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Weyl Groups Associated with
Affine Reflection Systems of Type A1

(Coxeter Type Defining Relations)

by

Saeid Azam and Mohammad Nikouei

Abstract

We offer a presentation for the Weyl group of an affine reflection system R of type A1 as
well as a presentation for the so called hyperbolic Weyl group associated with an affine
reflection system of type A1. Applying these presentations to extended affine Weyl groups,
and using a description of the center of the hyperbolic Weyl group, we also give a new
finite presentation for an extended affine Weyl group of type A1. Our presentation for the
(hyperbolic) Weyl group of an affine reflection system of type A1 is the first nontrivial
presentation given in this generality, and can be considered as a model for other types.
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§0. Introduction

Weyl groups, as reflection groups, always give a geometric meaning to underlying

structures such as root systems, Lie algebras and Lie groups. Thus to get a “good”

perspective of these structures, one needs to have a better understanding of their

Weyl groups. The present work is dedicated to the study of some new presentations

for (hyperbolic) Weyl groups associated with affine reflection systems of type A1.

Affine reflection systems are the most general known extensions of finite and

affine root systems introduced by E. Neher and O. Loos in [LN2]. They include
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locally finite root systems, toroidal root systems, extended affine root systems,

locally extended affine root systems, and root systems extended by an abelian

group. In 1985, K. Saito [S] introduced the notion of an extended affine root

system as a generalization of finite and affine root systems. For a systematic study

of such root systems the reader is referred to [AP]. Another generalization of finite

root systems are locally finite root systems; for a complete account see [LN1]. Root

systems extended by an abelian group and locally extended affine root systems,

introduced in [Y2] and [Y1], are two other generalizations which include extended

affine root systems and locally finite root systems, respectively.

In [AYY], the authors introduce an equivalent definition for an affine reflec-

tion system (see Definition 1.1) which we will use here. In the finite and affine

cases, the corresponding Weyl groups are essentially known. In particular, it is

known that they are Coxeter groups and that their actions implement a specific

geometric and combinatorial structure on their underlying root systems. In the ex-

tended affine case, however, it is known that if the nullity is greater than one, then

the corresponding hyperbolic Weyl groups, called extended affine Weyl groups, are

not Coxeter groups (see [H3, Theorem 3.6]). Here we record some advances made

on presentations of (hyperbolic) Weyl groups of certain subclasses of affine reflec-

tion systems. As the starting point in this direction, we can name the works of

[Kr], [A2] and [A1] which consider certain presentations for toroidal Weyl groups

and extended affine Weyl groups. In [ST], the authors give a generalized Coxeter

presentation for extended affine Weyl groups of nullity 2. In [AS4], [AS3], [AS2],

[H2] and [H3], the authors offer some new presentations for extended affine Weyl

groups; they achieve this by a group-theoretical analysis of the structure and in

particular of the center of extended affine Weyl groups. For a comprehensive ac-

count of the structure of extended affine Weyl groups, the reader is referred to

[MS], [A2], [AS1], [H1] and [H2].

In the study of groups associated with affine reflection systems and other

extensions of finite and affine root systems, type A1 has always played a special role

and is usually considered as a model for other types. A philosophical justification

for this is that any (tame) affine reflection system can be considered as the union

of a family of affine reflection systems of type A1.

In this work, we study two groups associated with an affine reflection sys-

tem R. The first one, defined in [LN2], is called the Weyl group of R which we

denote by W, and the other, denoted by W̃, is defined when the ground abelian

group is torsion-free. We call W̃ the hyperbolic Weyl group of R (see Definition

1.5; compare with [H2, Definition 3.1]). One should note that the notion of a hy-
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perbolic Weyl group is a generalization of the definition of an extended affine Weyl

group.

Let R be an affine reflection system of type A1 in an abelian group A. In

Section 1, we give preliminary definitions as well as record some results and facts

on affine reflection systems. In Sections 2 and 3, we offer two presentations for W
and W̃, respectively (see Theorems 2.6 and 3.5). A quick look at these presentations

shows that bothW and W̃ have soluble word problems. Also, using the description

of the center of W̃ given in Proposition 3.6, one perceives that W̃ is a central

extension ofW. In Theorem 3.9, we prove under a very particular set of conditions

that the existence of a presentation for W is equivalent to the existence of a

presentation for W̃. This is the main tool in Section 4 for obtaining a presentation

for W̃ in the case when the given reflectable base is elliptic-like. In Section 4, we

assume that R is an extended affine root system of type A1, i.e., R is an affine

reflection system in a free abelian group A of rank ν + 1. Then we offer two

finite presentations, one for W in Theorem 4.3 and the other for the so called

baby extended affine Weyl group W̃ of type A1 in Proposition 4.5. The latter

presentation has ν + 1 generators and ν(ν + 1)/2 + ν + 1 relations, where the

relations consist of ν(ν + 1)/2 central elements and ν + 1 involutions. The paper

concludes with an appendix, Section 5, in which we provide a geometric approach

to the proof of Theorem 4.3.

Some of our results are suggested by running a computer program designed

specifically for calculating certain relations among elements of an extended affine

Weyl group of type A1. This program consists of several algorithms, written in

Visual Basic .Net. The interested reader can find the program and its source code

at http://sourceforge.net/projects/central-exp/files/.

§1. Affine reflection systems and their Weyl groups

In this section, we recall the definition and some properties of affine reflection

systems, introduced by E. Neher and O. Loos in [LN2]. Here we follow an equivalent

definition given in [AYY]. Let A be an abelian group. By a symmetric form on A,

we mean a symmetric bi-homomorphism (·, ·) : A×A→ Q. The radical of the form

is the subgroup A0 = {α ∈ A | (α,A) = 0} of A. Also, let A× = A\A0, Ā = A/A0

and ¯: A→ Ā be the canonical map. The form (·, ·) is called positive definite (resp.

positive semidefinite) if (α, α) > 0 (resp. (α, α) ≥ 0) for all α ∈ A \ {0}. If (·, ·) is

positive semidefinite, then it is easy to see that

A0 = {α ∈ A | (α, α) = 0}.

Assume from now on that (·, ·) is positive semidefinite on A. For a subset B of A,
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let B× = B \ A0 and B0 = B ∩ A0. For α, β ∈ A, if (α, α) 6= 0 set (β, α∨) :=

2(β, α)/(α, α), and if (α, α) = 0 set (β, α∨) := 0. A subset X of A is called

connected if it cannot be written as a disjoint union of two nonempty orthogonal

subsets. The form (·, ·) induces a unique form on Ā by

(ᾱ, β̄) = (α, β) for α, β ∈ A.

This form is positive definite on Ā. Thus, Ā is a torsion-free group. For a subset S

of A, we denote by 〈S〉 the subgroup generated by S.

Here is the definition of an affine reflection system given in [AYY].

Definition 1.1. Let A be an abelian group equipped with a nontrivial symmetric

positive semidefinite form (·, ·). Let R be a subset of A. The triple (A, (·, ·), R), or

just R if there is no confusion, is called an affine reflection system if it satisfies the

following three axioms:

(R1) R = −R,

(R2) 〈R〉 = A,

(R3) for α ∈ R× and β ∈ R, there exist d, u ∈ Z≥0 such that

(β + Zα) ∩R = {β − dα, . . . , β + uα} and d− u = (β, α∨).

The affine reflection system R is called irreducible if

(R4) R× is connected.

Moreover, R is called tame if

(R5) R0 ⊆ R× −R× (elements of R0 are nonisolated).

Finally R is called reduced if

(R6) α ∈ R× ⇒ 2α 6∈ R×.

Elements of R× (resp. R0) are called nonisotropic roots (resp. isotropic roots). An

affine reflection system (A, (·, ·), R) is called a locally finite root system if A0 = {0}.

Here, we recall some results about the structure of affine reflection systems

from [AYY]. The image of R under ¯ is denoted by R̄. Since the form is nontrivial,

A 6= A0. It then follows from the axioms that 0 ∈ R.

Proposition 1.2 ([AYY, Corollary 1.9]). If (A, (·, ·), R) is an affine reflection

system, then (R̄, (·, ·), Ā) is a locally finite root system. In particular, if R is irre-

ducible, the induced form on V̄ := Q⊗Z Ā is positive definite.
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The type of R is defined to be the type of R̄. Since this work is devoted to

the study of Weyl groups associated with affine reflection systems of type A1,

for the rest of this work we assume that (A, (·, ·), R) is a tame irreducible affine

reflection system of type A1. By [AYY, Theorem 1.13], R contains a finite root

system Ṙ = {0,±ε} and a subset S ⊆ R0 such that

(1.1) R = (S + S) ∪ (Ṙ+ S),

where S is a pointed reflection subspace of A0, in the sense that

(1.2) 0 ∈ S, S ± 2S ⊆ S, and 〈S〉 = A0.

In fact by [AYY, Theorem 1.13], any tame irreducible affine reflection system of

type A1 arises this way.

