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Analytic Singular Support Properties for Integral
Operators in Hyperfunctions
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Otto Liess and Yasunori Okada

Abstract

In this paper, we continue our study of integral operators in [12] and give a result on the
analytic singular support of the kernel hyperfunction similar to the main result in [12].
A new feature with respect to [12] is that we use classes of ultradifferentiable functions
associated with a weight function and a topological description of related spaces of quasi-
analytic functionals.

2010 Mathematics Subject Classification: Primary 46F12; Secondary 46F15.
Keywords: integral transforms, hyperfunctions.

§1. Introduction

In this paper, we continue the study of integral operators begun in [12] and give

a result on the analytic singular support of the kernel hyperfunction. The main

theorem in [12] concerned support properties of integral operators, whereas our

present result will concern similar singular support properties.

We recall here some notation and explain the setting. Consider open sets

U ⊂ Rm, V ⊂ Rn, and a hyperfunction K defined on V × U which satisfies the

condition

(1.1) {(x, y, 0, η) ∈ V × U × Rn × Rm; η 6= 0} ∩WFAK = ∅,

where WFAK denotes the analytic wave front set of K. We can then associate with

K a linear operator T : A′(U)→ B(V ) by

(1.2) (Tu)(x) =

∫
U

K(x, y)u(y) dy for u ∈ A′(U).
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Here A′(U) denotes the space of real-analytic functionals on U , B(V ) the space

of hyperfunctions on V , and the meaning of the integral in (1.2) is the one given

by microlocal analysis to such expressions (see Sato–Kawai–Kashiwara [16]). Note

that we shall identify A′(U) with the space Bc(U) of hyperfunctions on U with

compact support. In this setting, T is said to be the integral operator associated

with K, and K is said to be the kernel of T .

Our main result is the following

Theorem 1.1. Let T : A′(U) → B(V ) be the integral operator associated with

some kernel K ∈ B(V × U) satisfying (1.1). Assume that singsuppA Tu ⊂ V is

compact for every u ∈ A′(U). Then the projection (V × U) ∩ singsuppAK → U is

proper.

Here and later on, singsuppA u denotes the analytic singular support of u. We

mention that [12, Theorem 1.1] had a statement which was quite similar to that

of Theorem 1.1, in that it stated that if for an operator as in (1.2), suppTu is

compact for every u ∈ A′(U), then the projection (V ×U)∩ suppK → U must be

proper.

Classical examples of operators which are as in Theorem 1.1 include the op-

erators associated with parametrices for analytic pseudodifferential operators and

analytic Fourier integral operators.

The argument in [12] was based on a preliminary decomposition of the ker-

nel K in terms of C∞ functions. By studying non-analyticity of differentiable

functions in a quantitative way we could avoid cohomological characterizations of

the supports of the hyperfunctions in the image of T . A similar technique is again

needed in this paper, but here we shall use related decompositions of K with re-

spect to an adapted class of possibly quasianalytic ultradifferentiable functions and

we must then know that any real-analytic functional will be in one of the spaces of

quasianalytic functionals associated with some class. The difference between the

approaches in [12] and the present paper comes from the fact that to characterize

the support of some hyperfunction is easier than to characterize its singular sup-

port. See Remark 6.5 for more details on what we mean by this statement. As for

the classes of ultradifferentiable functions and quasianalytic functionals, we will use

those introduced and studied by Braun–Meise–Taylor [5] and Heinrich–Meise [6].

The plan of the paper is as follows. In Section 2, we recall the notion of

ultradifferentiable classes with respect to weight functions and quasianalytic func-

tionals, from [5] and [6]. These classes will be called BMT-classes for short. We

also cite a topological description of the spaces of quasianalytic functionals via

the Fourier–Laplace transform, and an existence result for weight functions which

may be large at infinity (see Theorem 2.7, Lemma 2.8 and the citations there).
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In Section 3, we study twisted Radon transforms applied to ultradifferen-

tiable functions. There we shall see that an important feature of BMT-classes

is that they are stable under twisted Radon decompositions (Lemma 3.2). This

fact will then lead to boundary value representations for ultradifferentiable kernels

(Theorem 3.4). When our kernel functions K in (1.2) are ultradifferentiable and

when they operate on quasianalytic functionals, then the integrals there can also

be given a meaning by duality. We have thus two ways of defining our integral

operators, an initial one in terms of integration of hyperfunctions as in [16] and a

second one by duality. Based on the result in Section 3, we establish in Section 4

that the two interpretations of the integral (1.2) are compatible (Corollary 4.1).

In Section 5, after showing in Lemma 5.2 that the inverse Fourier transforms

of functions satisfying suitable decay estimates are ultradifferentiable, we prove a

division theorem for a hyperfunction kernel. In it, a given kernel is written, up

to a real-analytic remainder, in the form P (Dx)K′, where P (Dx) is a possibly

infinite order elliptic partial differential operator in the x variable and K′ is an

ultradifferentiable quotient (Theorem 5.1). Due to this, we can then give, in the

final Section 6, the proof of our main result, Theorem 1.1, also using the fact that

the space of real-analytic functionals is exhausted by the classes of quasianalytic

functionals which appear in BMT theory.

We conclude the introduction by recalling [12, Theorems 1.2 and 1.3].

Theorem 1.2. Let K ∈ B(V × U) be a hyperfunction satisfying (1.1) and let T

be the associated operator defined in (1.2). If Tu = 0 for every u ∈ A′(U), then

K must vanish on V × U .

Theorem 1.3. Let K ∈ B(V ×U) be a hyperfunction satisfying (1.1). Assume that

the operator T : A′(U) → B(V ) defined in (1.2) actually maps A′(U) into A(V ).

Then K is real-analytic on V × U .

The two theorems are essentially consequences of results of Kaneko [9], Bastin–

Laubin [2, 3] and Kataoka–Oshima (see [8, Theorem 4.4.7′] for the latter). For the

reason, see [12, Remark 1.7 and §2].

§2. Ultradifferentiability with respect to a weight function

We now recall part of the terminology and of the results on the notion of ultra-

differentiability with respect to weight functions, and on quasianalytic functionals

associated with weight functions, as introduced by Braun–Meise–Taylor [5] and

Heinrich–Meise [6]. For the relation between this and the notions of ultradiffer-
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entiability given by sequences, we refer to Bonet–Meise–Melikhov [4]. Also refer

to [13] for the relation to so-called inhomogeneous Gevrey classes of [15].

First we give the notion of a Young conjugate (or Legendre transform) for

increasing functions defined on [0,∞[.

Definition 2.1 ([4, Definition 2.3]). Let ϕ : [0,∞[ → [0,∞[ be an increasing

function satisfying ϕ(0) = 0 and x = o(ϕ(x)) as x → ∞. Then the Young conju-

gate ϕ∗ of ϕ is defined as

(2.1) ϕ∗ : [0,∞[→ [0,∞[, ϕ∗(y) := sup
x≥0

(xy − ϕ(x)).

We also use the notation

(2.2) ϕ∗[λ](y) := λϕ∗(y/λ),

which is the Young conjugate of λϕ(·), for λ > 0. Therefore, the family {λϕ}λ>0

corresponds to the family {ϕ∗[λ]}λ>0.

