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Locally Compact Separable Abelian Group
Actions on Factors with the Rokhlin Property

by

Koichi Shimada

Abstract

We prove a classification theorem for actions with the Rokhlin property of locally compact
separable abelian groups on factors. This is a generalization of the recent work due to
Masuda–Tomatsu on Rokhlin flows.
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§1. Introduction

Studying group actions is one of the most interesting topics in the theory of opera-

tor algebras. Since Connes [3], [4] completely classified single automorphisms of an

approximately finite-dimensional (hereafter abbreviated by AFD) factor of type II1
up to cocycle conjugacy, the classification of group actions has been remarkably

developed; discrete amenable group actions on AFD factors have been completely

classified by many authors [10], [12], [17], [22], [25], [26], and there has been great

progress in the classification of compact group actions on AFD factors by Jones–

Takesaki [9], Kawahigashi–Takesaki [13], and Masuda–Tomatsu [19], [20], [21].

The next subject of interest is the classification of actions of non-compact

continuous groups. In the study of locally compact abelian group actions, many

problems are left. As a step to understanding these actions, outer actions are now

intensively studied. As a candidate for outerness for flows, the Rokhlin property

was introduced by Kishimoto [15], Kawamuro [14] and Masuda–Tomatsu [18], and

the last two authors have succeeded in classifying Rokhlin flows on von Neumann

algebras. As mentioned in [18, Problem 8.1], the Rokhlin property can be gen-

eralized to locally compact abelian group actions. Hence it is natural to extend
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the result of Masuda–Tomatsu to locally compact abelian group actions. In this

direction, Asano [2] has classified actions of Rn with the Rokhlin property.

In this paper, we will generalize results in [2] and [18], and classify actions

with the Rokhlin property of locally compact separable abelian groups on factors

(Theorem 2). This gives an answer to [18, Problem 8.1].

This paper is organized as follows. In Section 2, we recall the definition of

ultraproduct von Neumann algebras and the Rokhlin property. In Section 3, we

prove the main theorem. The proof is basically modeled after that in [18]. However,

there are some differences: for example, in contrast to R, some locally compact

abelian groups do not have enough compact quotients. In Section 4, we give some

examples of Rokhlin actions.

§2. Preliminaries

§2.1. Notations

Let M be a von Neumann algebra. We denote the set of unitaries of M by U(M).

For φ ∈M∗ and a ∈M , set [φ, a] := aφ− φa. For φ ∈M+
∗ and x ∈M , define

‖x‖]φ :=

√
φ(x∗x+ xx∗)

2
.

Then ‖·‖]φ is a seminorm on M . If φ is faithful, then this norm metrizes the strong∗

topology of the unit ball of M .

§2.2. Ultraproduct von Neumann algebras

First of all, we recall ultaproduct von Neumann algebras. Basic references are

Ando–Haagerup [1] and Ocneanu [22]. Let ω be a free ultrafilter on N and M be a

separable von Neumann algebra. We denote by l∞(M) the C∗-algebra consisting

of all norm bounded sequences in M . Set

Iω :=
{

(xn) ∈ l∞(M)
∣∣∣ strong∗-lim

n→ω
xn = 0

}
,

Nω := {(xn) ∈ l∞(M) | for all (yn) ∈ Iω, we have

(xnyn) ∈ Iω and (ynxn) ∈ Iω
}
,

Cω :=
{

(xn) ∈ l∞(M)
∣∣∣ for all φ ∈M∗,we have lim

n→ω
‖[φ, xn]‖ = 0

}
.

Then Iω ⊂ Cω ⊂ Nω and Iω is a closed ideal of Nω. Hence we can define the

quotient C∗-algebra Mω := Nω/Iω. Denote the canonical quotient map Nω →Mω

by π. Set Mω := π(Cω). Then Mω and Mω are von Neumann algebras as in

Ocneanu [22, Proposition 5.1].
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Let τω : Mω →M be the map defined by τω(π((xn))) = limn→ω xn. Here, the

limit is taken in the weak topology of M . This map is a faithful normal conditional

expectation (see [18, Subsection 2.4]).

Let α be an automorphism of M . We define an automorphism αω of Mω by

αω(π((xn))) = π((α(xn))) for π((xn)) ∈Mω. Then αω(Mω) = Mω. By restricting

αω to Mω, we obtain an automorphism αω of Mω. Hereafter we omit π and denote

αω and αω by α if no confusion arises.

§2.3. The Rokhlin property

Next, we recall the Rokhlin property. A basic reference is [18]. In the previous

subsection, we have seen that it is possible to lift automorphisms of von Neumann

algebras to their ultraproducts. Hence it is natural to consider lifts of actions

of locally compact abelian groups to Mω and Mω. However, lifts may not be

continuous. Instead of considering αω on the whole Mω, we consider its continuous

part.

Let G be a locally compact separable abelian group. In the rest of the paper,

we always assume that groups and von Neumann algebras are separable, except

for ultaproduct von Neumann algebras. We denote the group operation of G by +.

