On the Structure of
 ($n-1$)-connected $2 n$-dimensional π-manifolds

Dedicated to Professor Atuo Komatu
on his 60th birthday

By
Hiroyasu Ishimoto*

Introduction

In this paper, we will try to decompose ($n-2$)-connected $2 n$ dimensional closed π-manifolds into a connected sum of certain familiar manifolds. Our main theorems are given in the section 5. I show there that under some conditions such π-manifolds are decomposed as a connected sum of a homotopy $2 n$-sphere, some copies of the product of the original n-spheres, the total spaces of some ($n-1$)-sphere bundles over $(n+1)$-spheres, and the boundary of a handlebody. And I give a sufficiency condition so that the handlebody may vanish.

Throughout this paper, all manifolds are C^{∞} and compact connected.

I would like to express my thanks to Professor N. Shimada for his kind advices.

1. Notes for (n-1)-connected Case

Lemma 1.1. Let $M^{2 n}$ be an ($n-1$)-connected $2 n$-dimensional closed π-manifold ($n \geqslant 3$). We assume that Arf $M=0$ if $n=4 k+3$. Then, there exists such basis $\left\{\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{p}\right\}$ for $H_{n} M$ with
intersection numbers $\lambda_{i} \cdot \lambda_{j}=\mu_{i} \cdot \mu_{j}=0, \lambda_{i} \cdot \mu_{j}=\delta_{i j}$ that the imbedded n-spheres $S_{i}^{n}, S_{j}^{\prime n}$ representing λ_{i}, μ_{j} respectively have trivial normal bundles.

Proof. If n is even, the assertion is well known from Lemma 9 and Lemma 7 of [7]. Let n be odd. There exists a symplectic basis $\left\{\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{p}\right\}$ such that $\lambda_{i} \cdot \lambda_{j}=\mu_{i} \cdot \mu_{j}=0, \lambda_{i} \cdot \mu_{j}=\delta_{i j}$ ([7]). The Arf invariant of M is defined as $\operatorname{Arf} M=\varepsilon\left(\lambda_{1}\right) \cdot \varepsilon\left(\mu_{1}\right)$ $+\varepsilon\left(\lambda_{2}\right) \cdot \varepsilon\left(\mu_{2}\right)+\cdots+\varepsilon\left(\lambda_{p}\right) \cdot \varepsilon\left(\mu_{p}\right)(\bmod 2)$, where ε is a certain function from $H_{n} M$ to Z_{2} and satisfies the relation $\varepsilon(\lambda+\mu)=\varepsilon(\lambda)+\varepsilon(\mu)+\lambda \cdot \mu$ $(\bmod 2)[5]$.

Now, if a pair $\left(\lambda_{i}, \mu_{i}\right)$ satisfies $\varepsilon\left(\lambda_{i}\right)=0, \varepsilon\left(\mu_{i}\right)=1$, replace these by $\lambda_{i}^{\prime}=\lambda_{i}, \mu_{i}^{\prime}=\lambda_{i}+\mu_{i}$. Then, we know $\varepsilon\left(\lambda_{i}^{\prime}\right)=0, \varepsilon\left(\mu_{i}^{\prime}\right)=\varepsilon\left(\lambda_{i}\right)+\varepsilon\left(\mu_{i}\right)$ $+\lambda_{i} \cdot \mu_{i}=0(\bmod 2)$. The case when $\varepsilon\left(\lambda_{i}\right)=1, \varepsilon\left(\mu_{i}\right)=0$ is also similar. If two pairs $\left(\lambda_{i}, \mu_{i}\right),\left(\lambda_{j}, \mu_{j}\right)$ satisfy $\varepsilon\left(\lambda_{i}\right)=\varepsilon\left(\mu_{i}\right)=\varepsilon\left(\lambda_{j}\right)=\varepsilon\left(\mu_{j}\right)=1$, replace these pairs by $\lambda_{i}^{\prime}=\lambda_{i}+\lambda_{j}, \mu_{i}^{\prime}=\lambda_{i}+\lambda_{j}+\mu_{i}$ and $\lambda_{j}^{\prime}=\mu_{i}-\mu_{j}$, $\mu_{j}^{\prime}=\lambda_{j}+\mu_{i}-\mu_{j}$. Then, similarly we know $\varepsilon\left(\lambda_{i}^{\prime}\right)=\varepsilon\left(\mu_{i}^{\prime}\right)=\varepsilon\left(\lambda_{j}^{\prime}\right)=\varepsilon\left(\mu_{j}^{\prime}\right)=0$. Since we assumed that $\operatorname{Arf} M=0$, thus we have a new basis $\left\{\lambda_{1}^{\prime}, \cdots\right.$, $\left.\lambda_{p}^{\prime}, \mu_{1}^{\prime}, \cdots, \mu_{p}^{\prime}\right\}$ which satisfies $\varepsilon\left(\lambda_{i}^{\prime}\right)=\varepsilon\left(\mu_{j}^{\prime}\right)=0$. We note, if we represent λ_{i}, μ_{j} by imbedded spheres, we can identify $\varepsilon\left(\lambda_{i}\right), \varepsilon\left(\mu_{j}\right)$ as the characteristic elements $\left(\in Z_{2}\right)$ of the normal bundles of those spheres. This completes the proof.

From this lemma, we can easily show that an ($n-1$)-connected $2 n$-dimensional closed π-manifold $M^{2 n}(n \geqslant 3)$ is, under the assumption that Arf $M=0$ when $n=4 K+3$, diffeomorphic to $S^{n} \times S^{n} \# \cdots \# S^{n} \times S^{n}$ $\# \widetilde{S}^{2 n}$, that is, a connected sum of p copies of $S^{n} \times S^{n}$ and a homotopy sphere $\widetilde{S}^{2 n}$, where S^{n} is the n-dimensional ordinary sphere and $2 p$ is the rank of $H_{n} M$.

