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Basepoint-free Theorem of Reid–Fukuda Type for
Quasi-log Schemes

by

Osamu Fujino

Abstract

We introduce various new operations for quasi-log structures. Then we prove a basepoint-
free theorem of Reid–Fukuda type for quasi-log schemes as an application.
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§1. Introduction

Let (X,∆) be a log canonical pair and let f : Y → X be a resolution such that

KY + ∆Y = f∗(KX + ∆) and Supp ∆Y is a simple normal crossing divisor on Y .

We set S = ∆=1
Y and ∆Y = S +B. We consider the short exact sequence

0→ OY (−S + d−Be)→ OY (d−Be)→ OS(d−Be)→ 0.

By the Kawamata–Viehweg vanishing theorem, we have R1f∗OY (−S+d−Be) = 0.

Therefore, we obtain

0→ J (X,∆)→ OX → f∗OS(d−Be)→ 0

where J (X,∆) = f∗OY (−S + d−Be) is the multiplier ideal sheaf of (X,∆). Let

Nklt(X,∆) be the non-klt locus of (X,∆) with the reduced scheme structure. Then

f∗OS(d−Be) ' ONklt(X,∆). This data

f : (S,B|S)→ Nklt(X,∆)

is a typical example of quasi-log schemes. In general, Nklt(X,∆) is reducible and

is not equidimensional. Note that the data

f : (Y,∆Y )→ X
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also defines a natural quasi-log structure onX which is compatible with the original

log canonical structure of (X,∆). By the framework of quasi-log schemes, we can

treat log canonical pairs and their non-klt loci on an equal footing.

The following theorem is the main theorem of this paper. It was stated in

[A] without proof (see [A, Theorem 7.2] and Remark 1.4 below). For some related

results, see [S, 10.4], [Fk1], [Fk2], [Fk3], [F1], [F7, 5. Basepoint-free theorem of

Reid–Fukuda type], and [F10, Theorem 1.16]. Note that the comment by Professor

Miles Reid in [S, §10] is the origin of this type of basepoint-free theorems.

Theorem 1.1 (Basepoint-free theorem of Reid–Fukuda type for quasi-log

schemes). Let [X,ω] be a quasi-log scheme, let π : X → S be a projective morphism

between schemes, and let L be a π-nef Cartier divisor on X such that qL−ω is nef

and log big over S with respect to [X,ω] for some positive real number q. Assume

that OX−∞(mL) is π-generated for every m � 0. Then OX(mL) is π-generated

for every m� 0.

In [F2, Theorem 4.1], the author proved Theorem 1.1 with the extra assump-

tion that X−∞ = ∅. Note that the assumption X−∞ = ∅ is harmless for ap-

plications to semi-log canonical pairs in [F10, Theorem 1.16]. We also note that

Ambro’s original statement (see [A, Theorem 7.2]) only requires that π is proper.

Unfortunately, our proof needs the assumption that π is projective because we use

Kodaira’s lemma for big R-divisors on (not necessarily normal) irreducible vari-

eties (cf. [F10, Lemma A.10]). Therefore, Theorem 1.1 is slightly weaker than the

original statement (see [A, Theorem 7.2]).

Remark 1.2. Precisely speaking, it is sufficient to assume that π is proper and

that every qlc stratum C of [X,ω] is projective over S in Theorem 1.1. This is

obvious from the proof of Theorem 1.1.

Remark 1.3. In Theorem 1.1, if qL − ω is ample, then it is well-known that

OX(mL) is π-generated for everym� 0 (see [A, Theorem 5.1], [F2, Theorem 3.66],

and [F12, Theorem 6.5.1]). For the proof, see [F2, Theorem 3.66] (see also [F12,

Section 6.5]).

We give a remark on [A, Theorem 7.2].

Remark 1.4. Although Ambro wrote that the proof of [A, Theorem 7.2] is paral-

lel to [A, Theorem 5.1], this does not seem to be true as stated, as there are some

technical problems in the inductive step of the proof. Steps 1, 2, and 4 in the proof

of [A, Theorem 5.1] work without any modifications. In Step 3, q′L − ω′ is π-nef

but q′L−ω′ = qL−ω is not always nef and log big over S with respect to [X,ω′],
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where ω′ = ω + cD and q′ = q + cm. So, we cannot directly apply the argument

in Step 1 in the proof of [A, Theorem 5.1] to this new quasi-log pair [X,ω′].

As a special case of Theorem 1.1, we have:

Theorem 1.5 (Basepoint-free theorem of Reid–Fukuda type for log canonical

pairs). Let (X,B) be a log canonical pair. Let L be a π-nef Cartier divisor on X

where π : X → S is a projective morphism between schemes. Assume that

qL − (KX + B) is nef and log big over S with respect to (X,B) for some pos-

itive real number q. Then OX(mL) is π-generated for every m� 0.

Theorem 1.5 is nothing but [F2, Theorem 4.4] (see [F12, Corollary 6.9.4]). We

believe that Theorem 1.5 holds under the weaker assumption that π is only proper.

Note that we do not know the proof of Theorem 1.5 without using the theory of

quasi-log schemes. The usual basepoint-free theorem for log canonical pairs, that

is, Theorem 1.5 with the extra assumption that qL− (KX + B) is ample over S,

can be proved without using quasi-log structures (see [F5, Theorem 13.1]). The

proof in [F5] is much simpler than the arguments in this paper.

