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A Mixed Problem for Hyperbolic Equations
of Second Order with a First Order

Derivative Boundary Condition

By

Mitsuru IKAWA*

§ 1. Introduction

On the mixed problems for hyperbolic equations of second order,
only the problems with the Dirichlet condition and with the Neumann
condition are studied satisfactorily. Concerning the problems with
the other boundary conditions Agmon [1] contains the results on
more general boundary conditions in the case when the domain is
a half space and the coefficients are constant. And the author showed
the not well-posedness in L2-sense of the problem for the wave
equation with an oblique derivative boundary condition [7].

In this paper we extend the results for second order equations
of Agmon's paper to the case of variable coefficients and a general
domain.

Let S be a sufficiently smooth compact hypersurface in Rn and
let £1 be the interior or exterior domain of S. Consider a hyperbolic
equation of second order

(1.1) L = t + a1(x,t:D)

a, (x, t: D) = 2 2hi(x, t) — +*(*, /)
J-1 OX]

+ first order
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where all the coefficients are in -S(nx(0, T))15 and hj(x,f)
(j = l, 2, • • • , n) are real-valued and a2(x, t: D) is an elliptic operator
satisfying

(1- 2)

for all (#, f, f)eflx[0, T]XJ??W, and consider a boundary operator

(1.3) *=^-o-i(M)^- + *,(*,*)

o

where — is defined by
dvt

(1.4) *L = ±Vi(s9f)*9
dvt i--i 9*,-

0(s, f) = (0i(5> 0> •"> ̂ «(5> 0) is a smooth vector defined on Sx[0, T],
and <7i(s9 t) (2==1,2) is a sufficiently smooth function defined on
S x [0, T] and o-^s, t) is real-valued.

Our problem is to obtain a function u(x, t}^£](H
satisfying

L[u(x, t ) ~ ] = f ( x , t ) in Ox(0, T)
B[u(x, t)l = g(s, t) in Sx[0, T]

(1.5) u(x, 0) - u*(x)
d(x, 0) = Ul(

for given inital data {»„(*), «i(^r)}, second member /(jc, 0 and boundary
data g(s, t). We denote this problem by P(L, 5). When we want
to treat this problem in L2-sense it is necessary to pose some condi-
tions on v(s9 f) and cr^s, t) that

(1.6) * j~i

and v(s, t) is not so far away from the conormal vector n(s, t)

-i — >S«»yz/y) of a2(x, t: D) where v(s) = (v1(s), — , ^(5)) is

1) .®(<a), a; being an open set, is the set of all C^-functions defined in co such that
their all partial derivatives of any order are bounded.

2) u(x, /)e£T(E) means that u(x, /) is m-times continuously differentiate in f as
£"-valued function.
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the unit outer normal of S at s.:i) This condition will be prescribed
precisely in § 3.

In section 2 the energy inequality for P(L, B) is derived and
in section 3 we prove the existence of the solution by using the
energy inequality and the existence theorem for the case v(s, f) = n(s, f)
proved in [8].

In our treatment the essential point is to derive the energy
inequality for F(L, B}. To prove this a certain estimate of the trace
of the solution plays an important role, which follows from only
Lu=f.

The author wishes to express his sincere gratitude to Professor
S. Mizohata and Professor H. Tanabe for their invaluable suggestions
and continuous encouragement.

§ 2. Energy Inequality

We note some notations which will be used. Let H be j?+ or
a domain with a sufficiently smooth compact boundary. <-\8u
denotes the norm of the space H^dti). For u(x)&H2)^l(£i) (p>0),
<«(#)>Pi8Q means the p-th norm of the trace of u(x) to the boundary
90. For u(x, t) e= e°f(H'(tl)) n S}(H»-l(fl)) fl - n fi?(L2(fl)) we define
I l l - I l k a by