Remark 1.3. By [AYY, Remark 1.16], the definition of a tame irreducible affine

reflection system of type A1 is equivalent to the definition of an irreducible root

system extended by an abelian group, of type A1, defined by Y. Yoshii [Y2]. If A

is a free abelian group of finite rank and R is a tame irreducible affine reflection

system, we may identify R with the subset 1⊗R of R⊗QA. Then R is isomorphic

to an extended affine root system in the sense of [AP].

Let Aut(A) be the group of automorphisms of A. For α ∈ A, one defines

wα ∈ Aut(A) by

wα(β) = β − (β, α∨)α.

We call wα the reflection based on α, since it sends α to −α and fixes pointwise

the subgroup {β ∈ A | (β, α) = 0}. Note that if α ∈ A0, then according to our

convention, (β, α∨) = 0 for all β and so wα = idA. For a subset S of R, the

subgroup of Aut(A) generated by wα, α ∈ S, is denoted by WS .

Now we can define the Weyl group of the affine reflection system R.

Definition 1.4. W :=WR is called the Weyl group of R.

In a similar way, one defines wᾱ, the reflection based on ᾱ, for ᾱ ∈ Ā, and W̄,

the Weyl group of R̄, which is a subgroup of Aut(Ā) generated by wᾱ, ᾱ ∈ R̄.

Next we associate with R another reflection group. To do so, until the end

of this section we assume that A is a torsion-free abelian group. To justify this

assumption, we recall that the root system of any invariant affine reflection algebra

over a field of characteristic zero is an affine reflection system whose Z-span is

a torsion-free abelian group. Indeed, affine reflection systems corresponding to

invariant affine reflection algebras are contained in the dual space of the so called

toral subalgebras. Thus the root system is a subset of a torsion-free group.
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According to [AYY, Remark 1.6(ii)], one can transfer the form on A to the

vector space V := Q ⊗Z A. Then the radical of the form can be identified with

V0 := Q⊗A0 and one may conclude that the form on V is a positive semidefinite

symmetric bilinear form. Then A and R can be identified with subsets 1⊗A and

1⊗R of V, respectively. Set Ȧ = Zε and V̇ := Q⊗ Ȧ; then we have V = V̇ ⊕ V0.

Since 〈S〉 = A0, it follows that S ≡ 1 ⊗ S spans V0. So S contains a basis

B0 = {σj | j ∈ J} of V0. Therefore, if Ḃ = {ε}, then B = Ḃ ∪B0 forms a basis

for V. For j ∈ J , define λj to be the element of the dual space (V0)? of V0 given

by λj(σi) = δij . We call (B0)? := {λj | j ∈ J} the dual basis of B0. Let (V0)† be

the subspace of (V0)? spanned by the dual basis (B0)?, that is,

(V0)† :=
∑
j∈J

Qλj .

Note that (V0)†, as a subspace of (V0)?, can be identified with the restricted dual

space
∑
j∈J(Qσj)? of V0 with respect to the basis {σj | j ∈ J}. We now set

Ṽ := V ⊕ (V0)† = V̇ ⊕ V0 ⊕ (V0)†.

We then extend the form (·, ·) on V to a nondegenerate form on Ṽ, denoted again

by (·, ·), as follows:

• (V̇, (V0)†) := ((V0)†, (V0)†) := {0},
• (σ, λ) := λ(σ) for σ ∈ V0 and λ ∈ (V0)†.

We call Ṽ the hyperbolic extension of V with respect to the basis {σj | i ∈ J}. For

each α ∈ V, we define wα ∈ Aut(Ṽ) by

wα(β) = β − (β, α∨)α,

where (β, α∨) := 2(β, α)/(α, α) if (α, α) 6= 0, and (β, α∨) := 0 if (α, α) = 0.

Clearly, wα is a reflection with respect to the vector space Ṽ. For a subset S of V,

we define W̃S to be the subgroup of Aut(Ṽ) generated by wα, α ∈ S.

Definition 1.5. We call W̃ := W̃R the hyperbolic Weyl group of R.

We note that for w ∈ W̃, α ∈ V and β, γ ∈ Ṽ, we have

(1.3) w2
α = 1, (wβ,wγ) = (β, γ), and wwαw

−1 = ww(α).

Since A as a torsion-free abelian group is embedded in V, the restriction of

elements of W̃ to V induces an epimorphism ϕ : W̃ → W.
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§2. Alternating presentation

Let A be an arbitrary abelian group and (A, (·, ·), R) be a fixed tame irreducible

affine reflection system of type A1. As we have seen in (1.1),

R = (S + S) ∪ (Ṙ+ S),

where S is a subset of R0 satisfying (1.2), and Ṙ = {0,±ε}. We may assume that

(2.1) (ε, ε) = 2.

Note that A = Ȧ ⊕ A0, 〈Ṙ〉 = Ȧ and 〈R0〉 = 〈S〉 = A0. Let p : A → A0 be the

projection onto A0.

For each α ∈ A, we have

α = sgn(α)ε+ p(α),

where sgn : A → Z is a group epimorphism. Clearly, each α ∈ A is uniquely

determined by sgn(α) and p(α). Then for α ∈ R× and β ∈ R, we have

(2.2) (β, α∨) = (β, α) = 2 sgn(β) sgn(α).

Lemma 2.1. Let w := wα1
· · ·wαt ∈ W. Then for β ∈ R×, we have

sgn(wβ) = (−1)t sgn(β) and p(wβ) = p
(
β− 2(−1)t sgn(β)

t∑
i=1

(−1)i sgn(αi)αi

)
.

Proof. First, let t = 1; then wβ = wα(β) = β − (β, α)α, so by (2.2) we have

(2.3) sgn(wβ) = sgn(β)− 2 sgn(α) sgn(β) sgn(α) = − sgn(β) = (−1)1 sgn(β),

and

(2.4) p(wβ) = p(β − (β, α)α) = p(β − 2 sgn(α) sgn(β)α).

So the result holds for t = 1. Now, assume that the statement holds for t ≤ k.

Now if w′ = wα2
· · ·wαk+1

, then for t = k+ 1, we have wβ = w′β− (w′β, α1)α1, so

sgn(wβ) = sgn(w′β)− 2 sgn(w′β) sgn(α1) sgn(α1)

=− sgn(w′β) = −(−1)k sgn(β) = (−1)k+1 sgn(β).
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Also

p(wβ) = p(w′β)− 2 sgn(w′β) sgn(α1)p(α1)

= p
(
β − 2(−1)k sgn(β)

k+1∑
i=2

(−1)i−1 sgn(αi)αi
)
− 2(−1)k sgn(β) sgn(α1)p(α1)

= p
(
β − 2(−1)k+1 sgn(β)

k+1∑
i=1

(−1)i sgn(αi)αi

)
.

Proposition 2.2. For α1, . . . , αn ∈ R×, we have w := wα1
· · ·wαn = 1 in W if

and only if n is even and

n∑
i=1

(−1)i sgn(αi)p(αi) = 0.

In particular, if n is odd, then w2 = 1.

Proof. To prove the first assertion, since R× generates A, it is enough to show that,

for each β ∈ R×, wβ = β if and only if n is even and
∑n
i=1(−1)i sgn(αi)p(αi) = 0.

However, since the maps p and sgn determine wβ uniquely, the result immediately

follows from Lemma 2.1.

Now assume that n is odd; then for w2 = wα1 · · ·wαnwα1 · · ·wαn , we have

n∑
i=1

(−1)i sgn(αi)p(αi) +

2n∑
i=n+1

(−1)i sgn(αi−n)p(αi−n)

=

n∑
i=1

[(−1)i + (−1)n+i] sgn(αi)p(αi) = 0,

where the last equality holds since n is odd. So w2 = 1 by the first assertion.

Inspired by Proposition 2.2, we make the following definition.

Definition 2.3. Let P be a subset of R×. We call a k-tuple (α1, . . . , αk) of roots

in P an alternating k-tuple in P if k is even and
∑k
j=1(−1)j sgn(αj)p(αj) = 0.

We denote by Alt(P ) the set of all alternating k-tuples in P for all k. By Propo-

sition 2.2, if (α1, . . . , αk) ∈ Alt(P ), then wα1
· · ·wαk = 1 in W.

Corollary 2.4. For α1, . . . , αt ∈ R× we have, as elements of W,

wα1 · · ·wαt = wα1 · · ·wαi−1wαi+2wαi+1wαiwαi+3 · · ·wαt

whenever 1 ≤ i ≤ t− 2.
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Proof. Clearly equality holds if and only if wαiwαi+1
wαi+2

= wαi+2
wαi+1

wαi , and

this in turn holds if and only if (wαiwαi+1
wαi+2

)2 = 1, which holds by Proposi-

tion 2.2.