Let d be a translation invariant metric on G (see [8, Theorem 8.3]). Choose a

normal faithful state ϕ on M . For an action α of G on a von Neumann algebra M ,

set

Mω
α :=

{
(xn) ∈Mω | for each ε > 0, there exists δ > 0 such that

{n ∈ N | ‖αt(xn)− xn‖]ϕ < ε for t ∈ G with d(0, t) < δ} ∈ ω
}
,

Mω,α :=
{

(xn) ∈Mω | for each ε > 0, there exists δ > 0 such that

{n ∈ N | ‖αt(xn)− xn‖]ϕ < ε for t ∈ G with d(0, t) < δ} ∈ ω
}
.

Since all metrics on G are mutually equivalent, this definition does not depend

on the choice of d. The condition appearing in the definition of Mω
α means the ω-

equicontinuity of the family of maps {G 3 t 7→ αt(xn)} (see [18, Definition 3.1 and

Lemma 3.2]).

Now, we will define the Rokhlin property.

Definition 1. An action θ of a locally compact abelian group G on a von Neu-

mann algebra M is said to have the Rokhlin property if for each p ∈ Ĝ, there exists

a unitary u of Mω,θ satisfying θt(u) = 〈t,−p〉u for all t ∈ G.

The Rokhlin property can also be defined for Borel cocycle actions (see [18,

Definitions 3.4 and 4.1]). For actions, by the same argument as in [18, proof of

Proposition 3.5], the two definitions coincide.
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§3. A classification theorem

Let G be a locally compact abelian group. Let α1 and α2 be two actions of G

on a von Neumann algebra M . The actions α1 and α2 are said to be cocycle

conjugate if there exist an α2-cocycle u and an automorphism σ of M satisfying

Adut◦α2
t = σ◦α1

t ◦σ−1 for all t ∈ G. If σ can be chosen to be approximately inner,

then α1 is said to be strongly cocycle conjugate to α2 (see [18, Subsection 2.1]).

Our main theorem in this paper is the following.

Main Theorem 2. Let G be a locally compact abelian group. Let α and β be

actions of G with the Rokhlin property on a factor M . Then α and β are strongly

cocycle conjugate if and only if αt ◦ β−t ∈ Int(M) for all t ∈ G.

In the rest of this section, we will present a proof of this theorem. The proof is

modeled after that in [18]. However, at some points, we need to deal with different

problems. One of the problems is that some locally compact abelian groups do not

have enough compact quotients. Instead, we consider compact quotients of com-

pactly generated clopen subgroups. By [8, Theorem 9.14], a compactly generated

subgroup is isomorphic to Rn ×K × Zm for some compact abelian group K and

non-negative integers n, m. We deal with this problem in Subsection 3.3.

§3.1. Lifts of Borel unitary paths

The first step of our proof of Theorem 2 is to find a representing unitary sequence

{uνt } for a Borel map Ut : G → U(Mω
θ ) so that the family {t 7→ uνt } is “almost”

ω-equicontinuous. More precisely, we have the following.

Lemma 3 (see [18, Lemma 3.24]). Let (θ, c) be a Borel cocycle action of a locally

compact abelian group G on a factor M . Suppose that U : G → Mω
θ is a Borel

unitary map. Let H be a compactly generated clopen subgroup of G, which is iso-

morphic to Rn × K × Zm for some non-negative integers n, m and a compact

abelian group K. Let L be a subset of H of the form

L = [0, S1)× · · · × [0, Sn)×K × [0, N1)× · · · × [0, Nm)

when we identify H with Rn×K×Zm. Then for any δ with 0 < δ < 1 and a finite

subset Φ of M+
∗ , there exist a compact subset I of L×L, a compact subset C of L

and a lift {uνt } of U satisfying the following conditions:

(1) πω((uνt )ν) = Ut for almost every t ∈ L, in particular for all t ∈ C.

(2) µG(L \ C) < δ, where µG is the Haar measure on G.

(3) For all ν ∈ N, the map L 3 t 7→ uνt is Borel and its restriction to C is strongly

continuous.
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(4) The family {C 3 t 7→ uνt }ν is ω-equicontinuous.

(5) (µG × µG)(I) ≥ (1− δ)(µG × µG)(L× L).

(6) The family {I 3 (t, s) 7→ uνt θt(u
ν
s )c(t, s)(uνt+s)

∗}ν is ω-equicontinuous.

(7) The following limit is uniform on I for all φ ∈ Φ:

lim
ν→ω
‖uνt θt(uνs )c(t, s)(uνt+s)

∗ − 1‖]φ = ‖Utθt(Us)c(t, s)U∗t+s − 1‖]φω .

The proof is similar to that of [18, Lemma 3.24]. Here, we only prove the

following lemma, which corresponds to [18, Lemma 3.21]. The proof is by simple

approximation by Borel simple step functions.

Lemma 4 (see also [18, Lemma 3.21]). Let G be a locally compact abelian group,

θ : G → Aut(M) be a Borel map and U : G → Mω
θ be a Borel unitary map. Then

for any Borel subset L of G with 0 < µG(L) < ∞ and for any ε > 0, there exist

a compact subset C of L and a sequence {uνt }ν∈N of unitaries of M for any t ∈ L
which satisfy the following conditions:

(1) πω((uνt )ν) = Ut for almost every t ∈ L, in particular for all t ∈ C.

(2) µG(L \ C) < ε.

(3) For all ν ∈ N, the map L 3 t 7→ uνt is Borel and its restriction to C is strongly

continuous.

(4) The family {C 3 t 7→ uνt }ν is ω-equicontinuous.

