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Bounded Holomorphic Functions Attaining their
Norms in the Bidual

by
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Abstract

Under certain hypotheses on the Banach space X, we prove that the set of analytic
functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions
in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X).
This Lindenstrauss type result also holds for functions with values in a dual space or in a
Banach space with the so-called property (β). We show that the Bishop–Phelps theorem
does not hold for Au(c0, Z

′′) for a certain Banach space Z, while our Lindenstrauss
theorem does. In order to obtain our results, we first handle their polynomial cases.
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§1. Introduction

The study of the denseness of norm attaining mappings finds its origins in the

Bishop–Phelps theorem [9], which asserts that the set of norm attaining bounded

linear functionals on a Banach space is norm dense in the space of all bounded

linear functionals. Since the appearance of this result in 1961, the study of norm

attaining functions has attracted the attention of many authors. Given Banach

spaces X and Y , we say that a linear operator T : X → Y is norm attaining if there

exists x0 in the unit ball of X such that ‖T (x0)‖ = ‖T‖. A question that arises

naturally in this context is if it is possible to generalize the Bishop–Phelps theorem

to bounded linear operators. The negative answer was given by Lindenstrauss [20].
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On the other hand, he gave examples of Banach spaces X for which the Bishop–

Phelps theorem holds in L(X;Y ) for every Banach space Y . Such spaces are said

to have property A. Similarly, a space Y has property B if the Bishop–Phelps

theorem holds in L(X;Y ) for every X. A positive fundamental result given also

in [20], the so-called Lindenstrauss theorem for linear operators, states that the

set of bounded linear operators (between any two Banach spaces X and Y ) whose

bitransposes are norm attaining, is dense in the space of all operators. This result

was generalized by Acosta, Garćıa and Maestre [5] to multilinear operators, where

the Bishop–Phelps theorem does not hold in general even in the scalar-valued

case (we refer the reader to [1, 11, 19] for counterexamples to the Bishop–Phelps

theorem in the multilinear case). In this context, the role of the bitranspose is

played by the canonical (Arens) extension to the bidual, obtained by weak-star

density (see [6], [15, 1.9] and the definitions below).

In this paper, we study Lindenstrauss type theorems for polynomials and

holomorphic functions. For 2-homogeneous scalar-valued polynomials, the Linden-

strauss theorem was proved in full generality by Aron, Garćıa and Maestre [8],

where the Aron–Berner extension takes the place of the bitranspose. This result

was later extended by Choi, Lee and Song [13] to vector-valued 2-homogeneous

polynomials. In [11] a partial result was obtained for homogeneous polynomials

of any degree. Specifically, if X, Y are Banach spaces such that X ′ is separable

and has the approximation property, then the set of N -homogeneous polynomials

from X to Y ′ whose Aron–Berner extensions attain their norms is dense in the

set of all continuous N -homogeneous polynomials. It is worth noting that in the

homogeneous case, there is no Bishop–Phelps theorem either; counterexamples can

be found in [11, 19] for, respectively, scalar and vector-valued polynomials. Going

further, we can ask about the validity of Bishop–Phelps and Lindenstrauss type

theorems for non-homogeneous polynomials and holomorphic functions. In this

direction, our main positive results are the following (see definitions and notation

in Section 2).

Theorem A. Let X be a Banach space whose dual is separable and has the ap-

proximation property. Suppose W is a dual space or a Banach space with prop-

erty (β). Then the set of all polynomials of degree at most k from X to W whose

Aron–Berner extensions attain their norms is dense in the space of all continuous

polynomials of degree at most k.

Theorem B. Let X be a Banach space whose dual is separable and has the approx-

imation property. Suppose W is a dual space or a Banach space with property (β).

Then the set of all functions in Au(X;W ) whose Aron–Berner extensions attain

their norms is dense in Au(X;W ).
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Theorems A and B are direct consequences of Theorem 3.2, Corollary 3.3

and Proposition 3.5. Indeed, Theorem 3.2 and Corollary 3.3 are just the part

of Theorems A and B for mappings with values in dual spaces. In particular,

they cover the scalar-valued case. Proposition 3.5 shows that if the Lindenstrauss

theorem holds in the scalar-valued case, then it also holds with values in a Banach

space with property (β).

We also deal with stronger versions of Bishop–Phelps and Lindenstrauss the-

orems. Namely, we consider the density of mappings which attain their suprema

in smaller balls, a problem studied, for example, by Acosta, Alaminos, Garćıa and

Maestre [2]. We show in Section 3 that the strong versions of Theorems A and B

also hold.

In Section 4 we show that, in general, there are no Bishop–Phelps theorems

for scalar or vector-valued continuous polynomials (extending some known results)

or for Au(X;Z). We remark that for the presented counterexamples, our Linden-

strauss theorem holds. We also address the strong variants of Bishop–Phelps and

Lindenstrauss theorems, and show a counterexample to the strong Bishop–Phelps

theorem in Au(X).

§2. Definitions and preliminary results

Given a Banach space X, we denote by X ′ its dual space, while BX and Bo
X stand,

respectively, for the closed and the open unit ball. By L(X1, . . . , XN ;Y ) we denote

the space of all N -linear operators from X1×· · ·×XN to Y . This space is endowed

with the supremum norm

‖Φ‖ = sup{‖Φ(x1, . . . , xN )‖ : xi ∈ BXi , 1 ≤ i ≤ N}.

We say that a multilinear operator Φ attains its norm if there exists an N -tuple

(a1, . . . , aN ) ∈ BX1
× · · · ×BXN such that ‖Φ(a1, . . . , aN )‖ = ‖Φ‖.

Given Φ ∈ L(X1, . . . , XN ;Y ), its Arens (or canonical) extension is the multi-

linear operator Φ : X ′′1 × · · · ×X ′′N → Y ′′ defined by

Φ(x′′1 , . . . , x
′′
N ) = w∗-lim

α1

. . . lim
αN

Φ(x1,α1 , . . . , xN,αN )(1)

where (xi,αi)αi ⊆ X is a net w∗-convergent to x′′i ∈ X ′′i , i = 1, . . . , N .

A continuous N -homogeneous polynomial is a function P : X → Y of the form

P (x) = Φ(x, . . . , x) for some continuous N -linear map Φ: X× N· · ·×X → Y . We de-

note by P(NX;Y ) the Banach space of all continuous N -homogeneous polynomials

from X to Y endowed with the supremum norm

‖P‖ = sup
x∈BX

‖P (x)‖.
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Naturally, we say that a polynomial P is norm attaining if there exists x0 ∈ BX
such that ‖P (x0)‖ = ‖P‖. The set of norm attaining N -homogeneous polynomials

is denoted by NAP(NX;Y ). We recall that the canonical extension of a polynomial

P ∈ P(NX;Y ) to the bidual, usually called the Aron–Berner extension [7], is the

polynomial P ∈ P(NX ′′;Y ′′) defined by P (x′′) = Φ(x′′, . . . , x′′), where Φ is the

unique symmetric N -linear mapping associated to P .

Given k ∈ N, let Pk(X;Y ) denote the Banach space of continuous polynomials

from X to Y of degree less than or equal to k, endowed with the supremum norm.

