 − λ4
2x1

−λ1 − λ4
2x1

−λ3(1− x1 − x2)

2x1

Ξ1
4,1 Ξ1

4,2 Ξ1
4,3 Ξ1

4,4


,

Ξ2 =



0 0 −λ4
x2

0

−λ1 + λ2 + λ3
2x2

−λ2 − λ4
2x2

−λ1 − λ4
2x2

−λ3(1− x1 − x2)

2x2

0 0 −λ2 + λ3
x2

−λ3

Ξ2
4,1 Ξ2

4,2 Ξ2
4,3 Ξ2

4,4


,

Ξ1
4,1 =

λ1 + λ2 + λ3
λ3

(
λ1 − λ2
R(x)

− (λ1 + 2λ3 + λ4)(1 + x1 − x2)

2x1R(x)

)
,
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Ξ1
4,2 = − (λ2 − λ4)(λ2 + 2λ3 + λ4)

λ3R(x)

+
λ1λ2 + λ1λ4 + λ2λ4 + 2λ3λ4 + λ24

2λ3

1− x1 − x2
x1R(x)

,

Ξ1
4,3 =

λ1λ2 + λ1λ4 + λ2λ4 + 2λ3λ4 + λ24
λ3R(x)

− (λ1 − λ4)(λ1 + λ4 + 2λ3)

2λ3

1− x1 − x2
x1R(x)

,

Ξ1
4,4 = −(λ1 − 2λ3 − 3λ4 + 2)

x1
2R(x)

+ (λ1 − λ4 + 1)
1 + x2
R(x)

− (λ1 + 2λ3 + λ4)
(x2 − 1)2

2x1R(x)
,

Ξ2
4,1 =

λ1 + λ2 + λ3
λ3

(
λ2 − λ1
R(x)

− (λ2 + 2λ3 + λ4)(1− x1 + x2)

2x2R(x)

)
,

Ξ2
4,2 =

λ1λ2 + λ1λ4 + λ2λ4 + 2λ3λ4 + λ24
λ3R(x)

− (λ2 − λ4)(λ2 + 2λ3 + λ4)

2λ3

1− x1 − x2
x2R(x)

,

Ξ2
4,3 = − (λ1 − λ4)(λ1 + λ4 + 2λ3)

λ3R(x)

+
λ1λ2 + λ1λ4 + λ2λ4 + 2λ3λ4 + λ24

2λ3

1− x1 − x2
x2R(x)

,

Ξ2
4,4 = −(λ2 − 2λ3 − 3λ4 + 2)

x2
2R(x)

+ (λ2 − λ4 + 1)
x1 + 1

R(x)

− (λ2 + 2λ3 + λ4)
(x1 − 1)2

2x2R(x)
.

This connection matrix and the intersection matrix C in Proposition 3.1 satisfy

ΞC + C tΞ∨ = dxC(4.2)

= diag

(
0, 0, 0,

4(1− x1 + x2)dx1 + 4(1 + x1 − x2)dx2
λ3λ4R(x)2

)
,

where Ξ∨ is the image of Ξ under the involution (3.2), and diag(. . . ) denotes the

diagonal matrix with given entries.

Proof. Lemmas 4.1–4.4 yield the representation of ∇X with respect to the frame
t(ϕ1, . . . , ϕ4). By applying Proposition 4.1 to the frame t(ϕ1, . . . , ϕ4), we ob-

tain (4.2).
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Remark 4.2. Though the connection matrix Ξ is not closed, it satisfies the inte-

grability condition, i.e.,

Ξ ∧ Ξ = (Ξ1Ξ2 − Ξ2Ξ1)dx1 ∧ dx2

= dxΞ =

(
− ∂

∂x2
Ξ1 +

∂

∂x1
Ξ2

)
dx1 ∧ dx2 6= O.

Remark 4.3. We give some expressions of elements of H2(Ω•,0(X),∇) in terms

of ϕ1, . . . , ϕ4:

∇
(
−ds1
s1

+
ds2
s2

)
=
λ3ds12
Q

− [−(λ1 + λ2 + λ3)ϕ1 + λ4ϕ2 + λ4ϕ3],

∇
(
ds2
s2

)
=
λ3ds12
s1Q

− [−(λ1 + λ3)ϕ1 + λ4ϕ2],

∇
(
−ds1
s1

)
=
λ3ds12
s2Q

− [−(λ2 + λ3)ϕ1 + λ4ϕ3].