Definition 2.2 ([4, Definition 2.1(a)]). Let ω : [0,∞[ → [0,∞[ be a continuous

increasing function which satisfies ω|[0,1] ≡ 0. It is called a weight function if it

has the following properties:

(α) ω(2t) = O(ω(t)) as t→∞,

(β) log(1 + t) = o(ω(t)) as t→∞,

(γ) ω(t) = O(t) as t→∞,

(δ) ϕ : [0,∞[→ [0,∞[ defined by ϕ(x) := ω(ex) is convex.

A weight function ω(t) is called quasianalytic if
∫∞

0
ω(t)
1+t2 dt = ∞. While we

shall mainly work with quasianalytic cases, we shall not use properties specific to

quasianalyticity.

For a weight function ω, we always consider the function ϕ defined in Defini-

tion 2.2(δ) and its Young conjugate ϕ∗. Note that for a weight function ω, the ϕ

given in Definition 2.2(δ) always satisfies the hypothesis of Definition 2.1. In fact,

x = o(ϕ(x)) as x→∞ in view of Definition 2.2(β).

Example 2.3. The function ωA(t) := max{0, t − 1} is a weight function corre-

sponding to ϕA(x) = ex − 1 with Young conjugate ϕ∗A(y) = y log y − y + 1.

Consider two weight functions ω1 and ω2, and let ϕ∗j,[λ] for λ > 0 and j =

1, 2 denote the functions given by (2.1) and (2.2) for ϕj(x) := ωj(e
x) (j = 1, 2)

respectively. Then

∀t ≥ 0, ω1(t) ≤ ω2(t) ⇒ ∀y ≥ 0, ϕ∗1,[λ](y) ≥ ϕ∗2,[λ](y).
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Proposition 2.4. Let ω be a weight function. Define ϕ, ϕ∗ and ϕ∗[λ] by Defini-

tion 2.2(δ), (2.1) and (2.2). Then:

(a) ϕ∗ is a convex increasing function mapping [0,∞[ into [0,∞[, satisfying ϕ∗(0)

= 0 and limy→∞ ϕ∗(y)/y =∞.

(b) (ϕ∗)∗ = ϕ; more generally, (ϕ∗[λ])
∗ = λϕ.

(c) ϕ∗[λ](y) is decreasing in λ, that is, ϕ∗[λ](y) ≥ ϕ∗[µ](y) for 0 < λ ≤ µ, y ≥ 0.

(d) ϕ∗[λ](p) + ϕ∗[λ](q) ≤ ϕ
∗
[λ](p+ q) for any λ > 0 and p, q ≥ 0.

(e) ϕ∗[λ+µ](p+ q) ≤ ϕ∗[λ](p) + ϕ∗[µ](q) for any λ, µ > 0 and p, q ≥ 0.

(f) λϕ(x)− x ≤ supp∈N0
(xp− ϕ∗[λ](p)) ≤ λϕ(x) for any λ > 0 and x ≥ 0.

(g) For any k, l1, l2 ≥ 0 and λ > 0, there exist µ > 0 and C ≥ 0 such that

(2.3) ϕ∗[λ](y + l1) + ky ≤ ϕ∗[µ](y + l2) + C, y ≥ 0.

On the other hand, for any k, l1, l2 ≥ 0 and λ > 0, there exist µ > 0 and C ≥ 0

such that

(2.4) ϕ∗[λ](y + l1)− ky ≥ ϕ∗[µ](y + l2)− C, y ≥ 0.

(See [6, Lemma 2.6].)

(h) If ω is sublinear, i.e., ω(t) = o(t) as t→∞, then

ϕ∗[λ](y)/y − log y →∞ as y →∞,

for any λ > 0. In particular, infy>0(ϕ∗[λ](y) − y log y − ay) > −∞ for any

sublinear ω, λ > 0 and a ∈ R.

Here in (f) and later on, N0 denotes {0, 1, 2, . . . }, while N = {1, 2, . . . }.

Proof. (a) and (b). That ϕ∗ is increasing and ϕ∗(0) = 0 follows directly from the

definition. The convexity of ϕ∗ follows from the fact that ϕ∗ is the supremum of

the convex functions y 7→ xy − ϕ(x). By definition, and from the convexity of ϕ,

ϕ∗∗(x) = sup
y≥0

(xy − ϕ∗(y)) = sup
y≥0

inf
p≥0

((x− p)y + ϕ(p)) = ϕ(x).

This also implies ϕ∗(y)/y ≥ x − ϕ(x)/y for any x, y ≥ 0, therefore we have

limy→∞ ϕ∗(y)/y =∞, or y = o(ϕ∗(y)) as y →∞.

(c), (d) and (e) follow from the convexity of ϕ∗ and ϕ∗(0) = 0. In fact, they

follow from the intermediate inequalities

ϕ∗(y/µ) ≤ (1− λ/µ)ϕ∗(0) + (λ/µ)ϕ∗(y/λ) for 0 < λ ≤ µ,

ϕ∗[λ](p) ≤
qϕ∗[λ](0) + pϕ∗[λ](p+ q)

p+ q
, ϕ∗[λ](q) ≤

pϕ∗[λ](0) + qϕ∗[λ](p+ q)

q + p
,
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ϕ∗
(
λ(p/λ) + µ(q/µ)

µ+ λ

)
≤ λϕ∗(p/λ) + µϕ∗(q/µ)

µ+ λ
,

which are consequences of the convexity of ϕ∗ and ϕ∗[λ].

(f) for the general λ > 0 follows from the special case λ = 1. The right

inequality follows trivially from (b) so let us prove the left one. Denoting by byc the

integer part of y, we obtain xy−ϕ∗(y) ≤ x(byc+1)−ϕ∗(byc) since byc ≤ y < byc+1

and ϕ∗ is increasing. By taking the supremum in y ≥ 0 and using (b), we have

ϕ(x) ≤ sup
p∈N0

(x(p+ 1)− ϕ∗(p)) = sup
p∈N0

(xp− ϕ∗(p)) + x.

(g) was proved in [6, Lemma 2.6], but let us prove it also here for the con-

venience of the reader. Note that from (e) we have, for any λ > µ > 0 and any

l1, l2 ≥ 0,

(2.5) sup
y≥0

(
ϕ∗[λ](y + l1)− ϕ∗[µ](y + l2)

)
<∞.

In fact, the left hand side is less than ϕ∗[λ−µ](l1 − l2) when l1 ≥ l2, and zero

otherwise. Note also that from Definition 2.2(α), there exists a constant A > 1 such

that ϕ(x+ 1) ≤ A(ϕ(x) + 1) for any x ≥ 0, which implies ϕ(x+k) ≤ Ak(ϕ(x) +k)

for k ∈ N0 and x ≥ 0. Thus

ϕ∗[λ](y + l1) + ky = sup
x≥0

(
x(y + l1)− λϕ(x)

)
+ ky

= sup
x≥0

(
(x+ k)(y + l1)− kl1 − λ(ϕ(x) + k) + kλ

)
≤ k(λ− l1) + sup

x≥0

(
(x+ k)(y + l1)− λA−kϕ(x+ k)

)
≤ k(λ− l1) + ϕ∗[λ/Ak](y + l1).

