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The Hadamard Product in the Space of
Lorch Analytic Mappings

by

Luiza A. Moraes and Alex F. Pereira

Abstract

For a complex Banach algebra E, let HL(E) be the space of all mappings from E into E
that are analytic in the sense of Lorch, endowed with the Hadamard product and with the
topology of uniform convergence on bounded subsets of E. We study the topological and
algebraic properties of HL(E) in connection with the topological and algebraic properties
of the underlying space E. We also study the algebraic and topological properties of the
space of sequences (an)n ⊂ E such that limn→∞ ‖an‖1/n = 0.
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§1. Introduction

The theory of Lorch analytic mappings, a special type of holomorphic mappings,

goes back to the 1940’s and is a natural extension of the classical concept of analytic

function to infinite-dimensional algebras. A considerable portion of the classical

theory of analytic functions carries over to such mappings (see [9]). The definition

of analytic mapping introduced by Lorch in [9] is more restrictive than the standard

definition of holomorphic mappings (see [3] or [12]) since Lorch considered only

mappings whose domains and ranges are subsets of a commutative Banach algebra

with unit. But it is more natural and, in many senses, richer. For instance, it

allows concepts like Laurent series, singularities and meromorphic mappings. With

Lorch’s work as foundation, Blum [1] extended the theory to include a study
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e-mail: alexpereira@im.ufrj.br

c© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



112 L. A. Moraes and A. F. Pereira

of Laurent expansions, rational functions, and singularities of analytic functions,

and Glickfeld [5] presented a definition of meromorphic mappings and proved a

generalization of the Mittag-Leffler Theorem.

In the first part of this paper we study the space HL(E) of mappings from E

into E that are analytic in the sense of Lorch, endowed with the Hadamard prod-

uct and with the topology τb of uniform convergence on bounded subsets of E.

We show that HL(E) is a commutative (m-convex) Fréchet algebra without unit

whose spectrumM(HL(E)) is homeomorphic toM(E)×N0 (whereM(E) is the

spectrum of E and N0 = N ∪ {0}); as a consequence, we show that the algebra

HL(E) is semisimple whenever E is.

In connection with the study of HL(E), in the second part of this paper we

consider the space

Γ(E) =
{

(an)n ⊂ E; lim
n→∞

‖an‖1/n = 0
}
.

Endowed with the usual operations of addition, scalar multiplication and product

in spaces of sequences, Γ(E) is a non-unital commutative algebra. We show that

this algebra, endowed with the topology associated to the metric

d(a, b) = sup{‖a0 − b0‖; ‖an − bn‖1/n, n ∈ N}

is isomorphic to the algebra HL(E) (under the Hadamard product) and the iso-

morphism between Γ(E) and HL(E) is in fact a homeomorphism and preserves

the algebra structure. Hence, the study of the algebra HL(E) leads to a better

knowledge of the algebra Γ(E).

We recall that if a Fréchet algebraA does not have a unit we cannot guarantee,

in general, that every closed maximal ideal of A is the kernel of a continuous

homomorphism on A. In this paper we show that the latter property does hold for

A = HL(E), and consequently for A = Γ(E).

§2. Notation, terminology and basic results

We refer to [3], [4], [12], [8] and [13] for background on holomorphic mappings and

on Banach and Fréchet algebras.

If U is an open subset of a commutative Banach algebra E with unit, a

mapping f : U → E is said to have an (L)-derivative f ′(z0) ∈ E at z0 ∈ U if for

each ε > 0 a δ > 0 can be found such that for all h ∈ E satisfying ‖h‖ < δ we have

‖f(z0 + h)− f(z0)− hf ′(z0)‖ < ε‖h‖.

Moreover, f is said to be (L)-analytic in U if it has an (L)-derivative at each point

of U.
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We remark that if f : U → E is (L)-analytic in U then it is clearly continuous

and Fréchet differentiable in U and hence it is a holomorphic mapping in the usual

sense of Definition 5.1 in [12] (see also [3] and [4]). However, it is well known that

the converse is not true (cf. [7, p. 116] or [11, Remark 2.3]).