Each P ∈ Pk(X;Y ) can be written as P =
∑k
j=0 Pj , where each Pj is a j-

homogeneous polynomial. On the other hand, given a complex Banach space X,

we denote by Au(X;Y ) to the Banach space of holomorphic functions in the

open unit ball Bo
X which are uniformly continuous in the closed unit ball BX ,

endowed with the supremum norm. It is well-known that each f ∈ Au(X;Y ) is

a uniform limit of polynomials. When Y = K is the scalar field, we simply write

Pk(X) or Au(X). As expected, a function f in Pk(X;Y ) or Au(X;Y ) is said to be

norm attaining if there exists x0 ∈ BX such that ‖f(x0)‖ = ‖f‖, and the subsets

of norm attaining functions are denoted by NAPk(X;Y ) and NAAu(X;Y ). The

Aron–Berner extension of a polynomial P =
∑k
j=0 Pj ∈ Pk(X;Y ) is given by

P =
∑k
j=0 Pj . In the case of a function f ∈ Au(X;Y ), given its Taylor series

expansion at 0, f =
∑∞
j=0 Pj , the Aron–Berner extension of f is defined as f =∑∞

j=0 Pj , which is a holomorphic function in the open unit ball Bo
X′′ [14]. Note that

if (Pn)n∈N is a sequence of polynomials converging uniformly to f , then (Pn)n∈N
is uniformly Cauchy in the ball Bo

X′′ , and then converges uniformly to f . This

means that f extends to a uniformly continuous function in the closed unit ball

of X ′′. Davie and Gamelin [14] showed that ‖f‖ = ‖f‖ in the scalar-valued case.

The same holds for a vector-valued f ∈ Au(X;Y ), since f(x′′)(y′) = y′ ◦ f(x′′) for

all x′′ ∈ X ′′ and y′ ∈ Y ′.
Throughout the article, in the polynomial results the scalar field can be either

R or C, while we consider only complex Banach spaces in the holomorphic setting.

Duality for non-homogeneous polynomials

Polynomials in P(jX) can be thought of as continuous linear functionals on the

symmetric projective tensor product as follows. Given a symmetric tensor uj
in ⊗j,sX (the j-fold symmetric tensor product of X), the symmetric projective

norm πs of uj is defined by

πs(uj) = inf
{ m∑
i=1

|λi| ‖xi‖j : uj =

m∑
i=1

λix
j
i , (λi)

m
i=1 ⊂ K, (xi)

m
i=1 ⊂ X

}
.

We denote by ⊗̃j,sπsX the completion of ⊗j,sX with respect to πs. Then P(jX) =
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(⊗̃j,sπsX)′ isometrically, where the identification is given by the duality

Lpj (uj) := 〈uj , pj〉 =

∞∑
i=1

λipj(xi),

for pj ∈ P(jX) and uj ∈ ⊗̃
j,s
πsX, uj =

∑∞
i=1 λix

j
i .

Consider the space

Gk =

k⊕
j=0

(⊗̃j,sπsX),

where we set ⊗̃0,s
πs X = K. An element u ∈ Gk is of the form u =

∑k
j=0 uj with

uj ∈ ⊗̃
j,s
πsX. We endow this space with the norm

‖u‖Gk = sup
q∈BPk(X)

∣∣∣ k∑
j=0

〈uj , qj〉
∣∣∣,

where qj is the j-homogeneous part of q. It is easy to check that (Gk, ‖ · ‖Gk) is a

Banach space.

With the previous notation, given p ∈ Pk(X) we have ‖pj‖ ≤ ‖p‖ for every

0 ≤ j ≤ k as a consequence of the Cauchy inequalities. Therefore, for uj ∈ ⊗̃
j,s
πsX

we get

‖0 + · · ·+ uj + · · ·+ 0‖Gk = sup
q∈BPk(X)

|〈uj , qj〉| ≤ sup
q∈BPk(X)

‖uj‖πs‖qj‖ ≤ ‖uj‖πs .

We have shown the following.

Remark 2.1. The space P(jX) is 1-complemented in Pk(X). Also, ⊗̃j,sπsX is

1-complemented in Gk.

The following lemma shows that Gk linearizes polynomials of degree at

most k.

Lemma 2.2. Let X be a Banach space and k ∈ N. The mapping

(2) Pk(X)→ (Gk, ‖ · ‖Gk)′, p 7→ Lp,

where Lp(u) = 〈u, p〉 =
∑k
j=0〈uj , pj〉, is an isometric isomorphism.

Proof. Let us see that it is an isometry. By the previous remark,

|Lp(u)| = ‖p‖
∣∣∣ k∑
j=0

〈uj , pj/‖p‖〉
∣∣∣ ≤ ‖p‖ ‖u‖Gk ,
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which implies that Lp ∈ G′k with ‖Lp‖ ≤ ‖p‖. Now, given ε > 0 take x0 ∈ BX
with |p(x0)| > ‖p‖ − ε, and consider

u0 =

k∑
j=0

x0 ⊗ · · · ⊗ x0︸ ︷︷ ︸
j

.

Then u0 ∈ BGk and |Lp(u0)| = |p(x0)| > ‖p‖−ε, which gives the reverse inequality.

Now we prove that the mapping (2) is surjective. For L ∈ G′k, let Lj denote

its restriction to ⊗̃j,sπsX, that is,

Lj := L|⊗̃j,sπs X
: ⊗̃j,sπsX → K, Lj(uj) = L(0 + · · ·+ uj + · · ·+ 0).

It is clear that Lj is linear and, by Remark 2.1, |L(uj)| ≤ ‖L‖ ‖uj‖πs for each

uj ∈ ⊗̃
j,s
πsX. Then Lj ∈ (⊗̃j,sπsX)′ and we can find pj ∈ P(jX) such that Lj = Lpj .

Now, if we take p = p0 + · · ·+ pk ∈ Pk(X) it is easy to check that L = Lp.

For polynomials with values in a dual space Y ′ we have the isometric isomor-

phism

(3) P(jX;Y ′) =
(
(⊗̃j,sπsX) ⊗̃π Y

)′
.

Here the duality is given by

(4) LPj (uj) := 〈uj , Pj〉 =

∞∑
l=1

∞∑
i=1

λl,iPj(xl,i)(yl)

for any Pj ∈ P(jX;Y ′) and uj =
∑∞
l=1 vl⊗ yl, where (yl)l ⊂ Y and (vl)l ⊂ ⊗̃

j,s
πsX,

with vl =
∑∞
i=1 λl,ix

j
l,i for all l.

We define

Gk =

k⊕
j=0

(
(⊗̃j,sπsX) ⊗̃π Y

)
,

where the elements are of the form u =
∑k
j=0 uj with uj ∈ (⊗̃j,sπsX) ⊗̃π Y . The

norm of such an element is given by

‖u‖Gk = sup
Q∈BPk(X;Y ′)

∣∣∣ k∑
j=0

〈uj , Qj〉
∣∣∣.

Now the duality

Pk(X;Y ′)
1
= (Gk, ‖ · ‖Gk)′

is defined exactly as in Lemma 2.2, that is, P 7→ LP where LP (u) = 〈u, P 〉.
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Note that if we consider the space

∞⊕
j=0

(
(⊗̃j,sπsX) ⊗̃π Y

)
of all elements u ∈ Gk for any k ∈ N ∪ {0}, then for each f =

∑∞
j=0 Pj ∈

H∞(Bo
X ;Y ′) and u =

∑k
j=0 uj we have the duality 〈u, f〉 =

∑k
j=0〈uj , Pj〉. We

endow this space with the norm

‖u‖ = sup
g∈BH∞(Bo

X
;Y ′)

|〈u, g〉| ,

and we denote its completion by G∞. An easy calculation shows that the map

f 7→ Lf , where Lf (u) = 〈u, f〉, defines an isometric isomorphism giving the duality

H∞(Bo
X ;Y ′)

1
= G′∞.