If we choose µ with 0 < µ < λ/Ak, then (2.3) follows from (2.5). Similarly,

ϕ∗[λ](y + l1)− ky = sup
x≥0

(
x(y + l1)− λϕ(x)

)
− ky

≥ sup
x≥k

(
(x− k)(y + l1) + kl1 − λϕ(x)

)
≥ kl1 + sup

x≥k

(
(x− k)(y + l1)− λAkϕ(x− k)− λkAk

)
= k(l1 − kAk) + ϕ∗[λAk](y + l1).

If we choose µ with µ > λAk, then (2.4) follows from (2.5).

The second statement of (h) follows from the first one, which we will prove.

The inequality ϕ(x) ≤ Aex +B for x ≥ 0 and positive constants A and B implies

ϕ∗(y) ≥ sup
x≥0

(xy −Aex −B) ≥ y log(y/A)− y −B for y ≥ A,
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and therefore lim infy→∞(ϕ∗(y)/y − log y) ≥ −1− logA. Since ϕ(x) = o(ex) from

the sublinearity of ω, we can take an arbitrary A > 0, which concludes the proof

for λ = 1. In view of

ϕ∗[λ](y)/y − log y = ϕ∗(y/λ)/(y/λ)− log(y/λ)− log λ,

the general case follows from the case λ = 1.

Definition 2.5. Let ω be a weight function and V ⊂ Rn an open set. Then we

define, for λ > 0 and K b V , a quasi-norm pω,λ,K on C∞(V ) by

pω,λ,K(f) := sup
x∈K,α∈Nn

0

|∂αf(x)| exp(−ϕ∗[λ](|α|)),

and also define the spaces E(ω)(V ) and E{ω}(V ) of ω-ultradifferentiable functions

of Beurling type, respectively of Roumieu type, on V by

E(ω)(V ) := {f ∈ C∞(V ); ∀K b V, ∀m ∈ N, pω,m,K(f) <∞},
E{ω}(V ) := {f ∈ C∞(V ); ∀K b V, ∃m ∈ N, pω,1/m,K(f) <∞}.

These spaces are endowed with the natural locally convex topologies given by

E(ω)(V ) = lim←−
KbV

lim←−
m∈N
{f ∈ C∞(V ); pω,m,K(f) <∞},(2.6)

E{ω}(V ) = lim←−
KbV

lim−→
m∈N
{f ∈ C∞(V ); pω,1/m,K(f) <∞},(2.7)

where lim−→ and lim←− denote the inductive and projective limits respectively. We de-

note by E ′(ω)(V ) and E ′{ω}(V ) the respective strong dual spaces, and their elements

are called (ω)-ultradistributions (respectively {ω}-ultradistributions) with compact

support in V . If ω is quasianalytic, they are also called quasianalytic functionals

of (ω)-type (respectively of {ω}-type) on V .

By definition, we have the following continuous inclusion maps for weight

functions ω and ω̃:

E(ω)(V ) ⊂ E{ω}(V ),

E(ω̃)(V ) ⊂ E(ω)(V ), E{ω̃}(V ) ⊂ E{ω}(V ) if ω = O(ω̃) as t→∞,
E{ω̃}(V ) ⊂ E(ω)(V ) if ω = o(ω̃) as t→∞.

For example, if we take ωA given in Example 2.3, then E{ωA}(V ) ' A(V ) as

locally convex spaces, and therefore A(V ) is continuously included in E(ω)(V ) and

in E{ω}(V ) for any sublinear weight function ω. If moreover V is connected, then

E(ωA)(V ) ' O(Cn). From now on, we restrict ourselves to considering E(ω)(V ) and

E ′(ω)(V ) only when ω is sublinear.
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Note that pω,λ,K(f) increases in λ (see Proposition 2.4(c)). Therefore we may

take any unbounded subset in N as a cofinal set in the projective and inductive

limits in m in (2.6) and in (2.7) respectively. Also note that the inequality in

Proposition 2.4(e) with λ = µ shows that

pω,λ,K(∂βf) ≤ exp(ϕ∗[λ](|β|)) · pω,2λ,K(f),

which proves the stability of E(ω)(V ) and E{ω}(V ) under derivation by ∂β .

Let ∗ denote (ω) or {ω}. The spaces E ′∗(V ) are canonically embedded in A′(V )

if ∗ = (ω) and ω(t) = o(t), or if ∗ = {ω}, since A(V ) is dense in E∗(V ) (see [6,

Proposition 3.2]).

Definition 2.6 ([6, Definition 3.4]). Let ω be a weight function and V ⊂ Rn an

open convex set. For a compact set K b V , we denote the supporting function

of K by

HK(ξ) := sup
x∈K
〈x, ξ〉,

and define Banach spaces A(K,λ) for λ > 0 by

A(K,λ) :=
{
f ∈ O(Cn); ‖f‖K,λ := sup

ζ∈Cn

|f(ζ)| exp
(
−HK(Im ζ)− λω(|ζ|)

)
<∞

}
.

We also define the locally convex spaces

A(ω)(Cn, V ) := lim−→
KbV

lim−→
k∈N

A(K, k), A{ω}(Cn, V ) := lim−→
KbV

lim←−
k∈N

A(K, 1/k).

When V is convex and ω is sublinear, the Fourier–Laplace transform

F : A′(V ) 3 u 7→ û ∈ O(Cn), û(ζ) := 〈u, e−i〈·,ζ〉〉,

induces the following topological isomorphisms:

Theorem 2.7 ([6, Theorems 3.6 and 3.7]). Let ω be a sublinear weight function

and V ⊂ Rn an open convex set. Then the linear maps

F : E ′(ω)(V )→ A(ω)(Cn, V ), F : E ′{ω}(V )→ A{ω}(Cn, V )

are isomorphisms between the corresponding locally convex spaces.

The following result on existence of weight functions is a special case of [5,

Lemma 1.7 and Remark 1.8(1)].

Lemma 2.8. For any sublinear function `(t), there exists a sublinear weight func-

tion ω(t) such that `(t) = o(ω(t)) as t→∞.

These results imply that every real-analytic functional belongs to some class

of quasianalytic functionals associated with some sublinear weight function.
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§3. Twisted Radon transforms of ultradifferentiable functions

In this section, we will study properties of a given ultradifferentiable integral kernel

using a twisted Radon transform. The main result in this section is Theorem 3.4.

Twisted Radon transforms are integral operators associated with twisted

Radon kernels. Here we recall such a twisted Radon kernel in one of the forms

in which such kernels appear in the literature. For notational simplicity we will

recall the kernel in n variables, although when we work with it we will apply it

in Rn+m. We use in fact a Radon kernel of Bony type:

W (z, ξ) =
(n− 1)!

(−2πi)n
· 1 + i〈z, ξ〉

Φ(z, ξ)n
, Φ(z, ξ) = 〈z, ξ〉+ i〈z, z〉,

regarded as a function defined on the set

{(z, ξ) ∈ Cn × Sn−1; Im Φ(z, ξ) > 0} = {|Im z − ξ/2|2 < 1/4 + |Re z|2},

and its integral with respect to ξ ∈ Sn−1 ∩∆, with ∆ a proper cone in Rn:

W (z,∆) :=

∫
Sn−1∩∆

W (z, ξ) dσ(ξ),

where σ(ξ) denotes the standard surface element of Sn−1.

We recall some known results concerning W (z, ξ). The following statements

are valid not only for kernels of Bony type, but also for other twisted Radon

kernels.