For our next result, we recall a definition from [AYY, Definition 1.19(ii)]. First

we recall that for a subset S of A,WS is by definition the subgroup ofW generated

by all reflections wα, α ∈ S.

Definition 2.5. Let P ⊆ R×.

(i) The set P is called reflectable if WPP = R×.

(ii) The set P is called a reflectable base if P is a reflectable set and no proper

subset of P is reflectable.

Obviously, if P is a reflectable set, then W = WP . In [AYY], reflectable sets

and reflectable bases are characterized for tame irreducible affine reflection systems

of reduced types. As shown in [A2], one can find finite reflectable sets and bases for

many interesting affine reflection systems, such as extended affine root systems.

Here is our main result of this section which provides a presentation for the

Weyl group of an affine reflection system of type A1.

Theorem 2.6. Let (A, (·, ·), R) be an affine reflection system of type A1 and let

Π ⊆ R× be a reflectable set for R. Then W is isomorphic to the group G defined by

• generators: xα, α ∈ Π,

• relations: xα1
· · ·xαk , (α1, . . . , αk) ∈ Alt(Π).

Proof. By definition of a reflectable set we haveW = 〈wα | α ∈ Π〉. Let xα1
· · ·xαk

be a defining relation in G. Then by definition, k is even,
∑k
j=1(−1)j sgn(αj)p(αj)

= 0 and αi ∈ Π for 1 ≤ i ≤ k. By Proposition 2.2, we have wα1
· · ·wαk = 1.

So, the assignment xα 7→ wα, α ∈ Π, induces an epimorphism φ : G → W. Let

x = xα1
· · ·xαk ∈ Kerφ, αi ∈ Π. Then we have

1 = φ(x) = wα1 · · ·wαk .

By Proposition 2.2, k is even and p(
∑k
j=1(−1)j sgn(αj)αj) = 0. Therefore, we

have (α1, . . . , αk) ∈ Alt(Π) and so φ is an isomorphism.

Remark 2.7. Let Π′ be obtained from Π by changing the signs of all elements of

a subset of Π. Then it is clear that Π is reflectable if and only if Π′ is reflectable. So

without loss of generality we may assume that Π ⊆ ε+S. Now if we set Π̂ = p(Π),

then the above presentation can be written in the form:

• generators: xτ , τ ∈ Π̂,

• relations: xτ1 · · ·xτk , k is even and
∑k
j=1(−1)jτj = 0.
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§3. Hyper-alternating presentation

Throughout this section, we assume that A is a torsion-free abelian group. Let

(A, (·, ·), R) be an affine reflection system of typeA1. As in Section 1, let V = Q⊗ZA

and consider the basis B = {ε} ∪ B0 of V where B0 = {σj | j ∈ J} is a basis

of V0. Let (B0)∗ = {λj | j ∈ J} be the dual basis of B0 defined in Section 1 and

consider the corresponding hyperbolic extension Ṽ = V ⊕ (V0)† of V. As we have

already seen, since A is torsion-free, we can identify R with 1 ⊗ R as a subset of

V ⊆ Ṽ. This is done in order to study the hyperbolic Weyl group W̃ of R (see

Definition 1.5). We fix a reflectable set

Π = {αi | i ∈ I} ⊆ R×

where I is an index set. Recall that p : A → A0 is the projection with respect to

the decomposition A = Ȧ⊕A0 of A. Since A is identified with the subgroup 1⊗A
of V, one can consider p as the restriction of the projection V → V0 with respect

to the decomposition V = V̇ ⊕V0. For α ∈ R, let pj(α) ∈ Q be the j-th coordinate

of p(α) with respect to the basis B0 of V0, that is,

p(α) =
∑
j∈J

pj(α)σj ,

where pj(α) = 0 for all but a finite number of j ∈ J .

Now let (α1, . . . , αk) ∈ Alt(Π). Then

0 =

k∑
i=1

(−1)i sgn(αi)p(αi) =
∑
j∈J

k∑
i=1

(−1)i sgn(αi)pj(αi)σj .

So for s ∈ J , we have

0 = λs

(∑
j∈J

k∑
i=1

(−1)i sgn(αi)pj(αi)σj

)
=
∑
j∈J

k∑
i=1

(−1)i sgn(αi)pj(αi)λs(σj)

=

k∑
i=1

(−1)i sgn(αi)ps(αi).

Summarizing the above discussion, we have

(3.1) (α1, . . . , αk) ∈ Alt(Π) ⇔
k∑
i=1

(−1)i sgn(αi)ps(αi) = 0 for all s ∈ J.

For our next result, we note that λj − w(λj) ∈ V for all j ∈ J and w ∈ W̃.

Lemma 3.1. Let w = wα1
· · ·wαk ∈ W̃, αi ∈ Π. Then, for j ∈ J , we have

sgn(λj − w(λj)) =

k∑
i=1

(−1)i sgn(αi)pj(αi)
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and

p(λj−w(λj)) =

k∑
s=1

pj(αs)p(αs)+2

k∑
s=2

(−1)spj(αs) sgn(αs)

s−1∑
r=1

(−1)r sgn(αr)p(αr).

Proof. We have wαk(λj) = λj − (λj , αk)αk so

p(wαk(λj)− λj) = (λj , αk)p(αk) = λj(p(αk))p(αk) = pj(αk)p(αk).

Now if w′ = wα1
· · ·wαk−1

, then

w(λj) = w′(λj − pj(αk)αk) = w′(λj)− pj(αk)w′(αk).

Then by the induction hypothesis and Lemma 2.1, we have

p(λj − w(λj)) = p(λj − w′(λj)) + pj(αk)p(w′(αk))

=

k−1∑
s=1

pj(αs)p(αs) + 2

k−1∑
s=2

(−1)s sgn(αs)

s−1∑
r=1

(−1)r sgn(αr)p(αr)

+ pj(αk)
(
p(αk)− 2(−1)k−1 sgn(αk)

k−1∑
r=1

(−1)r sgn(αr)p(αr)
)

=

k∑
s=1

pj(αs)p(αs) + 2

k∑
s=2

(−1)s sgn(αs)

s−1∑
r=1

(−1)r sgn(αr)p(αr).

Also

sgn(λj − w(λj)) = sgn(w′(λj))− pj(αk) sgn(w′(αk))

=

k−1∑
i=1

(−1)i sgn(αi)pj(αi)− (−1)k−1pj(αk) sgn(αk)

=

k∑
i=1

(−1)i sgn(αi)pj(αi).

The following is now clear from Lemma 3.1.

Proposition 3.2. Let w = wα1
· · ·wαk ∈ W̃, αi ∈ R×. Then w = 1 in W̃ if and

only if k is even and for all j ∈ J ,

(3.2)

k∑
i=1

(−1)i sgn(αi)pj(αi) = 0

and

(3.3)

k∑
s=1

pj(αs)p(αs) + 2

k∑
s=2

(−1)spj(αs) sgn(αs)

s−1∑
r=1

(−1)r sgn(αr)p(αr) = 0.
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Proof. Let w be as in the statement. From the definition of Ṽ, it is clear that

w = 1 in W̃ if and only if w = 1 in W and w(λj) = λj for all j ∈ J . Now from

Proposition 2.2, we have w = 1 in W if and only if k is even and (3.2) is satisfied.

Also by Lemma 3.1, w(λj) = λj if and only if (3.2) and (3.3) hold.

Remark 3.3. Since wα=w−α, we may assume in Proposition 3.2 that sgn(αi)=1

for all i. Then the statement can be written in the form: w = 1 in W̃ if and only

if k is even and for all j ∈ J ,

k∑
i=1

(−1)ipj(αi) = 0

and
k∑
s=1

pj(αs)p(αs) + 2

k∑
s=2

(−1)spj(αs)

s−1∑
r=1

(−1)rp(αr) = 0.

Inspired by Proposition 3.1, we make the following definition.

Definition 3.4. Let P be a subset of R×. We call (α1, . . . , αk), αi ∈ P , a hyper-

alternating k-tuple in P if k is even and (3.2) and (3.3) hold for all j ∈ J . We denote

by Ãlt(P ) the set of all hyper-alternating k-tuples in P for all k. By Proposition

3.2, wα1
· · ·wαk = 1 in W̃ if and only if (α1, . . . , αk) ∈ Ãlt(R×).

Using an argument similar to the proof of Theorem 2.6, we summarize the

results of this section in the following theorem.

Theorem 3.5. Let Π ⊆ R× be a reflectable set for R. Then W̃ is isomorphic to

the group G defined by

• generators: yα, α ∈ Π,

• relations: yα1
· · · yαk , (α1, . . . , αk) ∈ Ãlt(Π).

We note that if w = wα1 · · ·wαk with αi’s in R×, then depending on the

context we may consider w as an element of either W or W̃.