Remark 1.6. In Theorem 1.5, if every log canonical center C of (X,B) is pro-

jective over S, then we can prove Theorem 1.5 under the weaker assumption that

π : X → S is only proper. This is because we can apply Theorem 1.5 to the non-klt

locus Nklt(X,B) of (X,B). So, we may assume that OX(mL) is π-generated on a

non-empty Zariski open subset containing Nklt(X,B). In this case, we can prove

Theorem 1.5 by applying the usual X-method to L on (X,B). We note that C is

projective over S when dimC ≤ 1.

The reader can find a different proof of Theorem 1.5 in [Fk3] when (X,B) is

a log canonical surface, where Fukuda used the log minimal model program with

scaling for divisorial log terminal surfaces.

More generally, we have:

Theorem 1.7. Let X be a normal variety, let B be an effective R-divisor on X

such that KX+B is R-Cartier, and let π : X → S be a projective morphism between

schemes. Let L be a π-nef Cartier divisor on X such that qL − (KX + B) is nef

and log big over S with respect to (X,B) for some positive real number q. Assume

that ONlc(X,B)(mL) is π-generated for every m� 0. Note that Nlc(X,B) denotes

the non-lc locus of (X,B) and is defined by the non-lc ideal sheaf JNLC(X,B) of

(X,B). Then OX(mL) is π-generated for every m� 0.

For the details of JNLC(X,B), see [F3] and [F5, §7. Non-lc ideal sheaves].

Theorem 1.7 is new and is a generalization of [F5, Theorem 13.1] and [F6, Theo-

rem 9.1].
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In this paper, we use the following convention.

Notation 1.8. The expression ‘. . . for every m � 0’ means that ‘there exists a

positive integer m0 such that . . . for every m ≥ m0.’

We summarize the contents of this paper. In Section 2, we recall some basic

definitions. In Section 3, we recall the basic definitions and properties of quasi-log

schemes. Then we introduce various new operations for quasi-log structures (see

Lemmas 3.12, 3.14, 3.15, and so on). Section 4 is devoted to the proof of the main

theorem: Theorem 1.1.

We will work over C, the complex number field, throughout this paper. For

the standard notation of the log minimal model program, see, for example, [F5]

and [F12]. For the basic definitions and properties of the theory of quasi-log

schemes, see [F11] (see also [F12]). Note that [F12] is a completely revised and

expanded version of the author’s unpublished manuscript [F2]. For a gentle intro-

duction to the theory of quasi-log schemes (varieties), see [F4]. In this paper, a

scheme means a separated scheme of finite type over SpecC. A variety means a

reduced scheme.

§2. Preliminaries

In this section, we recall some basic definitions.

2.1 (Operations for R-divisors). Let D be an R-divisor on an equidimensional va-

riety X, that is, D is a finite formal R-linear combination

D =
∑
i

diDi

of irreducible reduced subschemes Di of codimension one. We define the round-

up dDe =
∑
iddieDi (resp. round-down bDc =

∑
ibdicDi), where for every real

number x, dxe (resp. bxc) is the integer defined by x ≤ dxe < x+ 1 (resp. x− 1 <

bxc ≤ x). The fractional part {D} of D is D − bDc. We write

D<1 =
∑
di<1

diDi, D>1 =
∑
di>1

diDi, D=1 =
∑
di=1

Di.

We call D a boundary (resp. subboundary) R-divisor if 0 ≤ di ≤ 1 (resp. di ≤ 1)

for every i.

2.2 (Singularities of pairs). Let X be a normal variety and let ∆ be an R-divisor

on X such that KX + ∆ is R-Cartier. Let f : Y → X be a resolution such that

Exc(f)∪ f−1
∗ ∆, where Exc(f) is the exceptional locus of f and f−1

∗ ∆ is the strict
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transform of ∆ on Y , has a simple normal crossing support. We can write

(2.1) KY = f∗(KX + ∆) +
∑
i

aiEi.

We say that (X,∆) is sub log canonical (sub lc, for short) if ai ≥ −1 for every i.

We usually write ai = a(Ei, X,∆) and call it the discrepancy coefficient of Ei with

respect to (X,∆). If (X,∆) is sub log canonical and ∆ is effective, then (X,∆) is

called log canonical (lc, for short).

It is well-known that there is the largest Zariski open subset U of X such

that (U,∆|U ) is sub log canonical. If there exist a resolution f : Y → X and a

divisor E on Y such that a(E,X,∆) = −1 and f(E) ∩U 6= ∅, then f(E) is called

a log canonical center (an lc center, for short) with respect to (X,∆). A closed

subset C of X is called a log canonical stratum (an lc stratum, for short) of (X,∆)

if C is either a log canonical center of (X,∆) or an irreducible component of X.

From now on, we assume that ∆ is effective. In the above formula (2.1), we

denote ∆Y = −
∑
i aiEi. Then

J (X,∆) = f∗OY (−b∆Y c)

is a well-defined ideal sheaf on X and is known as the multiplier ideal sheaf asso-

ciated to the pair (X,∆). The closed subscheme Nklt(X,∆) defined by J (X,∆)

is called the non-klt locus of (X,∆). We set

JNLC(X,∆) = f∗OY (−b∆Y c+ ∆=1
Y )

and call it the non-lc ideal sheaf associated to the pair (X,∆). The closed sub-

scheme Nlc(X,∆) is defined by JNLC(X,∆) and is called the non-lc locus of (X,∆).

The notion of nef and log big divisors was first introduced in [S, 10.4] by Miles

Reid. For the details of big R-divisors on non-normal irreducible varieties, see [F10,

Appendix A].