The Taylor series expansion of an (L)-analytic mapping f takes a particularly

simple form. More precisely, it is known that f is (L)-analytic in U if and only

if given any z0 ∈ U there exists a ρ > 0 and unique elements an ∈ E such that

f(z) =
∑∞
n=0 an(z − z0)n for all z in ‖z − z0‖ < ρ. For details, see for instance

[7, Theorems 3.19.1 and 26.4.1]. In the notation of [3] we have (1/n!)d̂nf(z0)(z) =

anz
n for every n ∈ N.
Throughout, unless otherwise stated, E will always be a commutative complex

Banach algebra with a unit element e and, without loss of generality, we will

suppose that ‖e‖ = 1.

For n ∈ N, PL(nE) denotes the space of all (L)-analytic n-homogeneous poly-

nomials from E into E, and HL(E) denotes the space of all (L)-analytic mappings

f : E → E. When n = 0 we define PL(0E) to be the set of all constant mappings

from E into E.

We denote by N0 the set N ∪ {0}. Given any a ∈ E and n ∈ N0 we denote by

Pa,n the polynomial defined by Pa,n(z) = azn for every z ∈ E. As usual Pa,0(z) = a

if n = 0. It is clear that Pa,n ∈ PL(nE) ⊂ HL(E) for all n ∈ N0. We remark that

P ∈ PL(nE) if and only if P = Pa,n for some a ∈ E.
In [11] we showed that the space PL(nE) with the usual norm given by

‖P‖BE = supx∈BE ‖P (x)‖ is isometrically isomorphic to E and that HL(E) is a

closed subspace of the Fréchet spaceHb(E;E) of holomorphic mappings f : E → E

that are bounded on bounded subsets of E (endowed with the topology τb of

uniform convergence on bounded subsets of E). We denote by HL(E) the Fréchet

space (HL(E), τb). As a consequence of HL(E) ⊂ Hb(E;E) and from the Taylor

representation of (L)-analytic mappings we find that f ∈ HL(E) if and only if

there exists (an)n ⊂ E satisfying limn→∞ ‖an‖1/n = 0 such that f =
∑∞
n=0 Pan,n

in (HL(E), τb). We denote by Γ(E) the set of all sequences (an)n ⊂ E satisfying

limn→∞ ‖an‖
1
n = 0.

§3. The Hadamard product

In [11] we studied some natural algebras of (L)-analytic mappings. In particular, we

showed that the Fréchet spaceHL(E) endowed with the pointwise product becomes

a commutative Fréchet algebra that we also denoted by HL(E) and studied its

spectrum. As a consequence, we proved that HL(E) is semisimple if and only if

E is.
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In this paper we are going to consider a different algebraic structure inHL(E).

If f, g ∈ HL(E), there exist (an)n, (bn)n ∈ Γ(E) such that f(w) =
∑∞
n=0 anw

n and

g(w) =
∑∞
n=0 bnw

n for every w ∈ E. It is easy to check that (anbn)n ∈ Γ(E) and

hence if we define (f ·g)(w) =
∑∞
n=0 anbnw

n for every w ∈ E we have f ·g ∈ HL(E).

We will refer to this product as the Hadamard product. It is easy to see that HL(E)

endowed with this product is a commutative algebra without identity. From now

on this algebra endowed with the topology τb will be denoted by HL(E) and our

aim here is to study its spectrum.

It is known that if X and Y are Banach spaces, the family of seminorms

defined by

pr(f) =

∞∑
n=0

∥∥∥∥ d̂nf(0)

n!