Proof. By the same argument as in [18, proof of Lemma 3.21], there exists a

sequence {Ln} of compact subsets of L satisfying:

• Li ∩ Lj = ∅ for i 6= j.

• µG(L \
⋃∞
j=1 Lj) = 0.

• U |Li is continuous for each i.

Hence we may assume that L is compact and U |L is strongly continuous. Let

ψ ∈ M∗ be a normal faithful state. For each t ∈ L, take a representing unitary

{Ũνt }ν of Ut. Note that t 7→ Ũνt may not be Borel measurable. We first show the

following claim.

Claim. For each k ∈ N, there exist Nk ∈ N, Fk ∈ ω, a finite subset Ak of L, a

finite Borel partition P k := {Kk
l }

nk
l=1 of L and a compact subset Ck of L satisfying:

(1) For s, t ∈ L with d(s, t) ≤ 1/Nk, we have ‖Us − Ut‖]ψω < 1/(2k).

(2) Nk > Nk−1, 2/Nk + 1/(2Nk−1) < 1/Nk−1 for all k.

(3) [k,∞) ⊃ Fk−1 ) Fk for all k.

(4) Ak ⊃ Ak−1 for all k.
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(5)
⋃∞
j=1Aj ⊂ Ck, Ck+1 ⊂ Ck, µG(L \Ck) < ε(1− 2−k) for all k, and Ck ∩Kk

l ’s

are also compact for all k ∈ N, l = 1, . . . , nk.

(6) For each k, the partition P k+1 is finer than P k and for each k ∈ N and

l = 1, . . . , nk, we have Ak ∩Kk
l = {tk,l} (= {pt}).

(7) For s, t ∈ Kk
l , we have d(s, t) ≤ 1/Nk.

(8) For s, t ∈ Ak, ν ∈ Fk, we have ‖Ũνs − Ũνt ‖
]
ψ < ‖Us − Ut‖

]
ψω + 1/(2k).

Proof of Claim. First of all, choose a sequence {Nk}∞k=1 ⊂ N that satisfies (1)

and (2). Next, we define P k’s. Assume that P 1, . . . , P k are already chosen so

that they satisfy (7), and that P j+1 is a refinement of P j for j = 1, . . . , k − 1.

By compactness of L, there exists a family {Bf}f∈F of finite balls of radius

1/(2Nk+1) of L which covers L. This defines a partition {B̃f ′}f ′∈F ′ of L. Then

P k+1 := {Kl
k∩B̃f ′}f ′∈F ′, l=1,...,nk is a refinement of P k which satisfies (7). Next, we

select Ck’s. Set C0 := L and C0
1 := C0. By Lusin’s theorem, for each l = 1, . . . , nk,

k ∈ N, there exists a compact subset Ckl of Kk
l which satisfies:

• Ck+1
l ⊂ Ckl′ if Kk+1

l ⊂ Kk
l′ .

• µG((Kk+1
l ∩ Ckl′) \ C

k+1
l ) < 2−(k+1)ε/nk+1 if Kk+1

l ⊂ Kk
l′ .

Set Ck :=
⋃nk
l=1 C

k
l for each k ∈ N. Since Ckl ’s are compact, so is Ck. On the other

hand, we have

µG(Cj \ Cj+1) =

nj+1∑
l=1

µG((Kj+1
l ∩ Cj) \ Cj+1) =

nj+1∑
l=1

µG((Kj+1
l ∩ Cjl′) \ Cj+1)

=

nj+1∑
l=1

µG((Kj+1
l ∩ Cjl′) \ C

j+1
l ) < nj+1

1

nj+1
2−(j+1)ε = 2−(j+1)ε.

In the above inequality, for each l = 1, . . . , nj+1, l′ ∈ {1, . . . , nj} is the unique

index with Cj+1
l ⊂ Cjl′ . Hence

µG(L \ Ck) ≤
k−1∑
j=0

µG(Cj \ Cj+1) < ε

k−1∑
j=0

2−(j+1) = ε(1− 2−k).

Thus Ck’s satisfy Ck+1 ⊂ Ck and µG(L \Ck) < ε(1− 2−k), and also the Ck ∩Kk
l

(= Ckl ) are compact. Next, we choose Ak’s. For each C1
l1
⊃ C2

l2
⊃ · · · , there exists

tl1l2··· ∈
⋂∞
k=1 C

k
lk

by compactness of Ckl ’s. By induction on k, it is possible to

choose Ak = {tk,l}nkl=1 so that Ak ⊂ Ak+1 and tk,l = tl1l2···llk+1···, i.e., lk = l. These

Ak’s satisfy (4)–(6). We may choose Fk’s so that they satisfy (3) and (8). This

completes the proof of the Claim.

Now, we return to the proof of Lemma 4. For t ∈ L, set Uk,νt := Ũνtk,l if

t ∈ Kk
l and uνt := Uk,νt for ν ∈ Fk \Fk+1. Set C :=

⋂
k Ck. Then µG(L \C) < ε by



Locally Compact Group Actions 369

condition (5) of the Claim. Since Uk,νt ’s are continuous on each Kk
l ∩ Ck (= Ckl )

and Ck1 , . . . , C
k
nk

are compact, Uk,νt ’s are continuous on each Ck. Hence they are

continuous on C. Hence by the same argument as in [18, proof of Lemma 3.21],

the map C 3 t 7→ uνt is strongly continuous for each ν ∈ N, and {C 3 t 7→ uνt }ν is

ω-equicontinuous and πω(uνt ) = Ut for all t ∈ C. Now, we have chosen {uνt }ν and

C so that they satisfy conditions (2)–(4) of Lemma 4 and the following one:

(1)′ πω((uνt )ν) = Ut for t ∈ C.