We have obtained, in a somewhat different way, the space G∞ constructed by

Mujica [22]. Actually, what we have is a description of this space in terms of

tensor products.

§3. An integral formula and Lindenstrauss type theorems

In this section we will prove the main results of the article, summarized in Theo-

rems A and B in the Introduction. The following result extends [11, Theorem 2.2]

to the non-homogeneous setting.

Lemma 3.1. Let X,Y be Banach spaces and suppose that X ′ is separable and

has the approximation property. Then for each u ∈ Gk there exists a regular Borel

measure µu on (BX′′ , w
∗)× (BY ′′ , w

∗) such that ‖µu‖ ≤ ‖u‖Gk and

(5) 〈u, P 〉 =

∫
BX′′×BY ′′

P (x′′)(y′′) dµu(x′′, y′′)

for all P ∈ Pk(X;Y ′).

Proof. We first prove the formula for the set Pf,k(X;Y ′) of finite type polynomials

of degree less than or equal to k, that is, for the polynomials of the form P =

P0 + · · ·+ Pk where the j-homogeneous polynomial Pj is a linear combination of

polynomials of the form x′(·)j · y. Given u ∈ Gk we define

Λu : Pf,k(X;Y ′)→ K, Λu(P ) = 〈u, P 〉.
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It is easily verified that ‖Λu‖ ≤ ‖u‖Gk . The finite type polynomials can be seen

as an isometric subspace of C(BX′′ × BY ′′), where the balls are endowed with

their weak-star topologies, by identifying a polynomial P ∈ Pf,k(X;Y ′) with the

function (x′′, y′′) 7→ P (x′′)(y′′). Then we extend Λu by the Hahn–Banach the-

orem to a continuous linear functional on C(BX′′ × BY ′′) preserving the norm.

Now, by the Riesz representation theorem, there is a regular Borel measure µu on

(BX′′ , w
∗)× (BY ′′ , w

∗) such that ‖µu‖ ≤ ‖u‖Gk and

Λu(f) =

∫
BX′′×BY ′′

f(x′′, y′′) dµu(x′′, y′′)

for f ∈ C(BX′′ ×BY ′′), where we still use Λu for its extension to C(BX′′ ×BY ′′).
In particular, taking f = P ∈ Pf,k(X;Y ′) we obtain the integral formula for finite

type polynomials.

Now, take P = P0 + · · · + Pk ∈ Pk(X;Y ′). By [11, Lemma 2.1], for each Pj ,

0 ≤ j ≤ k, there exists a norm bounded multi-indexed sequence of finite type

polynomials (Pj,n1,...,nj )(n1,...,nj)∈Nj satisfying

Pj(x
′′)(y′′) = lim

n1→∞
. . . lim

nj→∞
Pj,n1,...,nj (x

′′)(y′′).

For fixed 0 ≤ j ≤ k we define Pj,n1,...,nk := Pj,n1,...,nj for all nj+1, . . . , nk ∈ N.

Then the multi-indexed sequences (Pj,n1,...,nk)(n1,...,nk)∈Nk are indexed on the same

index set and satisfy

Pj(x
′′)(y′′) = lim

n1→∞
. . . lim

nk→∞
Pj,n1,...,nk(x′′)(y′′).

Now, consider Pn1,...,nk =
∑k
j=0 Pj,n1,...,nk ∈ Pf,k(X;Y ′). Since the integral for-

mula holds for finite type polynomials, we have

〈u, Pn1,...,nk〉 =

∫
BX′′×BY ′′

Pn1,...,nk(x′′)(y′′) dµu(x′′, y′′),

for all (n1, . . . , nk) ∈ Nk. As the sequence (Pn1,...,nk)(n1,...,nk)∈Nk is norm bounded,

we may apply the bounded convergence theorem k times to obtain

lim
n1→∞

. . . lim
nk→∞

〈u, Pn1,...,nk〉

= lim
n1→∞

. . . lim
nk→∞

∫
BX′′×BY ′′

Pn1,...,nk(x′′)(y′′) dµu(x′′, y′′)

=

∫
BX′′×BY ′′

P (x′′)(y′′) dµu(x′′, y′′).

It remains to show that 〈u, P 〉 = limn1→∞ . . . limnk→∞ 〈u, Pn1,...,nk〉. Note

that, for each 0 ≤ j ≤ k, both 〈 · , Pj〉 and limn1→∞ . . . limnk→∞ 〈 · , Pj,n1,...,nk〉
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are continuous linear functions on (⊗̃j,sπsX) ⊗̃π Y which coincide on elementary

tensors. Since P =
∑k
j=0 Pj and Pn1,...,nk =

∑k
j=0 Pj,n1,...,nk the claim follows and

the proof is complete.

Now we are ready to state our Lindenstrauss type theorem for non-homoge-

neous polynomials. We sketch the proof of the statement which is similar to that

of [11, Theorem 2.3].

Theorem 3.2. Let X, Y be Banach spaces. Suppose that X ′ is separable and has

the approximation property. Then the set of all polynomials in Pk(X;Y ′) whose

Aron–Berner extensions attain their norms is dense in Pk(X;Y ′).

Proof. Given Q ∈ Pk(X;Y ′) consider its associated linear function LQ ∈ G′k,

defined as in Lemma 2.2. The Bishop–Phelps theorem asserts that, for ε > 0,

there exists a norm attaining functional L = LP ∈ G′k such that ‖LQ − LP ‖ < ε

for some polynomial P in Pk(X;Y ′). Since ‖LQ − LP ‖ = ‖Q− P‖, it remains to

prove that P is norm attaining.

Take u ∈ Gk such that ‖u‖Gk = 1 and |LP (u)| = ‖LP ‖ = ‖P‖, and take the

regular Borel measure µu on BX′′ ×BY ′′ given by Lemma 3.1. Then

‖P‖ = |LP (u)| ≤
∫
BX′′×BY ′′

|P (x′′)(y′′)| d|µu|(x′′, y′′) ≤ ‖P‖ ‖µu‖ ≤ ‖P‖.

Consequently, |P (x′′)(y′′)| = ‖P‖ almost everywhere (for µu). Hence P attains its

norm.

Since functions in Au(X;Y ′) are uniform limits of polynomials, and each

polynomial, by the previous theorem, is close to a polynomial whose Aron–Berner

extension is norm attaining, we obtain the following Lindenstrauss theorem for

the space Au(X;Y ′).

Corollary 3.3. Let X, Y be Banach spaces. Suppose that X ′ is separable and

has the approximation property. Then the set of all functions in Au(X;Y ′) whose

Aron–Berner extensions attain their norms is dense in Au(X;Y ′). Moreover, given

g ∈ Au(X;Y ′) and ε > 0 there exists a polynomial P such that P is norm attaining

and ‖g − P‖ < ε.