∥∥∥∥rn
for every f =

∑∞
n=0 Pn ∈ Hb(X;Y ) and for every r ∈ N generates the topol-

ogy τb. In particular, pr(f) =
∑∞
n=0 ‖an‖rn for every f =

∑∞
n=0 Pan,n ∈ HL(E) ⊂

Hb(E;E) and it is easy to verify that pr(f ·g) ≤ pr(f)pr(g) for every f, g ∈ HL(E)

and for every r ∈ N. So, HL(E) is an (m-convex) Fréchet algebra.

Theorem 3.1. Let E be a commutative Banach algebra with unit e. The mapping

T :M(E)× N0 →M(HL(E))

defined by T(ϕ,m)(f) = ϕ(am) for every f =
∑∞
n=0 Pan,n ∈ HL(E) is bijective.

Proof. Fix (ϕ,m) ∈M(E)×N0. Clearly T(ϕ,m) is an algebra homomorphism and

T(ϕ,m) 6= 0 since T(ϕ,m)(Pw0,m) = ϕ(w0) 6= 0 for some w0 ∈ E. Moreover, given

a bounded set B ⊂ HL(E) there exists λ > 0 such that supf∈B sup‖w‖≤1 ‖f(w)‖
< λ and by using the Cauchy inequality we see that

‖am‖ = ‖Pam,m‖ ≤ sup
‖w‖≤1

‖f(w)‖ < λ

for all f =
∑∞
n=0 Pan,n ∈ B. Thus T(ϕ,m) is bounded on bounded subsets of

HL(E), which means that T(ϕ,m) is continuous, as (HL(E), τb) is a bornological

space. We have just proved that T(ϕ,m) ∈M(HL(E)).

Now, let (ϕ,m), (ψ, n) ∈ M(E) × N0 be such that T(ϕ,m) = T(ψ, n). For

each a ∈ E,

ϕ(a) = T(ϕ,m)(Pa,m + Pa,n) = T(ψ, n)(Pa,m + Pa,n) = ψ(a)

and so ϕ = ψ. Now, if m 6= n, it is enough to choose b ∈ E so that ϕ(b) 6= 0 in

order to get

T(ϕ,m)(Pb,n) = ϕ(0) = 0 6= ϕ(b) = T(ϕ, n)(Pb,n),

a contradiction. So, we must have m = n and thus T is injective.
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Finally we show that T is onto. First of all, to each φ ∈ (HL(E), τb)
′ we

can associate a sequence (φn)n of continuous linear functionals on E defined by

φn(a) = φ(Pa,n) for all a ∈ E. This sequence clearly satisfies

(a) φ(f) =
∑∞
n=0 φn(an) for every f =

∑∞
n=0 Pan,n ∈ (HL(E), τb),

(b) (‖φn‖1/n)n is bounded.

Let φ ∈ M(HL(E)). There exists m ∈ N0 such that φm is a non-null homomor-

phism on E since φ is a non-null homomorphism on HL(E). Now suppose that

there exist m1,m2 ∈ N0 such that m1 6= m2 and φm1
, φm2

∈M(E). From

(Pe,m1
+ Pe,m2

)2 = Pe,m1
+ Pe,m2

and φm1
(e) = φm2

(e) = 1

it follows that

4 = (φm1(e) + φm2(e))2 = (φ(Pe,m1) + φ(Pe,m2))2

= (φ(Pe,m1
+ Pe,m2

))2 = φ((Pe,m1
+ Pe,m2

)2) = φ(Pe,m1
+ Pe,m2

)

= φ(Pe,m1) + φ(Pe,m2) = φm1(e) + φm2(e) = 2,

absurd. We have just shown the existence of a unique m ∈ N0 such that φm 6= 0

and φn = 0 for every n 6= m and hence φ(f) =
∑∞
n=0 φn(an) = φm(am) for every

f =
∑∞
n=0 Pan,n ∈ HL(E). Thus, there exists (ϕ,m) ∈ M(E) × N0 satisfying

φ(f) = T(ϕ,m)(f) for every f ∈ HL(E).

Next we are going to study the continuity of the mapping T defined in Theo-

rem 3.1 whenM(HL(E)) is endowed with the Gelfand topology τG (i.e., the weak∗

topology), and N0 with the discrete topology.