For a hyperfunction u ∈ B(Rn) with compact support, and for a decompo-

sition Ṙn =
⋃J
j=1 ∆j of Ṙn = Rn \ {0} into closed proper cones ∆j ⊂ Ṙn with

disjoint interiors, the integrals

(3.1) Fj(z) :=

∫
Rn

W (z − x,∆j)u(x) dx

for j = 1, . . . , J define holomorphic functions on infinitesimal wedges of the form

Rn + i∆⊥j 0, and they give a family of defining functions of u, that is,

u(x) =

J∑
j=1

Fj(x+ i∆⊥j 0).

Here and later on we use the following notation: for a cone ∆ ⊂ Rn, ∆⊥ denotes

the dual cone Int{s ∈ Rn; ∀ξ ∈ ∆, 〈s, ξ〉 > 0} of ∆; for cones G′ ⊂ G in Rn, G′ is

said to be a strict subcone of G if the closure of G′∩Sn−1 is included in the interior

of G; and for an open set V ⊂ Rn and an open cone G ⊂ Rn, an open set U ⊂ Cn

is called an infinitesimal wedge of the form V + iG0 if U ⊂ V + iG and if for any
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K b V and any strict subcone G′ of G, there exists d > 0 with U ⊃ K + iG′[d],

where G′[d] := {s ∈ G′; |s| < d}.
The great merit of twisted Radon integrals is that if we choose ∆j suitably,

then microanalyticity (microlocal regularity) of u can be read off from the prop-

erties of the Fj in a rather explicit form:

Theorem 3.1. Let u ∈ B(Rn) be a hyperfunction with compact support. Assume

that (V0×∆j)∩WFA u = ∅ for some open set V0 ⊂ Rn. Then Fj(z) given by (3.1)

extends holomorphically to a neighborhood of V0.

This theorem can be proved starting from the definition of integration of

hyperfunctions and the definition of the analytic wave front set. For the theory

of the twisted Radon transform, we refer to Kataoka [10], Kaneko [8] and Aoki–

Kataoka–Yamazaki [1].

It is also known that the differentiability and Gevrey regularity of u are re-

flected in the corresponding properties of the Fj . The following lemma asserts that

the same is true even when the regularity is measured in terms of the ultradiffer-

entiable classes of Section 2. To do so, we consider u = fχ where f is a (possibly)

quasianalytic function and χ is a cut-off function.

Lemma 3.2. Let ω be a sublinear weight function as in Definition 2.2. Let V0 b
V ⊂ Rn be open sets, f ∈ E(ω)(V ), and let χ ∈ C∞0 (Rn) be a differentiable function

satisfying χ ≡ 1 on a neighborhood of V 0 and suppχ ⊂ V . Let ∆j ⊂ Ṙn be closed

proper cones (j = 1, . . . , J) with disjoint interiors satisfying Ṙn =
⋃J
j=1 ∆j, and

define

(3.2) Fj(z) =

∫
Rn

W (z − x,∆j)f(x)χ(x) dx

for j = 1, . . . , J . Then each Fj(z) is a holomorphic function in an infinitesimal

wedge of the form Rn + i∆⊥j 0. More precisely, for any strict subcone Gj ⊂ ∆⊥j ,

there exists a positive constant d such that Fj(z) ∈ O(Rn + iGj [d]). For such

choices of Gj and d, all the derivatives F
(α)
j (z) := ∂αFj(z) (α ∈ Nn0 ) extend

continuously to Rn + i(Gj [d]∪ {0}). Therefore we may denote by the same symbol

F
(α)
j (z) the extended function on Rn+i(Gj [d]∪{0}), and by F

(α)
j (x) its restriction

on Rn. Furthermore if we restrict the domain of definition from Rn to V0, then

F
(α)
j belongs to E(ω)(V0), and for any α ∈ Nn0 , the map

(3.3) Gj [d] ∪ {0} 3 s 7→ F
(α)
j (·+ is) ∈ E(ω)(V0)

is continuous.
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Proof. The statements on the estimates of the domains of holomorphy of Fj and

the extendibility of F
(α)
j are consequences of the fact that the Fj are the convo-

lutions of χ(x)f(x) ∈ C∞0 (Rn) with the twisted Radon kernel associated with ∆j .

The remaining statements follow from the estimate

(3.4) ∃d > 0, ∀λ > 0, ∃Cλ > 0, ∀j ∈ {1, . . . , J}, ∀α ∈ Nn0 ,
sup

x∈V 0, s∈Gj [d]

|∂αFj(x+ is)| ≤ Cλ exp(ϕ∗[λ](|α|)).

In fact, assume for the moment that we have proved (3.4). Then, for any x ∈ V 0,

s ∈ Gj [d], λ > 0, 1 ≤ j ≤ J and α, β ∈ Nn0 , from Proposition 2.4(e) we have

|∂α+βFj(x+ is)| ≤ C2λ exp(ϕ∗[2λ](|α+ β|)) ≤ C2λ exp(ϕ∗[λ](|α|)) · exp(ϕ∗[λ](|β|)),

which implies

pω,λ,V 0
(F (α)(·+ is)) ≤ C2λ exp(ϕ∗[λ](|α|)).

Moreover, for s1 and s2 in Gj [d],

|F (α+β)
j (x+ is1)− F (α+β)

j (x+ is2)| ≤ |s1 − s2|
n∑
k=1

sup
s∈[s1,s2]

|∂zkF
(α+β)
j (x+ is)|

≤ 2dnC2λ exp(ϕ∗[2λ](|α+ β|+ 1)),

where [s1, s2] denotes the line segment with endpoints s1 and s2, and we have used

|s1 − s2| ≤ 2d. Therefore

pω,λ,V 0
(F (α)(·+ is1)− F (α)(·+ is2)) ≤ 2dnC2λ exp(ϕ∗[λ](|α|+ 1)).

In this way, we obtain the boundedness and the uniform continuity of the map

(3.3) on Gj [d].

Now we prove the estimate (3.4). To do so, we start with the following claim.

Claim 3.3. Let α = (α1, . . . , αn) ∈ Nn0 and let k, l be integers with 1 ≤ k ≤ n

and 1 ≤ l ≤ αk. With the notation

α<k = (α1, . . . , αk−1, 0, . . . , 0), α>k = (0, . . . , 0, αk+1, . . . , αn),

we have

(3.5) ∂αFj(z)

=

n∑
k=1

∑
1≤l≤αk

∫
Rn

(
∂αk−l
zk

∂α>k
z W (z − x,∆j)

)(
∂l−1
xk

∂α<k
x f(x)

)
(∂xk

χ(x)) dx

+

∫
Rn

W (z − x,∆j)(∂
α
x f(x))χ(x) dx.
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Proof. This claim follows easily from the following formula of integration by parts.

Let Xq (q = 1, . . . , p) be vector fields with adjoint operators tXq. For f, g ∈ Cp(Rn)

and χ ∈ C1
0 (Rn), we have (e.g., by induction)∫

Rn

(tX1 · · · tXpg)fχ dx =

p∑
q=1

∫
Rn

(
tXq+1 · · · tXpg

)(
Xq−1 · · ·X1f

)
(Xqχ) dx

+

∫
Rn

g
(
(Xp · · ·X1)f

)
χdx.

(Notice that
∫

(tXg)(fχ) dx =
∫
g((Xf)χ+ fXχ) dx. The main point in the pro-

cedure is that once one of the fields Xj falls on χ, we stop integrating by parts.