Remark 4.4. We define a function f1(x) by
∫

∆
u(s, x)ϕ1 for a twisted cycle ∆

loading a branch of u(s, x). This function satisfies

x1
∂f1(x)

∂x1
= −λ4

∫
∆

u(s, x)ϕ2, x2
∂f1(x)

∂x2
= −λ4

∫
∆

u(s, x)ϕ3,

x1x2
∂2f1(x)

∂x1∂x2
=
λ4
2

[
λ123

∫
∆

u(s, x)ϕ1 + (λ2 − λ4)

∫
∆

u(s, x)ϕ2

+ (λ1 − λ4)

∫
∆

u(s, x)ϕ3 + λ3(1− x1 − x2)

∫
∆

u(s, x)ϕ4

]
.

Thus the vector-valued function

F∂(x) =
t(
f1(x), x1

∂f1(x)

∂x1
, x2

∂f1(x)

∂x2
, x1x2

∂2f1(x)

∂x1∂x2

)
satisfies

dxF∂(x) = (G∂ΞG−1∂ + dxG∂ G
−1
∂ )F∂(x),

where

G∂ =


1 0 0 0

0 −λ4 0 0

0 0 −λ4 0

λ123λ4/2 (λ2 − λ4)λ4/2 (λ1 − λ4)λ4/2 λ3λ4(1− x1 − x2)/2

 ,
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G−1∂ =


1 0 0 0

0 −λ−14 0 0

0 0 −λ−14 0
−λ123

λ3(1−x1−x2)
λ2−λ4

λ3λ4(1−x1−x2)
λ1−λ4

λ3λ4(1−x1−x2)
2

λ3λ4(1−x1−x2)

 .

Note that the matrix G∂ does not belong to

GL4(O(X)) = {G ∈M(4, 4;O(X)) | det(G) is invertible in O(X)}.

Proposition 4.2. Suppose that the parameters a, b, c1, c2 satisfy the condition

(3.1). There is no global frame of the vector bundle H2(Ω•,0(X),∇) over X such

that the connection ∇X can be expressed in terms of logarithmic forms as

A1
dx1
x1

+A2
dx2
x2

+A3
dxR(x)

R(x)
,

where A1, A2 and A3 are 4× 4-matrices over the algebraic closure C(λ) of C(λ).

Proof. Suppose that such a global frame exists. By the integrability condition, we

have

O = dx

(
A1

dx1
x1

+A2
dx2
x2

+A3
dxR(x)

R(x)

)
=

(
A1

dx1
x1

+A2
dx2
x2

+A3
dxR(x)

R(x)

)
∧
(
A1

dx1
x1

+A2
dx2
x2

+A3
dxR(x)

R(x)

)
=

(
[A1, A2]

x1x2
+

2[A1, A3](x2 − x1 − 1)

x1R(x)
+

2[A3, A2](x1 − x2 − 1)

x2R(x)

)
dx1 ∧ dx2,

where [Ai, Aj ] = AiAj − AjAi, R(x) = 1 − 2x1 − 2x2 + x21 + x22 − 2x1x2 and

dxR(x) = 2(x1 − x2 − 1)dx1 + 2(x2 − x1 − 1)dx2. This equality reduces to

[A1, A2] · 1− 2([A1, A2] + [A3, A2]) · x1 − 2([A1, A2] + [A1, A3]) · x2
+ ([A1, A2] + 2[A3, A2]) · x21 + ([A1, A2] + 2[A1, A3]) · x22
− 2([A1, A2] + [A1, A3] + [A3, A2]) · x1x2 = O,

which is equivalent to

[A1, A2] = [A1, A3] = [A2, A3] = O.