Notes. The above shows that any two differentiable π-structures on an ($n-1$)-connected $2 n$-dimensional closed manifold are equivalent modulo $\theta_{2 n}$. On the other hand, R.K. Lashof has shown in [6] that if two given $(n-1)$-connected $2 n$-dimensional closed differentiable manifolds have a homotopy equivalence which induces the stable equivalence of those tangent bundles, then they are diffeomorphic
modulo $\theta_{2 n}$. This shows that any two differentiable structures $\mathfrak{D}_{1}, \mathfrak{D}_{2}$ on an ($n-1$)-connected $2 n$-dimensional closed manifold $M^{2 n}$ are equivalent modulo $\theta_{2 n}$ if $n \equiv 0,3,4,5,6,7(\bmod 8) .{ }^{1)}$ It is clear if $n \equiv 3,5,6,7(\bmod 8)$, since $M^{2 n}$ is almost parallelizable. If $n \equiv 0,4$ $(\bmod 8)$, the obstruction to construct a stable equivalence of the tangent bundles $\tau_{1}=\tau\left(\mathfrak{D}_{1}\right), \tau_{2}=\tau\left(\mathfrak{D}_{2}\right)$ is given by the differences of the Pontryagin classes, $P_{k}\left(\tau_{2}\right)-P_{k}\left(\tau_{1}\right)$ and $P_{2 k}\left(\tau_{2}\right)-P_{2 k}\left(\tau_{1}\right) \quad(n=4 k)$. But these obstructions vanish from the topological invariance of rational Pontryagin classes [8].

2. Surgeries

In this section we study that if we kill elements of the $(n-1)$-th homology group of a given $2 n$-dimensional manifold by surgeries, then how it affects the n-th homology group of the modified manifold.

Let $M^{2 n}$ be a $2 n$-dimensional closed manifold and let φ : $S^{n-1} \times D^{n+1} \rightarrow M^{2 n}$ be an imbedding. We donote by λ the homology class of $\varphi\left(S^{n-1} \times 0\right)$. Let $M^{12 n}=\chi(M, \varphi)$ be the modified manifold [7] and let $\varphi^{\prime}: D^{n} \times S^{n} \rightarrow M^{2 n}$ be the dual of φ. We denote by λ^{\prime} the homology class of $\varphi^{\prime}\left(0 \times S^{n}\right)$. Let $M_{0}=M-\operatorname{Int} \varphi\left(S^{n-1} \times D^{n+1}\right)$. This is also equal to $M^{\prime}-\operatorname{Int} \varphi^{\prime}\left(D^{n} \times S^{n}\right)$.

Lemma 2.1. If the order of λ is infinite, then λ^{\prime} must be zero or a torsion element.
(1) If λ^{\prime} is zero, the homomorphisms

$$
H_{n} M \xrightarrow{i_{*}} H_{n} M_{0} \xrightarrow{i_{*}^{\prime}} H_{n} M^{\prime}
$$

are respectively isomorphisms, where, i, i^{\prime} denote inclusion maps.
(2) If λ^{\prime} is a torsion element, the homomorphisms

$$
\begin{aligned}
& F H_{n} M \xrightarrow{i_{*}} T H_{n} M_{0} \xrightarrow{i_{*}^{\prime}} F H_{n} M^{\prime} \\
& T H_{n} M \xrightarrow{i_{*}} T H_{n} M_{0} /\left(\varphi\left(* \times S^{n}\right)\right) \xrightarrow{i_{*}^{\prime}} T H_{n} M^{\prime} /\left(\lambda^{\prime}\right)
\end{aligned}
$$

[^0]are respectively isomorphisms, where $F()$ and $T()$ denote the free part and the torsion part of the group respectively.

Proof. By excision, there are isomorphisms

$$
\begin{aligned}
H_{i}\left(M, M_{0}\right) \cong H_{i}\left(S^{n-1} \times D^{n+1}, S^{n-1} \times S^{n}\right) \cong \begin{cases}Z & \text { for } i=n+1,2 n \\
0 & \text { otherwise }\end{cases} \\
H_{j}\left(M^{\prime}, M_{0}\right) \cong H_{j}\left(D^{n} \times S^{n}, S^{n-1} \times S^{n}\right) \cong \begin{cases}Z & \text { for } j=n, 2 n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

So, considering the homology exact sequences of $\left(M, M_{0}\right)$ and (M^{\prime}, M_{0}), we have the following commutative diagram

such that the horizontal and vertical sequences are exact (cf. [5, Lemma 5.6]).

Here $\lambda^{\prime}: Z \rightarrow H_{n} M^{\prime}$ denotes the homomorphism which caries 1 into λ^{\prime}, and $\cdot \lambda^{\prime}: H_{n} M^{\prime} \rightarrow Z$ denotes the homomorphism which caries each element of $H_{n} M^{\prime}$ into the intersection number with λ^{\prime}. We note that $\varepsilon^{\prime}(1)$ is the homology class of $\varphi\left(* \times S^{n}\right)$ and $\varepsilon(1)$ is the homology class $i_{*}^{-1}(\lambda)$ where $i_{*}: H_{n-1} M \longrightarrow H_{n-1} M$ is an isomorphism.