This idea was used by [6] for the estimates of derivatives of convolutions with

Gaussian kernels of ultradifferentiable functions multiplied by a cut-off function.

Refer to the proof of [6, Proposition 3.2].)

We continue the proof of Lemma 3.2, denoting by Fj,1,α(z) and by Fj,2,α(z)

the first and the second terms on the right hand side of (3.5). Since f ∈ E(ω)(V ),

there exists for any µ > 0 a constant Aµ > 0 such that

(3.6) |∂γxf(x)| ≤ Aµ exp(ϕ∗[µ](|γ|)) for x ∈ suppχ and γ ∈ Nn0 .

Note that the sum
∑n
k=1

∑
1≤l≤αk

of Fj,1,α consists of |α| terms, and it can

be written in the form

Fj,1,α(z) =

p∑
q=1

∫
K1

Wα,q(z − x,∆j)fα,q(x)χα,q(x) dx (p = |α|),

where each Wα,q (resp. fα,q, χα,q) is one of the derivatives of W (resp. f , χ) of

order p− q (resp. q − 1, 1), and K1 :=
⋃n
k=1 supp ∂xk

χ is a compact set satisfying

dist(K1, V 0) > 0. Therefore, we have

(3.7) ‖χα,q‖L1(K1) ≤ c0 := sup
1≤k≤n

‖∂xk
χ‖L1(K1) <∞.

Since W (z, ξ) is holomorphic in a neighborhood of (Rn \ {0}) × Sn−1, and

since dist(K1, V 0) > 0, there exist positive constants d1, a0 and a1 such that

|∂βzW (z − x, ξ)| ≤ a0a
|β|
1 |β|!

for x ∈ K1, Re z ∈ V 0, |Im z| ≤ d1, ξ ∈ Sn−1, β ∈ Nn0 . Moreover, since ω is

sublinear, we can use Proposition 2.4(h) and take, for any µ > 0, a constant Bµ
such that

(3.8) sup
x∈K1,Re z∈V 0, |Im z|≤d1

|∂βzW (z − x,∆j)| ≤ Bµ exp(ϕ∗[µ](|β|)),

∀j ∈ {1, . . . , J}, ∀β ∈ Nn0 .
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From (3.6)–(3.8), the first term Fj,1,α(z) on the right hand side of (3.5) is

estimated, for any µ > 0, as

(3.9) |Fj,1,α(z)| ≤
p∑
q=1

Bµ exp(ϕ∗[µ](p− q)) ·Aµ exp(ϕ∗[µ](q − 1)) · c0

≤ AµBµc0 · exp(ϕ∗[µ](p− 1) + log p) for Re z ∈ V 0, |Im z| < d1.

Here we have used Proposition 2.4(d) to write ϕ∗[µ](p−q)+ϕ∗[µ](q−1) ≤ ϕ∗[µ](p−1),

and we have again denoted p = |α|. Now for any given λ > 0, we can apply (2.4)

in Proposition 2.4(g), and get a suitable µ and c with ϕ∗[λ](p) − p ≥ ϕ∗[µ](p) − c.
We can use (3.9) for this µ to get C1,λ such that

(3.10) |Fj,1,α(z)| ≤ C1,λ exp(ϕ∗[λ](|α|)) for Re z ∈ V 0, |Im z| < d1,

and for any λ > 0, 1 ≤ j ≤ J , α ∈ Nn0 .

As for the second term on the right hand side of (3.5), we write

Fj,2,α(z) =

∫
K

dx

∫
Sn−1∩∆j

W (z − x, ξ)(∂αx f(x))χ(x) dσ(ξ) (K := suppχ ⊂ Rn),

and use the formula

W (z, ξ) = −1 + i〈z, ξ〉
(2πi)n

(
1

1 + 2i〈z, ξ〉
〈ξ, ∂z〉

)n
log Φ(z, ξ),

which follows from 〈ξ, ∂z〉Φ(z, ξ) = 1 + 2i〈z, ξ〉. Integrating by parts, and using

〈ξ, ∂z〉(1 + i〈z, ξ〉) = i and 〈ξ, ∂z〉(1 + 2i〈z, ξ〉) = 2i, we get

Fj,2,α(z) =

∫
K

dx

∫
Sn−1∩∆j

log Φ(z − x, ξ)
∑

k∈{0,1}, l,m∈N0,
k+l+m=n

bk,l,m

× (1 + i〈z − x, ξ〉)1−k

(1 + 2i〈z − x, ξ〉)n+l
〈ξ, ∂x〉m{(∂αx f(x))χ(x)} dσ(ξ)

=

∫
K

dx

∫
Sn−1∩∆j

log Φ(z − x, ξ)
∑

k∈{0,1}, l,m∈N0,
k+l+m=n

bk,l,m
∑

β,γ∈Nn
0 ,

|β|+|γ|=m

m!

β!γ!
ξβ+γ

× (1 + i〈z − x, ξ〉)1−k

(1 + 2i〈z − x, ξ〉)n+l
(∂α+β
x f(x))(∂γxχ(x)) dσ(ξ)

=

∫
K

dx

∫
Sn−1∩∆j

log Φ(z − x, ξ)

×
∑

|β|+|γ|≤n

bβ,γ(z − x, ξ)(∂α+β
x f(x))(∂γxχ(x)) dσ(ξ),
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where bk,l,m are some constants, and bβ,γ(z, ξ) are analytic functions on {(z, ξ) ∈
Cn×Sn−1; |Im z| < 1/2}. In fact, (1+2i〈z, ξ〉)2nbβ,γ(z, ξ) are polynomials in 〈z, ξ〉
and ξ, and 1 + 2i〈z, ξ〉 does not vanish if |Im z| < 1/2 and |ξ| = 1. (The exact

form of these constants is not needed in the argument, since there are only finitely

many of them.)

Therefore, using (3.6), Fj,2,α(z) is estimated as

(3.11) |Fj,2,α(z)| ≤ A2λ exp(ϕ∗[2λ](|α|+ n))‖χ‖Cn(K)

×
∑

|β|+|γ|≤n

sup
x∈K, ξ∈Sn−1

|bβ,γ(z − x, ξ)| ·
∫
K

sup
ξ∈Sn−1∩∆j

∣∣log Φ(z − x, ξ)
∣∣ dx

×
∫
Sn−1∩∆j

dσ(ξ) for |Im z| < 1/2,

and for any λ > 0, 1 ≤ j ≤ J , α ∈ Nn0 .

By Proposition 2.4(e), we have

(3.12) A2λ exp(ϕ∗[2λ](|α|+ n)) ≤ A2λ exp(ϕ∗[λ](n)) · exp(ϕ∗[λ](|α|)).

Since Gj is a strict subcone of ∆⊥j , we have infξ∈Sn−1∩∆j , s∈Gj
〈s/|s|, ξ〉 > 0, and

therefore we can take a constant d2 with

0 < d2 < min
{

1/2, min
1≤j≤J

inf
ξ∈Sn−1∩∆j , s∈Gj

〈s/|s|, ξ〉
}
.

Since d2 < 1/2, we have

(3.13) c1 := sup
z∈V 0+iGj [d2]

∑
|β|+|γ|≤n

sup
x∈K, ξ∈Sn−1

|bβ,γ(z − x, ξ)| <∞.