(2.1) !!!«(*, Olli;.o = 2
•.•=0

and for g(s, t)^e0
t(H>>(Qn))n81(H»-1(QrL»n---r)£>;(L\dn)') <• >P,8Q by

(2. 2) <g(S, o>;.,0 = ± <(!-)
i=0 X\

It is obvious that

gives an equivalent norm in H1^) from the condition (1.2). Then
if we put

3) See Theorem 1 of [9].
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(2. 3, ,,<

for u(x, t}^e*(H\ty)(\e}(L\£l}}y there exists a constant M such that

Concerning the vector v(s, f) which is not tangential to S we can
assume without loss of generality that

(2. 4) 2 *,/*, t)v,(s)vj(s) = 2 vf(s,
i,y=i i=i

holds on S x [0, T]. Let us set

(2. 5) 6(5, /)• = g | g ,̂,(5, *)*/*) -f>,(*,

and

(2. 6) ft0 - sup b(s, f) .
sx[o,r]

Since B satisfies the condition (1. 5)

(2. 7) a(s, /) = 2 k(s, t)v ,(*)-*&, t)1=1

is a positive smooth function, and set

(2. 8) a0 = inf a(s, 0 -
SxLO.r]

We state a simple lemma without proof.

Lemma 2. 1. Let 7(0 <zwrf p(0 ^ positive, and defined on (0, a)
(a>G). If 7(0 *"s summable on (0, «) «^rf p(0 is increasing and

holds, then we have

Energy inequality in the case fl=JR+. We should like to consider
at first the case when the domain is a half space R + = {(x', xn) ;

. In this paragraph we omit for the simplicity the
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notation n in (2. 1) and 8H in (2. 2). Let N be the first order
differential operator defined by

(2. 9) N = - ± anj(x, t}^- +hn(x, 0 A -

Lemma 2. 2. There exists constants Cly C2, C3 determined by L

such that for any function u(x,
the following estimate holds :

Proof. We get by integration by parts for some constant C'3

(Lu~Nu+NuLu)(x',xn,t)dx'dxn
r

A ^ ^ du , du

-2Re~' 8M 8M du
dt

-=i dudu_
,£i ""a"dxtdxj * S'

du

^ .

du_
dxn

*"nn

Qu n-1

-2 Re 2
du du

-_,2 Re

9*.
a^ , , ..]'

^, *., OJo

= /+//+///.
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The integrand of / equals

"z,1 du du "-1 du -\Nu\

1 _ _, "-1 8« , 9«+2Re a ^ h »

since it follows from (1.2) that

n-l «-l «-l
n V* /7 £ £ "Sn/7 £ I 2 "> //2 V*ann 2^ aij$£j~~ 2Lj0ny£/l ^a 2-1'

ra—1 Q^ 2 g^
"^> // >^ /V/7y 1/7 I n\5^ i/fr / ) j JL Y M< i \™nn ' ™w/

J-l 9jCy 9^

-if
We have by taking # =

S
* w—3_^

o J=i

Put

(2.11) Q = sup (aww+A5+2(A^ + «L) ̂ ^—^ ) (%', 0, f)

and it follows

The absolute value of the integrand of // is majorated by

2
w-l

+2

+2 \hn
du
dt

du

w n
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Put

(2. 12) C2 = sup (2( ±<£,+ ± AJ)/rf + | hn | +2)
JR^xEO, T] ''J=1 '-1

and we have

Then

Since N is a first order operator it holds

thus we get (2. 10). Q.E.D.

Lemma 2. 3. There exists a constant C3 determined by L such
that for any solution u(x,t}^e°i(H\RlJ)^e}(Hl(Rl})^e2

c(L\Rl'}') of
P(L, B), if

(2.13) 60<-|-,

the estimate

(2. 14) - - W . t)y\dt<C2(\\u(x, tW<n(t}+\\u(x, 0

, t}\\2dt

/or all f e[0, T],

/3 = sup

Proof. From the boundary condition Bu(x', 0, t) = g(x/
9 t) it

follows
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(2.15) (Nu)(*, 0, 0 = £(*', t}- g(tf.-^)|^(*', 0, 0

-<r2(*', *X*',0, 0,

therefore

+ sup I c
Sx[0, T]

By inserting this estimate into (2.10)

sup

from which (2. 14) follows immediately by taking account of the
condition (2. 13). Q.E.D.