Since we assumed that the order of λ is infinite, also the order of $i_{*}^{-1} \lambda$ is infinite. So, $\operatorname{Ker} \varepsilon$ is equal to zero. Therefore, $i_{*}^{\prime}: H_{n} M_{0} \rightarrow$ $H_{n} M^{\prime}$ is an isomorphism. On the otherhand, since any intersection number with λ^{\prime} is zero, λ^{\prime} must be zero or a torsion element by Poincaré duality. (1) If $\lambda^{\prime}=0, \varepsilon^{\prime}(1)$ must be zero, so that $i_{*}: H_{n} M_{0} \rightarrow$ $H_{n} M$ is an isomorphism. (2) Let λ^{\prime} be a torsion element. At the short,exact sequence $Z \xrightarrow{\varepsilon^{\prime}} H_{n} M_{0} \xrightarrow{i_{*}} H_{n} M \longrightarrow 0, \varepsilon^{\prime}(1)$ is a torsion element. So, $\varepsilon^{\prime}(Z)=\operatorname{Ker} i_{*}$ is a subgroup of $T H_{n} M_{0}$. It is easy to see that $i_{*}\left(T H_{n} M_{0}\right)=T H_{n} M$. Therefore we have an exact sequence
$0 \longrightarrow \mathcal{E}^{\prime}(Z) \longrightarrow T H_{n} M_{0} \xrightarrow{i_{*}} T H_{n} M \longrightarrow 0$. Since there is an isomorphism $i_{*}^{\prime}: T H_{n} M_{0} \rightarrow T H_{n} M^{\prime}$, we have the half of the desired relation of (2). On the other hand, it is easy to see that

$$
H_{n} M=i_{*}\left(F H_{n} M_{0}\right)+i_{*}\left(T H_{n} M_{0}\right)=i_{*}\left(F H_{n} M_{0}\right)+T H_{n} M .
$$

Since $i_{*}: F H_{n} M_{0} \rightarrow i_{*}\left(F H_{n} M_{0}\right)$ maps isomorphically, we may adopt $i_{*}\left(F H_{n} M_{0}\right)$ as a free part of $H_{n} M$. We denote this by $F H_{n} M$. We also adopt $i_{*}^{\prime}\left(F H_{n} M_{0}\right)$ as a free part of $H_{n} M^{\prime}$ and denote this by $F H_{n} M^{\prime}$. Thus we have the desired isomorphisms of the rest of (2). This completes the proof.

Lemma 2.2. If λ is a torsion element, then the order of λ^{\prime} is infinite, and

$$
\operatorname{rank} H_{n} M^{\prime}=\operatorname{rank} H_{n} M+2
$$

Proof. Let the order of λ be P. Since $i_{*}: H_{n-1} M_{0} \rightarrow H_{n-1} M$ is an isomorphism and $\varepsilon(1)=i_{*}^{-1}(\lambda)$, we have the following short exact sequence from the above diagram.

$$
0 \longrightarrow H_{n} M_{0} \longrightarrow H_{n} M^{\prime} \xrightarrow{\cdot \lambda^{\prime}}(P)=\operatorname{Ker} \varepsilon \longrightarrow 0,
$$

where (P) is the subgroup of Z generated by P.
Since this sequence splits, there is an isomorphism

$$
H_{n} M^{\prime} \cong H_{n} M_{0}+(P)
$$

We note that λ^{\prime} is not a torsion element and so $\varepsilon^{\prime}(Z) \cong \lambda^{\prime}(Z) \cong Z$ at the above diagram.
Thus we have,

$$
\begin{aligned}
& \operatorname{rank} H_{n} M^{\prime}=\operatorname{rank} H_{n} M_{0}+1 \\
& \operatorname{rank} H_{n} M=\operatorname{rank}\left(H_{n} M_{0} / \varepsilon^{\prime}(Z)\right)=\operatorname{rank} H_{n} M_{0}-1
\end{aligned}
$$

This completes the proof.
Proposition 2.3. Let $M^{2 n}$ be an ($n-2$)-connected $2 n$-dimensional closed π-manifold and suppose that $H_{n-1} M$ has no torsion subgroup. Then we can kill $H_{n-1} M$ so that the surgeries do not affect $H_{n} M$, that is, the produced ($n-1$)-connected $2 n$-dimensional π-manifold has the same n-th homology group as $M^{2 n}$.

Proof. Let $H_{n-1} M \cong Z+\cdots+Z$ with generators $\lambda_{1}, \cdots, \lambda_{r}$. Let $\varphi_{1}: S^{n-1} \times D^{n_{+1}} \rightarrow M^{2 n}$ be an imbedding such that $\varphi_{1}\left(S^{n-1} \times 0\right)$ represents λ_{1}, and let $M^{\prime 2 n}=\chi\left(M, \varphi_{1}\right)$. Since $H_{n-1} M^{\prime} \cong H_{n-1} M /\left(\lambda_{1}\right), H_{n-1} M^{\prime}$ has no torsion. Therefore, by the universal coefficient theorem $H_{n} M^{\prime}$ $\cong H^{n} M \cong \operatorname{Hom}\left(H_{n} M^{\prime}, Z\right)+\operatorname{Ext}\left(H_{n-1} M^{\prime}, Z\right)$, where the torsion part vanishes.

This means that $\lambda_{1}^{\prime}=0$. Thus we have the isomorphisms $H_{n} M \stackrel{i_{*}}{\longleftrightarrow} H_{n} M_{0} \xrightarrow{i_{*}^{\prime}} H_{n} M^{\prime}$ from Lemma 2.1. Repeating this, we have the proposition.

3. Splitting Theorems

Using the results of sections 1 and 2 , we can decompose ($n-2$)connected $2 n$-dimensional π-manifolds.

Theorem 3.1. Let $M^{2 n}$ be a ($n-2$)-connected $2 n$-dimensional closed π-manifold $(n \geqslant 3)$ such that $H_{n-1} M$ has no torsion. Then there exists the following decomposition;

$$
M^{2 n}=S^{n} \times S^{n} \# \cdots \# S^{n} \times S^{n} \# M_{1}^{2 n},
$$

where S^{n} is the ordinal n-sphere and $M_{1}^{2 n}$ is a ($n-2$)-connected $2 n$ dimensional closed π-manifold such that

$$
H_{i} M_{1} \cong \begin{cases}H_{i} M & \text { if } \quad i=n-1, n+1 \\ 0 & \text { if } \quad i=n\end{cases}
$$