On the other hand, since 0 < d2 < infξ∈Sn−1∩∆j , s∈Gj
〈s/|s|, ξ〉 for any j, we have

〈s, ξ〉 − |s|2 ≥ 0 for s ∈ Gj [d2]. Using also Im Φ(z − x, ξ) = 〈Im z, ξ〉 − |Im z|2 +

|Re z − x|2, we get the estimates

Im log Φ(z − x, ξ) ∈ [0, π],

Re log Φ(z − x, ξ) ≥ log Im Φ(z − x, ξ) ≥ 2 log|Re z − x|,

for z ∈ V 0 + iGj [d2], and therefore

(3.14) c2 := sup
z∈V 0+iGj [d2]

∫
K

sup
ξ∈Sn−1∩∆j

∣∣log Φ(z − x, ξ)
∣∣ dx <∞.

Finally, from (3.11)–(3.14) we get

(3.15) |Fj,2,α(z)| ≤ C2,λ exp(ϕ∗[λ](|α|)) for z ∈ V 0 + iGj [d2],
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and for any λ > 0, 1 ≤ j ≤ J , α ∈ Nn0 , where C2,λ := c1c2|Sn−1| · ‖χ‖Cn(K) ·
A2λ exp(ϕ∗[λ](n)).

By defining d := min{d1, d2}, the estimates (3.10) and (3.15) give (3.4), which

concludes the proof of Lemma 3.2.

Theorem 3.4. Let V ×U ⊂ Rn×Rm be an open set and consider K ∈ E(ω)(V ×U)

satisfying (1.1). Then, for any V0×U0 b V ×U , K admits, on V0×U0, a boundary

value representation

K(x, y) =

J∑
j=0

bĜj
(Fj(z, w)),

where Ĝj ⊂ Rn+m (j = 0, 1, . . . , J) are open convex cones which include Gj × {0}
for some open convex cones Gj ⊂ Rn, the Fj belong to O(V0 × U0 + iĜj [d]) ∩
C(V0 × U0 + i(Ĝj [d] ∪ {0})) with some d > 0, such that for each fixed z ∈
V0 + i(Gj [d] ∪ {0}), the map U0 3 y 7→ Fj(z, y) is an ultradifferentiable func-

tion in E(ω)(U0) even in the case z ∈ V0 (which means in particular that z is real),

and that for any α ∈ Nn0 and any j, the correspondence

(3.16) V0 + i(Gj [d] ∪ {0}) 3 z 7→ ∂αxFj(z, ·) ∈ E(ω)(U0)

is continuous. In particular,

K(x, y) =

J∑
j=0

Fj(x, y).

Proof. We take a cut-off function χ ∈ C∞0 (V ×U) with χ ≡ 1 in a neighborhood of

V0 × U0. We can take a decomposition Ṙn+m =
⋃J
j=1 ∆j into proper closed convex

cones ∆j ⊂ Ṙn+m with disjoint interiors and a number J0 < J such that

∆⊥j ∩ (Ṙn × {0}) 6= ∅ (j ≤ J0),(3.17)

(V0 × U0 ×∆j) ∩WFAK = ∅ (j > J0).(3.18)

In fact, since K satisfies (1.1) and since V0 × U0 b V × U , there exists a constant

ε > 0 satisfying

WFAK ∩ {(x, y; ξ, η); (x, y) ∈ V0 × U0, |ξ| ≤ 2ε|η|} = ∅.

Then we may construct a covering Ṙn+m =
⋃
j ∆j consisting of proper closed

convex cones ∆j with disjoint interiors, satisfying the additional conditions

J0⋃
j=1

∆j ⊂ {|ξ| > ε|η|},
J⋃

j=J0+1

∆j ⊂ {|ξ| < 2ε|η|}.

Then for j ≤ J0, ∆j∩({0}×Rm) = ∅ implies (3.17), and (3.18) is trivially satisfied.
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Now we apply Lemma 3.2 to the data V0 × U0 b V × U ⊂ Rn+m, K ∈
E(ω)(V × U), χ ∈ C∞0 (Rn+m) and ∆j ⊂ Ṙn+m, and get holomorphic functions

Fj(z, w) on infinitesimal wedges of the form Rn + i∆⊥j 0.

Let us first consider j = 1, . . . , J0. For these j, we can take cones Gj ⊂ Rn and

strict subcones Ĝj ⊂ Rn+m of ∆⊥j such that Gj × {0} ⊂ Ĝj , since the ∆j satisfy

(3.17). Moreover, when z = x+ is ∈ V0 + i(Gj [d]∪{0}) is fixed, the function U0 3
y 7→ ∂αxFj(z, y) is a restriction of the function V0 × U0 3 (x, y) 7→ ∂αxFj((x, y) +

i(s, 0)) with respect to the x variable. Therefore, it belongs to E(ω)(U0). In addition,

the continuity of

Gj [d] ∪ {0} 3 s 7→ ∂αxFj(·+ is, ·) ∈ E(ω)(V0 × U0)

(coming from the continuity of (3.3)) implies the locally uniform continuity of

Gj [d] ∪ {0} 3 s 7→ ∂αxFj(x+ is, ·) ∈ E(ω)(U0)

in x ∈ V0, which also implies the continuity of (3.16).

Next we consider j = J0+1, . . . , J . In view of (3.18), we can apply Theorem 3.1

to V0 × U0 b V × U ⊂ Rn+m, χ(x, y)K(x, y) and ∆j ⊂ Ṙn+m. Since Fj is real-

analytic in a neighborhood of V0 × U0, we can ignore ∆j and take Ĝj = Rn+m

and Gj = Rn. Then the map

V0 + i{s; |s| < d} 3 z 7→ ∂αxFj(z, ·) ∈ A(U0)

is well-defined and the usual Cauchy estimate proves its continuity. The continu-

ity of the canonical embedding A(U0) ↪→ E(ω)(U0) gives the desired estimate for

these j.

In this way we have proved the continuity of (3.16) for both cases, which

concludes the proof of Theorem 3.4.

§4. Compatibility questions related to the definition of T

We discuss here the integral operator u 7→
∫
K(x, y)u(y) dy of (1.2) in the special

case when K ∈ E(ω)(V × U) (still satisfying (1.1)) and u ∈ E ′(ω)(U). We recall

that initially in (1.2) the integration
∫
K(x, y)u(y) dy is the one along fibers in

the theory of hyperfunctions, but we have already rewritten it in [12, (4.3)] as an

explicit formula in terms of holomorphic defining functions for the kernel. It will

be convenient to take for these defining functions the ones given by Theorem 3.4.

We can then in fact give a new interpretation for our integrals using the duality

between ultradifferentiable functions and the corresponding functionals.

In this section, we study the compatibility between the two interpretations so

obtained for (1.2) in our special case. We refer to [12, Remark 6.2(ii)] for a similar

compatibility question in the case of differentiable kernels and Radon measures.

As a corollary to the results in Section 3 we can in fact prove
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Corollary 4.1. Let ω be a weight function and let V ×U ⊂ Rn ×Rm be an open

set. Then for any K ∈ E(ω)(V ×U) satisfying (1.1) and any u ∈ E ′(ω)(U), we have

(4.1)

∫
U

K(x, y)u(y) dy = 〈u,K(x, ·)〉.