Proposition 3.6. Let R0 6= {0} and w := wα1
· · ·wαk with αi’s in R×. The

following statements are equivalent:

(i) (α1, . . . , αk) ∈ Alt(R×),

(ii) w = 1 in W (or equivalently w|V = idV),

(iii) if w = wβ1
· · ·wβm with βi’s in R×, then (β1, . . . , βm) ∈ Alt(R×),

(iv) w ∈ Z(W̃).
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Proof. The implications (i)⇔(ii)⇔(iii) follow at once from Proposition 2.2 or The-

orem 2.6.

(ii)⇒(iv). Assume w = 1 in W. Therefore w(α) = α for all α ∈ V and so for

any α ∈ R× we have wwαw
−1 = ww(α) = wα. Thus w ∈ Z(W̃).

(iv)⇒(ii). Let z ∈ Z(W̃). For each α ∈ R×, we have zwαz
−1 = wα. By (1.3),

wz(α) = wα.

The definition of a reflection and the fact that R is a reduced root system yield

z(α) = ±α.

It is enough to show that z acts as the identity on ε+ S, which is a spanning set

of V. We use the fact that each w ∈ W̃ acts as the identity map on V0. Since

R0 6= {0}, there exists 0 6= σ ∈ S. Then if z(ε+ σ) = −ε− σ, we have

z(ε) + σ = −ε− σ,

which is a contradiction in both cases z(ε) = ±ε. Thus

z(ε+ σ) = ε+ σ.

Then

z(ε) = z(ε+ σ − σ) = ε+ σ − σ = ε.

Corollary 3.7. The group W̃ is a central extension of W by Z(W̃), that is,

1→ Z(W̃)
i
↪→ W̃ ϕ→W → 1

is a short exact sequence, where ϕ(w) = w|V for w ∈ W̃.

Proof. As mentioned at the end of Section 1, the map ϕ is an epimorphism. Now,

by Proposition 3.6, we have Kerϕ = Z(W̃).

An interesting subclass of affine reflection systems is the class for which the

center Z(W̃) of W̃ is a free abelian group. The next theorem shows that in this case

the existence of a presentation forW is equivalent to the existence of a presentation

for W̃. Notice the crucial role of Z(W̃) in the proof.

Convention 3.8. Suppose that H is a group and {hα | α ∈ P} is a fixed subset

of H. For a k-tuple f = (α1, . . . , αk) in P , k a positive integer, we set

fH := hα1
· · ·hαk ∈ H.
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Now let Π be a reflectable set for R, and {zl}l∈L be a fixed set of generators

for Z(W̃). Then, using Proposition 3.6 together with the fact that {wα | α ∈ Π}
generates W̃, each z`, ` ∈ L, can be written in the form

z` = fW̃

for some f = (α1, . . . , αk) ∈ Alt(Π) (see Convention 3.8).

As usual, [x, y] denotes the commutator xyx−1y−1 of elements x, y of a group.

Theorem 3.9. Let Π be a reflectable set for R and assume that Z(W̃) is a free

abelian group. Fix a free basis {zl}l∈L for Z(W̃), and for each ` ∈ L let f ` =

(α`1, . . . , α
`
k`

) be a fixed element of Alt(Π) such that z` = f `
W̃

. Then the following

statements are equivalent:

(i) The assignment wα 7→ xα, α ∈ Π, induces an isomorphism ψ from the Weyl

group W of R onto the group G defined by

• generators: xα, α ∈ Π,

• relations: x2
α, f lG, α ∈ Π, l ∈ L.

(ii) The assignment wα 7→ x̃α, α ∈ Π, induces an isomorphism θ from the hyper-

bolic Weyl group W̃ of R onto the group G̃ defined by

• generators: x̃α, α ∈ Π,

• relations: x̃2
α, [x̃α, f

l
G̃

], α ∈ Π, l ∈ L.

Proof. (i)⇒(ii). Consider the assignment

θ : {x̃α}α∈Π → {wα}α∈Π, x̃α 7→ wα.

Since any defining relation in G̃ corresponds to a relation in W̃, the map θ can

be extended to an epimorphism from G̃ onto W̃. We proceed with the proof by

showing that θ is injective.

Consider the subgroup Z̃ := 〈f l
G̃
| l ∈ L〉 of G̃. We show that Z̃ ∼= Z(W̃)

and G̃/Z̃ ∼=W. From the defining relations of G̃, it is clear that Z̃ is contained in

Z(G̃). Since

θ(f l
G̃

) = f lW̃ = zl

and {zl | l ∈ L} is basis of Z(W̃), it follows easily that

θ1 := θ|Z̃ : Z̃ → Z(W̃)

is an isomorphism.

Next, from Section 1, recall that ϕ : W̃ → W is the epimorphism which is

defined by ϕ(w) = w|V , with Kerϕ = Z(W̃), and consider the epimorphism ϕ ◦ θ :
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G̃→W. We have Z̃ ⊆ Ker(ϕ◦θ). So, there is an epimorphism θ2 : G̃/Z̃ →W such

that θ2(x̃Z̃) = ϕ◦θ(x̃) for x̃ ∈ G̃. In particular, for α ∈ Π, we have θ2(x̃αZ̃) = wα.

Let π : G̃→ G̃/Z̃ be the canonical map and ı : Z̃ → G̃ be the inclusion. Then

we have the following commutative diagram of exact sequences:

1 // Z(W̃) �
� i // W̃

ϕ // W // 1

1 // Z̃ �
� ı //

θ1

OO

G̃
π //

θ

OO

G̃/Z̃ //

θ2

OO

1

Since θ1 is injective, if we show that θ2 is injective, it will follow that θ is injective,

and thus W̃ ∼= G̃.

To show that θ2 is injective we show that θ2 is invertible. For α ∈ Π, we have

(x̃αZ̃)2 = Z̃ and, for l ∈ L, we have f l
G̃
Z̃ = Z̃. Thus any defining relation in G

corresponds to a relation in G̃/Z̃. So, there is an epimorphism κ : G→ G̃/Z̃, where

κ(xα) = x̃αZ̃ for α ∈ Π. Ultimately, we have an epimorphism κ ◦ ψ : W → G̃/Z̃

such that κ ◦ ψ(wα) = x̃αZ̃. Clearly κ ◦ ψ is the inverse of θ2.

(ii)⇒(i). From Theorem 2.6, we know that the assignment wα 7→ yα, α ∈ Π,

induces an isomorphism from W onto the group G′ defined by

• generators: yα, α ∈ Π,

• relations: yα1 · · · yαk , (α1, . . . , αk) ∈ Alt(Π).

It is clear that every relation in G̃ is a relation in G. Thus we can extend the

natural one-to-one correspondence ρ : {x̃α}α∈Π → {xα}α∈Π to an epimorphism

ρ : G̃→ G, where ρ(x̃α) = xα. Thus ρ ◦ θ is an epimorphism from W̃ onto G. We

will show that G ∼= G′.

Let φ : {xα}α∈Π → {yα}α∈Π be the natural one-to-one correspondence be-

tween the set of generators of G and the set of generators of G′. Since, for α ∈ Π,

we have (α, α) ∈ Alt(Π) and f l ∈ Alt(Π) for l ∈ L, each relation in G corre-

sponds naturally to a defining relation in G′. Thus φ can be extended to a group

epimorphism ψ : G→ G′, where ψ(xα) = yα for α ∈ Π.

Now, let yα1
· · · yαk be a relation in G′. Thus (α1, . . . , αk) ∈ Alt(Π). By Propo-

sition 3.6, we have w := wα1 · · ·wαk ∈ Z(W̃). So there are l1, . . . , lt ∈ L and

n1, . . . , nt ∈ Z such that

w = (zl1)n1 · · · (zlt)nt = (f l1
W̃

)n1 · · · (f lt
W̃

)nt .

Thus

xα1
· · ·xαk = ρ ◦ θ(w) = ρ ◦ θ((f l1

W̃
)n1 · · · (f lt

W̃
)nt) = (f l1G )n1 · · · (f ltG )nt = 1.
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So, any defining relation in G′ corresponds to a relation in G. Thus φ−1 can be

extended to a group epimorphism η : G′ → G. Since ψ is an extension of φ and η

is an extensions of φ−1, they are inverse of each other. Thus G ∼= G′ ∼=W.

Remark 3.10. (i) The implication (i)⇒(ii) of Theorem 3.9 is in fact a conse-

quence of a more general result concerning presented groups (see [J, Theorem

10.2]). However, to be applicable to our situation, this general fact would need

quite a few adjustments. For this reason, we preferred to give a direct proof for

this special case.

(ii) According to [A2, Lemma 3.18(i) and Corollary 3.29], if R is an extended

affine root system in the sense of [AP, Definition II.2.1], then Z(W̃) is a free abelian

group of finite rank. So Theorem 3.9 is applicable to extended affine Weyl groups

of type A1. In the next section we will show that when R is an extended affine

root system, W is isomorphic to the group G defined in Theorem 3.9 for a special

reflectable set Π and a particular set of f l’s.