Hence it remains to modify {uνt }ν so that πω((uνt )ν) = Ut for almost all t ∈ L. By

repeating the same process, we can find a sequence {Dn}∞n=0 of compact subsets

of L and a sequence {Dn 3 t 7→ un,νt ∈ U(M)}∞n,ν=0 of strongly continuous maps

which satisfy the following conditions

• µG(L \ (
⋃∞
n=0Dn)) = 0 and Dn’s are mutually disjoint.

• πω((un,νt )ν) = Ut for t ∈ Dn.

• D0 = C and u0,νt = uνt |C for all ν ∈ N.

Set uνt := un,νt for t ∈ Dn. This {uνt }ν satisfies all conditions of Lemma 4.

§3.2. The averaging technique

Next, we develop the “averaging technique”. For the R-action case, this means

that it is possible to embed (M ⊗L∞([0, S)), θ⊗ translation) into (Mω
θ , θ) for any

S > 0. This is a key lemma for the classification theorem. For the general case, we

have the following lemma.

Lemma 5. Let G be a locally compact abelian group and θ be an action with the

Rokhlin property of G on a factor M . Let L be a subset of G with the following

properties:

• There exists a compactly generated clopen subgroup H of G, which is isomorphic

to Rn ×K × Zm for some compact group K and non-negative integers n, m.

• The set L is a subset of H. When we identify H with Rn × K × Zm, L is of

the form [0, S1)× · · · × [0, Sn)×K × [0, N1)× · · · × [0, N2). Note that L can be

thought of as a quotient group of H.

Then there exist a unitary representation {uk}k∈L̂ of L̂ on Mω,θ and an injective
∗-homomorphism Θ : M ⊗ L∞(L)→Mω

θ with the following properties:

• θt ◦Θ = Θ ◦ (θt ⊗ γt), where γ : H y L∞(L) denotes the translation.

• Θ(a⊗ 〈·, k〉) = auk for a ∈M , k ∈ L̂.
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• τω ◦Θ = idM ⊗µL, where µL denotes the normalized Haar measure on L, which

is the normalization of the restriction of a Haar measure on G, and τω is the

normal faithful conditional expectation as in Section 2.

In order to show this, by the same argument as in [18, Lemma 5.2] (in this

part, we use the fact that M is a factor), it is enough to show the following:

Proposition 6. Let θ : G y M be an action with the Rokhlin property of a

locally compact abelian group G on a factor M , and L ⊂ H be subsets of G as in

the above lemma. Then there exists a family of unitaries {uk}k∈L̂ ⊂ U(Mω,θ) with

the following properties:

• θt(uk) = 〈t, k〉uk for t ∈ H.

• The map k 7→ uk is an injective group homomorphism.

To show the above proposition, we need to prepare some lemmas. In the rest

of this subsection, θ, G, H and L are as in Proposition 6.

Lemma 7. Let C be a subgroup of L̂ isomorphic to Z/lZ. Then there exists a

family of unitaries {uk}k∈C ⊂Mω,θ with the following properties:

(1) θt(uk) = 〈t, k〉uk for t ∈ H.

(2) The map C 3 k 7→ uk is an injective group homomorphism.

Proof. Let p be a generator of C. Since θ has the Rokhlin property, there exists

a unitary w of Mω,θ satisfying θt(w) = 〈t, p〉w for t ∈ H. Since wl ∈ Mθ
ω,θ, there

exists a unitary v of Mθ
ω,θ ∩ {w}′ such that v−l = wl. Set u := vw and uk := uk.

Then the family {uk}k∈Z/lZ does the job.

By the same argument as in [18, proof of Lemma 3.16], we have the following

lemma. See also Ocneanu [22, Lemma 5.3].

Lemma 8 (Fast reindexation trick). Let θ be an action of G on a von Neumann

algebra M and let F ⊂Mω and N ⊂Mω
θ be separable von Neumann subalgebras.

Suppose that the subalgebra N is globally invariant by θ. Then there exists a faithful

normal ∗-homomorphism Φ : N →Mω
θ with the following properties:

Φ = id on F ∩M ,

Φ(N ∩Mω,θ) ⊂ F ′ ∩Mω,θ,

τω(Φ(a)x) = τω(a)τω(x) for all a ∈ N , x ∈ F ,

θt ◦ Φ = Φ ◦ θt on N for all t ∈ L.
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Lemma 9. Let C be a subgroup of L̂ of the form Zn×F , where F :=
⊕m

k=1 Z/(lkZ)

is a finite abelian group. Then there exists a family of unitaries {uk}k∈C ⊂ Mω,θ

which satisfies the following conditions:

(1) θt(uk) = 〈t, k〉uk for t ∈ H.

(2) The map k 7→ uk is an injective group homomorphism.