2.3 (Nef and log big divisors). Let X be a normal variety, let ∆ be an effective

R-divisor on X such that KX + ∆ is R-Cartier, and let π : X → S be a proper

morphism between schemes. Let L be a Cartier divisor on X. We say that L is nef

and log big over S with respect to (X,∆) if L is nef over S and L|C is big over S

for every lc stratum C of (X,∆).

We close this section with:

Notation 2.4. A pair [X,ω] consists of a scheme X and an R-Cartier divisor (or

an R-line bundle) on X.
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§3. On quasi-log structures

In this section, we recall some definitions and basic properties of quasi-log schemes

and prove some useful lemmas. We prove various new lemmas to make the theory

of quasi-log schemes more flexible and more useful. For a quick introduction to the

theory of quasi-log schemes (varieties), see [F4].

For the reader’s convenience let us quickly recall the definitions of globally

embedded simple normal crossing pairs and quasi-log schemes. For the details, see,

for example, [F11, Section 3] and [F12, Chapters 5 and 6].

Definition 3.1 (Globally embedded simple normal crossing pairs). Let Y be a

simple normal crossing divisor on a smooth variety M and let D be an R-divisor

on M such that Supp(D + Y ) is a simple normal crossing divisor on M , and D

and Y have no common irreducible components. We write BY = D|Y and consider

the pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair

and M the ambient space of (Y,BY ). A stratum of (Y,BY ) is the ν-image of a

log canonical stratum of (Y ν ,Θ) where ν : Y ν → Y is the normalization and

KY ν + Θ = ν∗(KY +BY ).

The following lemma is obvious but important.

Lemma 3.2. Let Y be a smooth irreducible variety and let BY be an R-divisor

on Y such that SuppBY is a simple normal crossing divisor. Then (Y,BY ) is a

globally embedded simple normal crossing pair.

Proof. We set M = Y × C, D = BY × C, and Y = Y × {0}. Then D and Y

are divisors on M such that D|Y = BY . This means that (Y,BY ) is a globally

embedded simple normal crossing pair.

In this paper, we adopt the following definition of quasi-log schemes. Although

it looks slightly different from Ambro’s original definition, it is equivalent to [A,

Definition 4.1].

Definition 3.3 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed

with an R-Cartier divisor (or an R-line bundle) ω on X, a proper closed subscheme

X−∞ ⊂ X, and a finite collection {C} of reduced and irreducible subschemes of X

such that there is a proper morphism f : (Y,BY )→ X from a globally embedded

simple normal crossing pair satisfying the following properties:

(1) f∗ω ∼R KY +BY .

(2) The natural map OX → f∗OY (d−(B<1
Y )e) induces an isomorphism

IX−∞
'−→ f∗OY (d−(B<1

Y )e − bB>1
Y c),

where IX−∞ is the defining ideal sheaf of X−∞.
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(3) The collection {C} of subvarieties coincides with the image of (Y,BY )-strata

that are not included in X−∞.

We simply write [X,ω] to denote the above data(
X,ω, f : (Y,BY )→ X

)
if there is no risk of confusion. Note that a quasi-log scheme X is the union of {C}
and X−∞. We also note that ω is called the quasi-log canonical class of [X,ω],

which is defined up to R-linear equivalence. We sometimes simply say that [X,ω]

is a quasi-log pair. The subvarieties C are called the qlc strata of [X,ω], X−∞
is called the non-qlc locus of [X,ω], and f : (Y,BY ) → X is called a quasi-log

resolution of [X,ω]. We sometimes use Nqlc(X,ω) to denote X−∞.

For the details of the various equivalent definitions of quasi-log schemes, see

[F11, Sections 3, 4, and 8].

Remark 3.4. A qlc stratum of [X,ω] was originally called a qlc center of [X,ω]

in the literature. We change the terminology (see Definition 3.5 below).

Our definition of qlc centers is different from Ambro’s original one in [A].

Definition 3.5 (Qlc centers). A closed subvariety C of X is called a qlc center of

[X,ω] if C is a qlc stratum of [X,ω] which is not an irreducible component of X.

Definition 3.6 (Qlc pairs). Let [X,ω] be a quasi-log scheme. Assume that X−∞
= ∅. Then we sometimes simply say that [X,ω] is a qlc pair or [X,ω] is a quasi-log

scheme with only quasi-log canonical singularities.

We need the notion of nef and log big divisors on quasi-log schemes for The-

orem 1.1.

Definition 3.7 (Nef and log big divisors for quasi-log schemes). Let L be an

R-Cartier divisor (or R-line bundle) on a quasi-log pair [X,ω] and let π : X → S

be a proper morphism between schemes. Then L is nef and log big over S with

respect to [X,ω] if L is π-nef and L|C is π-big for every qlc stratum C of [X,ω].

The following theorem is a key result for the theory of quasi-log schemes. It

follows from the Kollár-type torsion-free and vanishing theorem for simple normal

crossing varieties. For the details, see [F2, Chapter 2], [F8], [F9], and [F12].

Theorem 3.8 (see [A, Theorems 4.4 and 7.3], [F2, Theorem 3.39], and [F12,

Theorem 6.3.4]). Let [X,ω] be a quasi-log scheme and let X ′ be the union of X−∞
with a (possibly empty) union of some qlc strata of [X,ω]. Then we have the

following properties.
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(i) Assume that X ′ 6= X−∞. Then X ′ is a quasi-log scheme with ω′ = ω|X′ and

X ′−∞ = X−∞. Moreover, the qlc strata of [X ′, ω′] are exactly the qlc strata of

[X,ω] that are included in X ′.