(We assume that the Arf invariant is zero if $n=4 k+3$.)
Proof. Let $H_{n-1} M \cong Z+\cdots+Z$ with generators $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{r}$. Let $\varphi_{i}: S^{n-1} \times D^{n+1} \rightarrow M^{2 n} \quad i=1,2, \cdots, r$ be imbeddings such that each $\varphi_{i}\left(S^{n-1} \times 0\right)$ represents κ_{i}, and let $M_{0}=M-\bigcup_{i=1}^{r} \operatorname{Int} \varphi_{i}\left(S^{n-1} \times D^{n+1}\right), M^{2 n}$ be the $(n-1)$-connected $2 n$-dimensional π-manifold obtained by those spherical modifications $\chi\left(\varphi_{1}\right), \cdots, \chi\left(\varphi_{r}\right)$. From Proposition 2.3, we have the isomorphisms

$$
H_{n} M \stackrel{i_{*}}{\longleftrightarrow} H_{n} M_{0} \xrightarrow{i_{*}^{\prime}} H_{n} M^{\prime} .
$$

where i, i^{\prime} are inclusion map.

On the other hand, by Lemma 1.1 there exists such basis $\left\{\lambda_{1}, \cdots\right.$, $\left.\lambda_{p}, \mu_{1}, \cdots, \mu_{p}\right\}$ for $H_{n} M^{\prime}$ with intersection numbers $\lambda_{i} \cdot \lambda_{j}=\mu_{i} \cdot \mu_{j}=0$, $\mu_{i} \cdot \mu_{j}=\delta_{i j}$ that every imbedded n-sphere which represents these homology classes has trivial normal bundle. Let $\lambda_{i}^{\prime}=i_{*}^{-1}\left(\lambda_{i}\right)$, $\mu_{j}^{\prime}=i_{*}^{-1}\left(\mu_{j}\right)$ for $i, j=1,2, \cdots, p$. Then $\left\{\lambda_{1}^{\prime}, \cdots, \lambda_{p}^{\prime}, \mu_{1}^{\prime}, \cdots, \mu_{p}^{\prime}\right\}$ is a basis for $H_{n} M_{0}$ with intersection numbers $\lambda_{i}^{\prime} \cdot \lambda_{j}^{\prime}=\mu_{i}^{\prime} \cdot \mu_{j}^{\prime}=0, \lambda_{i}^{\prime} \cdot \mu_{j}^{\prime}$ $=\delta_{i j}$. Since M_{0} is also ($n-2$)-connected, by Hurewicz's Theorem any element of $H_{n} M_{0}$ is spherical. So we can represent $\lambda_{i}^{\prime}, \mu_{j}^{\prime}$ by imbeded spheres $S_{i}^{n}, S_{j}^{\prime n}$. Using Whitney's method we may assume that S_{i}^{n} and $S_{i}^{\prime n}$ meet transversely at only one point and any other pair of spheres does not intersect. We note that $S_{i}^{n}, S_{j}^{\prime n}$ also represent λ_{i}, μ_{j} respectively and that whether the normal bundles of S_{i}^{n} and $S_{j}^{\prime n}$ are trivial or not depends only on the homology classes λ_{i}, μ_{j} respectively [5, Lemma 8.3]. So the normal bundles of S_{i}^{n} and $S_{j}^{\prime n}$ in M_{0} are trivial. Therefore $S_{i}^{n}, S_{j}^{\prime n}$ in $M^{2 n}$ make a basis for $H_{n} M$ with trivial normal bundles.

The tubular neighbourhood of $S_{i} \vee S_{i}^{\prime}$ in $M^{2 n}$ makes a plumbing manifold $S_{i}^{n} \times D^{n} \triangleq S_{i}^{\prime n} \times D^{n}$ with the boundary $S^{2 n-1}$ for each i, and $S_{i}^{n} \times D^{n} \boxtimes S^{\prime n} \times D^{n}$ is diffeomorphic to $S^{n} \times S^{n}-\operatorname{Int} D^{2 n}$. Let $N=M$ $-\bigcup_{i=1}^{p} \operatorname{Int}\left(S_{i}^{n} \times D^{n} \boxtimes S_{i}^{\prime n} \times D^{n}\right)$ and attach p copies of $D^{2 n}$ to N. Then we have a closed manifold $M_{1}^{2 n}$ which is almost parallelizable. Thus we can decompose $M^{2 n}$ as $M^{2 n}=S^{n} \times S^{n} \# \cdots \# S^{n} \times S^{n} \# M_{1}^{2 n}$.
$M_{1}^{2 n}$ is simply connected by van Kampen Theorem and has such homology groups as asserted using the Mayer-Vietoris sequence. We note that $M_{1}^{2 n}$ is a π-manifold since the Index of $M_{1}^{2 n}$ is zero.

This completes the proof.
Remark. In theorem 3.1, if $M^{2 n}$ is ($n-1$)-connected then $M_{1}^{2 n}$ is a homotopy sphere. This induces the form asserted in section 1.

Theorem 3.2. $M_{1}^{2 n}$ is decomposed as the form $M_{1}^{2 n}=\widetilde{S}^{2 n} \# \partial W^{2 n+1}$, where $\widetilde{S}^{2 n}$ is a homotopy $2 n$-sphere and $W^{2 n+1}$ is a handlebody $D^{2 n+1} \bigcup_{\left\{\varphi_{i}\right\}}\left\{\bigcup_{i=1}^{r} D_{i}^{n+1} \times D_{i}^{n}\right\}, r=\operatorname{rank} H_{n-1} M$.

Proof. If we kill the generators of $H_{n-1} M_{1}$, then by proposition
2.3 we have a homotopy sphere $\widetilde{S}^{2 n}$. So, from the manifold $M_{1}^{2 n} \#\left(-\widetilde{S}^{2 n}\right)$ we obtain the standard sphere $S^{2 n}$ by the surgery. Thus we may assume that the surgery deforms $M_{1}^{2 n}$ to the standard sphere $S^{2 n}$. This means that $M_{1}^{2 n}$ can be obtained from $S^{2 n}$ by the converse construction, that is, by surgery on a disjoint set of imbeddings $\varphi_{i}: S^{n} \times D^{n} \rightarrow S^{2 n} i=1,2, \cdots, r$. Thus $M_{1}^{2 n}$ is clearly the boundary of a handlebody $W^{2 n+1}=D^{2 n+1} \bigcup_{\left\{\varphi_{i}\right\}}\left\{\bigcup_{i=1}^{r} D_{i}^{n+1} \times D_{i\}}^{n\}}\right.$. This completes the proof.