§4. Application to extended affine Weyl groups

Let (A, (·, ·), R) be an affine reflection system. In this section, we assume that A0

is a free abelian group of rank ν. Then 1 ⊗ R as a subset of V := R ⊗Q A turns

out to be an extended affine root system of type A1 in the sense of [AP, Definition

II.2.1]. So the hyperbolic Weyl group W̃ is just an extended affine Weyl group in

the sense of [A2, Definition 2.14]. Now, similar to what we have seen in Section 3,

R can be identified with 1⊗R and we have V = V̇ ⊕ V0, where V̇ = spanR Ȧ and

V0 = spanRA
0. Set

Λ := A0.

Then

R = (S + S) ∪ (Ṙ+ S),

where, in this case, the pointed reflection space S is a semilattice in Λ in the sense

of [AP, Definition II.1.2], that is, a subset of Λ satisfying

0 ∈ S, S ± 2S ⊆ S, 〈S〉 = Λ.

By [AP, Remark II.1.6], we have

S =

m⋃
i=0

(τi + 2Λ),

where τi’s represent distinct cosets of 2Λ in Λ for 1 ≤ i ≤ m, and τ0 = 0. By

[AP, Proposition II.1.11], Λ has a Z-basis consisting of elements of S. So we may
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assume that

{σ1 := τ1, . . . , σν := τν}
is a Z-basis of Λ. It follows from [AYY, Theorem 3.1] that

(4.1) Π := {ε, ε+ τ1, . . . , ε+ τm}

is a reflectable base for R. Considering these facts, there are two extreme cases

for S which we would like to treat separately. The first case is when m = ν. We

call the corresponding root system the baby extended affine root system and we

denote it by Rb. Another extreme case is when S is a lattice, namely S = Λ. The

corresponding root system is called the toroidal root system, which we denote it

by Rt. With our conventions, for any extended affine root system R of type A1

in A, we have Rb ⊆ R ⊆ Rt. This justifies special treatment of Rb and Rt.

The following proposition is essential for obtaining a new presentation for W.

Proposition 4.1. We have

(i) wα+σ+δ = wα+σwαwα+δ for α ∈ R×t and σ, δ ∈ Λ.

(ii) wα+kσwα = (wα+σwα)k for k ∈ Z, α ∈ R×t and σ ∈ Λ.

(iii) W =Wb for any extended affine root system R in A.

Proof. (i)–(ii) The tuples

(α+ σ + δ, α+ σ, α, α+ δ),

(α, α+ kσ,

2k︷ ︸︸ ︷
α+ σ, α, . . . , α+ σ, α) for k > 0,

(α, α+ kσ,

−2k︷ ︸︸ ︷
α, α+ σ, . . . , α, α+ σ) for k < 0,

are elements of Alt(R×t ). Also (ii) is nothing but w2
α = 1 for k = 0. Thus by

Proposition 2.2 and Definition 2.3, (i) and (ii) hold.

(iii) It is enough to show that wα ∈ Wb for each α ∈ ±ε+Λ. Since wα = w−α,

we assume that sgn(α) = 1. Let α = ε+ σ and

σ =

ν∑
i=1

kiσi,

where ki ∈ Z. Using (i), we have

wα = wε+k1σ1wε · · ·wε+kν−1σν−1wεwε+kνσν .

Now for each i, from (ii) we have

wε+kiσiwε = (wε+σiwε)
ki .
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This way we obtain an expression of wα with respect to the reflections based on

elements of Π0 = {ε, ε + σ1, . . . , ε + σν}. Since Π0 is a subset of Rb, we have

wα ∈ Wb.

Here we offer a finite presentation for W which is essential for the rest of this

section. Let Π0 := {α0 := ε, α1 := ε+ σ1, . . . , αν := ε+ σν}. First we analyze the

elements of Alt(Π0) which we need for our presentation.

Remark 4.2. Let f = (αj1 , . . . , αjk) be an element of Alt(Π0). The following can

be easily checked from the definition of Alt(Π0).

(i) From Corollary 2.4, for any 1 ≤ s ≤ k, we have

(αj1 , . . . , αjs−1 , αjs+2 , αjs+1 , αjs , αjs+3 , . . . , αjk) ∈ Alt(Π0).

(ii) Note that Π0 is a linearly independent set. So, if ni is the number of αi
in f for 0 ≤ i ≤ ν, that is,

ni = |{s | 1 ≤ s ≤ k, js = i}|,

then ni is even. Also, for each 1 ≤ r ≤ k there is an odd integer p such that

jr = jr+p.

(iii) If k = 2 then we have f = (αi, αi) for some 0 ≤ i ≤ ν. If k = 4 then either

f = (αi, αi, αj , αj) or f = (αi, αj , αj , αi), for some 0 ≤ i, j ≤ ν. The only possible

alternating 6-tuple f = (αj1 , . . . , αj6) which does not contain an alternating 4-

tuple of the form (αjs , . . . , αjs+3
) has to be of the form f = (αi, αj , αm, αi, αj , αm)

for some 0 ≤ i, j,m ≤ ν.

Theorem 4.3. Let R be an extended affine root system of type A1 and nullity ν.

Then the Weyl group W of R is isomorphic to the group G defined by

• generators: xi, 0 ≤ i ≤ ν,

• relations: x2
k, (x0xixj)

2, 0 ≤ k ≤ ν, 1 ≤ i < j ≤ ν.

Proof. By Proposition 4.1, we haveW =Wb. Since Π0 is a reflectable base for Rb,

Theorem 2.6 implies that Wb is isomorphic to the group G′ defined by

• generators: yα, α ∈ Π0,

• relations: yα1 · · · yαk , (α1, . . . , αk) ∈ Alt(Π0).

Let φ : {xi}νi=0 → {yαi}νi=0 be the natural one-to-one correspondence between the

set of generators of G and the set of generators of G′. Since, for α ∈ Π0, we have

(α, α) ∈ Alt(Π0), and (α0, αi, αj , α0, αi, αj) ∈ Alt(Π0) for 0 ≤ i < j ≤ ν, each

relation in G corresponds naturally to a defining relation in G′. Thus φ can be
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extended to a group epimorphism ψ : G → G′, where ψ(xi) = yαi for 0 ≤ i ≤ ν.

We will show that ψ is an isomorphism.

Let yαj1 · · · yαjk be a defining relation in G′. Then (αj1 , . . . , αjk) ∈ Alt(Π0).

We now prove that x := xj1 · · ·xjk is a relation in G. Notice that k is even. We

argue by induction on m, where k = 2m.

From Remark 4.2(iii), for k = 2, 4, we see that x is one of the expressions x2
i ,

x2
ix

2
j or xix

2
jxi which are clearly relations in G.

Next we examine the case k = 6. It follows easily from the defining relations

of G that

(4.2) (xrxsxt)
2 = 1 and xrxsxt = xtxsxr, if at least one of r, s or t is 0.

If (αj1 , . . . , αj6) contains an alternating 4-tuple f ′ = (αjs , . . . , αjs+3) and y is the

element in G corresponding to f ′, then x has to have one of the forms x2
jy, xjyxj

or yx2
j , and so by the case k = 4, x is a relation in G. Thus by Remark 4.2, we may

assume that the alternating 6-tuple under consideration is (αr, αs, αt, αr, αs, αt),

where none of r, s and t is 0. By (4.2), we have

x= (xrxsxt)
2 = x2

0(xrxsxt)
2 = x0xsxrx0xtxrxsxt = x0xsxtxtxrx0xtxrx0x0xsxt

= x0xsxt(xtxrx0)2x0xsxt = x0xsxtx0xsxt = 1.

Thus x is a relation in G when k = 6, and

(4.3) xrxsxt = xtxrxs for all 0 ≤ r, s, t ≤ ν.

Now, let m > 3 (or k > 6) and assume every expression in G corresponding

to an alternating 2n-tuple is a relation in G, for all n < m. First assume that for

some 1 ≤ r ≤ k − 1, jr = jr+1. Since x2
jr

= 1, we have

x = xj1 · · ·xjk = xj1 · · ·xjr−1
xjr+2

· · ·xjk

and (αj1 , . . . , αjr−1
, αjr+2

, . . . , αjk) is an alternating (k − 2)-tuple. Thus x is a

relation in G, by the induction hypothesis. So, we may assume that jr 6= jr+1

for all 1 ≤ r ≤ k − 1. From Remark 4.2(ii), the number of αj1 appearing in

(αj1 , . . . , αjk) is even and there is an even integer 2 ≤ s ≤ k such that j1 = js.

Since by (4.3), xj1xj2xj3 = xj3xj2xj1 , we have

x = xj1 · · ·xjk = xj3xj2xj1xj4 · · ·xjk .