(ii) Assume that π : X → S is a proper morphism between schemes. Let L be a

Cartier divisor on X such that L − ω is nef and log big over S with respect

to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ is the

defining ideal sheaf of X ′ on X.

We give a proof of Theorem 3.8 for the reader’s convenience because the

theory of quasi-log schemes is not popular yet.

Proof. By taking some blow-ups of the ambient space M of (Y,BY ), we may as-

sume that the union of all strata of (Y,BY ) mapped to X ′, which is denoted

by Y ′, is a union of irreducible components of Y (see [F11, Proposition 4.1]).

We write KY ′ + BY ′ = (KY + BY )|Y ′ and Y ′′ = Y − Y ′. We will prove that

f : (Y ′, BY ′) → X ′ gives the desired quasi-log structure on [X ′, ω′]. By construc-

tion, we have f∗ω′ ∼R KY ′ +BY ′ on Y ′. We set A = d−(B<1
Y )e and N = bB>1

Y c.
We consider the short exact sequence

0→ OY ′′(−Y ′)→ OY → OY ′ → 0.

By applying ⊗OY (A−N), we have

0→ OY ′′(A−N − Y ′)→ OY (A−N)→ OY ′(A−N)→ 0.

By applying f∗, we obtain

0→ f∗OY ′′(A−N − Y ′)→ f∗OY (A−N)→ f∗OY ′(A−N)

→ R1f∗OY ′′(A−N − Y ′)→ · · · .

By [F8, Theorem 1.1] and [F2, Theorem 2.39] (see also [F12, Theorem 5.6.3]), no

associated prime of R1f∗OY ′′(A − N − Y ′) is contained in X ′ = f(Y ′). We note

that

(A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) = −(KY ′′ +BY ′′)

∼R −(f∗ω)|Y ′′ ,

where KY ′′ + BY ′′ = (KY + BY )|Y ′′ . Therefore, the connecting homomorphism

δ : f∗OY ′(A − N) → R1f∗OY ′′(A − N − Y ′) is zero. Thus we obtain the short

exact sequence

0→ f∗OY ′′(A−N − Y ′)→ IX−∞ → f∗OY ′(A−N)→ 0.
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We set IX′ = f∗OY ′′(A − N − Y ′). Then IX′ defines a scheme structure on X ′.

We define IX′−∞ = IX−∞/IX′ . Then IX′−∞ ' f∗OY ′(A − N) by the above exact

sequence. From the big commutative diagram

0 // f∗OY ′′(A−N − Y ′)

��

// f∗OY (A−N)

��

// f∗OY ′(A−N) //

��

0

0 // f∗OY ′′(A− Y ′) // f∗OY (A) // f∗OY ′(A)

0 // IX′

OO

// OX

OO

// OX′ //

OO

0

we can see that OX′ → f∗OY ′(d−(B<1
Y ′ )e) induces an isomorphism

IX′−∞
'−→ f∗OY ′(d−(B<1

Y ′ )e − bB
>1
Y ′ c).

Therefore, [X ′, ω′] is a quasi-log pair such that X ′−∞ = X−∞. By construction,

the property of qlc strata is obvious. So, we obtain the desired quasi-log structure

of [X ′, ω′] in (i).

Let f : (Y,BY ) → X be a quasi-log resolution as in the proof of (i). If

X ′ = X−∞ in that proof, then we can easily see that

f∗OY ′′(A−N − Y ′) ' f∗OY ′′(A−N) ' IX−∞ .

Therefore, we always have IX′ ' f∗OY ′′(A−N − Y ′). Note that

f∗(L− ω) ∼R f
∗L− (KY ′′ +BY ′′)

on Y ′′, where KY ′′ +BY ′′ = (KY +BY )|Y ′′ . Moreover

f∗L− (KY ′′ +BY ′′) = (f∗L+A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′)

and no stratum of (Y ′′, {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) is mapped to X−∞. Then, by [F2,

Theorem 3.38] (see also [F12, Theorem 5.7.3]),

Riπ∗(f∗OY ′′(f∗L+A−N − Y ′)) = Riπ∗(IX′ ⊗OX(L)) = 0

for every i > 0. Thus, we obtain the desired vanishing theorem in (ii).

We usually call Theorem 3.8(i) adjunction for quasi-log schemes.

For the reader’s convenience let us recall the following well-known lemma (see

[A, Proposition 4.7], [F2, Proposition 3.44], and [F12, Lemma 6.3.5]).

Lemma 3.9. Let [X,ω] be a quasi-log scheme with X−∞ = ∅. Assume that every

qlc stratum of [X,ω] is an irreducible component of X. Then X is normal.
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The following proof is different from Ambro’s original one (see [A, Proposi-

tion 4.7]).

Proof. Let f : (Y,BY ) → X be a quasi-log resolution. Since X−∞ = ∅, we have

f∗OY (d−(B<1
Y )e) ' OX . This implies that f∗OY ' OX . Therefore, by assumption,

every connected component of X is an irreducible component of X because f has

connected fibers. Let ν : Xν → X be the normalization. Without loss of generality,

we may assume that X is irreducible and every stratum of (Y,BY ) is mapped

onto X. Thus the indeterminacy locus of ν−1 ◦ f : Y 99K Xν contains no strata of

(Y,BY ). By modifying (Y,BY ) suitably by [F11, Proposition 4.1], we may assume

that f : Y → X factors through Xν :

Y

f
��

f

!!
Xν ν // X

Note that the composition

OX → ν∗OXν → ν∗f∗OY = f∗OY ' OX

is an isomorphism. This implies that OX ' ν∗OXν . Therefore, X is normal.