4. Linking Elements

Let $\left.W^{2 n_{+1}}=D^{2 n_{+1}} \underset{\left\{\varphi_{i}\right\}}{\{ } \bigcup_{i=1}^{r} D_{i}^{n+1} \times D_{i}^{n}\right\}$ be a handlebody with attaching maps $\varphi_{i}: S^{n} \times D^{n} \rightarrow S^{2 n} i=1,2, \cdots, r$, and let $M^{2 n}=\partial W^{2 n+1}$. When we restrict the imbeddings φ_{i} to $\partial D_{i}^{n+1} \times 0=S_{i}^{n} \times 0$, we have an n link $\varphi_{1}\left(S_{1}^{n} \times 0\right) \cup \varphi_{2}\left(S_{2}^{n} \times 0\right) \cup \cdots \cup \varphi_{r}\left(S_{r}^{n} \times 0\right)$ in $S^{2 n}=\partial D^{2 n_{+1}}$. Let $S_{1}^{n} \cup S_{2}^{n}$ $\cup \cdots \cup S_{r}^{n}$ be an n-link in $S^{2 n}$ and let $X_{i}=S^{2 n}-\left\{\cup S_{j \neq i}^{n}\right\}$. Then there is an isomorphism $\pi_{n}\left(X_{i}\right) \cong \pi_{n}\left(\underset{j \neq i}{ } S_{j}^{n-1}\right) \cong Z_{2}+Z_{2}+\cdots+Z_{2}(n \geqslant 4)$ and the n-sphere $S_{i}^{n} \subset X_{i}$ defines an element λ^{i} of $\pi_{n}\left(\vee V_{i}^{n-1}\right)$ which is called the linking element of S_{i}^{n} [3. p. 243]. $\lambda^{i}: i=1,2, \cdots, r$ determine the isotopy class of the n-link $S_{1}^{n} \cup S_{2}^{n} \cup \cdots \cup S_{r}^{n}$.

In this section we study a sufficiency condition so that all the linking elements for the n-link $\varphi_{1}\left(S_{1}^{n} \times 0\right) \cup \varphi_{2}\left(S_{2}^{n} \times 0\right) \cup \cdots \cup \varphi_{r}\left(S_{r}^{n} \times 0\right)$ may be zero.

Lemma 4.1.

$$
H_{i} M^{2 n} \cong \begin{cases}\frac{r}{Z+\cdots+Z} & \text { if } i=n-1, n+1 \\ Z & \text { if } i=0,2 n \\ 0 & \text { otherwise }\end{cases}
$$

and the generators are given as follows;

$$
\begin{aligned}
& \varphi_{i}\left(x_{i} \times S_{i}^{n-1}\right) \quad\left(x_{i} \in \partial D_{i}^{n+1}, i=1,2, \cdots, r\right) \quad \text { generates } H_{n-1} M^{2 n} \\
& \left(j_{*}\right)^{-1}\left(\psi_{i}\left(D_{i}^{n+1} \times y_{i}\right)\right) \quad\left(y_{i} \in \partial D_{i}^{n}, i=1,2, \cdots, r\right) \quad \text { generates } H_{n+1} M^{2 n} .
\end{aligned}
$$

Proof. Let $S_{0}=S^{2 n}-\bigcup_{i=1}^{r} \operatorname{Int} \varphi_{i}\left(S_{i}^{n} \times D_{i}^{n}\right)=M^{2 n}-\bigcup_{i=1}^{r} \operatorname{Int} \psi_{i}\left(D_{i}^{n+1} \times S_{i}^{n-1}\right)$.

From the homology exact sequences of $\left(M^{2 n}, S_{0}\right)$ and $\left(S^{2 n}, S_{0}\right)$, we have isomorphisms

$$
\begin{aligned}
& Z \cong H_{n}\left(S^{2 n}, S_{0}\right) \xrightarrow{\partial_{*}} H_{n-1}\left(S_{0}\right) \xrightarrow{i_{*}} H_{n-1} M \\
& H_{n-1} M \xrightarrow{j_{*}} H_{n+1}\left(M, S_{0}\right) \cong Z .
\end{aligned}
$$

This implies the lemma.
Proposition 4.2. If $n \geqslant 4$ and $S q^{2}: H^{n-1}\left(M: Z_{2}\right) \rightarrow H^{n+1}\left(M ; Z_{2}\right)$ is trivial, then the linking elements for the n-link $\varphi_{1}\left(S_{1}^{n} \times 0\right) \cup \varphi_{2}\left(S_{2}^{n} \times 0\right)$ $\cup \cdots \cup \varphi_{r}\left(S_{r}^{n} \times 0\right)$ are all zero.