Here the left hand side is the integration of the hyperfunction Ku with u regarded as

a hyperfunction on U with compact support, and the right hand side is a continuous

function on V whose value for each fixed x is computed by the duality bilinear form

E ′(ω)(U)× E(ω)(U)→ C, and is regarded as a hyperfunction on V .

Note that Ku as a product of hyperfunctions is well-defined because of the

wave front set estimate (1.1), and also that the restriction y 7→ K(x, y) at each

fixed x belongs to E(ω)(U) in a trivial way.

Proof. It suffices to prove the equality on each relatively compact open set

V0 b V . We take a relatively compact open set U0 b U which includes suppu.

Applying Theorem 3.4 to K and V0 × U0, we get a representation K(x, y) =∑J
j=0 bĜj

(Fj(z, w)) on V0 × U0 satisfying the additional properties stated in the

theorem. In view of [12, (4.3)], this representation enables us to calculate the left

hand side of (4.1) as ∫
U

K(x, y)u(y) dy =

J∑
j=0

bGj (fj(z)),

where each fj is a holomorphic function on V0 + iGj [d] given by

(4.2) fj(z) :=

∫
U0

Fj(z, y)u(y) dy = 〈u, Fj(z, ·)〉 for z ∈ V0 + iGj [d].

On the other hand, it follows, again from Theorem 3.4, that the right hand side

of (4.2) defines a continuous function on V0 + i(Gj [d] ∪ {0}), since z 7→ Fj(z, ·) ∈
E(ω)(U0) is continuous on that set. Therefore each fj(z) admits a boundary value

in E(ω)(U0) and we have

bGj
(fj(z)) = 〈u, Fj(x, ·)〉.

We conclude that∫
U

K(x, y)u(y) dy =

J∑
j=0

bGj (fj(z)) =

J∑
j=0

〈u, Fj(x, ·)〉

=
〈
u,

J∑
j=0

Fj(x, ·)
〉

= 〈u,K(x, ·)〉

as hyperfunctions on V0.
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§5. Division of the kernel

The following result will play the role of [12, Theorem 5.3], but is here adapted to

an ultradifferentiable setting.

Theorem 5.1. Let K ∈ B(V × U) be a hyperfunction satisfying the wave front

set estimate (1.1), and ω a sublinear weight function. Then there exist an elliptic

(possibly infinite order) partial differential operator P (Dx) with constant coeffi-

cients in the variable x, a function K′ ∈ E(ω)(V ×U), which also satisfies the wave

front set estimate

(5.1) {(x, y; 0, η) ∈ V × U × Rn × Rm; η 6= 0} ∩WFAK′ = ∅,

and a real-analytic function K′′ on V × U such that K = P (Dx)K′ +K′′.

As a preparation for the proof of Theorem 5.1, we start with the following

lemma.

Lemma 5.2. Let ω be a weight function. For a measurable function µ(ξ) on Rn

satisfying

µ(ξ) exp(λω(|ξ|)) ∈ L1(Rn) for any λ > 0,

the inverse Fourier transform (F−1µ)(x) belongs to E(ω)(Rn).

Proof. We have, for any α ∈ Nn0 and any λ > 0,

‖ξαµ(ξ)‖L1(Rn) ≤
∥∥|ξ||α|e−λω(|ξ|)∥∥

L∞(Rn)
· ‖µ(ξ)eλω(|ξ|)‖L1(Rn)

≤ exp(ϕ∗[λ](|α|)) · ‖µ(ξ)eλω(|ξ|)‖L1(Rn).

Therefore F−1µ is differentiable, and satisfies

pω,λ,K(F−1µ) ≤ (2π)−n‖µ(ξ)eλω(|ξ|)‖L1(Rn)

for any K b Rn.

Proof of Theorem 5.1. The proof is similar to that of [12, Theorem 5.3]. In order

to explain the differences in the argument, we recall now the steps in the proof of

that theorem and mention how they have to be adapted to our present needs.

Step 1. We first take compact subsets K1 b K2 b · · · in V × U with
⋃
j Kj =

V × U , hyperfunctions Kj ∈ B(Rn+m) with compact support each of which coin-

cides with K in a neighborhood of Kj , positive constants cj and sublinear func-

tions `j such that

WFAKj ∩ {(x, y; ξ, η); (x, y) ∈ Kj} ⊂ {(x, y; ξ, η); |η| ≤ cj |ξ|},
|FKj(ξ, η)| ≤ exp `j(ξ, η) for any (ξ, η) ∈ Rn+m.
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Next we take a function ω̃(t) satisfying ω(t) = o(ω̃(t)) and ω̃(t) = o(t) as

t→∞, define sublinear functions ˜̀
j by

(5.2) ˜̀
j(ξ) := sup

|η|≤2cj |ξ|

(
`j(ξ, η) + |(ξ, η)|1/2 + ω̃(|ξ|)

)
,

and take a sublinear function ` and constants c′j such that ˜̀
j(ξ) ≤ `(ξ) + c′j for

any ξ ∈ Rn and j (see e.g. [12, Lemma 5.1]). The formula (5.2) replaces [12, (5.7)],

where however no ω̃ was present. We then get the estimate

|FKj(ξ, η)| ≤ Aj exp
(
`(ξ)− |(ξ, η)|1/2 − ω̃(|ξ|)

)
if |η| ≤ 2cj |ξ|,

with constants Aj := ec
′
j . Associated with this `, we take an infra-exponential

elliptic symbol P (ζ) (ζ ∈ Cn) and c > 0 satisfying

|P (ζ)| ≥ e`(Re ζ) if |Im ζ| < c|Re ζ|

(see Kawai [11], Kaneko [7]).

Step 2. We define measurable functions Qj(ξ, η) by

Qj(ξ, η) =

{
FKj(ξ, η)/P (ξ) if |η| ≤ 2cj |ξ|,
0 if |η| > 2cj |ξ|.

They satisfy

suppQj ⊂ {|η| ≤ 2cj |ξ|},
|Qj(ξ, η)| ≤ Aj exp

(
−|(ξ, η)|1/2 − ω̃(|ξ|)

)
for (ξ, η) ∈ Rn+m.(5.3)

(This corresponds to [12, (5.9)].) The estimate (5.3) implies F−1Qj ∈ E(ω)(Rn+m)

in view of Lemma 5.2. Now we define the function K′j on IntKj as the restriction

to IntKj of the iterated integral∫
|η|≤ 3

2 cj |ξ|
dσ(ξ, η)

∫
Rn+m

W (x− x̃, y − ỹ, ξ, η)(χ · F−1Qj)(x̃, ỹ) dx̃ dỹ

with some cut-off function χ ∈ C∞0 (Rn+m) satisfying χ ≡ 1 on Kj , and it follows

from Lemma 3.2 that K′j ∈ E(ω)(IntKj). On the other hand, the estimates of

analytic wave front sets as in [12, proof of Theorem 5.3, Step 2] show also in this

case that

WFAK′j ⊂ {(x, y; ξ, η); |η| ≤ cj |ξ|}, Kj − P (Dx)K′j ∈ A(IntKj).