In order to obtain more examples of spaces on which the Lindenstrauss theo-

rem holds, we bring up the so-called property (β), which was introduced by Linden-

strauss [20], who also showed that it implies property B (see comments in the In-

troduction). In other words, if a space Y has property (β) then the Bishop–Phelps

theorem holds in L(X;Y ) for every Banach space X. In the real finite-dimensional
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case, the spaces with property (β) are precisely those whose unit ball is a poly-

hedron. In the infinite-dimensional case, examples of these spaces are c0, `∞ and

C(K) with K having a dense set of isolated points. We recall the definition.

Definition 3.4. A Banach space Y has property (β) if there exists a subset

{(yα, gα) : α ∈ Λ} ⊂ Y × Y ′ satisfying:

(i) ‖yα‖ = ‖gα‖ = gα(yα) = 1.

(ii) There exists λ, 0 ≤ λ < 1, such that |gα(yβ)| ≤ λ for α 6= β.

(iii) For all y ∈ Y , ‖y‖ = supα∈Λ |gα(y)|.

Following the ideas of [20, Proposition 3], Choi and Kim [12, Theorem 2.1]

proved that if the Bishop–Phelps theorem holds in P(NX), then it holds in

P(NX;Y ) for every space Y with property (β). Mimicking their ideas we can

prove an analogous statement for the Lindenstrauss theorem; we give a proof for

completeness. Since there are spaces with property (β) which are not dual spaces,

this gives new examples of spaces satisfying a Lindenstrauss theorem.

Proposition 3.5. Suppose that Y has property (β). If the Lindenstrauss theorem

holds for P(NX) (respectively Pk(X), Au(X)) then it also holds for P(NX;Y )

(respectively Pk(X;Y ), Au(X;Y )).

Proof. We prove the N -homogeneous case since the others are completely anal-

ogous. Consider Q ∈ P(NX;Y ) and ε > 0. We may suppose ‖Q‖ = 1 without

loss of generality. Note that since Y has property (β), we easily get 1 = ‖Q‖ =

supα ‖gα ◦ Q‖ and we can take α0 such that ‖gα0
◦ Q‖ ≥ 1 − ε(1− λ)/4. By hy-

pothesis there exists p ∈ P(NX) with ‖p‖ = ‖gα0 ◦Q‖, such that ‖gα0 ◦Q− p‖ <
ε(1− λ)/2 and p attains the norm, say, at x′′0 ∈ BX′′ . Define P ∈ P(NX;Y ) by

P (x) = Q(x) + ((1 + ε)p(x)− gα0
◦Q(x)) yα0

and note that

‖Q− P‖ ≤ ε‖p‖+ ‖gα0
◦Q− p‖ ≤ ε+ ε(1− λ) ≤ 2ε.

It remains to see that P is norm attaining. For this purpose, we need first to prove

that ‖P‖ = ‖gα0 ◦ P‖. Note that ‖P‖ = supα ‖gα ◦ P‖ and that given any α we

have

‖gα ◦ P‖ ≤ ‖gα ◦Q‖+ |gα(yα0)| (ε‖p‖+ ‖p− gα0 ◦Q‖)
≤ 1 + λ(ε+ ε(1− λ)/2) ≤ 1 + ε(1 + λ)/2.

On the other hand, since gα0 ◦P = (1 + ε)p and ‖p‖ = ‖gα0 ◦Q‖ ≥ 1− ε(1− λ)/4,

we have

‖gα0 ◦ P‖ ≥ (1 + ε)(1− ε(1− λ)/4) ≥ 1 + ε(1 + λ)/2,
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which, together with the previous inequality, gives ‖P‖ = ‖gα0
◦ P‖. Noting that

gα0
◦ P (x′′) = P (x′′)(gα0

) and recalling that p attains the norm at x′′0 , we obtain

‖P‖= ‖gα0 ◦ P‖ = (1 + ε)‖p‖ = (1 + ε)|p(x′′0)|
= |P (x′′0)(gα0

)| ≤ ‖P (x′′0)‖ ≤ ‖P‖.

This proves that P is norm attaining, and the result follows.

A strong version of the Lindenstrauss theorem

Up to our knowledge, it is still unknown if the Bishop–Phelps theorem holds

for Au(X). In [2], a different version of the Bishop–Phelps theorem is shown to

fail for Au(X). Namely, given 0 < s ≤ 1 and f ∈ Au(X) we define

‖f‖s = sup{|f(x)| : ‖x‖ ≤ s},

which is clearly a norm on Au(X); note that for s = 1 we get the usual supremum

norm denoted by ‖·‖. Then, we can ask about the denseness of functions that attain

the ‖·‖s-norm. Note that given 0 < s ≤ s0 ≤ 1, if the ‖·‖s-norm attaining functions

are ‖ · ‖s0 -dense (that is, dense in the ‖ · ‖s0-norm) in Au(X), then the Bishop–

Phelps theorem holds. Indeed, given g ∈ Au(X) and ε > 0 take a polynomial q such

that ‖g−q‖ < ε/2 and consider q
1/s

defined by q
1/s

(·) = q
(

1
s ·
)
. By the assumption,

we have a ‖ · ‖s-norm attaining function f ∈ Au(X) such that ‖q
1/s
− f‖s0 < ε/2.

If we define fs ∈ Au(X) by fs(·) = f(s ·), then fs is ‖ · ‖-norm attaining and

‖fs‖ = ‖f‖s. On the other hand, ‖q− fs‖ = ‖q
1/s
− f‖s ≤ ‖q1/s − f‖s0 < ε/2, and

consequently ‖g − fs‖ < ε. The same holds in the vector-valued case.

We will refer to these type of results (i.e., the denseness of functions that

attain the ‖ · ‖s-norm) as strong versions of the Bishop–Phelps theorem. When

these stronger versions come on the scene, we will specify carefully whether we

consider the ‖·‖-norm or some ‖·‖s-norm; otherwise, the usual supremum norm is

taken. The following result will be improved in Section 4, where also the definition

of the preduals of Lorentz sequence spaces will be given.

Theorem 3.6 ([2, Corollary 4.5]). Let X = d∗(w, 1) with w ∈ `2\`1. Given 0 <

s < 1/e, the set of elements of Au(X) that attain the ‖ · ‖s-norm is not ‖ · ‖-dense

in Au(X).

Taking this result into account, it is natural to ask if a Lindenstrauss theorem

holds for the ‖ · ‖s-norm in Au(X;Y ′). Our goal now is to give a partial positive

answer to this problem. We briefly sketch the arguments, since they are slight

modifications of those followed in the first part of this section. First, we state the

following more general version of the well-known Bishop–Phelps theorem (see [10]

or the final comment added in [9]).
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(?) Let X be a real Banach space, C ⊆ X a bounded closed convex set and

C∗ =
{
ϕ ∈ X ′ : ϕ(x0) = sup

x∈C
ϕ(x) for some x0 ∈ C

}
.

Then C∗ is dense in X ′. If X is a real or complex Banach space and C ⊆ X is

bounded, closed, convex and balanced, then the set C∗ = {ϕ ∈ X ′ : |ϕ(x0)| =

supx∈C |ϕ(x)| for some x0 ∈ C} is dense in X ′.

Given Banach spaces X, Y and 0 < s ≤ 1, recall the predual Gk of Pk(X;Y ′)

defined in Section 2 and consider the subset

Cs =
{
u ∈ Gk : sup

‖Q‖s≤1

|〈u,Q〉| ≤ 1
}
,

which turns to be a bounded, closed, balanced and convex set. It is easily verified

that supu∈Cs |LP (u)| = ‖P‖s for any P ∈ Pk(X;Y ′). Also, if we take Ps(·) = P (s·),
it can be checked that (P )s = Ps and ‖P‖s = ‖P‖s. For elements in Cs, we have the

following generalization of the integral formula presented in Lemma 3.1. The proof

is analogous, just taking the ‖ · ‖s-norm in the subspace of finite type polynomials

instead of the usual supremum norm.