Hence there exists P ∈ GL4(C(λ)) such that PAiP
−1 (i = 1, 2, 3) are upper-

triangular matrices. This means that the system F4(a, b, c) is reducible. On the

other hand, it is shown in [HT] that the system F4(a, b, c) is irreducible under the

condition (3.1). Therefore we have a contradiction.
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Remark 4.5. The same claim as in Proposition 4.2 holds for Lauricella’s system

FC(a, b, c) under the irreducibility condition of [HT]. We can easily modify the

proof of Proposition 4.2 so that it is valid for FC(a, b, c).

§5. Connection matrix in terms of intersection form

As mentioned in Proposition 3.2, there is no global frame of the vector bundle

H2(Ω•,0(X),∇) over X such that its intersection matrix is independent of x ∈ X.

The obstruction is that R(x) is square free in C(x). Thus it is natural to con-

sider the quadratic extension field of C(x) with
√
R(x) added. In this section,

we introduce the double cover of C2 branching along R(x) = 0, and express the

pull-back ∇Y of the connection ∇X under this covering by using the intersection

form Ic.
We define an affine variety

X̃ = {(x1, x2, x3) ∈ C3 | x23 = R(x1, x2)},

which is regarded as the double cover of C2 branching along the divisor R(x1, x2)

= 0 by the projection

pr : X̃ 3 (x1, x2, x3) 7→ (x1, x2) ∈ C2.

Note that (
1 + x1 − x2 − x3

2

)(
1 + x1 − x2 + x3

2

)
= x1,(

1− x1 + x2 − x3
2

)(
1− x1 + x2 + x3

2

)
= x2,

for (x1, x2, x3) ∈ X̃. Thus the preimages of the lines x1 = 0 and x2 = 0 in C2

under the projection pr are expressed by the equations

1 + x1 − x2 − x3
2

= 0,
1− x1 + x2 − x3

2
= 1,

and
1 + x1 − x2 − x3

2
= 1,

1− x1 + x2 − x3
2

= 0,

in X̃ respectively. By means of the map

X̃ 3 (x1, x2, x3) 7→ (y1, y2) =

(
1 + x1 − x2 − x3

2
,

1− x1 + x2 − x3
2

)
∈ C2,

X̃ is bi-holomorphic to C2; the inverse of this map is

C2 3 (y1, y2) 7→ (x1, x2, x3) = (y1(1− y2), (1− y1)y2, 1− y1 − y2) ∈ X̃.
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Though (x1, x2) are not valid as local coordinates on the set{
(x1, x2, x3) ∈ X̃

∣∣∣∣ ∂

∂x3
(x23 −R(x1, x2)) = 2x3 = 0

}
,

we can use

(y1, y2) =

(
1 + x1 − x2 − x3

2
,

1− x1 + x2 − x3
2

)
as a global system of coordinates on X̃. The covering transformation

ρ : (x1, x2, x3) 7→ (x1, x2,−x3)

of pr : X̃ → C2 is represented as

(y1, y2) 7→ (1− y2, 1− y1).

The ramification locus of pr is

{(y1, y2) ∈ C2 | y1 + y2 = 1}

and the preimage of the singular locus of F4(a, b, c) in C2 under the projection pr

is

{(y1, y2) ∈ C2 | [y1(1− y2)] · [y2(1− y1)] · (1− y1 − y2) = 0}.
We set

Y = {y = (y1, y2) ∈ C2 | y1(1− y1)y2(1− y2)(1− y1 − y2) 6= 0} ⊂ P2,

S̃ = P2 − Y,

and denote the restriction of pr to Y by the same symbol pr. Note that S̃ and Y are

invariant as sets under the action of ρ. Let O(Y ) be the C(λ)-algebra of rational

functions on P2 with poles only along S̃. From the vector bundle H2(Ω•,0(X),∇)

and the connection ∇X over X, the projection pr : Y → X induces the vector

bundle

pr∗H2(Ω•,0(X),∇) = {(y, ϕ) ∈ Y ×H2(Ω•,0(X),∇) | pr(y) = p(ϕ)},

and the connection ∇Y = pr∗∇X over Y , where p : H2(Ω•,0(X),∇) → X is the

projection. There is a natural frame

t(pr∗(ϕ1), . . . ,pr∗(ϕ4))

given by the pull-backs of ϕ1, . . . , ϕ4 in H2(Ω•,0(X),∇) under the projection pr.