Proposition 2. 1. Suppose that the boundary operator B satisfies
(1. 6) and

(2.16)

Then for any solution u(x, t}^eQ
t(H\Rl}}^G}(H\Rl}}^e](L\Rl}} of

P(L, B) the following energy inequality

(2. 17) \\u(x,

/or «:// /e[0, T], wfere C w « constant determined by L,
and T.

Proof. The differential inequality
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\\»(x, tWM(t}<c\\u(x,

+ 2 Re ^CAfcX*', 0, ( ( * , 0, t)dx'

follows from Lu=f.^ The integration of this inequality from 0 to
t gives

(2. 18) H«(*,

It is essential to estimate the last term. If we use oncemore the
relation (2. 15)

(2.19)

du

by using ~ <&.<«>, and (2.7) (2.8)
^dv, Qn/

Then it follows from (2. 18)

\\u(x, f ) \ \ z
M t + e < u ( x , 0>\dt

<\\«(x, 0

4) See, for example, the proof of Lemma 2. 2 of [8].
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Ar<£>^ + const.
o

C f 0 / o

inserting the estimate (2. 14)

When the inequalities

±l^+!;d2\a0

^2(^+edz\a0

hold for some £0>0, namely

(2.20) S '<fmi

by choosing a suitable constant C' we get

from which (2. 17) follows by applying Lemma 2. 1 by taking as

P(t) = C'\\\u(x, 0)||^(0)+r(||/||2 + <^>2)
v ' Jo

(x, t)>ldt.

It is necessary to hold (2. 14) and (2. 20) simultaneously and (2. 16)
satisfies the both conditions. Q.E.D.
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Proposition 2.2. Suppose that (2.16) holds. For any solution
t)^G°s(H2{R*+)) fl Gt(H (J?+)) fl Gs\L (.R+)) of P(L, B), if

L[u(x, ty] =f(x, t}<=Hl(Rlx(Q, T))
B[u(x, ty] = g(s, t)^Hl(Rn~lx(Q, T)),

the trace of u(x, t} to Rn~l x (0, T) is in H\Rn~l x (0, T))
the following energy inequality holds

(2.21) \\\u(x,

2(*, t)

Proof. At first let us assume that not only u(x9 t) but also

^(x9t) and |^(^,0 (; = l , 2 f - -,«-!) belong to Sl(H\Rl)}
at o Xj
ne}(H\Rl}}nei(L\Rl}\ The differentiation of (1.5) with respect
to t gives

*',0>

from the additional assumption Proposition 2.1 can be applied to

— (x9 t\ then we have

(2. 22)

By the same manner we get

(2.23) du

a*/ '
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for j = l, 2, .»,»-l. Remark that \\L't[u(x, 0]ll2, 11̂ , [«(*,
<££[»(*, Jf)]>2 and <JS^[w(^, *)]>2 are estimated by const. \\[u(x, t}\\\
and that from Lu=f we have

(2.24) — - (x , f) < const ( X
Qxi. \ .-+>=t

-(x,

+ !!/(*, Oil')-^(xdt(x>

On the other hand these inequalities are evident:

(2, 25^ i l l - . / — 4\\\\z ^ ~ *.(\\OM/~ ^\ i v~i OU5

<u(x, t)>K const(&(x, t)*)?-

Therefore by substituting into (2.19) the estimates (2.22) (2.23)
(2.24) and using the above remark we get for some constant C'

\ <u(x, t)>ldt
Jo

•'(x, tW
Jo

(*,t)

It is evident that

^ const ( \ \ u ( x , 0)||22 +
dt

Then it follows that for some constant C">0



Mixed Problem for Hyperbolic Equations 131

«(*,OIII1+('<«(*, 0>#f
Jo

I 9 / i
2 n— 1 0../T 2

f- <£(*',

from this (2.21) is derived only by the application of Lemma 2.1
by taking

= C" ||«(«, 0)||i +

-('(1^,0 '+"2
Jo\l9f /=!