Theorem 3.2. The spectrum M(HL(E)) is homeomorphic to M(E)× N0.

Proof. Let T be the bijection between M(E) × N0 and M(HL(E)) defined in

Theorem 3.1. Take a net ((ϕα, nα))α∈I in M(HL(E))× N0 such that

ϕα
τG−−→ ϕ in M(HL(E)),(3.1)

nα → m in N0.(3.2)

By (3.2) there exists α1 ∈ I such that nα = m for all α ≥ α1 and so, given

f =
∑∞
n=0 Pan,n ∈ HL(E), we have T(ϕα, nα)(f) = ϕα(am) for every α ≥ α1. As

am ∈ E, by (3.1) we get ϕα(am) → ϕ(am) and hence, given ε > 0, there exists

α2 ∈ I such that |ϕα(am) − ϕ(am)| < ε for every α ≥ α2. Now, if we take any

α0 ∈ I satisfying α0 ≥ α1 and α0 ≥ α2 we have

|T(ϕα, nα)(f)− T(ϕ,m)(f)| = |ϕα(am)− ϕ(am)| < ε for every α ≥ α0,
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and this is true for every f ∈ HL(E). So, T(ϕα, nα)
τG−−→ T(ϕ,m) in M(HL(E)),

showing that T is continuous.

It remains to show the continuity of the inverse of T. Let (ϕα)α∈I and (nα)α∈I
be nets in M(E) and N0, respectively, and let (ϕ,m) ∈M(E)×N0 be such that

(3.3) T(ϕα, nα)
τG−−→ T(ϕ,m) in M(HL(E)).

Suppose that (ϕα, nα) 9 (ϕ,m) inM(E)×N0 endowed with the product topology.

If for every α ∈ I there exists βα ≥ α such that nβα 6= m, then for each a ∈ E we

have T(ϕβα , nβα)(Pa,m) = ϕβα(0) = 0 for every such βα. But by (3.3) there exists

α0 ∈ I satisfying

|T(ϕα, nα)(Pa,m)− T(ϕ,m)(Pa,m)| < ε for all α ≥ α0,

and so, in particular, if we take β0≥α0 such that nβ0
6=m we get T(ϕβ0

, nβ0
)(Pa,m)

= 0 and |T(ϕβ0 , nβ0)(Pa,m) − ϕ(a)| < ε. Thus, ϕ(a) = 0 for every a ∈ E, a

contradiction. Hence, nα → m in N0. Now, take α1 ∈ I such that nα = m for

every α ≥ α1. Clearly, for each a ∈ E we have T(ϕα, nα)(Pa,m) = ϕα(a) for

every α ≥ α1. Moreover, given ε > 0, by (3.3) there exists α2 ∈ I such that

|T(ϕα, nα)(Pa,m) − T(ϕ,m)(Pa,m)| < ε for all α ≥ α2, and if we choose α0 ∈ I
such that α0 ≥ α1 and α0 ≥ α2 we get

|ϕα(a)− ϕ(a)| = |T(ϕα, nα)(Pa,m)− T(ϕ,m)(Pa.m)| < ε

for every α ≥ α0. From this we infer ϕα
τG−−→ ϕ in M(E), which completes the

proof of the continuity of the inverse of T.

It is well known that if A is a commutative Fréchet algebra with unit, then the

correspondence that to each φ ∈ M(A) associates φ−1(0) establishes a bijection

between M(A) and the set of all closed maximal ideals of A (see, for instance,

[6, p. 82]). But if A is a commutative Fréchet algebra without unit we cannot

guarantee, in general, that every closed maximal ideal of A is the kernel of a

continuous homomorphism on A. Next we show that A = HL(E) does have this

property.

Proposition 3.3. If I is a closed maximal ideal in HL(E), then there exists

φ ∈M(HL(E)) such that I = φ−1(0).