Proof. Let $Y=S^{2 n}-\bigcup_{i=1}^{n} \operatorname{Int} \varphi\left(S_{i}^{n} \times D_{i}^{n}\right)$ and let $S_{i}^{n-1}=D_{i}^{n-1} \cup D_{i}^{\prime n-1}$. We note that $M^{2 n}=\partial W^{2 n+1}=\left\{S^{2 n}-\bigcup_{i=1}^{r} \operatorname{Int} \varphi_{i}\left(S_{i}^{n} \times D_{i}^{n}\right)\right\} \bigcup_{\left[\varphi_{i}\right]}\left\{\bigcup_{i=1}^{r} D_{i}^{n+1} \times S_{i}^{n-1}\right\}$. $Y \bigcup_{\left\{\varphi_{i}^{\prime}\right\}}\left\{\bigcup_{i=1}^{r} D_{i}^{n+1} \times y_{i}\right\}$ is a deformation retract of $M^{2 n} \bigcup_{i=1}^{r} \operatorname{Int}\left\{D_{i}^{n+1} \times D_{i}^{\prime n-1}\right\}$, where $\varphi_{i}^{\prime}=\varphi_{i} \mid S_{i}^{n} \times y_{i}$ and $y_{i} \in D_{i}^{n-1} \subset S_{i}^{n-1}$. Then we have the following commutative diagram.

$$
\begin{aligned}
& H^{n-1}\left(M ; Z_{2}\right) \cdots q^{2} \ldots H^{n_{+1}}\left(M ; Z_{2}\right) \\
& H^{n-1}\left(Y \underset{\left\{\varphi_{i}^{\prime}\right\}}{\bigcup_{i}^{*}}\left\{\bigcup_{i} \underset{\left.D_{i}^{n+1} \times y_{i}\right\}}{\cong} ; Z_{2}\right) \xrightarrow{S q^{2}} H^{n+1}\left(\underset{\left\{\varphi^{\prime} i\right\}}{ } \bigcup_{i} \cup_{i}^{*} D_{i}^{n+1} \times y_{i}\right\} ; Z_{2}\right) \\
& H^{F^{*-1}\left(S_{1}^{n-1} \vee \cdots \vee S_{r}^{n-1} \underset{\left\{\omega_{i}\right\}}{\bigcup}\left\{\cup_{i} D_{i}^{n+1}\right\} ; Z_{2}\right) \xrightarrow{S q^{2}} H^{n+1}\left(S_{1}^{n-1} \vee \cdots \vee \underset{S_{r}^{n-1}}{ } \underset{\left\{\omega_{i}\right\}}{ }\left\{\bigcup_{i} D_{i}^{n+1}\right\} ; Z_{2}\right)}
\end{aligned}
$$

The first part of the diagram is clear and the vertical maps induced by the inclusion map are isomorphisms.

The second part is given as follows. Let $X=S^{2 n}-\bigcup_{i=1}^{r} \varphi_{i}\left(S_{i}^{n} \times 0\right)$ and let $S_{i}^{n-1} i=1,2, \cdots, r$ be r copies of $(n-1)$-spheres. Define a continuous map $f: S_{1}^{n-1} \vee S_{2}^{n-1} \vee \cdots \vee S_{r}^{n-1} \rightarrow X$ so that each $f\left(S_{i}^{n-1}\right)$ is homotopic in X to $\varphi_{i}\left(x_{i} \times S_{i}^{n-1}\right)$ which has linking number +1 with $\varphi_{i}\left(S_{i}^{n} \times 0\right)$ in $S^{2 n}$. Then, using Alexander duality, the map f induces the isomorphisms of their homology groups up to dimension $2 n-2$, so the isomorphisms of their homotopy groups up to dimension $2 n-3(n \geqslant 3)$. Since Y is a deformation retract of X we may assume
that f is a map into Y. Thus we have an isomorphism f_{*} : $\pi_{n}\left(\bigvee_{i=1}^{r} S_{i}^{n-1}\right) \rightarrow \pi_{n}(Y)$. Choose a map $\omega_{i}: S_{i}^{n} \bigvee_{i=1}^{n} S_{i}^{n-1}$ such that $f \circ \omega_{i}$ is homotopic to φ_{i}^{\prime}. We may assume $\varphi_{i}^{\prime}=f \circ \omega_{i}$. Define a continuous $\operatorname{map} \quad F: \bigvee_{i=1}^{r} S_{i}^{n-1} \bigcup_{\left\{\omega_{i}\right\}}^{r}\left\{\bigcup D_{i=1}^{n+1}\right\} \rightarrow Y \bigcup_{\left\{\varphi_{i}^{\prime}\right\}}^{v}\left\{\bigcup_{i=1} D_{i}^{n+1} \times y_{i}\right\} \quad$ as $\quad F \mid \bigvee_{i} S_{i}^{n-1}=f$, $F \mid \cup_{i} D_{i}^{n+1}=$ identity. Then, by Lemma 4.1, it is easy to see that F^{*} carries the generators of the one onto the generators of the other. Therefore F^{*} is an isomorphism and we have the second diagram.

Thus, if $S q^{2}: H^{n-1}\left(M: Z_{2}\right) \rightarrow H^{n+1}\left(M ; Z_{2}\right)$ is trivial, ω_{i} must be homotopic zero for each i. So, φ_{i}^{\prime} is homotopic zero in $X \subset S^{2 n}$ $-\bigcup_{j \dashv i} \varphi_{j}\left(S_{j}^{n} \times 0\right)$. Since φ_{i}^{\prime} is homotopic to $\varphi_{i} \mid S_{i}^{n} \times 0$ in $S^{2 n}-\bigcup_{j, i} \varphi_{j}\left(S_{j}^{n} \times 0\right)$, this implies that $\lambda^{i}=0$ for all i. This completes the proof.

Remark. If $\varphi_{i}^{\prime}: S_{i}^{n} \times y_{i} \rightarrow S^{2 n}-\varphi_{i}\left(S^{n} \times 0\right)$ is homotopic zero for all i, the converse of Proposition 4.2 is also valid.

5. Structure Theorems

Let $M^{2 n}$ be a ($n-2$)-connected $2 n$-dimensional closed π-manifold and assume that $H_{n-1} M$ is free with rank r and $H_{n} M \cong 0$. Then, from Theorem 3.2, $M^{2 n}$ is decomposed as $M^{2 n}=\widetilde{S}^{2 n} \# \partial W^{2 n+1}$. $\quad W^{2 n+1}$ is a handlebody $D^{2 n+1} \bigcup_{\left\{\varphi_{i}\right\}}\left\{\bigcup_{i=1}^{r} D_{i}^{n+1} \times D_{i}^{n}\right\}$ with attaching maps $\varphi_{i}: S_{i}^{n}$ $\times D_{i}^{n} \rightarrow S^{2 n} i=1,2, \cdots, r$. We study more precise structure of $M^{2 n}$.