Lemma 3.7. Let 0 < s ≤ 1 and let X,Y be Banach spaces such that X ′ is

separable and has the approximation property. Then for each u ∈ Cs there exists

a regular Borel measure µu on (sBX′′ , w
∗)× (BY ′′ , w

∗) such that ‖µu‖ ≤ 1 and

(6) 〈u, P 〉 =

∫
sBX′′×BY ′′

P (x′′)(y′′) dµu(x′′, y′′)

for all P ∈ Pk(X;Y ′).

We now state our strong version of the Lindenstrauss theorem, generalizing

the Lindenstrauss type results obtained in Corollary 3.3 and Proposition 3.5. The

proof is analogous to the corresponding results for the supremum norm, making

use of the more general versions of the Bishop–Phelps theorem (?) and the integral

formula (6) of Lemma 3.7.

Theorem 3.8. Let 0 < s ≤ 1 and suppose that X ′ is separable and has the approx-

imation property. Then, for W being either a dual space or a Banach space with

property (β), the set of polynomials from X to W whose Aron–Berner extensions

attain their ‖ · ‖s-norms is ‖ · ‖-dense in Au(X;W ).

If 0 < s ≤ s0 ≤ 1, W is a dual space or has property (β), and X ′ is separable

and has the approximation property, the previous theorem trivially implies the

‖ · ‖s0 -denseness in Au(X;W ) of the polynomials whose Aron–Berner extensions

attain their ‖ · ‖s-norms. In particular, the set of polynomials whose Aron–Berner
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extensions attain their ‖ · ‖s-norms is ‖ · ‖s-dense in Au(X;W ). This seemingly

stronger version of Corollary 3.3 and Proposition 3.5 is actually equivalent. Indeed,

take g ∈ Au(X;W ) and ε > 0. Consider gs ∈ Au(X;W ) defined by gs(·) = g(s ·).
By the assumption there exists a polynomial P such that P is ‖ · ‖-norm attaining

and ‖gs − P‖ < ε. Take P
1/s

(·) = P
(

1
s ·
)

and note that ‖P
1/s
‖s = ‖P‖ and P

1/s

is ‖ · ‖s-norm attaining. On the other hand, it is easy to see that ‖g − P
1/s
‖s =

‖gs − P‖ < ε.

Note that for g ∈ H∞(Bo
X ;W ) and 0 < s0 < 1, the function gs0(·) = g(s0·)

belongs to Au(X;W ). As a consequence of the previous theorem, given 0 < s ≤
s0 < 1, ifX ′ is separable and has the approximation property andW is a dual space

or has property (β), then the set of polynomials whose Aron–Berner extensions

attain their ‖ · ‖s-norms is ‖ · ‖s0-dense in H∞(Bo
X ;W ). We do not know whether

the same is true for s0 = 1.

§4. Counterexamples to Bishop–Phelps theorems

The preduals of Lorentz sequence spaces appear related to the study of denseness of

norm attaining functions as a useful tool in finding counterexamples to the Bishop–

Phelps type theorems. Gowers [16] was the first to use such a predual to prove

that the spaces `p (1 < p < ∞) do not have the property B of Lindenstrauss.

Later, the same space was used in [1] to show the failure of the Bishop–Phelps

theorem for bilinear forms and 2-homogeneous scalar-valued polynomials. In [19],

the authors characterize those preduals of Lorentz sequence spaces in which the

Bishop–Phelps theorem holds for multilinear forms and N -homogeneous scalar-

valued polynomials.

We now recall some definitions and properties (for further details on Lorentz

sequence spaces, see [21, Chapter 4.e]). An admissible sequence will mean a decreas-

ing sequence w = (wi)i∈N of non-negative real numbers with w1 = 1, limwi = 0

and
∑
i wi =∞. The real or complex Lorentz sequence space d(w, 1) associated to

an admissible sequence w = (wi)i∈N is the vector space of all bounded sequences

x = (x(i))i such that

‖x‖w,1 :=

∞∑
i=1

x∗(i)wi <∞,

where x∗ = (x∗(i))i is the decreasing rearrangement of (x(i))i. This is a non-

reflexive Banach space when is endowed with the norm ‖ · ‖w,1. It is known that

the predual of d(w, 1), denoted by d∗(w, 1), is the space of all sequences x such

that

lim
n→∞

∑n
i=1 x

∗(i)

W (n)
= 0
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where W (n) =
∑n
i=1 wi. In this space the norm is defined by

‖x‖W := sup
n

∑n
i=1 x

∗(i)

W (n)
<∞.

Note that the condition w1 = 1 is equivalent to the assumption that ‖ei‖W = 1

for all i in N, where ei stands for the canonical i-th vector of d∗(w, 1).

There are two fundamental properties of the spaces d∗(w, 1), which make them

important in the study of these topics. The first one is related to the geometry of

the unit ball, more precisely the lack of extreme points. The second is about the

inclusion of these spaces in `r whenever the admissible sequence w belongs to `r.

We state these properties below; their proofs can be found, for instance, in [19,

Lemma 2.2 and Proposition 2.4].

• Given x ∈ Bd∗(w,1), there exist n0 ∈ N and δ > 0 such that ‖x+ λen‖W ≤ 1 for

all |λ| ≤ δ and n ≥ n0.

• If w ∈ `r, 1 < r <∞, then the formal inclusion d∗(w, 1) ↪→ `r is bounded.

It is important to mention that preduals of Lorentz sequence spaces have a shrink-

ing basis and hence satisfy the hypotheses of the Lindenstrauss type theorems

proved in Section 3. From now on, w will denote an admissible sequence.

Counterexamples in the polynomial case

Let us summarize some known results about bounds on the derivatives of polyno-

mials (see, for instance, [17], [18]).

Lemma 4.1. Let X and Y be Banach spaces over the scalar field K = R or C.

For fixed natural numbers 1 ≤ j ≤ k, there exists a constant Ck,j > 0 (depending

only on j and k) such that ∥∥∥∥DjP (x)

j!

∥∥∥∥ ≤ Ck,j‖P‖
for every P ∈ Pk(X;Y ) and x ∈ BX .

The following results extend [19, Lemma 3.1 and Theorem 3.2] to the non-

homogeneous case.

Lemma 4.2. Let X be a complex Banach sequence space and W be a strictly

convex Banach space. Suppose that a polynomial P : X →W attains the norm at

an element x0 ∈ BX satisfying the following condition:

(7) ∃ n0 ∈ N and δ > 0 such that ‖x0+λen‖ ≤ 1, ∀ |λ| ≤ δ and n ≥ n0.

Then DjP (x0)(en) = 0 for all j ≥ 1 and n ≥ n0.



Bounded Holomorphic Functions Attaining their Norms in the Bidual 503

Proof. Fix n ≥ n0. Since P attains its norm at x0, the modulus of the one-variable

holomorphic function

{|λ| < δ} →W, λ 7→ P (x0 + λen),

attains a local maximum at the origin. By the maximum modulus principle, this

function must be constant. Let us see that this implies that DjP (x0)(en) = 0 for

all j ≥ 1. Consider the series expansion of P at x0,

P (x) =

∞∑
j=0

DjP (x0)

j!
(x− x0).