Proof. Let I be a closed maximal ideal in HL(E). For each k ∈ N0 define πk :

HL(E) → E by πk(f) = ak for all f =
∑∞
n=0 Pan,n ∈ HL(E) and let Ik = πk(I).

It is easy to verify that πk is a surjective homomorphism and that Ik is an ideal

in E.
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We claim that there exists m ∈ N0 such that Im ( E. Indeed, suppose that

Ik = E for every k ∈ N0, take any f =
∑∞
n=0 Pan,n ∈ HL(E) and fix k ∈ N0

arbitrary. As E = πk(I) there exists g ∈ I such that πk(g) = πk(f). Clearly

g · Pe,k ∈ I. Moreover, from πn(g · Pe,k) = 0 if n 6= k and πk(g · Pe,k) = πk(f)

we get Pak,k = g · Pe,k ∈ I. Thus, Pak,k ∈ I for every k ∈ N0. As I is an ideal

in HL(E) we infer that
∑j
n=0 Pan,n ∈ I for every j ∈ N0. Consequently, f ∈ I as∑j

n=0 Pan,n
τb−→ f and by hypothesis I is closed. We have just shown that Ik = E

for every k ∈ N0 implies I = HL(E), and this contradicts the hypothesis that I is

a maximal ideal in HL(E). So, the claim is true.

Next we show that Im is a maximal ideal in E. Indeed, let Km be an ideal

in E such that Im ( Km. Clearly K = π−1m (Km) is an ideal in HL(E). Also by

hypothesis there exists w ∈ Km such that w /∈ Im, and since πm is onto E we may

choose g ∈ HL(E) such that πm(g) = w ∈ Km. So, g ∈ K. But w /∈ Im implies

g /∈ I and hence K is an ideal in HL(E) such that I ( K. Since I is a maximal

ideal in HL(E) this implies K = HL(E) and so Km = πm(K) = πm(HL(E)) = E.

Thus Im is a maximal ideal in E.

Next we will prove that I = π−1m (Im). Clearly π−1m (Im) ⊃ I and π−1m (Im) is

an ideal in HL(E). But Im is a maximal ideal in E and so there exists w ∈ E such

that w /∈ Im; and since πm is onto there exists g ∈ HL(E) such that πm(g) = w.

Hence, I ⊂ π−1m (Im) ( HL(E) and as I is a maximal ideal in HL(E) we get

I = π−1m (Im) = {f ∈ HL(E); πm(f) ∈ Im}.

Finally, since Im is a maximal ideal in the Banach algebra (commutative with

unit) E, there exists ϕ ∈M(E) such that Im = ϕ−1(0). Hence

I =
{
f =

∞∑
n=0

Pan,n ∈ HL(E); am ∈ ϕ−1(0)
}
.

So, by Theorem 3.1 there exists φ := T(ϕ,m) ∈M(HL(E)) such that

I = {f ∈ HL(E); φ(f) = 0} = φ−1(0).

We recall that the radical R(A) of a commutative algebra A is the intersection

of all maximal ideals in A. An algebra A is called semisimple if R(A) = {0}. As

HL(E) is a commutative (Fréchet) algebra, the kernel of any non-null continu-

ous homomorphism from HL(E) into C is a closed maximal ideal in HL(E) (use

Lemma 7.1 p. 68 of [10] and continuity) and we have

R(HL(E)) ⊂
⋂

φ∈M(HL(E))

φ−1(0).

The next proposition follows from Theorem 3.1.
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Proposition 3.4. The algebra HL(E) is semisimple whenever E is.

Proof. Given ϕ ∈ M(E) and m ∈ N0, let φ = T(ϕ,m) where T is defined as in

Theorem 3.1. Clearly for each f =
∑∞
n=0 Pan,n ∈ HL(E) we know that φ(f) = 0

if and only if ϕ(am) = 0. So, the set

Xϕ,m =
{
f =

∞∑
n=0

Pan,n ∈ HL(E); am ∈ ϕ−1(0)
}

is a closed maximal ideal in HL(E) since Xϕ,m = φ−1(0) and φ ∈ M(HL(E)).