Since

pr∗(R(x)) = (1− y1 − y2)2,

there is a global frame on Y whose intersection matrix is independent of y.
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Corollary 5.1. Let t(ϕ̂1, . . . , ϕ̂4) be a global frame on Y given by

G t(pr∗(ϕ1), . . . ,pr∗(ϕ4)), G = diag(1, 1, 1, 1− y1 − y2) ∈ GL4(O(Y )).

Then the intersection numbers Ic(ϕ̂i, ϕ̂j) (1 ≤ i, j ≤ 4) are (2π
√
−1)2Ĉij, where

Ĉij =


Cij if 1 ≤ i, j ≤ 3,

2

λ3λ4
=

2

a11b00
if (i, j) = (4, 4),

0 otherwise,

and the Cij are as in Proposition 3.1.

Proof. Since the map pr : Y → X is locally isomorphic, we have

Ic(pr∗(ϕi),pr∗(ϕj)) = Ic(ϕi, ϕj) (1 ≤ i, j ≤ 4).

The conclusion is now clear by the transformation G, the equality pr∗(R(x)) =

(1− y1 − y2)2, and Proposition 3.1.

Theorem 5.1. The connection matrix Ξ̂ of ∇Y with respect to the frame
t(ϕ̂1, . . . , ϕ̂4) is

Ξ̂1 dy1
y1

+ Ξ̂2 dy2
y2

+ I3,1Ξ̂2I−13,1

dy1
y1 − 1

+ I3,1Ξ̂1I−13,1

dy2
y2 − 1

+ Ξ̂3 dy1 + dy2
y1 + y2 − 1

,

where

Ξ̂1 =


0 −λ4 0 0

0 −λ1 − λ3 0 0
−λ123

2
−λ2+λ4

2
−λ1+λ4

2
−λ3

2

(λ−
134−λ3)λ123

2λ3
λ4 + (λ2+λ4)(λ1+λ4)

2λ3

(λ1−λ4)(λ
−
134−λ3)

2λ3

λ−
134−λ3

2

 ,

Ξ̂2 =


0 0 −λ4 0

−λ123

2
−λ2+λ4

2
−λ1+λ4

2
−λ3

2

0 0 −λ3 − λ2 0

(λ−
234−λ3)λ123

2λ3

(λ2−λ4)(λ
−
234−λ3)

2λ3
λ4 + (λ2+λ4)(λ1+λ4)

2λ3

λ−
234−λ3

2

 ,

Ξ̂3 = diag(0, 0, 0, 2(λ3 + λ4)), I3,1 = diag(1, 1, 1,−1).

The connection matrix Ξ̂ satisfies

dyΞ̂ = Ξ̂ ∧ Ξ̂ = O.

Proof. By using

pr∗(x1) = y1(1− y2), pr∗(x2) = (1− y1)y2,

pr∗(dx1) = (1− y2)dy1 − y1dy2, pr∗(dx2) = −y2dy1 + (1− y1)dy2,

pr∗(R(x)) = (1− y1 − y2)2,
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we can calculate the connection matrix Ξ̃ with respect to t(pr∗(ϕ1), . . . ,pr∗(ϕ4)) as

the pull-back of Ξ under pr. The connection matrix Ξ̂ with respect to t(ϕ̂1, . . . , ϕ̂4)

is given by the gauge transformation

GΞ̃G−1 + dyGG
−1

of Ξ̃. By straightforward calculations, we get the expression of Ξ̂, which implies

dyΞ̂ = O. By the integrability condition, Ξ̂ satisfies Ξ̂∧ Ξ̂ = O. Here note that the

gauge transformation by G changes the non-closed connection matrix Ξ̃ into the

closed connection matrix Ξ̂.

We now express the connection ∇Y in terms of the intersection form Ic. Let

Ĉ be the matrix (Ĉij)1≤i,j≤4 given by the intersection numbers in Corollary 5.1.

This matrix is symmetric and satisfies Ĉ∨ = Ĉ, where Ĉ∨ is the image of Ĉ under

the involution (3.2).