Proof. Let {p1, . . . , pn, q1, . . . , qm} be a base of Ĉ. Then there exist unitaries

{ui}ni=1 and {vj}mj=1 with θt(ui) = 〈t, pi〉ui, θt(vj) = 〈t, qj〉vj for t ∈ H. By

Lemma 7, we may assume that v
lj
j = 1. By using the fast reindexation trick, one

can choose {ui}ni=1 and {vj}mj=1 so that they pairwise commute.

Proof of Proposition 6. Let ψ ∈M∗ be a normal faithful state and let Φ = {φm} be

a countable dense subset of the unit ball of M∗. There exists an increasing sequence

{Cν} of finitely generated subgroups of L̂ satisfying L̂ =
⋃∞
ν=1 Cν . Then by the

structure theorem for finitely generated abelian groups and the above lemma,

for each ν, there exists a family of unitaries {uνk}k∈Cν ⊂ U(Mω,θ) with Cν 3
k 7→ uνk satisfying conditions (1) and (2) of Lemma 9. For each k ∈ L̂, define a

sequence {kν} in L̂ by

kν =

{
k if k ∈ Cν ,
0 if k 6∈ Cν .

For each ν ∈ N and k ∈ Cν , take a representing sequence {uν,nk } of uνk. Choose

a sequence {Eν} of finite subsets of L̂ satisfying
⋃
Eν = L̂ and Eν ⊂ Cν for all

ν ∈ N. By Lemma 3.3 of [18], the convergence

lim
n→ω
‖θt(uν,nk )− 〈t, k〉uν,nk ‖

]
ψ = 0

is uniform for t ∈ L. Hence it is possible to choose Fν ∈ ω (ν = 1, 2, . . . ) so that

Fν ( Fν−1 ⊂ [ν − 1,∞), ν = 2, 3, . . . ,(3.1)

‖uν,nk uν,nl − uν,nk+l‖
]
ψ < 1/ν, k, l ∈ Eν , n ∈ Fν ,(3.2)

‖[φm, uν,nk ]‖ < 1/ν, k ∈ Eν , m ≤ ν, n ∈ Fν ,(3.3)

‖θt(uν,nk )− 〈t, k〉uν,nk ‖
]
ψ < 1/ν, k ∈ Eν , t ∈ L, n ∈ Fν .(3.4)

Set (uk)n := uν,nkν for n ∈ Fν \Fν+1. We will show that uk := {(uk)n} is the desired

family of unitaries.

To show uk ∈Mω, fix µ ∈ N and k ∈ L̂. Then there exists ν ≥ µ with k ∈ Eν ,

and for n ∈ Fν , there exists a unique λ ≥ ν satisfying n ∈ Fλ\Fλ+1. Thus by (3.3),

‖[φm, (uk)n]‖ = ‖[φm, (uλ,nkλ )]‖ < 1/λ ≤ 1/µ

for m ≤ µ. Thus uk ∈Mω.
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In a similar way, we obtain θt(uk) = 〈t, k〉uk, using (3.4). One can also show

that the map L̂ 3 k 7→ uk is a unitary representation by using (3.2).

§3.3. Cohomology vanishing

By using Lemma 5, we show the following two propositions. See also Theorems

5.5 and 5.11 of [18], respectively.

Proposition 10 (2-cohomology vanishing). Let (θ, c) be a Borel cocycle action

of a locally compact abelian group G on a factor M . Suppose that (θ, c) has the

Rokhlin property. Then the 2-cocycle c is a coboundary, that is, there exists a Borel

unitary map v : G→ U(M) such that

vtθt(vs)c(t, s)v
∗
t+s = 1 for almost every (t, s) ∈ G2.

Furthermore, if ‖c(t, s) − 1‖]φ and ‖[c(t, s), φ]‖ (φ ∈ M∗) are small, then one

can choose vt so that ‖vt − 1‖]φ and ‖[vt, φ]‖ are small. We will explain this later.

Proposition 11 (Approximate 1-cohomology vanishing). Let θ be an action with

the Rokhlin property of a locally compact abelian group G on a factor M . Let ε, δ

be positive numbers and Φ be a compact subset of the unit ball of M∗. Let H be a

compactly generated clopen subgroup of G, which is isomorphic to Rn ×K × Zm

for some compact abelian group K and non-negative integers n, m. Let T , L be

subsets of H which satisfy the following conditions:

• When we identify H with Rn ×K × Zm, L is of the form

[0, S1)× · · · × [0, Sn)×K × [0, N1)× · · · × [0, Nm),

which implies that L is a compact quotient of H.

• We have
µG(

⋂
t∈T (t+ L))

µG(L)
> 1− 4ε2.

Then for any θ-cocycle ut with

1

µG(L)

∫
L

‖[ut, φ]‖ dµG(t) < δ for all φ ∈ Φ,

there exists a unitary w ∈M such that

‖[w, φ]‖ < 3δ for all φ ∈ Φ,

‖φ · (utθt(w)w∗ − 1)‖ < ε,

‖(utθt(w)w∗ − 1) · φ‖ < ε for all t ∈ T, φ ∈ Φ.
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By carefully examining the proofs of [18, Theorems 5.5 and 5.11], we notice

that we need to choose sequences {Ln} and {Tn} of subsets of G with the following

properties:

(1) There exists an increasing sequence {Hk} of compactly generated clopen sub-

groups of G with
⋃
kHk = G and Lk, Tk are subsets of Hk; moreover, Tk’s are

compact. When we identify Hk with Rnk×Kk×Zmk for some compact abelian

group Kk and nonnegative integers nk, mk, the subset Lk is of the form

[0, S1)× · · · × [0, Snk)×Kk × [0, N1)× · · · × [0, Nmk).