Now, by using the fact that R(HL(E)) ⊂
⋂
φ∈M(HL(E)) φ

−1(0) and Theorem 3.1

we deduce that f ∈ Xϕ,m for all ϕ ∈ M(E) and m ∈ N0 whenever f is in

R(HL(E)). Consequently, given any f =
∑∞
n=0 Pan,n ∈ R(HL(E)) we see that

an ∈
⋂
ϕ∈M(E) ϕ

−1(0) = R(E) for every n ∈ N0. Hence an = 0 for all n ∈ N0

since, by hypothesis, R(E) = 0. This shows that f ≡ 0 for every f ∈ R(HL(E)),

and consequently HL(E) is semisimple.

§4. The sequence space Γ(E)

Let Γ(E) = {(an)n ⊂ E; limn→∞ ‖an‖1/n = 0}. One checks easily that Γ(E)

endowed with the usual addition and scalar multiplication operations is a vector

space.

We define a topological structure in Γ(E) and establish an isomorphism be-

tween Γ(E) and HL(E).

Proposition 4.1. The mapping d : Γ(E)× Γ(E)→ R defined by

d(a, b) = sup{‖a0 − b0‖; ‖an − bn‖1/n, n ∈ N}

for all a = (an)n and b = (bn)n in Γ(E) is a translation invariant metric in Γ(E).

Proof. For all a, b ∈ Γ(E) it is clear that 0 ≤ d(a, b) < ∞, d(a, b) = 0 if and only

if a = b, and d(a, b) = d(b, a). Moreover, given a = (an)n, b = (bn)n, c = (cn)n in

Γ(E), the triangle inequality d(a, c) ≤ d(a, b) + d(b, c) follows from the fact that

‖an − cn‖1/n ≤ ‖an − bn‖1/n + ‖bn − cn‖1/n for all n ∈ N.

Finally, it is easy to check that d(a+ c, b+ c) = d(a, b) for all a, b, c ∈ Γ(E).

Remark 4.2. (a) For every λ ∈ C and a, b ∈ Γ(E),

d(λa, λb) ≤ A(λ)d(a, b) where A(λ) = max{1, |λ|}.

(b) Directly from the definition of d(x, 0) it follows that

d(a+ b, 0) ≤ d(a, 0) + d(b, 0) for all a, b ∈ Γ(E).
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Proposition 4.3. (Γ(E), d) is a topological vector space.

Proof. Addition is continuous at the origin by Remark 4.2(b) and hence at any

other point by translation invariance of d.

Let us show that scalar multiplication is also continuous. Since d is translation

invariant, all we have to show is that d(λpa
p, 0) → 0 whenever (ap) ⊂ Γ(E),

a ∈ Γ(E) and (λp) ⊂ C satisfy d(ap, a)→ 0 and λp → 0. Without loss of generality

we may suppose that |λp| ≤ 1 for all p ∈ N. Let ap = (ap,n)n for all p ∈ N and

a = (an)n. Fix ε > 0. As a = (an)n ∈ Γ(E), there exists n0 ∈ N such that

(4.1) ‖an‖1/n < ε/2 for all n ≥ n0.

Moreover, there exists p0 ∈ N such that for every p ≥ p0 we have d(ap, a) < ε/2

and

(4.2) ‖λpa0‖ < ε/2 and ‖λpan‖1/n < ε/2 for n = 1, . . . , n0 − 1.

Also

(4.3) ‖ap,0 − a0‖ < ε/2 and ‖ap,n − an‖1/n < ε/2 for all n ∈ N.