Lemma 5.1. The connection matrix Ξ̂ satisfies

Ξ̂∨ = −Ξ̂, Ξ̂Ĉ + Ĉ tΞ̂∨ = O.

Proof. We can easily check this by using Theorem 5.1 and Corollary 5.1. The

second equality can also be obtained from dyĈ = O by using Proposition 4.1.

Lemma 5.2. (i) The eigenvalues of Ξ̂1 are 0 and −(λ1 +λ3) = 1−c1, and each

of the eigenspaces is 2-dimensional. The (1− c1)-eigenspace is spanned by the

row vectors

e2 = (0, 1, 0, 0),

(
λ123
λ3

,
λ2 − λ4
λ3

,
λ1 − λ4
λ3

, 1

)
.

(ii) The eigenvalues of Ξ̂2 are 0 and −(λ2 + λ3) = 1 − c2, and each of the

eigenspaces is 2-dimensional. The (1 − c2)-eigenspace is spanned by the row

vectors

e3 = (0, 0, 1, 0),

(
λ123
λ3

,
λ2 − λ4
λ3

,
λ1 − λ4
λ3

, 1

)
.

(iii) The eigenvalues of Ξ̂3 are 0 and 2(λ3 + λ4) = 2(c1 + c2 − a − b − 2). The

0-eigenspace is 3-dimensional and the 2(c1 + c2 − a − b − 2)-eigenspace is

1-dimensional, spanned by e4 = (0, 0, 0, 1).

Proof. Use Theorem 5.1.

We set

e5 =

(
λ123
λ3

,
λ2 − λ4
λ3

,
λ1 − λ4
λ3

, 1

)
, e6 =

(
λ123
λ3

,
λ2 − λ4
λ3

,
λ1 − λ4
λ3

,−1

)
,
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and

ϕ̂5 =
λ123
λ3

ϕ̂1 +
λ2 − λ4
λ3

ϕ̂2 +
λ1 − λ4
λ3

ϕ̂3 + ϕ̂4,

ϕ̂6 =
λ123
λ3

ϕ̂1 +
λ2 − λ4
λ3

ϕ̂2 +
λ1 − λ4
λ3

ϕ̂3 − ϕ̂4,

corresponding to the vectors e5 and e6, respectively.

Lemma 5.3. (i) The forms ϕ̂2 and ϕ̂5 vanish as y1 → 0. The forms ϕ̂2 and ϕ̂6

vanish as y2 → 1.

(ii) The forms ϕ̂3 and ϕ̂5 vanish as y2 → 0. The forms ϕ̂3 and ϕ̂6 vanish as

y1 → 1.

(iii) The form ϕ̂4 vanishes as y1 + y2 → 1.

Proof. (i) Since ϕ̂2 equals y1(1− y2)ds12/(s2L(s, y)), it vanishes as y1 → 0 and as

y2 → 1. By Lemma 4.2, the image of 2(λ4 − 1)x1x2ds12/L
2 under pr∗ is

λ123ϕ̂1 + (λ2 − λ4)ϕ̂2 + (λ1 − λ4)ϕ̂3 +
λ3(1− y1 − y2 + 2y1y2)

1− y1 − y2
ϕ̂4.

It is clear that this element vanishes and its last term converges to λ3ϕ̂4 (resp.

−λ3ϕ̂4) as y1 → 0 (resp. y2 → 1). Thus λ3ϕ̂5 vanishes as y1 → 0 and λ3ϕ̂6 vanishes

as y2 → 1.

(ii) Similar.

(iii) Since

ϕ̂4 =
(1− y1 − y2)ds12
Q(s)L(s, y)

,

it vanishes as y1 + y2 → 1.