(2) The translation Hk y L∞(Lk) is embedded into (θ,Mω,θ) (see Proposition 6).

(3) µG(Lk \
⋂
t∈Tk+Tk(t+ Lk))/µG(Lk) is small.

(4) Lk + Tk ⊂ Tk+1.

(5) Tk ⊂ Tk+1 for all k ∈ N and
⋃∞
k=1 Tk = G.

For the R-action case, Lk = [0, sk) and Tk = [−tk, tk) with tk � sk � tk+1 do the

job. In the following, we explain how to choose Lk’s and Tk’s for the general case.

First, we show that there exists an increasing sequence {Hk} of clopen subgroups

of G with the following properties:

(6) For each k, the subgroup Hk is compactly generated, hence isomorphic to

Rn×Kk×Zmk for some compact abelian group Kk. Note that the multiplicity

n in R of Hk can be chosen to be independent of k by [8, Theorem 9.14].

(7)
⋃
kHk = G.

This increasing sequence is chosen in the following way. There exists an increasing

sequence {Ok} of open subsets of G such that Ok’s are compact, 0 ∈ Ok for all

k ∈ N and
⋃
k Ok = G. For each k ∈ N, let Hk be the subgroup of G generated

by Ok. We show that Hk is clopen. If t ∈ Hk, then t + Ok ⊂ Hk. Hence this is

open. Hence by [8, Theorem 5.5], Hk is closed. By [8, Theorem 9.14], Hk is of the

form Rn ×Kk × Zmk .

Next, take two sequences {Lk} and {Tk} of subsets of G and a decreasing

sequence {εk} ⊂ R>0 with the following properties:

(8) Lk, Tk are subsets of Hk. When we identify Hk with Rn×Kk ×Zmk for some

compact abelian group Kk and a non-negative integer mk, the subset Lk is of

the form

[0, S1)× · · · × [0, Sn)×Kk × [0, N1)× · · · × [0, Nmk).

Note that how we identify Hk with Rn×Kk ×Zmk is not important. What is

important is that Lk is a quotient of a clopen subgroup of G.
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(9) We have
µG
(
Lk \

⋂
t∈Tk+Tk(t+ Lk)

)
µG(Lk)

> 1−
(

εk
6µG(Tk)2

)2

.

(10) Tk + Lk ⊂ Tk+1,
⋃
k Tk = G and Tk’s are compact.

(11) 0 < εk < 1/k and
∞∑

k=n+1

√
13µG(Tk)εk < εn.

From now on, we explain how to choose {Lk} and {Tk}. For each k ∈ N, set

Ak := Ok, where Ok is as in (7).

Assume that (Tl, Ll, εl), l ≤ k, are chosen. Then since Ak+1 + Tk + Lk is

compact, we can choose Tk+1 ⊂ Hk+1 so that when we identify Hk+1 with Rn ×
Kk+1 × Zmk+1 , Tk+1 is of the form

[−t1, t1]× · · · × [−tn, tn]×Kk+1 × [−M1,M1]× · · · × [−Mmk+1
,Mmk+1

]

and Ak+1 + Tk + Lk ⊂ Tk+1. Since
⋃
k Ak = G, we also have

⋃
k Tk = G. Choose

εk+1 > 0 so that

εk+1 < εk,
√

13µG(Tk+1)εk+1 < εk/2
k.

Choose Lk+1 ⊂ Hk+1 so large that Lk+1 satisfies (8) and (9). Thus we are done.

By using the above sequences {Lk}, {Tk} instead of {Sk} and {Tk} of [18,

(5.14)], Propositions 10 and 11 are shown by similar arguments to those of [18,

proofs of Theorems 5.5 and 5.11]. Furthermore, one can choose vt in Proposition 10

so that vt satisfies the following conditions:

• If for some n ≥ 2 and a finite subset Φ ⊂ (M∗)+,∫
Tn+1

dµG(t)

∫
Tn+1

dµG(s) ‖c(t, s)− 1‖]φ ≤ εn+1 for all φ ∈ Φ,

then one can choose vt so that∫
Tn

‖vt − 1‖]φ dµG(t) < εn−1d(Φ)1/2 for all φ ∈ Φ.

Here, d(Φ) := max({1} ∪ {‖φ‖ | φ ∈ Φ}).
• If for some n ≥ 2 and a finite subset Φ ⊂M∗,∫

Tn+1

dµG(t)

∫
Ln+1

dµG(s) ‖[c(t, s), φ]‖ < ε for all φ ∈ Φ,

then one can choose vt satisfying∫
Tn

‖[vt, φ]‖ dµG(t) ≤ (3εn−1 + 3ε)d(Φ) for all φ ∈ Φ.
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In the proof, the following points are slightly different.

(1) The inequality corresponding to [18, (5.12)] is

2µG(L \ (
⋂
t∈T+T t+ L))1/2

µG(L)1/2
<

δ

6µG(T )2
.