By repeating this process we can move xj1 next to xjs , namely

x = xj1 · · ·xjk = xj3xj2xj5xj4 · · ·xjs−1
xjs−2

xj1xjs · · ·xjk .
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By Remark 4.2(i), (αj3 , αj2 , αj5 , αj4 , . . . , αjs−1
, αjs−2

, αj1 , αjs , . . . , αjk) is an alter-

nating k-tuple. Thus (αj3 , αj2 , αj5 , αj4 , . . . , αjs−1
, αjs−2

, αjs+1
, . . . , αjk) is an alter-

nating (k − 2)-tuple and

x = xj1 · · ·xjk = xj3xj2xj5xj4 · · ·xjs−1
xjs−2

xjs+1
· · ·xjk .

By the induction hypothesis, the right hand side is a relation in G. Thus every

relation in G′ corresponds to a relation in G. So, φ−1 can be extended to a group

epimorphism η : G′ → G satisfying ψ◦η = 1 and η◦ψ = 1. Thus G ∼= G′ ∼=W.

A slight modification of generators and relations in the statement of Theorem

4.3 provides a new presentation for W which is more useful for our purposes. We

do this in the following proposition. Even though the proof is elementary and

straightforward, we provide the details for the convenience of the reader.

Proposition 4.4. Let B be a subset of {(i, j) | 0 ≤ i < j ≤ ν}. Then W is

isomorphic to the group G defined by

• generators: xk, x(i,j), 0 ≤ k ≤ ν, (i, j) ∈ B,

• relations: x2
k, x2

(i,j), 0 ≤ k ≤ ν, (i, j) ∈ B; x(i,j)xix0xj, (i, j) ∈ B; (xix0xj)
2,

(i, j) 6∈ B.

Proof. If B = ∅ this is Theorem 4.3. Suppose that B 6= ∅. By Theorem 4.3, W is

isomorphic to the group G′ defined by

• generators: yi, 0 ≤ i ≤ ν,

• relations: y2
k, (y0yiyj)

2, 0 ≤ k ≤ ν, 1 ≤ i < j ≤ ν.

By the proofs of Theorems 2.6 and 4.3, this isomorphism is in fact induced by the

assignment wε+σi 7→ yi for 0 ≤ i ≤ ν. We show that G ∼= G′. For (i, j) ∈ B, we

set y(i,j) := yjy0yi ∈ G′. Let Y = {yk}νk=0 ∪ {y(i,j)}(i,j)∈B and define φ : Y →
{xk}νk=0 ∪ {x(i,j)}(i,j)∈B by φ(yk) = xk for 0 ≤ k ≤ ν, and φ(y(i,j)) = x(i,j) for

(i, j) ∈ B. It is obvious that Y is a set of generators for G′. In G, we have x2
k = 1

for 1 ≤ k ≤ ν. Since (xix0xj)
2 = 1, (i, j) 6∈ B, we have (xjxix0)2 = x2

j = 1. Thus

(x0xixj)
2 = (xjxix0)−2 = 1

for (i, j) 6∈ B. Also, (xjx0xi)
2 = x2

(i,j) = 1 for (i, j) ∈ B. Thus

(x0xixj)
2 = xj(xjx0xi)

2xj = x2
j = 1

for (i, j) ∈ B. Thus φ can be extended to an epimorphism ψ : G′ → G.

On the other hand, in G′, we have y(i,j)yiy0yj = yjy0yiyiy0yj = 1 and y2
(i,j)

= 1 for (i, j) ∈ B,

(yiy0yj)
2 = yj(yjyiy0)2yj = yj(y0yiyj)

−2yj = y2
j = 1
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for (i, j) 6∈ B, and y2
k = 1 for 0 ≤ k ≤ ν. So, any defining relation in G corresponds

to a relation in G′. Thus φ−1 can be extended to a group homomorphism η :

G → G′. Since ψ is an extension of φ and η is an extension of φ−1, they are

inverse to each other and G ∼= G′ ∼= W. This completes the proof. Note that

under this isomorphism the generator xk of G maps to the element wε+σk of W
for 0 ≤ k ≤ ν, and the generator x(i,j) of G maps to the element wε+σjwεwε+σi of

W for (i, j) ∈ B.

Recall that each α ∈ R× can be uniquely written in the form ±ε+
∑ν
i=1 siσi

mod 2Λ, where si ∈ {0, 1} for all i. Let Π = {α0, . . . , αm} be as in (4.1). Set

supp(α) = {i | si 6= 0}, and

supp(Π) = {supp(α) | α ∈ Π}.

Since Π is a reflectable base, τi’s represent distinct cosets of 2Λ in Λ, so τi = τj if

and only if supp(αi) = supp(αj). Here we consider all sets supp(α) as ordered sets,

namely if supp(α) = {i1, . . . , it}, then i1 < · · · < it. We call the reflectable base Π

elliptic-like if |supp(α)| ∈ {0, 1, 2} for all α ∈ Π, or equivalently |supp(αk)| = 2 for

ν + 1 ≤ k ≤ m. Since |supp(α)| ≤ ν for α ∈ R×, all extended affine root systems

of nullity ≤ 2 are elliptic-like. Finally we set

BΠ = {(i, j) | {i, j} ∈ supp(Π), 1 ≤ i < j ≤ ν}.

For (i, j) ∈ BΠ, we denote by αij the unique element in Π with supp(α) = {i, j}.

Proposition 4.5. Let R be an extended affine root system in A and Π be the

reflectable base for R as in (4.1). Assume that Π is elliptic-like. Then W̃ is iso-

morphic to the group G̃ defined by

• generators: x̃k, 0 ≤ k ≤ m,

• relations: x̃2
k, [x̃k, x̃sx̃ix̃0x̃j ] if {i, j} = supp(αs); [x̃k, (x̃ix̃0x̃j)

2] if {i, j} 6∈
supp(Π), 0 ≤ k ≤ m, 1 ≤ i < j ≤ ν, ν + 1 ≤ s ≤ m.

Proof. We proceed with the proof in the following steps.

Step 1. We show that Z(W̃) is a free abelian group with basis {zij | 1 ≤ i < j ≤ ν},
where zij ’s are defined, as follows. If {i, j}∈ supp(Π) set zij :=wε+τijwε+τiwεwε+τj ,

where ij is the unique integer satisfying supp(αij ) = {i, j}. If {i, j} 6∈ supp(Π)

set zij := (wε+τiwεwε+τj )
2. From [A2, Lemma 3.18(i) and Corollary 3.29], we

know that the center Z(W̃) of W̃ is a free abelian group of rank ν(ν − 1)/2. For

1 ≤ i < j ≤ ν define cij ∈ GL(Ṽ) by

cij(v) = v and cijλk = λk − δkjσi + δkiσj (v ∈ V, 1 ≤ k ≤ ν).
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By [AS4, Proposition 2.2(vi)],

{cij | (i, j) ∈ BΠ} ∪ {c2ij | (i, j) 6∈ BΠ}

is a free basis for the group Z(W̃). We are done if we show that zij = cij for

(i, j) ∈ BΠ and zij = c2ij for (i, j) 6∈ BΠ. Now for (i, j) ∈ BΠ, we have ε+σi+σj ∈
R×, and so zij ∈ W̃. Moreover, by Lemma 3.1 (or a simple verification),

zij|V = idV and zijλk = λk − δkjσi + δkiσj = cijλk

for 1 ≤ k ≤ ν. Thus zij = cij . For (i, j) 6∈ BΠ, we have

zij|V = idV

and

zijλk = λk − 2δkjσi + 2δkiσj = c2ijλk.

Thus zij = c2ij .

Step 2. We show that the assignment wαk 7→ xαk , 0 ≤ k ≤ m, induces an isomor-

phism from the Weyl group W onto the group G defined by

• generators: xαk , 0 ≤ k ≤ m,

• relations: x2
αk

, 0 ≤ k ≤ m, f
ij
G , 1 ≤ i < j ≤ ν, where f ij := (αij , αi, α0, αj) for

(i, j) ∈ BΠ, and f ij := (αi, α0, αj , αi, α0, αj) if (i, j) 6∈ BΠ.

(Recall that for (i, j) ∈ BΠ, αij is the unique element in Π with supp(αij ) = {i, j}.)
By Proposition 4.4, the assignment wαk 7→ xk, 0 ≤ k ≤ m, induces an isomorphism

from W onto the group G′ defined by

• generators: xk, x(i,j), 0 ≤ k ≤ ν, (i, j) ∈ BΠ,

• relations: x2
k, x2

(i,j), 0 ≤ k ≤ ν, (i, j) ∈ BΠ, x(i,j)xix0xj , (i, j) ∈ BΠ, (xix0xj)
2,

(i, j) 6∈ BΠ.

Using the correspondence xαi ↔ xi for 0 ≤ i ≤ ν and xαk ↔ x(i,j) for ν + 1 ≤
k ≤ m with supp(αk) = {i, j}, the defining generators and relations of the groups

G and G′ coincide and so we identify them.