Now, by using (4.2) and (4.3) we get

(4.4) ‖λpap,0‖ ≤ |λp| ‖ap,0 − a0‖+ ‖λpa0‖ < ε

for every p ≥ p0 and

(4.5) ‖λpap,n‖1/n ≤ |λp|1/n‖ap,n − an‖1/n + ‖λpan‖1/n < ε

for n = 1, . . . , n0 − 1. Moreover, for all p ≥ p0 and n ≥ n0, by (4.1) we get

(4.6) ‖λpap,n‖1/n ≤ |λp|1/n‖ap,n − an‖1/n + |λp|1/n‖an‖1/n < ε.

Finally, (4.4)–(4.6) imply d(λpa
p, 0) ≤ ε for all p ≥ p0.

Proposition 4.4. The metric space (Γ(E), d) is complete.

Proof. Let (ap)p be a Cauchy sequence in Γ(E). Let ap = (ap,n)n for all p ∈ N.

Given 0 < ε < 1, there exists r ∈ N such that

‖ap,0 − aq,0‖ < ε,(4.7)

‖ap,n − aq,n‖1/n < ε,(4.8)

for all n ∈ N and p, q ≥ r. It follows that (ap,n)p is a Cauchy sequence in E for all

n ∈ N0 and so there exists an ∈ E such that ap,n → an as p→∞, for all n ∈ N0.
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Fix n ∈ N0 and p ≥ r; by letting q →∞ in (4.7) and (4.8) we get

‖ap,0 − a0‖ < ε,(4.9)

‖ap,n − an‖1/n < ε, n ≥ 1,(4.10)

for all p ≥ r. Moreover limn→∞ ‖ap,n‖1/n = 0 for each p ∈ N since ap ∈ Γ(E).

Now, by taking p = r in (4.10) the triangle inequality yields limn→∞ ‖an‖1/n = 0,

so a = (an)n ∈ Γ(E). Finally, (4.9) and (4.10) imply that d(ap, a) < ε for all p ≥ r,
which completes the proof.

Remark 4.5. For some authors (see, for instance, Conway [2]) a Fréchet space is

a topological vector space X whose topology is defined by a translation invariant

metric d such that (X, d) is a complete metric space. Propositions 4.3 and 4.4 tell

us that Γ(E) is a Fréchet space in this sense. Meanwhile, most authors require a

Fréchet space to be a locally convex space. Since balls in Γ(E) are not convex, a

priori we cannot guarantee that Γ(E) is a Fréchet space in this more restricted

sense. But the next result shows that Γ(E) is indeed locally convex.

Theorem 4.6. (Γ(E), d) and (HL(E), τb) are isomorphic as topological vector

spaces.

Proof. Define T : (Γ(E), d) → (HL(E), τb) by T (a) =
∑∞
n=0 Pan,n for all a =

(an)n ∈ Γ(E). Clearly T is a linear bijection and so all we have to show is that T

is a homeomorphism. We will show that if a = (an)n ∈ Γ(E) and (ap)p ⊂ Γ(E),

then

d(ap, a)→ 0 as p→∞ if and only if T (ap)
τb−→ T (a) as p→∞.

Let ap = (ap,n)n for each p ∈ N. Given a bounded subset B of E, let R > 1 be such

that ‖w‖ ≤ R for every w ∈ B. To each ε > 0, we may associate η > 0 satisfying

ηR < 1 and η(1 + R
1−ηR ) ≤ ε. If d(ap, a)→ 0, there exists p0 ∈ N such that for all

p ≥ p0 we have

‖ap,0 − a0‖ ≤ η and ‖ap,n − an‖ ≤ ηn for every n ≥ 1.

Hence, for every w ∈ B and all p ≥ p0 we have

‖T (ap)(w)− T (a)(w)‖ ≤
∞∑
n=0

‖ap,n − an‖ ‖w‖n ≤ η +

∞∑
n=1

(ηR)n

= η

(
1 +

R

1− ηR

)
≤ ε,

i.e., T (ap) → T (a) uniformly on B. As this is true for every bounded subset B

of E, this means that T (ap)
τb−→ T (a).
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Conversely, suppose that T (ap)
τb−→ T (a). In particular, for B = {0} we get

‖ap,0−a0‖ → 0. Given ε > 0, let R ≥ 1/ε. By hypothesis, there exists p0 ∈ N such

that for every p ≥ p0 we have

‖ap,0 − a0‖ ≤ ε and ‖T (ap)(w)− T (a)(w)‖ ≤ 1 for all ‖w‖ ≤ R.