(2) We need to show a lemma which corresponds to [18, Lemma 5.4]. In the proof,

the inequality corresponding to [18, (5.13)] is

‖Utαt(Us)c(t, s)U∗s+t − 1‖]φ ≤ ‖χ⋂
t∈T+T t+L

− 1‖]φ⊗µL
+ ‖χL\(⋂t∈T+T t+L)

((a unitary valued function)− 1)‖]φ⊗µL
≤ 0 + 2‖χL\(⋂t∈T+T t+L)

‖]φ⊗µL

≤ 2‖φ‖1/2
µG(L \ (

⋂
t∈T+T t+ L))1/2

µG(L)1/2
<

δ

6µG(T )2

for all t, s ∈ T , φ ∈ Φ. The other parts of the proof are completely the same.

(3) In [18, proof of Theorem 5.5], the inequality∫ Tn

Tn

‖W ∗utαnt (W )− 1‖22 dt < 18εn

is shown. Instead, in the proof of Proposition 10, we show∫
Tn

‖W ∗utαnt (W )− 1‖22 dµG(t)

≤ 2

µG(Ln)

∫
Tn

dµG(t)

(∫
⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖22

+

∫
Ln\

⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖22
)

≤ 2

µG(Ln)

∫
Tn

dµG(t)

∫
⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖22

+
8

µG(Ln)
µG(Tn)µG

(
Ln \

⋂
t∈Tn

t+ Ln

)
<

2

µG(Ln)

∫
Tn+1×Tn+1

dµG(t) dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖22

+ µG(Tn)
εn

2

18µG(Tn)4

< 9εn.



376 K. Shimada

The other parts of the proof of Proposition 10 are the same as the correspond-

ing parts of the proof of [18, Theorem 5.5].

(4) In the proof of Proposition 11, we need to show that

‖utαt(W )W ∗ − 1‖]|φ|ω ≤ 2‖χL\(⋂t∈T t+L)‖]|φ|⊗µL ,
which corresponds to

‖utαt(W )W ∗ − 1‖]|φ|ω ≤ 2
t1/2‖φ‖1/2

S1/2

in [18, proof of Theorem 5.11]. This is obtained by a similar computation to

(3) above.

By using Proposition 10, one can prove the following lemma, which corre-

sponds to [18, Lemma 5.8].

Lemma 12. Let α, β be actions with the Rokhlin property of a locally compact

abelian group G on a factor M . Suppose that αt ◦ β−t ∈ Int(M) for all t ∈ G. Let

H be a compactly generated clopen subgroup of G and T be a subset of H such

that when we identify H with Rn × K × Zm for some compact abelian group K

and non-negative integers n, m, then T is of the form

[−t1, t1]× · · · × [−tn, tn]×K × [−M1,M1]× · · · × [−Mm,Mm].

Then for any ε > 0 and a finite set Φ ⊂M∗, there exists an α-cocycle u such that∫
T

‖Adut ◦ αt(φ)− βt(φ)‖ dµG(t) < ε for all φ ∈ Φ.

In the proof of this lemma, the set corresponding to [18, (5.18)] is obtained

in the following way. For a small η > 0, take a small r > 0 so that

‖αt(φ)− φ‖ < η, ‖βt(φ)− φ‖ < 2η

µG(T )

for all φ ∈ Φ and t ∈ G with d(t, 0) < r. Choose A(r, T ) := {tj}Nj=1 so that for

any t ∈ T , there exists tj ∈ A(r, T ) with d(t, tj) < r. This is possible because T is

compact.

Now, we return to the proof of Theorem 2. The proof is basically the same as

that of [18, Case 2 of Lemma 5.12]. Here, we only explain the outline. We apply

Proposition 11 and Lemma 12 alternately (the Bratteli–Elliott–Evans–Kishimoto

type argument). However, we need to change the following part. In the proof of

[18, Case 2 of Lemma 5.12], one takes {Mn} ⊂ N and {A(Mn, Tn)}, which appear

in conditions (n.1) and (n.8) there. Instead, in (n.8), take rn ∈ R>0 so that

‖(v̂n(t)− v̂n(s)) · φ‖ < εn, ‖φ · (v̂n(t)− v̂n(s))‖ < εn



Locally Compact Group Actions 377

for t, s ∈ Tn with d(t, s) < rn, and φ ∈ Φ̂n−1. Choose a finite subset A(rk, Tk) of

Tk so that for each t ∈ Tk, there exists t0 ∈ A(rk, Tk) with d(t, t0) < rk. This is

possible because Tk is compact.

§4. Examples

Here, we will give some examples of Rokhlin actions. First, we consider actions

which fix Cartan subalgebras. This type of examples have been classified by Kawa-

higashi [11]. One of the most important examples of actions of this form is an

infinite tensor product action.

Let {pn} be a sequence in the dual group Ĝ of G. Set

M :=

∞⊗
n=1

(M2(C), tr),

We define an action θ of G on M by

θt :=
⊗

Ad

(
1 0

0 〈t, pn〉

)
.

Then θ has the Rokhlin property if and only if the set

A := {p ∈ Ĝ : there exists a subsequence of {pn} which converges to p}

generates a dense subgroup Γ in Ĝ. We prove the “if” part. Here, we show this

implication in the case where for each p ∈ A, a subsequence of {pn} which converges

to p can be chosen to be a constant sequence. This case is needed for the proof of

Example 13. The general case of this implication will follow from Example 13.