We set

Ĉ1 =

(
Ic(ϕ̂2, ϕ̂2) Ic(ϕ̂2, ϕ̂5)

Ic(ϕ̂5, ϕ̂2) Ic(ϕ̂5, ϕ̂5)

)
=


(λ3−λ−134)(λ1+λ3)

λ0λ2λ4λ
−
134

−2(λ1+λ3)

λ0λ3λ4
−2(λ1+λ3)

λ0λ3λ4

−4(λ2+λ3)(λ1+λ3)

λ0λ23λ4

,

Ĉ2 =

(
Ic(ϕ̂3, ϕ̂3) Ic(ϕ̂3, ϕ̂5)

Ic(ϕ̂5, ϕ̂3) Ic(ϕ̂5, ϕ̂5)

)
=


(λ3−λ−234)(λ2+λ3)

λ0λ1λ4λ
−
234

−2(λ2+λ3)

λ0λ3λ4
−2(λ2+λ3)

λ0λ3λ4

−4(λ2+λ3)(λ1+λ3)

λ0λ23λ4

.
We have(

Ic(ϕ̂2, ϕ̂2) Ic(ϕ̂2, ϕ̂6)

Ic(ϕ̂6, ϕ̂2) Ic(ϕ̂6, ϕ̂6)

)
= Ĉ1,

(
Ic(ϕ̂3, ϕ̂3) Ic(ϕ̂3, ϕ̂6)

Ic(ϕ̂6, ϕ̂3) Ic(ϕ̂6, ϕ̂6)

)
= Ĉ2.
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Proposition 5.1. The matrices Ξ̂i (i = 1, 2, 3) can be expressed in terms of Ĉ

and its eigenvectors with non-zero eigenvalue as

Ξ̂1 =−(λ1 + λ3)Ĉ(te2,
te5)(Ĉ1)−1

(
e2
e5

)
,

Ξ̂2 =−(λ2 + λ3)Ĉ(te3,
te5)(Ĉ2)−1

(
e3
e5

)
,

Ξ̂3 = 2(λ3 + λ4)Ĉ te4(Ĉ44)−1e4.

Proof. We claim that

vĈ tw∨ = 0

for any eigenvector v of Ξ̂i with non-zero eigenvalue α and for any eigenvector w

of Ξ̂i with eigenvalue 0. Lemma 5.1 implies

Ξ̂iĈ = −Ĉ t(Ξ̂i)∨.

Since α 6= 0 and

α(vĈ tw∨) = (vΞ̂i)Ĉ tw∨ = v(Ξ̂iĈ) tw∨ = −v(Ĉ t(Ξ̂i)∨) tw∨

=−vĈ t(wΞ̂i)∨ = 0,

the claim follows. Lemma 5.2 together with this claim gives the desired expressions

of the matrices Ξ̂i.

Theorem 5.2. The connection ∇Y of pr∗H2(Ω•,0(X),∇) can be expressed in

terms of the intersection form Ic as

∇Y (ϕ̂) =
dy1
y1
∧ (1− c1)(Ic(ϕ̂, ϕ̂2), Ic(ϕ̂, ϕ̂5))(Ĉ1)−1

(
ϕ̂2

ϕ̂5

)
+
dy2
y2
∧ (1− c2)(Ic(ϕ̂, ϕ̂3), Ic(ϕ̂, ϕ̂5))(Ĉ2)−1

(
ϕ̂3

ϕ̂5

)
+

dy1
y1 − 1

∧ (1− c2)(Ic(ϕ̂, ϕ̂3), Ic(ϕ̂, ϕ̂6))(Ĉ2)−1
(
ϕ̂3

ϕ̂6

)
+

dy2
y2 − 1

∧ (1− c1)(Ic(ϕ̂, ϕ̂2), Ic(ϕ̂, ϕ̂6))(Ĉ1)−1
(
ϕ̂2

ϕ̂6

)
+

dy1 + dy2
y1 + y2 − 1

∧ 2(c1 + c2 − a− b− 2)Ic(ϕ̂, ϕ̂4)(Ĉ44)−1ϕ̂4.

Proof. Note that the linear transformation

ϕ̂ 7→ (1− c1)(Ic(ϕ̂, ϕ̂2), Ic(ϕ̂, ϕ̂5))(Ĉ1)−1
(
ϕ̂2

ϕ̂5

)
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is represented by the matrix Ξ̂1 with respect to the frame t(ϕ̂1, . . . , ϕ̂4). The

eigenspace of I3,1Ξ̂1I−13,1 with non-zero eigenvalue is spanned by e2 and e6, which