+ !!/(*, o)||«

, o

To complete the proof it is necessary to remove the additional
assumption on the regularity of u(x, f). For this purpose let us use
the following mollifier with respect to (#', f) :

Let <p(l) be a positive C°°-function with a support contained in
[-2, -1] such that

P <p(l}dl = 1 .
J —00

Define a mollifier 9^*, ^ for t;(jrr, t^^S^H^Rl)} by

where ^8(/)= — 9>( — )• Then for any non-negative multi-index
o \ o /

«' = («!, • • • , aw_i) and non-negative integer j

For w;^, t)^S°t(L
2(Rn'1)) we define 9>8* / / D by the same manner, and

we have for any j and ax
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Applying Vig,^ to (1.5) we get

L[US(X, 0] = /»(*, t)-(C,u)(x, t)

where

fx^ A _ r~ # ^ ̂ Y^ ^

for /e[0, T-2S0]. Since ~s-(x,t) (j = 1,2,- , »-l) and d—s(x,t)
QX; 3t

are in 5?(^2(JR:))n(?K^'1(^™))n^(^2(^1)). the result obtained under
the additional condition is applicable, then

(2.26) |||«8(^
Jo

))lll+ f/(^.0) :+2||/,(*,0)||:

^ , \ > / _fc j (I /> \ > /

9*
n-1 |

f=i\ QXj
 (X>

Evidently it holds that for ^e[0, T-50] (S0>0)

I (£-)'*,(*. o -^ (£)'*(*.
I \0#/ 2-> \9r /

3 V Y 9 \- ' / 9 V 7 d\"f(r( — I ( - ) f(Xj
\dt/ W/

when § tends to zero. Moreover we have

(2.27)
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(2. 28) 2

when 8 tends to 0. These proofs are essentially same as the
estimates of commutators in the proof of Proposition 2. 6 of [&].
With the aid of (2.27) (2.28) the passage to the limit of (2.26)
when S->0 gives the required inequality for u(x, f). Thus the proof
is completed. Q.E.D.

Energy inequality in the case when 9H = S is compact. Let us

define the functions Cj(s, /) C/ = l,2) on Sx[0, T] by

(2. 29) Cl(s, 0 - J^ «,-/*,

+ {( 2
i ,y=i

x ii (A,
j=i

(2. 30) ct(s, 0 = 2{( fj «,,& 02+ 13 *((*,
ip j= l z==l

+ | 2 A,(J, />,-(*) 1+1}
i=l

(2. 31) a(j, /) = 2 hj(s, f)Vi(s)-<r,(s, /) .
j=l

n n n

Remark that ^\^aijv- — vi
 2, ^hfVf and these functions are

f-=l y=i y ,=1

invariant under any orthogonal transformation of variables, and the
condition (2. 3) is conserved under any transformation of variables.

Theorem 1. Suppose that

(2.32) K
Sx[0, T]. For any solution u(x,

of P(L,B\ if
L[u(x, 0] =/(*,
fl[«(j?, 0] = 5(5, Oe^XSxCO T)) ,

/fe /race o/ «(jc, if) to S x (0, T) is in H\S x (0, T)) and the energy
inequality