Step 3. Again, it follows from the argument used in [12, proof of Theorem 5.3,

Step 3] that K′j − K′k ∈ A(IntKj) for any j < k, and therefore we can take
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Lj ∈ A(IntKj) with K′j −K′k = Lj − Lk for any j < k. Since each K′j belongs to

E(ω)(IntKj), so does K′j − Lj , and the family (K′j − Lj)j defines a global section

K′ ∈ E(ω)(V × U). We can also show, arguing as in [12, loc.cit.], that K′′ :=

K − P (Dx)K′ is real-analytic. The operator P (Dx) and the functions K′ and K′′

have all the desired properties.

§6. Proof of Theorem 1.1

We first prove the following intermediate result.

Proposition 6.1. Let T and K be as in Theorem 1.1, K b U a compact convex

set, and let ` : Cn → R+ be a sublinear function. Then there exists L b V such

that u ∈ A′`(K) implies singsuppA Tu ⊂ L. Here A′`(K) denotes the Banach space

(6.1) A′`(K) :=
{
u ∈ A′(K); sup

η∈Cn

|û(η)| exp(−HK(Im η)− `(η)) <∞
}
.

We also quote the following theorem (see [12, Theorem 6.3]).

Theorem 6.2. Let T : X → C∞(V ) be a continuous linear map from some

Fréchet space X to C∞(V ). Assume that for every u ∈ X, singsuppA Tu ⊂ V is

compact. Then there exists a compact set L ⊂ V such that singsuppA Tu ⊂ L for

any u ∈ X.

If T were a continuous linear map from A′`(K) into C∞(V ) for any `, then

Proposition 6.1 would be an easy consequence of Theorem 6.2, but in the general

case we cannot expect to have T (A′`(K)) ⊂ C∞(V ). For this reason we use at first

the division result of Theorem 5.1 for the kernels.

Proof of Proposition 6.1. We can take a sublinear weight function ω(t) with

`(t) = o(ω(t)) as t → ∞ using Lemma 2.8. By applying Theorem 5.1, we have

a decomposition

(6.2) K(x, y) = P (Dx)K′(x, y) +K′′(x, y),

where P (Dx) is elliptic, K′ ∈ E(ω)(V × U) satisfies the wave front set estimate

(5.1), and K′′ ∈ A(V × U). With the notation (T ′u)(x) =
∫
U
K′(x, y)u(y) dy, we

have singsuppA Tu = singsuppA T
′u as pointed out in [12, Remark 5.4]. Therefore,

it suffices to prove the present proposition for T ′ instead of T , which means that

we may assume from the beginning that K ∈ E(ω)(V × U).

It can be seen from Definition 2.6, (6.1), and the estimate `(t) = o(ω(t)), that

F(A′`(K)) is continuously embedded into A(ω)(Cn, U). Therefore Theorem 2.7

implies that the embedding A′`(K) ↪→ E ′(ω)(U) is also continuous.
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Moreover, since ∂αxK ∈ E(ω)(V × U) for any α ∈ Nn0 , Corollary 4.1 yields

∂αx (Tu)(x) =

∫
U

∂αxK(x, y)u(y) dy = 〈u, ∂αxK(x, ·)〉 for u ∈ E ′(ω)(U).

Therefore T induces a continuous linear map from E ′(ω)(U) to C∞(V ).

Combining these facts, we conclude that T : A′`(K)→ C∞(V ) is a continuous

linear map. Since A′`(K) is a Banach space and singsuppA Tu is compact for every

u ∈ A′`(K), we can now finish the proof by applying Theorem 6.2.

Theorem 6.3. Let T and K be as in Theorem 1.1. Then for any K b U , there

exists L b V such that u ∈ A′(K) implies singsuppA Tu ⊂ L.

Remark 6.4. The main difference between Proposition 6.1 and Theorem 6.3 is

of course that, in the proposition, the compact set L in the conclusion might, in

principle, depend on `. By using
⋃
`A′`(K) = A′(K), and by availing ourselves of

the fact that the set of sublinear functions is very big, we shall now show that L

can be chosen independently of `.

Proof of Theorem 6.3. First consider the case when K is convex. Fix T and K,

and then take an increasing sequence L1 ⊂ L2 ⊂ · · · of compact subsets of V with

(6.3)
⋃
j

IntLj = V.

Assume for contradiction that there is no L b V for which u ∈ A′(K) implies

singsuppA Tu ⊂ L. Then, for each j, we can find uj ∈ A′(K) with singsuppA Tuj
6⊂ Lj . Each uj belongs to A′`j (K) with some sublinear `j , and we take a sublinear

function ` and constants c′j such that `j(η) ≤ `(η) + c′j for any η ∈ Rn and j (see

again e.g. [12, Lemma 5.1]). The latter estimate yields A′`j (K) ⊂ A′`(K), therefore

all the uj belong to A′`(K). Let now L ⊂ V be a compact set associated with `

by Proposition 6.1. Then singsuppA Tuj ⊂ L for any j. Moreover, by (6.3), there

exists j0 satisfying L ⊂ IntLj0 and in particular singsuppA Tuj ⊂ Lj0 for any j.

This contradicts the choice of the uj .

Next we consider the general case, when K is not necessarily convex. We start

with a finite covering K ⊂
⋃k
j=1Kj consisting of convex compact sets Kj ⊂ U ,

and take Lj b V for each j such that u ∈ A′(Kj) implies singsuppA Tu ⊂ Lj .

Then we can use the flabbiness of B to obtain A′(K) ⊂
∑
j A′(Kj). Therefore

L :=
⋃
j Lj is a compact set with the properties required for K.

Proof of Theorem 1.1. We shall show that for any compact set K b U , there exists

a compact set L b V such that singsuppAK ∩ (V ×K) ⊂ L×K.
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Once K is fixed, we consider a second compact set K̃ with K b K̃ b U and

associate with it a compact set L b V as in Theorem 6.3, that is, u ∈ A′(K̃) must

imply singsuppA Tu ⊂ L. This means that the integral operator from A′(Int K̃)

to B(V \ L) associated with the kernel K|(V \L)×Int K̃ satisfies the assumptions of

Theorem 1.3. Therefore, K|(V \L)×Int K̃ is real-analytic and singsuppAK∩(V ×K) ⊂
L×K.

Remark 6.5. We can now make some comments on why it seemed necessary in

this paper to use results from the theory of ultradifferentiable functions and their

duals, as opposed to the situation in [12]. Actually, in both papers, a key ingredient

is Theorem 6.2 which is applied to an operator of type T ′u =
∫
U
K′(x, y)u(y) dy,

where K′ is related to K by a division with remainder of the form (6.2). There are

however differences in the way this idea can be implemented. In [12] we could show

that T ′ ≡ 0 in some region if T ′u = 0 there for every Radon measure u, by applying

the rather strong uniqueness theorem [12, Theorem 1.6] for integral operators of

the form (1.2). In the present situation, there is no reasonable counterpart to [12,

Theorem 1.6] to test real-analyticity by applying T ′ only to Radon measures, and

we had to use Theorem 1.3 instead. It seemed impossible to find a decomposition

of type (6.2) which works well simultaneously for all u ∈ A′(K), but as we have

explained, it is possible to find a suitable decomposition which works well for all

u ∈ A′`(K) for a fixed sublinear function `. In fact, a decomposition which is good

enough for the argument is when K′ is in a BMT class for some weight function ω

related to ` as above.

We mention incidentally that the reason why there is no full analogue to [12,

Theorem 1.6] for real-analyticity is discussed in [14, Lemma 2.6 and Example 2.7].
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