Let λ^{i} be the linking element of $\varphi_{i}\left(S_{i}^{n} \times 0\right)$ for the n-link $\varphi_{1}\left(S_{1}^{n}\right.$ $\times 0) \cup \varphi_{2}\left(S_{2}^{n} \times 0\right) \cup \cdots \cup \varphi_{r}\left(S_{r}^{n} \times 0\right) . \quad \lambda^{i} i=1,2, \cdots, r$ are all zero if $r=1$ or, by Proposition 4.2, if $S q^{2}: H^{n_{-1}}\left(M ; Z_{2}\right) \rightarrow H^{n_{+1}}\left(M ; Z_{2}\right)$ is trivial. But $\lambda^{i} i=1,2, \cdots, r$ are not always all zero. Now, we assume that $\lambda^{1}=\lambda^{2}=\cdots=\lambda^{q}=0$ and $\lambda^{i} \neq 0$ for $i>q$.

Since $\lambda^{1}=0, \varphi_{1} \mid S^{n} \times 0$ is homotopic to zero in $X_{1}=S^{2 n}-\underset{j \neq 1}{\cup} \varphi_{j}\left(S_{j}^{n} \times 0\right)$, which is 2 -connected if $n \geqslant 4$. So, by Haefliger [2], we know that $\varphi_{1}\left(S_{1}^{n} \times 0\right)$ is isotopic in X_{1} to a n-sphere which bounds an imbedded $(n+1)$-disk $D^{n_{+1}}$, and also that D^{n+1} is contained in the interior of an imbedded $(n+1)$-disk C^{n+1}. Since there exists an isotopy f_{t} of the identity of $S^{2 n}$ such that $f_{1} \circ\left(\varphi_{1} \mid S_{1}^{n} \times 0\right)$ equals the restriction of the imbedding of D^{n+1} to the boundary and other $\varphi_{j} \mid S_{j}^{n} \times 0 j>1$ are
fixed [9], we may assume that $\varphi_{1}\left(S_{1}^{n} \times 0\right)$ is the boundary of D^{n+1}. C^{n+1} does not intersect other n-spheres and the normal bundle is a product. So, there exists an imbedded $2 n$-disk $D^{2 n}$ which contains D^{n+1} in its interior and other n-spheres in its complement. Then extend $D^{2 n}$ by an isotopy of $S^{2 n}$ onto the hemisphere of $S^{2 n}$. Thus we may assume that φ_{1} maps $S_{1}^{n} \times D_{1}^{n}$ into the interior of the upper hemisphere and $\varphi_{j} j>1$ maps $S_{j}^{n} \times D_{j}^{n}$ into the interior of the lower hemisphers. This implies that $W^{2 n+1}$ is decomposed to a sum of handlebodies, $W^{2 n+1}=W_{1}^{2 n+1} \# W^{\prime 2 n+1}$, where $W_{1}^{2 n+1}=D^{2 n+1} \cup_{\varphi_{1}} D_{1}^{n+1} \times D_{1}^{n}$ and $W^{2 n+1}=D^{2 n+1} \bigcup_{\left\{\varphi_{j}\right\}}\left\{\bigcup_{j>1} D_{j}^{n+1} \times D_{j}^{p}\right\}$. Clearly $W_{1}^{2 n+1}$ is diffeomorphic to the total space of a D^{n}-bundle over the $(n+1)$-sphere. Repeating this for $\lambda^{i} i=2, \cdots, q$, we have

Theorem 5.1. Let $M^{2 n}$ be an ($n-2$)-connected $2 n$-dimensional closed π-manifold $(n \geqslant 4)$ such that $H_{n-1} M$ is free of rank r and $H_{n} M \cong 0$. Let $M^{2 n}=\widetilde{S}^{2 n} \# \partial W^{2 n+1}$ and let the linking elements λ^{i} $i=1,2, \cdots, r$ defined by the attaching maps $\varphi_{i} i=1,2, \cdots, r$ are zero for $1 \leqslant i \leqslant q$.

Then $M^{2 n}$ is decomposed as

$$
M^{2 n}=\widetilde{S}^{2 n} \# B_{1} \# B_{2} \# \cdots \# B_{q} \# \partial W^{\prime 2 n+1}
$$

where $\widetilde{S}^{2 n}$ is a homotopy $2 n$-sphere, B_{i} is the total space of an ($n-1$)sphere bundle over the $(n+1)$-sphere and $W^{2 n+1}$ is a handlebody $D^{2 n+1} \bigcup_{\left\{\varphi_{j} ; j>q\right\}}\left\{\bigcup_{j>q} D_{j}^{n+1} \times D_{j}^{n}\right\}$ with non-zero linking elements.

Corollary 5.2. If $r=1$ or if $S q^{2}: H^{n-1}\left(M ; Z_{2}\right) \rightarrow H^{n+1}\left(M ; Z_{2}\right)$ is trivial ${ }^{2)}$ then $W^{\prime 2 n+1}$ vanish, that is, $q=r$. And the characteristic elements of $B_{i} i=1,2, \cdots, r$ are in the image of the natural homomorphism $i_{*}: \pi_{n} \mathrm{SO}_{n-1} \rightarrow \pi_{n} S O_{n}$.

Proof. We consider only on the characteristic elements. Let μ_{i} be the characteristic element of B_{i}. Using the Mayer-Vietoris sequence, $S q^{2}: H^{n-1}\left(B_{i}: Z_{2}\right) \rightarrow H^{n+1}\left(B_{i} ; Z_{2}\right)$ is also trivial for $i=1,2, \cdots, r$. This shows that in the cell decomposition of B_{i} the attaching map

[^1]of the $(n+1)$-cell to the $(n-1)$-sphere must be homotopic zero. So, B_{i} admits a cross section. This implies that μ_{i} is in the image of i_{*}.