134 Mitsuru Ikawa

(2.33) \\\u(x, OIIIJ.Q+('<«(*, f»l.sdt
Jo

i- f (Ill/to 0111!..
Jo

Proof. For any s0eS there exists a neighborhood £7 of s0 in ./?"
and a smooth function i/r(#) such that

grad i/r(*) | *=So = i/(s0)

and i^(jc) = 0 is an equation of t/flS. From the above remark we
may assume v(s^ = (Q,Q,'~9 —1). Let us define a transformation V
from U onto some domain in Rn by

yt - ^--^- (« = 1,2, — ,w-l) ,

evidently we have

^fe) = o .
When a solution w(ji;, /) of P(L, 5) has its support contained in
(ft n C7) x [0, T], the function u(y9f) defined by u(y,t) =
= u(x, t) satisfies

f

i ^(j', /)] = j-(y, o
where

L-°-+L df +

a - -isQXi dXj Qyl

+ first order
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Since (grad^)(s0) = (0, 0, -, -1) and i/(y, 0) = (0, 0, -, -1), by taking
account of the continuity of grad ty, b(s, f) and a (s, t) we have for
some neighborhood UQ of s0 and T'>0 that

sup J(y, 0
) x [o, y']

where 5(y, /) and cz-(.y> 0 denote the quantities for L and B defined
by (2.5), (2.29) and (2.30). Therefore when only the solutions
with the support contained in ([/onn)x[0, T'] are considered, we
can say that L and B satisfy the condition (2.16) and Proposition
2.2 can be applied for (2.24), then the energy inequality (2.21)
holds for u(y, f), therefore (2. 33) also holds for u(x, t).

Let {<3>y}y=i be a partition of unity of a neighborhood of S such

that S^j^l in a neighborhood of S and the support of <!>•(#) isj-i
contained in a neighborhood of a point sy^S with the above
properties.

Put u;(x, t) = ®j.(x)u(x, t), then

L{UJ(X, t)-] = ®j(x)f(x, f)-[L, *y>(jc, 0

and we get for £e[0, TJ]

(2. 35)

<cy{iiuy(*,o)ii

here Cy is determined by L, B and <3>y. And for (1—2 ̂ >2)1/2^(jr, /)

(2. 33) holds since its support does not joint with S. By summing
up (2. 35) and using

IIICL^MU const H l f t l H ,
^ const | | |M||L,
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we have

<c \\\u(x, , 0)115*0,

(Ill/Ill!

and by applying Lemma 2.1 we get (2.33) for £e[0, TQ where
To= min Tj. From the uniform continuity of the functions which

j
determin To, there is no difficulty to show that (2. 33) holds for all
*e[0, T].

§3. Existence of the Solution

Hereafter assume that £1 is a domain with a compact boundary.
We state the theorem of existence of the solution.

Theorem 2. Suppose that the condition (2.32) holds. For any
initial data {uQ(x)> u^(x)} eH2(n)x£P(n), second member f(xyt)^
Hl(£l(Q,T)) and boundary data g(s, t)^Hl(Sx (0, T)), if the com-
patibility condition at t = 0 of order 0

(3.1) 1- Uo(x) -*&, OX(*) + o-2(s, Q)u.(x) = g(s, 0)dvQ

is satisfied, then there exists a solution u(x, f) of F(L, B) uniquely
in S«(Hz(£l}) n S}(Hl(fl)) n ff?(L2(n)).

At first let us prove
Lemma 3.1. Let

W7 9 8 _L_[T = — or,— +CT2
Qwt dt

7 8 8 .Z = ~ cr, — + <T2
8^, dt

be two boundary operators which satisfy (2.3). Assume that for
P(L, W) the energy inequality (2. 33) holds with a constant C and that
the existence of the solution is already known. If

(3.2) sup (£ \vt(s, f)-w<(s, t)\2}<



Mixed Problem for Hyperbolic Equations 137

holds for £0>0, then the existence of solution of P(L, Z) follows.

Proof. Assume that {u0(x)9 u^x)} ^H*(£l)xH*(£i) and the given
data satisfy the compatibility condition for Z, namely

(3. 3) -UQ(X) -*&, OX(*) + cr2(s, OXW = g(s, 0) .