Evaluating at x = x0 + λen and recalling that λ 7→ P (x0 + λen) is a constant

function we obtain

P (x0) = P (x0 + λen) = P (x0) +

∞∑
j=1

DjP (x0)

j!
(en)λj

for all |λ| < δ. Then 0 =
∑∞
j=1

DjP (x0)
j! (en)λj for all |λ| < δ, and consequently

DjP (x0)(en) = 0 for all j ≥ 1.

Proposition 4.3. Given an admissible sequence w and N ≥ 2, the following

statements are equivalent:

(i) NAP(Nd∗(w, 1)) is dense in P(Nd∗(w, 1)).

(ii) If k ≥ N , then every N -homogeneous polynomial in P(Nd∗(w, 1)) can be

approximated by norm attaining polynomials in Pk(d∗(w, 1)).

(iii) w /∈ `N .

Proof. The implication (i)⇒(ii) is trivial, while (iii)⇒(i) follows from [19, Theorem

3.2]. Let us show that (ii)⇒(iii). We suppose that w ∈ `N and give different proofs

for d∗(w, 1) complex or real Banach space.

The complex case. Take q ∈ P(Nd∗(w, 1)) defined by q(x) =
∑∞
i=1 x(i)N (here we

use d∗(w, 1) ↪→ `N ). If p ∈ Pk(d∗(w, 1)) attains its norm at some x0 ∈ Bd∗(w,1),

then Lemma 4.2 ensures that DNp(x0)(en) = 0 for n sufficiently large. Since

DNq(x0)/N ! = q, by Lemma 4.1 we obtain, for large n,

1 =

∣∣∣∣DNq(x0)

N !
(en)− DNp(x0)

N !
(en)

∣∣∣∣ ≤ ∥∥∥∥DNq(x0)

N !
− DNp(x0)

N !

∥∥∥∥ ≤ Ck,N‖q − p‖.
Therefore, q cannot be approximated by norm attaining polynomials.

The real case. Let M ≤ N be the smallest natural number such that w ∈ `M , con-

sider q ∈ P(Nd∗(w, 1)) defined by q(x) = x(1)N−M
∑∞
i=1(−1)ix(i)M and suppose
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that q can be approximated by norm attaining polynomials in Pk(d∗(w, 1)). Fix

ε > 0 and, applying Lemma 4.1, take p ∈ NAPk(d∗(w, 1)) such that

(8)

∥∥∥∥DMq(x)

M !
− DMp(x)

M !

∥∥∥∥ < ε

for any x ∈ Bd∗(w,1). Now, let x0 ∈ Bd∗(w,1) be such that ‖p‖ = |p(x0)| and take

n0 ∈ N and δ > 0 so that (7) is satisfied. Assume for the moment that p(x0) > 0.

Then

(9) p(x0 + λen) = p(x0) +

k∑
j=1

Djp(x0)

j!
(en)λj ≤ p(x0)

for |λ| < δ and n ≥ n0. In view of [19, Theorem 3.2], for any j < M the j-

homogeneous polynomial Djp(x0)/j! is weakly sequentially continuous and con-

sequently limn→∞(Djp(x0)/j!)(en) = 0. Then, taking limits in (9) and dividing

by λM we obtain

lim sup
n→∞

k∑
j=M

Djp(x0)

j!
(en)λj−M ≤ 0

for 0 ≤ λ < δ. As a consequence,

lim sup
n→∞

DMp(x0)

M !
(en) ≤ 0.

If p(x0) < 0, reasoning with −p we get

lim inf
n→∞

DMp(x0)

M !
(en) ≥ 0.

On the other hand, an easy calculation shows that

lim sup
n→∞

DMq(x0)

M !
(en) = |x0(1)|N−M = − lim inf

n→∞

DMq(x0)

M !
(en).

Now, by (8), if p(x0) > 0 we have

|x0(1)|N−M = lim sup
n→∞

DMq(x0)

M !
(en) ≤ lim sup

n→∞

DMp(x0)

M !
(en) + ε ≤ ε,

while if p(x0) < 0 then

−|x0(1)|N−M = lim inf
n→∞

DMq(x0)

M !
(en) ≥ lim inf

n→∞

DMp(x0)

M !
(en)− ε ≥ −ε.
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Therefore,

‖q‖ ≤ ‖p‖+ ε = |p(x0)|+ ε ≤ |q(x0)|+ 2εC−1
k,M

≤ |x0(1)|N−M
( ∞∑
i=1

|x0(i)|M
)

+ 2εC−1
k,M < εC−1

k,M

( ∞∑
i=1

w(i)M + 2
)
,

where Ck,M is the constant given in Lemma 4.1. Since ε was arbitrary we have

‖q‖ = 0, which is the desired contradiction.

The following corollary improves [2, Corollary 4.4].

Corollary 4.4. NAPN (d∗(w, 1)) is dense in PN (d∗(w, 1)) if and only if w /∈ `N .

Proof. It suffices to prove that w /∈ `N implies that NAPN (d∗(w, 1)) is dense in

PN (d∗(w, 1)); the other implication follows from the previous proposition. Note

that if w /∈ `N then w /∈ `j for all j ≤ N . As a consequence of [19, Theorem 3.2],

we have P(jd∗(w, 1)) = Pwsc(jd∗(w, 1)) for all j ≤ N and then PN (d∗(w, 1)) =

PN,wsc(d∗(w, 1)). Now, following the arguments in the proof of [19, Theorem 3.2]

we obtain the desired result.

Finally, we give some counterexamples in the vector-valued case.

Proposition 4.5. Let w be an admissible sequence and N ≥ 2.

(i) Suppose d∗(w, 1) is a complex Banach space and W is a strictly convex Banach

space.

(a) If w ∈ `N , then NAPk(d∗(w, 1);W ) is not dense in Pk(d∗(w, 1);W ) for

any k ≥ N .

(b) If w ∈ `r for some 1 < r < ∞, then NAPk(d∗(w, 1); `r) is not dense in

Pk(d∗(w, 1); `r) for any k ≥ 1.

(ii) If d∗(w, 1) is a real Banach space and w ∈ `M\`M−1 for some M even, then

NAPk(d∗(w, 1); `M ) is not dense in Pk(d∗(w, 1); `M ) for any k ≥ 1.

Proof. (i) For (a), since w ∈ `N , fixing a norm-one element z0 ∈W we can define

Q ∈ P(Nd∗(w, 1);W ) by

Q(x) =
( ∞∑
i=1

x(i)N
)
z0.

Now the proof follows exactly as in Proposition 4.3. For (b) take Q(x) = x, which

clearly belongs to Pk(d∗(w, 1); `r) for every k ≥ 1, and reason again as in Propo-

sition 4.3.

(ii) Consider Q(x) = x and suppose that it can be approximated by

norm attaining polynomials in Pk(d∗(w, 1); `M ). Since norm-one M -homogeneous
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polynomials are uniformly equicontinuous, given ε > 0 we can take P ∈
NAPk(d∗(w, 1); `M ) so that

‖q ◦Q− q ◦ P‖ < εC−1
Mk,M

for every norm-one polynomial q ∈ P(M `M ), where CMk,M is the constant given

in Lemma 4.1.