For all n ∈ N and p ≥ p0 the Cauchy inequality yields

‖ap,n − an‖= sup
‖w‖≤1

‖ap,nwn − anwn‖ ≤ sup
‖w‖≤R

‖ap,nwn − anwn‖

≤ 1

Rn
sup
‖w‖≤R

‖T (ap)(w)− T (a)(w)‖ ≤ 1

Rn
,

and so ‖ap,n − an‖1/n ≤ 1/R ≤ ε. Hence, d(ap, a) ≤ ε for every p ≥ p0.

As (HL(E), τb) is a locally convex space, from Theorem 4.6 and Proposition

4.4 it follows that (Γ(E), d) is a Fréchet space in the restricted sense.

Proposition 4.7. The Fréchet space (Γ(E), d) is not normable.

Proof. As (Γ(E), d) is a locally convex space, by Kolmogorov’s Theorem (see [2,

p. 107, Proposition 2.6]), it is enough to prove that Γ(E) does not have a bounded

neighborhood of zero. Fix ε > 0 and take η = ε/4. For each λ > 0, take m ∈ N
large enough that λ1/m < 2. If a = (an)n ∈ Γ(E) is defined by an = 0 for all

n 6= m and am = (ε/2)me, it is clear that a ∈ Uε(0) = {a ∈ Γ(E); d(a, 0) < ε},
and moreover ‖am/λ‖1/m > ε/4 = η since a /∈ λUη(0). This shows that Uε(0)

contains an open set Uη(0) = {a ∈ Γ(E); d(a, 0) < η} such that Uε(0) 6⊂ λUη(0)

for every λ > 0. Hence, Uε(0) is not bounded and this completes the proof.

If we endow Γ(E) with the usual product (an) · (bn) = (anbn)n, the isomor-

phism established in Theorem 4.6 preserves the algebra structure. So, T and T−1

are homomorphisms of algebras. Hence, Γ(E) is a commutative Fréchet algebra

without unit when endowed with this product.

Proposition 4.8. The spectrum M(Γ(E)) is homeomorphic to M(E)× N0.

Proof. Define S : M(Γ(E)) → M(HL(E)) by S(φ) = φ ◦ T−1 for every φ ∈
M(Γ(E)), where T−1 is the inverse of the mapping T defined in Theorem 4.6.

Clearly φ◦T−1 is a homomorphism from HL(E) into C. Moreover, as φ ∈M(Γ(E))

and T−1 is onto, there exists f ∈ HL(E) such that φ ◦T−1(f) 6= 0 and so S is well

defined. The injectivity of S follows from the fact that T−1 is onto and it is clear

that S is onto. So, S establishes a bijection between M(Γ(E)) and M(HL(E)).

On the other hand, the continuity of T and T−1 implies the continuity of S and
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S−1, so that S is an isomorphism between M(Γ(E)) and M(HL(E)). Now the

result follows by using Theorems 3.1 and 3.2.

Proposition 4.9. If I is a closed maximal ideal in Γ(E), then there exists ψ in

M(Γ(E)) such that I = ψ−1(0).

Proof. Let I be a closed maximal ideal in Γ(E). From the fact that the mapping T

defined in Theorem 4.6 is an injective homomorphism from Γ(E) onto HL(E), we

deduce that T (I) is a closed maximal ideal in HL(E), and so by Proposition 3.3

there exists φ ∈M(HL(E)) such that T (I) = φ−1(0). Thus, ψ = φ◦T ∈M(Γ(E))

with I = ψ−1(0).

Proposition 4.10. The algebra Γ(E) is semisimple whenever E is.
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