Let us construct u&(x, f)e=£°(#8(«)) fl SKH^fl)) fl fi?(L2(n)) (/ = !, 2, •••)
successively by the following way : u^(xy t) be the solution

x, 0] = «rfe
x, 0) = «0(jc)

its existence is assured by the assumption that the existence of the
solution of P(L, W) because the compatibility condition for W is

satisfied from (3. 3), and g(s, f)-(—- -—} u0(x)^H\S x (0, T)).
\dzt dwt/

We can define u^\x, t) for j^2 succesively by the formula

)-] = g(s, t)- - --««-"(*, 0

x, 0) = u.(x)

since from u^~l\x, t)\Sxu,Tj<=H\Sx(Q, T)) and the compatibility
condition for W is satisfied.

The sequence u^\x,f) (j = l,2, • • • ) converges in £2(
)) indeed

= 0

(*>™-uW)(x, 0) = 0
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for y>2 and the application of the energy inequality gives

l,sdt

\,s

from (3.2)

Thus we get for all j

|||«^+15(^ 0-«^(^ O I I I I Q+

<const(l-£0X,

which assures the convergence of u^(x9t) in 5J(fT2(fl)) n ^(^(
nc?f(L2(n)). Denote its limit by «(#, ^) then we see from the passage
to the limit of (3. 4) that u(x, t) satisfies

u(x, 0] ^ g(s, 0-—

u(x, 0) = u0(x)

This shows that u(x, t) is the required solution.
For {u0(x)9 «1(jf)}efl'2(n)xfl'1(n) if we get sequences {MO*(#),

^(jc^eff'Cnjx^n) and ^(5, t)<^H2(Sx(Q, T)) (*=1,2, -) such
that

and
in

ft - >^r in /r(Sx(0, T))

when ^ increases infinitely, there exists the solution u^(x, t) of
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£[«*(*, 0] = /(*, 0
Z[u<»(x, 0] = £*(*, 0

7YcAYr fft — z/ Jr^tv V^ y '-'/ **'0^fe\ /

(*, 0) = Mlfe(^)

from the just obtained result. And by applying the energy inequality
for u^ — wcw), we have for any k, m

\\\u<*>(x, f)-ifm\x, t)\\\\*+^<**(x, t)-u™(x, t)>2
2Sdt

Jo

We see the convergence of «<*>(*,*) in £° (/f2 (H)) n G } (Hl (a))
n£??(L2(n)) and the passage to the limit of (3.5) when &->oo proves
that the limit of u^(x, f) is the required solution for {u0, u^ and g.

Now let us see the existence of sequences with the above pro-
perties. It is evident that there exists sequences {pok, plk} <

) and gk(s, t)*=H*(Sx(Q, T)) such that

-ulx n "

&(5,0->^,0 in Hl(Sx(Q, T)).
Then

5, 0)
^o

is in Hl+l/2(S) and <^fe(5)>1/2 tends to zero when & increases infinitely
since {w0, «J and g satisfies the compatibility condition (3.3). Let
H be the interior domain and rk(x) be a solution of a boundary
value problem

f (-A + \0)rA(*) = 0 in n

> 6) on S .

When X0 is sufficiently large (3. 6) has a unique solution in H 3

and the following estimate holds
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Then if we define {uok, ulk} by

Uik = A*

{uQk,ulk} and gfc are the required ones. When O is an exterior
domain, take a sphere S1 containing S in its interior and denote by
H! the domain surrounded by S and Sle We define rk(x) as the
solution of

0 in flj

ft(5) on S

0 on S,.

Since f^ is compact, we have a unique solution rk(x)^H*(£l} and the
estimate

Let /^(jc) be a C°°-f unction such that supp (^(#))c interior of Sx and
/.6(^r) equals 1 in a neighborhood of S, Then jju(x)rk(x) is in H\£l]
and ||/z(^)rfe(^)||2 tends to zero when k increases infinitely. There-
fore if we take uok, ulk as

these are the required ones. Thus the proof of lemma is completed.
Now we prove Theorem. At first remark that when v(s, f)

= n(sy f) the existence of the solution is already proved (Theorem 1
of [8]). Let B^-n e[0, 1]) be the boundary operator defined by