Step 3. By Step 1, Step 2 and Theorem 3.9, W̃ is isomorphic to the group G̃

defined by

• generators: x̃αk , 0 ≤ k ≤ m,

• relations: x̃2
αk

, 0 ≤ k ≤ m, [x̃αk , f
ij

G̃
], 1 ≤ i < j ≤ ν, where f ij = (αij , αi, α0, αj)

if {i, j} ∈ supp(Π), and f ij = (αi, α0, αj , αi, α0, αj) if {i, j} 6∈ supp(Π).
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Now using the correspondence xαi ↔ xi for 0 ≤ i ≤ ν and xαij ↔ xs for ν + 1 ≤
s ≤ m with supp(αs) = {i, j}, we see that W̃ is isomorphic to the group defined

by

• generators: x̃k, 0 ≤ k ≤ m,

• relations: x̃2
k, [x̃k, x̃sx̃ix̃0x̃j ] if {i, j} = supp(αs); [x̃k, (x̃ix̃0x̃j)

2] if {i, j} 6∈
supp(Π), 0 ≤ k ≤ m, 1 ≤ i < j ≤ ν, ν + 1 ≤ s ≤ m.

Remark 4.6. (i) We recall that if ν = 0 (ν = 1), then R is a finite (affine)

root system of type A1. Therefore Proposition 4.4, together with Proposition 4.5,

reproduces the following known presentations for W and W̃:

W ∼= (x0 | x2
0) ∼= W̃ ∼= Z2 (ν = 0),

W ∼= (x0, x1 | x2
0, x

2
1) ∼= W̃ ∼= Z2 ∗ Z2 (ν = 1).

(ii) Proposition 4.5 provides a finite presentation for the baby and the toroidal

extended affine Weyl groups of type A1 of nullity 2. In this case, these are the

only possible extended affine Weyl groups. Considering the nature of the relations

one might consider this presentation as a generalized Coxeter presentation. We

encourage the interested reader to compare our defining set of generators and

relations with those given in [ST] for types A
(1,1)
1 and A

(1,1)∗

1 .

§5. Appendix: A geometric approach

In this section, we provide a geometric approach to the proof of Theorem 4.3. For

w ∈ W suppose that wα1 · · ·wαk is an expression of w with respect to R×. We

define

(5.1) ε(w) := (−1)k and T (w) :=

k∑
i=1

(−1)k−i sgn(αi)p(αi).

From Lemma 2.1, it follows that the maps ε : W → {−1, 1} and T : W → Λ are

well-defined, that is, their definitions are independent of the choice of expressions

for an element of W. Furthermore, ε is a group homomorphism and

(5.2) T (w1w2) = ε(w2)T (w1) + T (w2) (w1, w2 ∈ W).

One can easily see that for α ∈ R,

(5.3) w(α) = ε(w) sgn(α)ε+ p(α)− 2 sgn(α)T (w),

and so w is uniquely determined by ε(w) and T (w).
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For σ =
∑ν
i=1 kiσi ∈ Λ and η ∈ {±1}, consider the ν-simplex

Bσ,η :=
{ ν∑
i=1

(2ki + ηti)σi

∣∣∣ ti ≥ 0, 0 ≤ t1 + · · ·+ tν ≤ 1
}
.

Let B = {Bσ,η | σ ∈ Λ, η ∈ {±1}}. Now from (5.2) and the fact that ε is a group

homomorphism, it follows that W acts on B by

(5.4) w ·Bσ,η = Bσ+ηT (w),ε(w)η.

If w · Bσ,η = Bσ,η, then T (w) = 0 and ε(w) = 1, so w = 1. This shows that W
acts on B freely, in particular the action is faithful. Moreover, (5.4) shows that

B =W ·B0,1, so the action is transitive.

Remark 5.1. In (i)–(iii) below, we explain our motivation for the action of W
on B defined in (5.4) (a similar idea is given in [Ka, §6.6]).

(i) We show how the action of W on R can be transferred to the action (5.4)

on B. From (5.3), it is easy to see that the action of W on ±ε + 2Λ is faithful.

Using the map ηε+ 2σ 7→ Bσ,η, η ∈ {±1}, σ ∈ Λ, we can identify the set ±ε+ 2Λ

with B. We use this identification to transfer the action ofW to an action, denoted

by •, on B. In fact, since for w ∈ W we have

w(ηε+ 2σ) = ε(w)ηε+ 2(σ − ηT (w)),

the corresponding action on B reads

w •Bσ,η = Bσ−ηT (w),ε(w)η.

The action of W on ±ε + 2Λ, and so on B, is faithful and transitive. The two

actions • and · on B are related as follows:

wεwwε •Bσ,η = wεw •Bσ,−η = wε •Bσ+ηT (w),−ε(w)η = Bσ+ηT (w),ε(w)η = w ·Bσ,η.

(ii) Since we have identified ε + 2σ and −ε + 2σ with Bσ,1 and Bσ,−1, re-

spectively, one can interpret this identification as a polarization of elements of 2Λ

through elements of R×, i.e., we consider Bσ,1 and Bσ,−1 as positive and negative

poles respectively for each element 2σ ∈ 2Λ. In this way, the action ofW on B can

be interpreted on 2Λ as a translation together with a polarization.

(iii) In contrast to the action •, the action · on B given in (5.4) has this “nice”

property that for any α ∈ Π0, wα takes any simplex in B to another simplex

in B, topologically connected to it. This has been our main reason for choosing

the action · instead of •. This completes our remark.
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For α1, . . . , αk ∈ R×t , we define the path corresponding to wα1
· · ·wαk in B

starting at Bσ,η to be the (k + 1)-tuple

(Bσ,η, wαk ·Bσ,η, . . . , wα1 · · ·wαk ·Bσ,η).

We denote this path by PBσ,η (wα1
· · ·wαk), and we say that this is a path of

length k. If σ = 0 and η = 1, we simply denote this path by P (wα1
· · ·wαk). We

call a path a loop based at Bσ,η if its starting and ending points are Bσ,η. We call

the single tuple (Bσ,η) the trivial loop based at Bσ,η and denote it by PBσ,η (1).

Since W acts freely on B, the path PBσ,η (wα1 · · ·wαk) is a loop if and only if

wα1
· · ·wαk = 1. Thus, by Proposition 2.2, the path PBσ,η (wα1

· · ·wαk) is a loop if

and only if (α1, . . . , αk) ∈ Alt(R×t ). Finally, note that W acts on the set of paths

in B corresponding to wα1 · · ·wαk ∈ W by

w · PBσ,η (wα1
· · ·wαk) := Pw·Bσ,η (wα1

· · ·wαk) (w ∈ W).

Let P be the set of all paths corresponding to w2
ε+σi for 0 ≤ i ≤ ν, and

(wεwε+σiwε+σj )
2 for 1 ≤ i < j ≤ ν. Any path in P is a loop of length either 2

or 6.

Definition 5.2. (i) Let P = (Bσ1,η1 , . . . , Bσn,ηn) be a path in B. For 1 ≤ i <

j ≤ n, we call (Bσi,ηi , . . . , Bσj ,ηj ) a subpath of P . The trivial loops (Bσi,ηi) for

1 ≤ i ≤ n are called trivial subloops.

(ii) Let P1 = (Bσ1,η1 , . . . , Bσn,ηn) and P2 = (Bσn,ηn , . . . , Bσk,ηk) be two paths

in B, where the ending point of P1 is the same as the starting point of P2. We

define

P1 · P2 := (Bσ1,η1 , . . . , Bσn,ηn , . . . , Bσk,ηk).

(iii) Let P1 and P2 be two paths in B. A move of P1 is obtained either by

replacing a trivial subloop based at Bσ,η with a loop based at Bσ,η from P, or

by replacing a subloop based at Bσ,η which is an element of P with the trivial

loop (Bσ,η). We say that P1 can be moved to P2, and we write P1 → P2, if P2 is

obtained from P1 by a finite number of moves.

It is easy to see that if PBσ,η (wα1
· · ·wαk)→ PBσ,η (wβ1

· · ·wβn) then

(5.5) w · PBσ,η (wα1 · · ·wαk)→ w · PBσ,η (wβ1 · · ·wβn),

and

(5.6) PBσ,η (wα1
· · ·wαk) · P ′ → PBσ,η (wβ1

· · ·wβn) · P ′,

for any w ∈ W and any path P ′ in B for which the product on the left of (5.6) is

defined.

Recall that W =Wb = 〈wα | α ∈ Π0 = {ε, ε+ σ1, . . . , ε+ σν}〉.
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Theorem 5.3. Let R be an extended affine root system of type A1 and nullity ν.

Then the Weyl group W of R is isomorphic to the group G defined by

• generators: xi, 0 ≤ i ≤ ν,

• relations: x2
k, (x0xixj)

2, 0 ≤ k ≤ ν, 1 ≤ i < j ≤ ν.

Proof. By Theorem 2.6, W has the presentation with

• generators: wα, α ∈ Π0,

• relations: wα1
· · ·wαk , (α1, . . . , αk) ∈ Alt(Π0).