We now introduce Nqklt(X,ω), which is a generalization of the notion of

non-klt loci (see 2.2).

Notation 3.10. Let [X,ω] be a quasi-log scheme. The union of X−∞ with all qlc

centers of [X,ω] is denoted by Nqklt(X,ω). The scheme structure of Nqklt(X,ω)

is defined in Theorem 3.8. If Nqklt(X,ω) 6= X−∞, then

[Nqklt(X,ω), ω|Nqklt(X,ω)]

is a quasi-log scheme by Theorem 3.8. Note that Nqklt(X,ω) is denoted by LCS(X)

and is called the LCS locus of a quasi-log scheme [X,ω] in [A, Definition 4.6].

Theorem 3.11 is also a key result for the theory of quasi-log schemes.

Theorem 3.11 (see [A, Proposition 4.8], [F5, Theorem 3.45], and [F12, Theorem

6.3.7]). Assume that [X,ω] is a quasi-log scheme with X−∞ = ∅. Then we have

the following properties.

(i) The intersection of two qlc strata is a union of qlc strata.

(ii) For any closed point x ∈ X, the set of all qlc strata passing through x has a

unique minimal element Cx. Moreover, Cx is normal at x.
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Proof. Let C1 and C2 be two qlc strata of [X,ω]. We fix P ∈ C1∩C2. It is enough

to find a qlc stratum C such that P ∈ C ⊂ C1 ∩C2. The union X ′ = C1 ∪C2 with

ω′ = ω|X′ is a qlc pair having two irreducible components. Hence, it is not normal

at P . By Lemma 3.9, P ∈ Nqklt(X ′, ω′). Therefore, there exists a qlc stratum C

such that P ∈ C ⊂ X ′. We may assume that C ⊂ C1 with dimC < dimC1. If

C ⊂ C2, then we are done. Otherwise, we repeat the argument with C1 = C and

reach the conclusion in a finite number of steps. This finishes the proof of (i). The

uniqueness of the minimal qlc stratum follows from (i), and the normality of the

minimal stratum follows from Lemma 3.9. Thus, we have (ii).

The following lemma is useful for some applications. It enables removing re-

dundant components of Y from the quasi-log resolution f : (Y,BY )→ X.

Lemma 3.12. Let (X,ω, f : (Y,BY ) → X) be a quasi-log scheme as in Defini-

tion 3.3. Then we can construct a new quasi-log resolution f ′ : (Y ′, BY ′) → X

such that

(i) f ′ : (Y ′, BY ′) → X gives the same quasi-log structure as one given by f :

(Y,BY )→ X, and

(ii) every irreducible component of Y ′ is mapped by f ′ to X \X−∞, the closure of

X \X−∞ in X.

Proof. Let M be the ambient space of (Y,BY ). By taking some blow-ups of M ,

we may assume that the union of all strata of (Y,BY ) that are not mapped to

X \X−∞, which is denoted by Y ′′, is a union of some irreducible components

of Y (see [F11, Proposition 4.1]). We define Y ′ = Y − Y ′′ and KY ′′ + BY ′′ =

(KY + BY )|Y ′′ . We may further assume that the union of all strata of (Y,BY )

mapped to X \X−∞ ∩ X−∞ is a union of some irreducible components of Y by

[F11, Proposition 4.1]. We consider the short exact sequence

0→ OY ′′(−Y ′)→ OY → OY ′ → 0.

We set A = d−(B<1
Y )e and N = bB>1

Y c. By applying ⊗OY (A−N), we have

0→ OY ′′(A−N − Y ′)→ OY (A−N)→ OY ′(A−N)→ 0.

Applying f∗ yields

0→ f∗OY ′′(A−N − Y ′)→ f∗OY (A−N)→ f∗OY ′(A−N)

→ R1f∗OY ′′(A−N − Y ′)→ · · · .
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By [F8, Theorem 1.1] and [F2, Theorem 2.39] (see also [F12, Theorem 5.6.3]), no

associated prime of R1f∗OY ′′(A−N−Y ′) is contained in f(Y ′)∩X−∞. Note that

(A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) = −(KY ′′ +BY ′′)

∼R −(f∗ω)|Y ′′ .

Therefore, the connecting homomorphism

δ : f∗OY ′(A−N)→ R1f∗OY ′′(A−N − Y ′)

is zero. This implies that

0→ f∗OY ′′(A−N − Y ′)→ IX−∞ → f∗OY ′(A−N)→ 0

is exact. The ideal sheaf J = f∗OY ′′(A − N − Y ′) is zero when restricted to

X−∞ because J ⊂ IX−∞ . On the other hand, J is zero on X \ X−∞ because

f(Y ′′) ⊂ X−∞. Therefore, we obtain J = 0. Thus we have IX−∞ = f∗OY ′(A−N).

So f ′ = f |Y ′ : (Y ′, BY ′)→ X, where KY ′ +BY ′ = (KY +BY )|Y ′ , gives the same

quasi-log structure as the one given by f : (Y,BY )→ X, and has property (ii).

The next lemma is obvious. We will sometimes use it implicitly in the theory

of quasi-log schemes.