Now if x0 ∈ Bd∗(w,1) is such that ‖P (x0)‖ = ‖P‖, we consider the norm-one

M -homogeneous polynomial qP,x0 : `M → R given by qP,x0(x) =
∑∞
i=1 x(i)M .

Note that qP,x0
◦P ∈ PMk(d∗(w, 1)) is norm attaining and qP,x0

◦P (x0) = ‖P‖M .

On the other hand, qP,x0
◦Q(x) =

∑∞
i=1 x(i)M and by the previous inequality∥∥∥∥DM (qP,x0

◦Q)(x)

M !
− DM (qP,x0

◦ P )(x)

M !

∥∥∥∥ < ε.

Reasoning as in Proposition 4.3 (here we use the assumption that M is even) we get

lim sup
n→∞

DM (qP,x0 ◦ P )(x0)

M !
(en) ≤ 0 and lim sup

n→∞

DM (qP,x0 ◦Q)(x0)

M !
(en) = 1.

Hence

1 = lim sup
n→∞

DM (qP,x0
◦Q)(x0)

M !
(en) ≤ lim sup

n→∞

DM (qP,x0
◦ P )(x0)

M !
(en) + ε ≤ ε,

and since ε was arbitrary, we obtain the desired contradiction.

In view of Proposition 3.5, it is of interest to find counterexamples to the

Bishop–Phelps theorem when the polynomials take values in spaces with prop-

erty (β).

Proposition 4.6. Let w be an admissible sequence and N ≥ 2.

(i) NAP(Nd∗(w, 1); c0) is dense in P(Nd∗(w, 1); c0) if and only if w /∈ `N .

(ii) NAPN (d∗(w, 1); c0) is dense in PN (d∗(w, 1); c0) if and only if w /∈ `N .

Proof. (i) If w /∈ `N then NAP(Nd∗(w, 1)) is dense in P(Nd∗(w, 1)), and since c0
has property (β), by [12, Theorem 2.1] we conclude that NAP(Nd∗(w, 1); c0) is

dense in P(Nd∗(w, 1); c0).

For the other implication suppose that w ∈ `N and take Q : d∗(w, 1) → c0
defined by

Q(x) =
( ∞∑
i=1

x(i)N ,

∞∑
i=2

x(i)N ,

∞∑
i=3

x(i)N , . . .
)

in the complex case, and by

Q(x) = x(1)N−M
( ∞∑
i=1

(−1)ix(i)M ,

∞∑
i=2

(−1)ix(i)M ,

∞∑
i=3

(−1)ix(i)M , . . .
)
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in the real case, where M is the smallest natural number such that w ∈ `M .

Suppose Q can be approximated by norm attaining polynomials in P(Nd∗(w, 1); c0)

and take P ∈ NAP(Nd∗(w, 1); c0). Let us see that there exists m0 such that e∗m0
◦P

is norm attaining, where (e∗i )i∈N is the dual basic sequence of the canonical vectors.

Indeed, let x0 ∈ Bd∗(w,1) be such that

‖P (x0)‖ = sup
n
|e∗n ◦ P (x0)| = ‖P‖.

Since P (x0) ∈ c0, the supremum in the last equality is actually a maximum, and

consequently there exists m0 such that |e∗m0
◦ P (x0)| = ‖P‖ = ‖e∗m0

◦ P‖. Noting

that ‖e∗m0
◦ Q − e∗m0

◦ P‖ ≤ ‖Q − P‖ and reasoning as in [19, Theorem 3.2], we

get the desired contradiction.

(ii) The proof is analogous, but reasoning as in Proposition 4.3 instead of [19,

Theorem 3.2].

Counterexample in Au

Let us see that the Bishop–Phelps theorem does not hold for Au in the vector-

valued case. First we need the following auxiliary lemma. Recall that, as already

mentioned in Section 2, in the holomorphic results we consider only complex Ba-

nach spaces.

Lemma 4.7. Let X be a Banach sequence space and W be a strictly convex Ba-

nach space. Suppose x0 ∈ BX satisfies the following condition:

(10) ∃ n0 ∈ N and δ > 0 such that ‖x0+λen‖ ≤ 1, ∀ |λ| ≤ δ and n ≥ n0.

Then for any f ∈ Au(X;W ) and any n ≥ n0, the function

gf : {|λ| < δ/2} →W, λ 7→ f(x0 + λen),

is holomorphic.

We remark that every element in the unit ball of c0 or d∗(w, 1) satisfies (10).

Proof. Take a sequence (αi)i∈N ⊂ R such that 1/2 < αi < 1 and αi ↗ 1. For

n ≥ n0 we define gi : {|λ| < δ/2} →W by

gi(λ) = f(αix0 + λen).

Since αix0 +λen belongs to αiBX for all |λ| < δ/2, the function gi is holomorphic

for all i ≥ 1. Let us show that gi converges uniformly to gf . Since f is uniformly

continuous, given ε > 0 there exists δ′ > 0 such that ‖f(x)− f(y)‖ < ε whenever



508 D. Carando and M. Mazzitelli

x, y ∈ BX satisfy ‖x− y‖ < δ′. Taking i sufficiently large, we have 1−αi < δ′ and

consequently ‖(αix0 + λen)− (x0 + λen)‖ < δ′. Then there exists i0 such that

‖gi(λ)− gf (λ)‖ = ‖f(αix0 + λen)− f(x0 + λen)‖ < ε

for all |λ| < δ/2 and all i ≥ i0. Now, gf is holomorphic since it is the uniform limit

of holomorphic functions.

Now, consider the space Z = c0 with the norm defined by ‖x‖Z = ‖x‖∞ +

(
∑∞
i=1(x(i)/2i)2)1/2. Then ‖·‖Z and ‖·‖∞ are equivalent norms. Moreover, Z and

Z ′′ are strictly convex. The space Z appears in classical counterexamples to norm

attaining results (see for instance [3, 20, 23]).

Proposition 4.8. The set NAAu(c0;Z ′′) is not dense in Au(c0;Z ′′).

Proof. Consider Q : c0 → Z ′′ defined by Q(x) = x. It is clear that Q ∈ Au(c0;Z ′′)

and ‖Q(en)‖Z′′ ≥ 1 for all n ∈ N. Fix 0 < δ < 1, take a norm attaining

f ∈ Au(c0;Z ′′) and let x0 ∈ Bc0 be such that ‖f(x0)‖ = ‖f‖. Since x0 satis-

fies condition (10) for the fixed δ and some n0 ∈ N, by Lemma 4.7 the function

gf : {|λ| < δ/2} → Z ′′, gf (λ) = f(x0 + λen),

is holomorphic for fixed n ≥ n0. Since gf attains its maximum at 0, it is constant

and Djgf (0) = 0 for all j ≥ 1. On the other hand, define gQ(λ) = Q(x0+λen); then

gQ is holomorphic and D1gQ(0)(λ) = λQ(en). Now, by the Cauchy inequalities we

obtain

1 ≤ ‖D1gQ(0)−D1gf (0)‖ ≤ 1

δ/2
sup
|λ|<δ/2

‖gQ(λ)− gf (λ)‖ ≤ 2

δ
‖Q− f‖.

Hence, Q cannot be approximated by norm attaining functions in Au(c0;Z ′′).