This means that every relation in W corresponds to a loop in B. For 0 ≤ i ≤ ν,

let us denote wε+σi by xi. Then the theorem is proved if we show that, for σ ∈ Λ

and η ∈ {±1}, any loop based at Bσ,η corresponding to xi1 · · ·xik can be moved

to the trivial loop (Bσ,η). Now, using (5.5) and the fact that the action of W on B
is transitive, it is enough to show that any loop based at B0,1 can be moved to the

trivial loop (B0,1). We show this by induction on the length 2m of a loop based

at (B0,1).

Unless otherwise mentioned, all loops are considered based at B0,1. First, we

show that the assertion holds for m = 1, 2, 3. Let m = 1. From Remark 4.2(iii),

we know that any loop of length 2 corresponds to x2
i for some 0 ≤ i ≤ ν. Thus

any loop of length 2 is an element of P and so by definition can be moved to the

trivial loop. Next, let m = 2. By Remark 4.2(iii), a loop of length 4 is of the form

either P (x2
ix

2
j ) or P (xix

2
jxi), for some 0 ≤ i, j ≤ ν. Each of these loops can be

moved to the trivial loop as follows:

P (x2
ix

2
j ) = P (x2

j ) · P (x2
i )→ P (x2

j )→ P (1)

and

P (xix
2
jxi) = P (xi) · Pxi·B0,1

(x2
j ) · Pxi·B0,1

(xi)→ P (x2
i )→ P (1).

Let m = 3 and consider a loop corresponding to x = xj1 · · ·xj6 . Then (αj1 , . . . , αj6)

∈ Alt(Π0). If (αj1 , . . . , αj6) contains an alternating 4-tuple f ′ = (αjs , . . . , αjs+3
)

and y is the element in W corresponding to f ′, then x has to have one of the

forms x2
jy, xjyxj or yx2

j , so by the cases m = 1, 2, the loop corresponding to x

can be moved to the trivial loop. So we may assume that (αj1 , . . . , αj6) contains

no alternating 4-tuple f ′ as above. By our assumption we know that the loop

corresponding to (x0xixj)
2 for 1 ≤ i < j ≤ ν is an element of P, so by definition it

can be moved to the trivial loop. Now, consider (xjxix0)2, the inverse of (x0xixj)
2.

Since P ((x0xixj)
2)→ P (1), using (5.6) we have

P (x0xixjx0xi)→ P (x2
j ) · P (x0xixjx0xi)

= P (xj) · Pxj ·B0,1((x0xixj)
2)→ P (xj).



Affine Reflection Systems of Type A1 149

By repeating this process, we obtain P ((xjxix0)2) → P (1). Using similar argu-

ments, we conclude that

(5.7) if 0 ∈ {r, s, t} then P ((xrxsxt)
2)→ P (1).

Also if 0 ∈ {r, s, t}, we have

(5.8) P (xrxsxt)→ P ((xtxsxt)
2) · P (xrxsxt)

= P (xtxsxr) · PxtxsxrB0,1
(xrxsx

2
txsxr)→ P (xtxsxt).

Now to finish the case m = 3, consider the element x = (xrxsxt)
2, where none of

r, s and t is zero. We have

P (x)→ P (x) · P (x2
0)

= P (xtxrxsxt) · Pxtxrxsxt·B0,1
(xsxrx0) · Pxsxrx0xtxrxsxt·B0,1

(x0)

→ P (xsxt) · Pxsxt·B0.1(x2
0) · Pxsxt·B0,1(xrx0xtxr)

·Pxrx0xtxrxsxt·B0,1
(x2
t ) · Pxrx0xtxrxsxt·B0,1

(x0xs)

= P (x0xsxt) · Px0xsxt·B0,1
((xtxrx0)2) · Px0xsxt·B0,1

(x0xsxt)

→ P (x0xsxt) · Px0xsxt·B0,1(x0xsxt) = P ((x0xsxt)
2)→ P (1).

Thus any loop of length 6 corresponding to expressions with respect to Π0 can be

moved to the trivial loop. Also using the same argument as in (5.8), we get

(5.9) P (xrxsxt)→ P (xtxsxr) (0 ≤ r, s, t ≤ ν).

Now, we assume that m > 3 and that any loop of length smaller than 2m can

be moved to a trivial loop. Let P (x) be a loop of length 2m, where x = xi1 · · ·xi2m .

First assume that for some 1 ≤ r ≤ 2m−1, jr = jr+1. Since PBσ,p(x2
jr

)→ PBσ,p(1),

we have

P (x)→ P (xj1 · · ·xjr−1xjr+2 · · ·xj2m).

Now since (αj1 , . . . , αjr−1
, αjr+2

, . . . , αj2m) is an alternating (2m − 2)-tuple, the

path P (xαj1 · · ·xαjr−1
xαjr+2

· · ·xαj2m ) is a loop of length 2m − 2 in B and so by

the induction hypothesis it can be moved to the trivial loop. So, we may assume

that jr 6= jr+1 for all 1 ≤ r ≤ 2m−1. From Remark 4.2(ii), the root αj1 appears in

(αj1 , . . . , αj2m) an even number of times and there is an even integer 2 ≤ s ≤ 2m

such that j1 = js. From (5.9), we have

P (x)→ P (xj3xj2xj1xj4 · · ·xj2m).

By repeating this process, we can move xj1 next to xjs , so that

P (x)→ P (xj3xj2xj5xj4 · · ·xjs−1
xjs−2

xj1xjs · · ·xj2m).
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By Remark 4.2(i), the 2m-tuple

(αj3 , αj2 , αj5 , αj4 , . . . , αjs−1
, αjs−2

, αj1 , αjs , . . . , αj2m)

is alternating. Thus (αj3 , αj2 , αj5 , αj4 , . . . , αjs−1
, αjs−2

, αjs+1
, . . . , αj2m) is an alter-

nating (2m− 2)-tuple and

P (x)→ P (xj3xj2xj5xj4 · · ·xjs−1
xjs−2

xjs+1
· · ·xj2m).

By the induction hypothesis, the right hand side, which is a loop in B of length

2m − 2, can be moved to the trivial loop. Thus every loop in B can be moved to

the trivial loop.

We conclude this section with the following example which gives a geometric

illustration of the method we used in the proof of Theorem 5.3. We use the same

notation as in Sections 4 and 5.

Example 5.4. Let V0 = Rσ1 ⊕ Rσ2 and

w = wε+σ2
wεwε+σ2

wε+σ1
wεwε+σ1

wεwε+σ2
wε+σ1

wε+σ2
wε+σ1

wε.

Since (σ2, 0, σ2, σ1, 0, σ1, 0, σ2, σ1, σ2, σ1, 0) is an alternating 12-tuple, w is a rela-

tion in W. Now, we use our approach to illustrate geometrically how the path

P (w) can be moved to the trivial path P (1). With the notation of Theorem 5.3,

we write w = x2x0x2x1x0x1x0x2x1x2x1x0, where xi = wε+σi for 0 ≤ i ≤ ν. We

have

P (w) = (B0,1, B0,−1, B−σ1,1, Bσ2−σ1,−1, Bσ2−2σ1,1, B2σ2−2σ1,−1, B2σ2−2σ1,1,

B2σ2−σ1,−1, B2σ2−σ1,1, B2σ2,−1, Bσ2,1, Bσ2,−1, B0,1).

In the first move, we have

P (w)→ P (x2x0x0x1x2x1x0x2x1x2x1x0) = P (x2x1x2x1x0x2x1x2x1x0).

Let w1 := x2x0x0x1x2x1x0x2x1x2x1x0 = x2x1x2x1x0x2x1x2x1x0. Then

P (w1) = (B0,1, B0,−1, B−σ1,1, Bσ2−σ1,−1, Bσ2−2σ1,1, B2σ2−2σ1,−1, B2σ2−2σ1,1,

B2σ2−σ1,−1, Bσ2−σ1,1, Bσ2,−1, B0,1).

As one can see, the first move replaces the path (B7, B8, B9, B10, B11) in Figure

5.1 by the path (B7, B8, B9) in Figure 5.2.

In the second move, we have

P (w1)→ P (x2x1x0x1x2x2x1x2x1x0) = P ((x2x1x0)2).
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Figure 5.1. The complex P (w) in V0
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Figure 5.2. The complex P (w1) in V0
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Figure 5.3. The complex P (w2) in V0



152 S. Azam and M. Nikouei

Let w2 := (x2x1x0)2. Then

P (w2) = (B0,1, B0,−1, B−σ1,1, Bσ2−σ1,−1, Bσ2−σ1,1, Bσ2,−1, B0,1).

The second move replaces the path (B3, B4, B5, B6, B7, B8) in Figure 5.2 with the

path (B3, B4) in Figure 5.3. Since w2 belongs to P, from Definition 5.2(iii), P (w2)

moves to P (1).
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