Lemma 3.13. Let [X,ω] be a quasi-log scheme. Assume that X = V ∪X−∞ and

V ∩ X−∞ = ∅. Then [V, ω|V ] is a quasi-log scheme with only quasi-log canonical

singularities.

By using Lemma 3.12, we obtain Lemma 3.14 below. Roughly speaking, it

enables removing the irreducible components of X contained in X−∞ from the

quasi-log pair [X,ω].

Lemma 3.14. Let [X,ω] be a quasi-log scheme. Consider X† = X \X−∞ (the

closure in X), with the reduced scheme structure. Then [X†, ω†], where ω† = ω|X† ,
has a natural quasi-log structure induced by [X,ω]. This means that

(i) C is a qlc stratum of [X,ω] if and only if C is a qlc stratum of [X†, ω†], and

(ii) INqlc(X,ω) = INqlc(X†,ω†).

Proof. Let IX† be the defining ideal sheaf of X† on X. Let f ′ : (Y ′, BY ′)→ X be

the quasi-log resolution constructed in the proof of Lemma 3.12. Note that

IX−∞ ' f ′∗OY ′(A−N) ' f ′∗OY ′(−N)

and

f ′(N) = X−∞ ∩ f ′(Y ′) = X−∞ ∩X†
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set-theoretically, where A = d−(B<1
Y ′ )e and N = bB>1

Y ′ c (see [F11, Remark 3.8]).

Therefore, we obtain

IX† ∩ IX−∞ = IX† ∩ f ′∗OY ′(−N ′) = {0}.

Thus we can construct the big commutative diagram

0

��

0

��
IX−∞

��

IX†−∞

��
0 // IX† // OX //

��

OX† //

��

0

0 // IX† // OX−∞ //

��

OX†−∞

��

// 0

0 0

By construction, f ′ factors through a map f† : (Y ′, BY ′) → X†, which gives the

desired quasi-log structure on [X†, ω†].

Lemma 3.15 below is needed in the proof of Theorem 1.1.

Lemma 3.15. Let [X,ω] be a quasi-log scheme and let E be an effective R-Cartier

divisor on X, that is, E =
∑k
i=1 eiEi, where Ei is an effective Cartier divisor on

X and ei ≥ 0 for every i. Set

ω̃ = ω + εE

with 0 < ε � 1. Then [X, ω̃] has a natural quasi-log structure with the following

properties.

(i) Let {Ci}i∈I be the set of qlc strata of [X,ω] contained in SuppE. Write

X? =
(⋃
i∈I

Ci

)
∪Nqlc(X,ω)

as in Theorem 3.8. Then Nqlc(X, ω̃) coincides with X? scheme-theoretically.

(ii) C is a qlc stratum of [X, ω̃] if and only if C is a qlc stratum of [X,ω] with

C 6⊂ SuppE.

Proof. Let f : (Y,BY )→ X be a quasi-log resolution as in Definition 3.3. By [F11,

Proposition 4.1], the union of all strata of (Y,BY ) mapped to X?, which is denoted
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by Y ′′, is a union of some irreducible components of Y . We write Y ′ = Y − Y ′′

and KY ′+BY ′ = (KY +BY )|Y ′ . By [F11, Proposition 4.1] we may further assume

that (Y ′, BY ′ + f∗E) is a globally embedded simple normal crossing pair. We

consider f : (Y ′, BY ′ + εf∗E) → X with 0 < ε � 1. We set A = d−(B<1
Y )e and

N = bB>1
Y c. Then X? is defined by the ideal sheaf f∗OY ′(A − N − Y ′′) (see the

proof of Theorem 3.8). Note that

(A−N − Y ′′)|Y ′ = −bBY ′ + εf∗Ec+ (BY ′ + εf∗E)=1

= d−(BY ′ + εf∗E)<1e − b(BY ′ + εf∗E)>1c.

Therefore, if we define Nqlc(X, ω̃) by the ideal sheaf

f∗OY ′(d−(BY ′ + εf∗E)<1e − b(BY ′ + εf∗E)>1c) = f∗OY ′(A−N − Y ′′),

then f : (Y ′, BY ′ +εf∗E)→ X gives the desired quasi-log structure on [X, ω̃].

The following lemma is a slight generalization of [F2, Lemma 3.71], which

played a crucial role in the proof of the rationality theorem for quasi-log schemes

(see [F2, Theorem 3.68] and [F12, Theorem 6.6.1]).

Lemma 3.16 (see [F2, Lemma 3.71] and [F12, Lemma 6.3.9]). Let [X,ω] be a

quasi-log scheme with X−∞ = ∅ and let x ∈ X be a closed point. Let D1, . . . , Dk

be effective Cartier divisors on X such that x ∈ SuppDi for every i. Let

f : (Y,BY ) → X be a quasi-log resolution. Assume that the normalization

of (Y,BY +
∑k
i=1 f

∗Di) is sub log canonical. This means that (Y ν ,Ξ) is sub

log canonical, where ν : Y ν → Y is the normalization and KY ν + Ξ =

ν∗(KY + BY +
∑k
i=1 f

∗Di). Note that this requires that no irreducible compo-

nent of Y is mapped into
⋃k
i=1 SuppDi. Then k ≤ dimxX. More precisely,

k ≤ dimx Cx, where Cx is the minimal qlc stratum of [X,ω] passing through x.

Proof. We prove this lemma by induction on the dimension.