It is worth noting that the argument in the previous proof does not work if

we consider functions defined on d∗(w, 1) (instead of c0) with values in a strictly

convex Banach space. The reason is that, although any x0 ∈ Bd∗(w,1) satisfies

condition (10), we cannot fix δ independently of f . In fact, in this case δ depends

on x0 and can be arbitrarily small.

Counterexamples to strong versions of the Bishop–Phelps theorem

We have already mentioned that we do not know whether the Bishop–Phelps

theorem holds for Au in the scalar-valued case. We now show that the strong

versions of this theorem introduced in [2] which we studied in Section 3 actually

fail, while the corresponding strong versions of the Lindenstrauss theorem hold.

For this purpose, we state the next lemma which is analogous to Lemma 4.2.
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Lemma 4.9. Let X be a Banach sequence space and W be a strictly convex Ba-

nach space. Let 0 < s < 1 and f ∈ Au(X;W ).

(i) Fix 0 < s0 < 1 and consider x0 ∈ sBX for some 0 < s < s0. Then∥∥∥∥Djf(x0)

j!

∥∥∥∥ ≤ 1

(s0 − s)j
‖f‖s0

for all j ≥ 1.

(ii) Suppose that f attains its ‖ · ‖s-norm at an element x0 ∈ sBX satisfying the

following condition:

(11) ∃ n0 ∈ N and δ > 0 such that ‖x0+λen‖ ≤ s, ∀ |λ| ≤ δ and n ≥ n0.

Then Djf(x0)(en) = 0 for all j ≥ 1 and n ≥ n0.

Proof. (i) Fix r = s0 − ‖x0‖ and y ∈ Bo
X , and consider the one-variable holomor-

phic function

gf : {|λ| < 1} →W, λ 7→ f(x0 + λry).

By the Cauchy inequalities we have∥∥∥∥Djgf (0)

j!

∥∥∥∥ ≤ sup
|λ|<1

‖gf (λ)‖ ≤ ‖f‖s0

for all j ≥ 1. Now, noting that Djgf (0) = rjDjf(x0)(y) we deduce

rj
∥∥∥∥Djf(x0)(y)

j!

∥∥∥∥ ≤ ‖f‖s0
and since y ∈ Bo

X was arbitrary, the desired statement follows.

(ii) Since ‖x0‖ ≤ s < 1 and f is holomorphic in Bo
X , we can consider the

series expansion of f at x0,

f(x) =

∞∑
j=0

Djf(x0)

j!
(x− x0).

Then the statement follows by evaluating at x = x0 + λen with n ≥ n0 and

proceeding as in Lemma 4.2

We remark that, as expected, every element in the unit ball of c0 or d∗(w, 1)

satisfies condition (11). The following result is the improvement of [2, Corol-

lary 4.5] mentioned above. Both Lemma 4.9 and Proposition 4.10 hold with

H∞(Bo
d∗(w,1);W ) in place of Au(d∗(w, 1);W ).
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Proposition 4.10. Let W be a strictly convex space and take an admissible se-

quence w ∈ `N for some N ≥ 2. Given 0 < s < s0 ≤ 1, there exists an N -

homogeneous polynomial that cannot be approximated in the ‖ · ‖s0-norm (in par-

ticular, in the ‖·‖-norm) by elements of Au(d∗(w, 1);W ) that attain the ‖·‖s-norm.

Proof. Fix a norm-one element z0 ∈W and define Q : d∗(w, 1)→W by

Q(x) =
( ∞∑
i=1

x(i)N
)
z0.

Then Q is in P(Nd∗(w, 1);W ) and its restriction to the ball belongs to

Au(d∗(w, 1);W ). Take f ∈ Au(d∗(w, 1);W ) that attains its ‖ · ‖s-norm at some

x0 ∈ sBd∗(w,1). By Lemma 4.9(ii), there exists n0 ∈ N such that Djf(x0)(en) = 0

for all j ≥ 1 and n ≥ n0. On the other hand, DNQ(x0)/N ! = Q and hence

‖(DNQ(x0)/N !)(en)‖ = 1 for all n ∈ N. For n ≥ n0, by Lemma 4.9(i) we have

1 =

∥∥∥∥DNQ(x0)

N !
(en)− DNf(x0)

N !
(en)

∥∥∥∥ ≤ 1

(s0 − s)N
‖Q− f‖s0 .

Therefore, Q cannot be approximated by a function f ∈ Au(d∗(w, 1);W ) that

attains its ‖ · ‖s-norm. This gives the desired statement.

Finally, we have the following equivalence in the spirit of Proposition 4.3. See

also [4, Proposition 2.6] where, with the same tools, a similar equivalence is given.

Corollary 4.11. Let 0 < s < 1. The set of functions in Au(d∗(w, 1)) attaining

their ‖ · ‖s-norm is ‖ · ‖-dense in Au(d∗(w, 1)) if and only if w /∈ `N for all N ∈ N.

Proof. First note that we can proceed as in Corollary 4.4 to show that for 0 <

s < 1, the set of ‖ · ‖s-norm attaining polynomials in PN (d∗(w, 1)) is ‖ · ‖-dense

in PN (d∗(w, 1)) if and only if w /∈ `N . This implies, if w /∈ `N for all N ∈ N,

that the set of ‖ · ‖s-norm attaining polynomials is dense in the space P(d∗(w, 1))

of polynomials (of any degree). Then, given g ∈ Au(d∗(w, 1)) and ε > 0, we can

take a polynomial q such that ‖g − q‖ < ε/2, and then a ‖ · ‖s-norm attaining

polynomial p such that ‖q−p‖ < ε/2. This proves one implication, while the other

follows from Proposition 4.10.

As a consequence, taking Au(d∗(w, 1)) with w ∈ `r for some 1 < r < ∞
we obtain, in the scalar-valued case, the desired examples of spaces for which the

strong version of the Bishop–Phelps theorem fails, but the corresponding strong

version of the Lindenstrauss theorem holds. For arbitrary admissible sequences

(which need not belong to any `r), we can do the following in the vector-valued

case. We take again a renorming Z of c0 such that its bidual Z ′′ is strictly convex,
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and consider Q(x) = x which is well defined from d∗(w, 1) to Z ′′ whether w

belongs to some `r or not. Moreover, Q is well defined from c0 to Z ′′ and the strong

version of the Bishop–Phelps theorem fails also in this case since the Bishop–Phelps

theorem fails according to Proposition 4.8.

As in the polynomial case, we also have the previous equivalence when we

consider holomorphic functions with values in c0. Indeed, with slight modifications

in the proof of [12, Theorem 2.1], we find that if the strong version of Bishop–Phelps

holds for Au(d∗(w, 1)) and Y has property (β) then it holds for Au(d∗(w, 1);Y ).

For the other implication, the same polynomial Q of Proposition 4.6 works as a

counterexample and the proof follows the same lines, making use of Lemma 4.9 to

prove that

1 =

∣∣∣∣DN (e∗m0
◦Q)(x0)

N !
(en)−

DN (e∗m0
◦ f)(x0)

N !
(en)

∣∣∣∣ ≤ 1

(1− s)N
‖Q− f‖

for any ‖ · ‖s-norm attaining f ∈ Au(d∗(w, 1); c0) and n large enough. This gives

the desired statement.
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[2] M. D. Acosta, J. Alaminos, D. Garćıa, and M. Maestre, On holomorphic functions attaining
their norms, J. Math. Anal. Appl. 297 (2004), 625–644. Zbl 1086.46034 MR 2088685
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