correspond to ϕ̂2 and ϕ̂6, respectively. Thus the linear transformation

ϕ̂ 7→ (1− c1)(Ic(ϕ̂, ϕ̂2), Ic(ϕ̂, ϕ̂6))(Ĉ1)−1
(
ϕ̂2

ϕ̂6

)
is represented by I3,1Ξ̂1I−13,1 with respect to t(ϕ̂1, . . . , ϕ̂4). Similarly, we have rep-

resentation matrices Ξ̂2 and I3,1Ξ̂2I−13,1 . The linear transformation

ϕ̂ 7→ 2(c1 + c2 − a− b− 2)Ic(ϕ̂, ϕ̂4)(Ĉ44)−1ϕ̂4

is represented by Ξ̂3 with respect to t(ϕ̂1, . . . , ϕ̂4). Theorem 5.1 and Proposition

5.1 yield the conclusion.

We can easily check that Ξ̂1 and Ξ̂2 commute. Since they are diagonalizable,

there exists a frame change such that Ξ̂1 and Ξ̂2 are simultaneously transformed

into diagonal matrices.

Proposition 5.2. We have

P Ξ̂1P−1 = diag(1, 1− c1, 1, 1− c1), P Ξ̂2P−1 = diag(1, 1, 1− c2, 1− c2)

for the matrix P = P1P0, where

P1 =
1

(λ1 + λ3)(λ2 + λ3)
diag

(
−λ4λ123, λ2λ134, λ1λ234, λ3(λ123 + λ3 + λ4)

)
,

P0 =


(λ1+λ2+λ3)λ4+2(λ1+λ3)(λ2+λ3)

λ3λ4
−λ2+2λ3+λ4

λ3
−λ1+2λ3+λ4

λ3
1

λ1+λ2+λ3

λ3
−λ2+2λ3+λ4

λ3

λ1−λ4

λ3
1

λ1+λ2+λ3

λ3

λ2−λ4

λ3
−λ1+2λ3+λ4

λ3
1

λ1+λ2+λ3

λ3

λ2−λ4

λ3

λ1−λ4

λ3
1

 .

The row eigenvector of P Ξ̂3P−1 of eigenvalue 2(c1 + c2 − a− b− 2) is (1, 1, 1, 1),

and PĈ tP∨ is 4a
(c1−1)(c2−1)(a−c1−c2+2) times the diagonal matrix with entries

1,
−(a−c1+1)(b−c1+1)

ab
,
−(a−c2+1)(b−c2+1)

ab
,

(a−c1−c2+2)(b−c1−c2+2)

ab
.

Proof. Let Vi,0 and Vi,ci be the eigenspaces of the eigenvalues 0 and 1 − ci of

Ξ̂i for i = 1, 2. Then the intersections V1,0 ∩ V2,0, V1,c1 ∩ V2,0, V1,0 ∩ V2,c2 and

V1,c1 ∩V2,c2 are spanned by the row vectors of P0. To normalize the eigenvector of

P0Ξ3P−10 of eigenvalue 2(c1 + c2− a− b− 2) into (1, 1, 1, 1), we use the matrix P1.

By straightforward calculations, we obtain the expression of PĈ tP∨. Here note

that P∨ = P , since the entries of P0 and P1 are homogeneous of degree 0 with

respect to λ1, . . . , λ4.
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Remark 5.1. The monodromy representation of F4(a, b, c) is studied in [G],

[GM1] and [M3]. We normalize a fundamental system of solutions satisfying:

• the circuit matrices along loops turning the divisors x1 = 0 and x2 = 0 are

diagonal;

• the non-1 eigenvector of the circuit matrix along a loop turning the divisor

R(x) = 0 becomes t(1, . . . , 1).

Then the diagonal matrix

diag

(
1,
−(α− γ1)(β − γ1)

γ1(α− 1)(β − 1)
,
−(α− γ2)(β − γ2)

γ2(α− 1)(β − 1)
,

(α− γ1γ2)(β − γ1γ2)

γ1γ2(α− 1)(β − 1)

)
appears in the intersection matrix of twisted homology groups, where α = e2π

√
−1 a,

β = e2π
√
−1 b and γi = e2π

√
−1 ci (i = 1, 2). Notice the similarity between the

normalized intersection matrices of twisted homology and cohomology groups.
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