Combining Theorem 3.1 and Theorem 5.1, we have
Theorem 5.3. Let $M^{2 n}$ be an ($n-2$)-connected $2 n$-dimensional closed π-manifold ($n \geqslant 4$) such that $H_{n-1} M$ is free of rank r. Let the linking elements $\lambda^{i} i=1,2, \cdots, r$ defined as above are zero for $i=1,2, \cdots, q$. Then $M^{2 n}$ is decomposed as $M^{2 n}=\widetilde{S}^{2 n} \# S^{n} \times S^{n} \# \cdots$ $\# S^{n} \times S^{n} \# B_{1} \# B_{2} \# \cdots \# B_{q} \# \partial W^{2 n_{+1}}$, where $\widetilde{S}^{2 n}$ is a homotopy $2 n$ sphere, B_{i} is the total space of an $(n-1)$-sphere bundle over the $(n+1)$ sphere, and $W^{2 n+1}$ is a handlebody $D^{2 n+1} \underset{\left\{\varphi_{j} ; j>q\right\}}{\cup}\left\{\bigcup_{j>q} D_{j}^{n+1} \times D_{j}^{n}\right\}$ with non-zero linking elements. (We also assume that the Arf invariant is zero if $n=4 k+3$.)

Corollary 5.4. If $r=1$ or if $\operatorname{Sq}^{2}: H^{n-1}\left(M ; Z_{2}\right) \rightarrow H^{n_{+1}}\left(M ; Z_{2}\right)$ is trivial then $W^{2 n_{+1}}$ vanish, that is, $q=r$. And the characteristic elements of $B_{i} i=1,2, \cdots, r$ are in the image of the natural homomorphism $i_{*}: \pi_{n} \mathrm{SO}_{n-1} \rightarrow \pi_{n} \mathrm{SO}_{n}$.

6. Notes on Parallelizable Manifolds

It is also interesting how many parallelizable manifolds are and what style they have. By [11], an m-dimensional closed π manifold M^{m} is parallelizable if and only if
(1) m is even and the Euler characteristic of M is zero, or
(2) m is odd, $m \neq 1,3,7$, and the semi-characteristic of M is zero mod. 2 , or
(3) $m=1,3,7$.

From this we have the following results:
Proposition 6. 1. Let $M^{2 n}$ be an ($n-1$)-connected $2 n$ dimensional closed parallelizable manifold $(n \geqslant 3)$. Then n must be odd and $M^{2 n}$ has the form as $M^{2 n}=S^{n} \times S^{n} \# \widetilde{S}^{2 n}$, under the assumption that the Arf invariant is zero if $n=4 k+3$.

Proposition 6.2. Let $M^{2 n}$ be an ($n-2$)-connected $2 n$ dimensional closed parallelizable manifold $(n \geqslant 4)$ such that $H_{n-1} M$ has no torsion.

Let $r=\operatorname{rank} H_{n-1} M$ and $2 p=\operatorname{rank} H_{n} M$. Then $p=r+(-1)^{n-1}$ and $M^{2 n}$ is a connected sum of $(r-1)$ or $(r+1)$ copies of $S^{n} \times S^{n}$ according as $n=e v e n$ or odd and such manifolds $M_{1}^{2 n}$ as obtained in Theorem 5.1. We also assume that the Arf invariant is zero if $n=4 k+3$.

On the other hand, as an example for the odd dimensional case we have the following

Proposition 6. 3. In the set of diffeomorphism classes of simply connected 5-dimensional closed π-manifolds, exactly the half consists of parallelizable manifolds and the other half consists of non-parallelizable manifolds.

Proof. Smale [10] has classified simply connected closed 5 -manifolds with vanishing 2nd Stiefel-Whitney classes up to diffeomorphism. This is exactly the classification of simply connected 5 -dimensional closed π-manifolds. From his results, we can easily obtain the proposition.

References

[1] Brown, E. H. and F. P. Peterson, The Kervaire invariant of ($8 \mathrm{k}+2$)-manifolds, Bull. Amer. Math. Soc. 71 (1965), 190-193.
[2] Haefliger, A., Plongements différentiables de variétés dans variétés, Comm. Math. Helv. 36 (1961), 47-82.
[3] , Differentiable links, Topology, 1 (1962), 241-244.
[4] James, I. M. and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres (1), Proc. London Math. Soc. 4 (1954), 196-218.
[5] Kervaire, M. A. and J. W. Milnor, Groups of homotopy spheres : 1. Ann. of Math. 77 (1963), 504-537.
[6] Lashof, R. K., Lecture note on Novikov-Browder's theorem, Mimeographed notes.
[7] Milnor, J., A procedure for killing homotopy groups of differentiable manifolds, Symposia in Pure Math. A. M. S. 3 (1961), 39-55.
[8] Novikov, S. P., Topological invariance of rational Pontrjagin classes, Dokl. Akad. Nauk SSSR 163 (1965), 298-300.
[9] Palais, R.S., Local triviality of the restriction map for embeddings, Comm. Math. Helv. 34 (1960), 305-312.
[10] Smale, S., On the structure of 5-manifolds, Ann. of Math. 75 (1962), 38-46.
[11] Sutherland, W. A., A note on the parallelizability of sphere bundles over spheres, J. London Math. Soc. 39 (1964), 55-62.
[12] Tamura, I., On the classification of sufficiently connected manifolds, J. Math. Soc. Japan 20 (1968), 371-389.
[13] Whitney, H., The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. 45 (1944), 220-246.
[14] Wall, C. T. C., Classification problems in differential topology I, Topology 2 (1963), 253-261.

[^0]: 1) Mr. H. Sato informed me that he proved all the case.
[^1]: 2) More precise structure of $M^{2^{n}}$ in this case has been given by Tamura [13].