Since for any ^?e[0, 1] P(L, B,) satisfies the condition (2.32), then
the energy inequality (2.33) for P(L, Bv) holds for any ^e[0, 1],
moreover the constant C can be taken independently of 77. Since
the existence of the solution for P(Ly B0) is assured, by applying
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Lemma 3.1 by taking W=B0 and Z=B7} for ^e[0, £0]

we see the existence of the solution for P(L, fi,) for ^e[0, £0].
Now apply Lemma 3.1 once more by taking W=B^ and Z=B^ for
??e[£0, 2£0], the existence of the solution for P(L, /?„) for ??e[£0, 2£0]
is proved. Step by step for any ^e|[0, 1] the existence of the
solution for F(L, /?,) is assured. Thus we get the existence of the
solution of P(L, 5).

§ 4. Regularity of the Solution

The solution of P(L, B} becomes regular according to the
regularities of the initial data, second member and the boundary
data. Since this equation is hyperbolic the given data must satisfy
the compatibility condition of higher order. Suppose u(x, f)

n e}(H\£i)} n £?(# *(«)) n S](L2(£l))9 then

f (*, 0) = -a^x, 0: D)(x, Q)-a,(x, 0: D)u(x, Q)+f(x, 0)
at at

= -a,(x, 0: D}ul(x)-a2(xy 0: D)uQ(x)+f(x, 0) .

On the other hand the differentiation of Bu = g with respect to t gives

and if we put ^=0 and substitute the above relation uotuly g and

/ should satisfy

(4. 1) --UiW-a-^s, <3)(-a^-a2u^f(x, 0))
Qv0

- -

We say that u0 , wx , /, g satisfy the compatibility condition of order
1 if (3. 1) and (4. 1) hold. The compatibility condition of higher
order can be defined by the same manner :

Definition 4.1. The data K, u,} e//m42(n)x#m+'(^)> g(s, t)
^Hm+1(S X (0, T)) andf(x, t)<=Hm^(£lx(Q, T)) are said to satisfy the
compatibility condition of order m when
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= £*(*, 0)
o

for p = Q, 1, 2, • • - , m wferg ^(#) (p>2) 15 defined successively by
the formula

(4. 3) «,(*) = - r, 0 = £)«,-,-, + «(*, 0 :
" fe=o \ K /

Cp-8)(*> 0) .

Theorem 3. When the given data satisfy the compatibility
condition of order m the solution u(x, f) of P(L, B) belongs to

If we use the following lemma, the proof is completely same as
that of Theorem 2 of the previous paper [8].

Lemma 4.1. Suppose that u(x, f)^Sk
t(H

z(fiy) satisfies

a2(x, t: D)u(x, f)e=ek
t(H»(n))

(-J- -<r,(s, fj)u(x, t}^Gt(H*^\S}

where p and k are non-negative integers, then

One can also prove this lemma by the same way as that of
Lemma 3. 5 of [6] (page 604). The difference is only that the
boundary operator of the previous paper is d/dnt + a-2 and that of
this case is Q/dvt + a-2. But since the a priori estimate of an elliptic
operator

holds, we get Lemma 4. 1 by the same proof.

§5. Dependence Domain

One of the important properties of Cauchy problem for
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hyperbolic equations is the existence of a dependence domain. This
means that a hyperbolic equation is an equation of propagation
phenomenon with a finite velocity. Concerning the mixed problems
for hyperbolic equations the existence of a dependence domain is
not a trivial fact deduced from the results of Cauchy problem. As
indicated by R. Hersh [4] if we set some boundary condition a
mixed problem for the wave equation has an infinite velocity.

Our actual problem P(L, B) has a finite velocity.
Let XiOr, t: |), X2(#, t: £) be the roots of the characteristc equa-

tion of L

for (AT, f)enx[0, T] and %&Rn. Denote

(5.1) Xm a x= sup |\,.(

For #0en we denote by C(x09 Q the backward cone with a vertex
(#0, f0) defined by

and by A(#0> /0) the interior of C(#0, ^0) .