Choose p ∈ A. By ignoring other tensor components, we may assume that

pn = p for all n. For each m ∈ N, set

Sm :=
{
σ : {1, . . . , 2m− 1} → {1, 2} | ]σ−1(1) = m− 1, ]σ−1(2) = m

}
.

For σ ∈ Sm, m ∈ N and k ∈ {1, . . . , 2m− 1}, set τ(k) := 3− σ(k) and

vσ := eτ(1)σ(1) ⊗ · · · ⊗ eτ(2m−1)σ(2m−1) ⊗ 1⊗ · · · .

Then we have

eσ := v∗σvσ = eσ(1)σ(1) ⊗ · · · ⊗ eσ(2m−1)σ(2m−1) ⊗ 1⊗ · · · ,
fσ := vσv

∗
σ = eτ(1)τ(1) ⊗ · · · ⊗ eτ(2m−1)τ(2m−1) ⊗ 1⊗ · · · ,

θt(vσ) = 〈t, p〉vσ
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for t ∈ G. Hence if we set

T :=

∞⋃
m=1

{
σ ∈ Sm | ](σ−1(1) ∩ {1, . . . , k}) ≥ ](σ−1(2) ∩ {1, . . . , k})

for k = 1, . . . , 2m− 2
}
,

then {eσ}σ∈T and {fσ}σ∈T are orthogonal families. We will show that
∑
σ∈T eσ

= 1, which implies that
∑
σ∈T vσ is a unitary. Consider the gambler’s ruin problem

when one player has infinite money, the other has no money and they have equal

chances to win. Then ‖
∑
σ∈T eσ‖1 is equal to the probability of the poor’s ruin.

This is 1. Set

un := 1⊗ · · · ⊗ 1⊗
∑
σ∈T

vσ ∈M2(C)⊗n ⊗M.

Then {un} ∈ Mω,θ and θt((un)ω) = 〈t, p〉(un)ω for t ∈ G. By assumption, the set

A generates a dense subgroup of Ĝ. Hence θ has the Rokhlin property.

Conversely, assume that the subgroup Γ is not dense in Ĝ. Then there exists

a non-empty open subset U of Ĝ with U ∩ Γ = ∅. By a similar argument to that

in [11, proof of Proposition 1.2], it is shown that the Connes spectrum of θ and U

do not intersect, which implies that θ does not have the Rokhlin property.

Example 13 (see also Kawahigashi [11, Corollary 1.9]). Let α be an action of a

locally compact abelian group G on an AFD factor R of type II1. Assume that α

fixes a Cartan subalgebra of R. Then α has the Rokhlin property if and only if its

Connes spectrum is Ĝ.

The proof is just a combination of an analogue of [11, Corollary 5.17], which

follows from the above example of an infinite tensor product action and Theorem 2,

and [18, Lemma 6.2]. In the proof, the crucial fact is that invariantly approximate

innerness (see [18, Definition 4.5]) is the dual of the Rokhlin property. This fact is

shown by completely the same argument as in [18, proof of Theorem 4.11].

By this example and the main theorem, all the actions fixing Cartan subalge-

bras with full Connes spectrum are cocycle conjugate to an infinite tensor product

action with full Connes spectrum.

Example 14 (see [18, Theorem 6.12]). Let θ be an almost periodic minimal ac-

tion of a locally compact abelian group G on an AFD factor of type II1. Then θ

has the Rokhlin property.

Proof. An almost periodic action is the restriction of a compact abelian group

action to the dense subgroup (see Thomsen [27, Proposition 7.3]). If θ is minimal,
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then the original compact group action is also minimal, which is unique up to

cocycle conjugacy by Jones–Takesaki [9]. This has the Rokhlin property.

There exist “many” Rokhlin actions on AFD factors of type III0. The following

is a generalization of a part of [24].

Example 15 (see [24, Theorem 5]). Let α be an action of a locally compact

abelian group G on an AFD factor M and (θ, Z) be the flow of weights of M .

Assume that an action {mod(αg) ◦ θt}(g,t)∈G×R of G × R is faithful. Then α has

the Rokhlin property. Here, mod(α) denotes the Connes–Takesaki module of α

(see Connes–Takeskaki [5], Haagerup–Størmer [7]).

Proof. The proof is the same as that of [24, case ker = 0 of Lemma 6]. In the proof

in [24], we use Rokhlin’s lemma for actions of R2. Rokhlin’s lemma for actions of

G × R also holds, which is shown by the same argument as in Lind [16, Lemma]

and [6, Theorem 1].

The classification theorem is also applicable to actions of locally compact

abelian groups on non-McDuff factors.

Example 16. Let (X0, µ0) be a probability measured space and let θ0 : G y
L∞(X0, µ0) be a faithful µ0-preserving action (if G is compactly generated, an

example of such an action can be constructed by taking a direct product of in-

creasing compact quotients). Set D :=
⊗

Z L
∞(X0, µ0). Let α : Z y D be the

Bernoulli shift and let θ : Gy D be the diagonal action of θ0. Then θ canonically

extends to M := D oα∗α F2, which is a non-McDuff factor of type II1 (see, for

example, Ueda [28, Theorem 10]). Then this action has the Rokhlin property.

Proof. The proof is the same as that of [23, Theorem 3.3].

Although there are Rokhlin actions on non-McDuff factors, as mentioned

in [23], the effect of our classification theorem is limited because Int(M) is too

small in many cases.
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