Step 1. By [F11, Proposition 4.1], we may assume that (Y,BY +
∑k
i=1 f

∗Di) is

a globally embedded simple normal crossing pair. Let i0 be any positive integer

with 1 ≤ i0 ≤ k. Note that f∗OY (d−(B<1
Y )e) ' OX . Therefore, for any irreducible

component T of SuppDi0 , there is a stratum S of (Y,BY +f∗Di0) mapped onto T .

Note that f : (Y,BY +
∑k
i=1 f

∗Di) → X gives a natural quasi-log structure on

[X,ω +
∑k
i=1Di] with only quasi-log canonical singularities. We also note that

SuppDi and SuppDj have no common irreducible components for i 6= j by the

condition f∗OY (d−(B<1
Y )e) ' OX .

Step 2. In this step, we assume that dimxX = 1. If x is a qlc stratum of [X,ω],

then we have k = 0. Therefore, we may assume that x is not a qlc stratum of [X,ω].
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By shrinking X around x, we may assume that every stratum of (Y,BY ) is mapped

onto X. Then X is irreducible and normal (see Lemma 3.9), and f : Y → X is

flat. In this case, f∗OY (d−(B<1
Y )e) ' OX implies k ≤ 1 = dimxX.

Step 3. We assume that dimxX ≥ 2. If x is a qlc stratum of [X,ω], then k = 0.

So we may assume that x is not a qlc stratum of [X,ω]. Let C be the minimal qlc

stratum of [X,ω] passing through x. By shrinking X around x, we may assume that

C is normal (see Theorem 3.11). By [F11, Proposition 4.1], we may assume that the

union of all strata of (Y,BY ) mapped to C, which is denoted by Y ′, is a union of

some irreducible components of Y . Then f : (Y ′, BY ′)→ C gives a natural quasi-

log structure induced by the original quasi-log structure f : (Y,BY ) → X (see

Theorem 3.8). Therefore, by induction on the dimension, we have k ≤ dimx C ≤
dimxX when dimx C < dimxX. Thus we may assume that X is the unique qlc

stratum of [X,ω]. Note that f : (Y,BY + f∗D1) → X gives a natural quasi-log

structure on [X,ω+D1] with only quasi-log canonical singularities. Let X ′ be the

union of qlc strata of [X,ω + D1] contained in SuppD1. Then [X ′, (ω + D1)|X′ ]
is a qlc pair with dimxX

′ < dimxX (see Step 1). Note that [X ′, (ω + D1)|X′ ]
with D2|X′ , . . . , Dk|X′ satisfies a condition similar to the original one for [X,ω]

with D1, . . . , Dk (see Step 1). Therefore, k− 1 ≤ dimxX
′ < dimxX. This implies

k ≤ dimxX.

Anyway, we have obtained the desired inequality k ≤ dimx Cx, where Cx is

the minimal qlc stratum of [X,ω] passing through x.

§4. Proof of Theorem 1.1

Step 1. If dimX \X−∞ = 0, then the assertion of Theorem 1.1 obviously holds

true. From now on, we assume that Theorem 1.1 holds for any quasi-log scheme

Z with dimZ \ Z−∞ < dimX \X−∞.

Step 2. We take a qlc stratum C of [X,ω]. We write X ′ = C ∪ X−∞. Then

X ′ has a natural quasi-log structure induced by [X,ω] (see Theorem 3.8). By the

vanishing theorem (see Theorem 3.8), we have R1π∗(IX′⊗OX(mL)) = 0 for every

m ≥ q. Therefore, π∗OX(mL)→ π∗OX′(mL) is surjective for every m ≥ q. Thus,

we may assume that X \X−∞ is irreducible for the proof of Theorem 1.1 by using

the commutative diagram

π∗π∗OX(mL) //

��

π∗π∗OX′(mL) //

��

0

OX(mL) // OX′(mL) // 0
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Step 3. Let f : (Y,BY )→ X be a quasi-log resolution. By Lemma 3.12, we may

assume that every irreducible component of Y is mapped to X \X−∞. We may

further assume that S is affine.

Step 4. In this step, we assume that X is the disjoint union of X−∞ and a qlc

stratum C of [X,ω]. We further assume that C is the unique qlc stratum of [X,ω].

In this case, we may assume that X−∞ = ∅ by Lemma 3.12. By Lemma 3.9, X is

normal. By Kodaira’s lemma, we can write qL− ω ∼R A+ E on X, where A is a

π-ample Q-divisor on X and E is an effective R-Cartier divisor on X. We define

ω̃ = ω+εE with 0 < ε� 1. Then [X, ω̃] is a quasi-log scheme with Nqlc(X, ω̃) = ∅
(see Lemma 3.15). Note that

qL− ω̃ ∼R (1− ε)(qL− ω) + εA

is π-ample. Therefore, by the basepoint-free theorem for quasi-log schemes (see [A,

Theorem 5.1], [F2, Theorem 3.66], Remark 1.3, and [F12, Theorem 6.5.1]), we see

that OX(mL) is π-generated for every m� 0.

Step 5. From now on, by Step 4, we may assume that there is a qlc center C ′ of

[X,ω] or assume that C ∩X−∞ 6= ∅, where X = C ∪X−∞. We set

X ′ =
(⋃
i∈I

Ci

)
∪X−∞

as in Theorem 3.8, where {Ci}i∈I is the set of all qlc centers of [X,ω], equivalently,

X ′ = Nqklt(X,ω). Then, by induction on the dimension or the assumption on

OX−∞(mL), OX′(mL) is π-generated for every m� 0. By the same arguments as

in Step 2, that is, the surjectivity of the restriction map π∗OX(mL)→ π∗OX′(mL)

for every m ≥ q, OX(mL) is π-generated in a neighborhood U of X ′ for every

large and positive integer m. Note that C ∩ U 6= ∅. In particular, for every prime

number p and every large positive integer l, OX(plL) is π-generated in the above

neighborhood U of X ′ = Nqklt(X,ω).