Theorem 4. There exists a smooth positive function <y(s, t) on
S x [0, T] determined by L. Suppose

/c o\ u j.\^ ( *\ - t > <*(s, t)(5.2)

m Sx[0, T]. Let u(x, t) be a C2-solution of P(L, B) defined
aa/» A i'V /i O i f) v I 0 *Y' 11 / f it \ fy\ u (v\ fiv0 y0ifn ifi A ( *Y i~ \l/ftf x l L y ^ V Q j •'O/ ' \ l_ > J/" ^ 0\ /> w-^Jv j \Aft & ff^l\J l/rl/ ivy^VQy ''O/

n {H, *=0}, g(s, 0 is *m? i» A(J»TO, ^0)nSx[0, T], andf(x, t) is zero
in A(JCO, ^0)n(Ox[0, T]), ^fe^ u(x, f) is identically zero in A(#0, /„)
n(nx[o, T]).

Proof. We use the method of sweeping out of F. John. Define
for 0<0<Xm

2
ax*2o

(5. 3) <p9(x, t} = (t0-t)- -^—\/\x-xQ\z + e

and
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(5.4) C,(*0, *„) = {(x, 0; <PB(X, 0 = 0}.

If the local uniqueness of the solution, especially near the boundary,
is shown under the condition (2.23), it suffices to show the following :

After the change of variables

V - <p9(x, 0
ivt -.— /y

«<V Jv

(1. 5) transformed into

LQ[u\ = 0

Be\u] = 0

where u(x', f} = u(x, £). Then the condition (2.32) corresponding to
L0,B9 will be satisfied for all 0e(0, \maJl) when (5.2) is fulfiled.

T jLet

*, -
:.')

and we have for all (9e(0, Xmax/S) and (s, 0&Sx[0, T]

By applying (2.29) (2.30) and (2.5) we have cfatiO) (i = l,2) and
6(s, ^: 0) for L0 and 6e are given by

8 i y — 1 J ~*-

cs(j, f: 5) = 24V1 {( 2 «,-X5'I.J-1

+ 12^, /><!} +2

6(s, /: ff) = ^X*, 0

and we set
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ae = ®j\a — v—n\)
dQ = 3>^d .

It is necessary to hold

4

for all #^(0,Xm
2

ax£). Indeed from the explicit forms of these quanti-
ties the existence of the smooth positive function 7(5, f) is derived,
in fact

Then it suffices to show only

Lemma 5. 1. (Local uniqueness near the boundary). Let u(x, f)
eC2 defined in a neighborhood of (XQJ t0} where x0^S. If u(x, t)
satisfies

= (*, Q - 0 for x^ Fn {t = t0,

B{u] = 0 for (s, 0 e Vn (S x [0, T])

L[M] = o t» vn(nx(o,
for some neighborhood V of (xa, ta), then u(x, f) is identically zero in
a neighborhood V'(c V) of (x0, t0).

Proof. We can assume (x0, t0) = (0, 0). After the Folmgren
transformation

x' = x
t' = \x\2 + t

u(x', t') = u(x, t)

L\u] = 0 in F( Vn (fl x (0, T)))
5[w] = 0 in F(V n (S x [0, T]))

where
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* = (1+ 2 _
i—1 i, j — 1

By extending u(x', t' ) by zero in the outside of {(x',t')\ \xf\2^t',
f>o}nnx(o, T) ^f)e£K#2(^))n^
fies L[u] = Q in nx(0, kQ) B\u~} = $ in Sx[0, &0] for some &0>0 and

M(*',0)= — (#', 0) = 0 in fl. Then 1,5 satisfy the condition (2.32)

if x is sufficiently small, therefore for some ^>0 (^<^0) the energy
inequality (2.33) for L and 5 holds for fe(0, ̂ ). This shows that
#(#', f ) is zero in H x (0, kj from which it follows that u(x, t) is
zero in a neighborhood of (x09 t0).
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