Step 6. In this step, we prove the following claim.

Claim. If the relative base locus Bsπ |plL| (with the reduced scheme structure) is

not empty, then there is a positive integer a such that Bsπ |palL| is strictly smaller

than Bsπ |plL|.

Proof of Claim. Note that Bsπ |palL| ⊆ Bsπ |plL| for every positive integer a. We

consider [X†, ω†] as in Lemma 3.14. Since (qL − ω)|X† is nef and big over S, we

can write

qL|X† − ω† ∼R A+ E
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onX† by Kodaira’s lemma (cf. [F10, Lemma A.10]), whereA is a π-ample Q-divisor

on X† and E is an effective R-Cartier divisor on X†. We note that X† is projective

over S and that X† is not necessarily normal (see Example 4.1). By Lemma 3.15,

we have a new quasi-log structure on [X†, ω̃], where ω̃ = ω† + εE with 0 < ε� 1,

such that

(4.1) Nqlc(X†, ω̃) =
(⋃
i∈I

Ci

)
∪Nqlc(X†, ω†),

where {Ci}i∈I is the set of qlc centers of [X†, ω†] contained in SuppE.

We write n = dimX†. Let D1, . . . , Dn+1 be general members of |plL|. Let

f : (Y,BY ) → X† be a quasi-log resolution of [X†, ω̃]. We consider f : (Y,BY +∑n+1
i=1 f

∗Di)→ X†. We define

c = sup
t≥0

{
t

∣∣∣∣ the normalization of (Y,BY + t
∑n+1
i=1 f

∗Di) is

sub log canonical over X† \Nqlc(X†, ω̃)

}
.

Then c < 1 by Lemma 3.16. We have c > 0 by Step 5. Thus,

f :
(
Y,BY + c

n+1∑
i=1

f∗Di

)
→ X†

gives a quasi-log structure on [X†, ω̃+ c
∑n+1
i=1 Di]. Note that [X†, ω̃+ c

∑n+1
i=1 Di]

has only quasi-log canonical singularities on X† \ Nqlc(X†, ω̃). By construction,

there is a qlc center C0 of [X†, ω̃ + c
∑n+1
i=1 Di] contained in Bsπ |plL|. We set

ω̃ + c
∑n+1
i=1 Di = ω. Then

C0 ∩Nqlc(X†, ω) = ∅

because

Bsπ |plL| ∩Nqklt(X,ω) = ∅.

Note that Nqlc(X†, ω) = Nqlc(X†, ω̃) by construction. We also note that

(q + c(n+ 1)pl)L|X† − ω ∼R (1− ε)(qL|X† − ω†) + εA

is ample over S. Therefore,

(4.2) π∗OX†(mL)→ π∗OC0
(mL)⊕ π∗ONqlc(X†,ω)(mL)

is surjective for every m ≥ q + c(n + 1)pl. Moreover, π∗OC0
(mL) is π-generated

for every m � 0 by the basepoint-free theorem for quasi-log schemes (see [A,

Theorem 5.1], [F2, Theorem 3.66], Remark 1.3, and [F12, Theorem 6.5.1]). Note

that [C0, ω|C0
] is a quasi-log scheme with only quasi-log canonical singularities by

Theorem 3.8 and Lemma 3.13. Therefore, we can construct a section s ofOX†(palL)
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for some positive integer a such that s|C0
is not zero and s is zero on Nqlc(X†, ω)

by (4.2). Thus s is zero on

Nqlc(X†, ω) = Nqlc(X†, ω̃) =
(⋃
i∈I

Ci

)
∪Nqlc(X†, ω†)

by (4.1). In particular, s is zero on Nqlc(X†, ω†). So, s can be seen as a section

of OX(palL) because INqlc(X†,ω†) = INqlc(X,ω) by construction (see Lemma 3.14).

Therefore, Bsπ |palL| is strictly smaller than Bsπ |plL|. This completes the proof

of Claim.

Step 7. By Step 6 and noetherian induction, OX(plL) and OX(p′l
′
L) are both

π-generated for large l and l′, where p and p′ are distinct prime numbers. So, there

exists a positive integer m0 such that OX(mL) is π-generated for every m ≥ m0.

Thus we obtain the desired basepoint-free theorem.

Example 4.1. Let C be a nodal curve on a smooth surface. Then [C,KC ] is a

quasi-log scheme with only quasi-log canonical singularities. In this case, C is not

normal.

Finally, we prove Theorems 1.5 and 1.7.

Proof of Theorems 1.5 and 1.7. Let f : Y → X be a resolution such that KY +

BY = f∗(KX + B) and SuppBY is a simple normal crossing divisor on Y . By

Lemma 3.2, (Y,BY ) is a globally embedded simple normal crossing pair. Then

f : (Y,BY ) → X defines a quasi-log structure on [X,KX + B]. We note that

JNLC(X,B) coincides with the defining ideal sheaf of Nqlc(X,KX +B) and that

C is a qlc stratum of [X,KX + B] if and only if C is a log canonical stratum

of (X,B). Therefore, Theorem 1.7 is a special case of Theorem 1.1. Moreover,

Theorem 1.5 is a special case of Theorem 1.7.
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